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ABSTRACT
The 5G technology brings transformative changes across sectors
like healthcare, automotive, and entertainment by integrating mas-
sive IoT networks and supporting dense device connectivity. Net-
work slicing in 5G further ignites the capability by allowing tailored
virtual networks for specific applications, enhancing operational
efficiency and user experience across diverse scenarios. In this pa-
per we propose a framework to use Federated Learning (FL) in
5G network slicing to support service assignment. The aim is to
optimize the network traffic allocation among various slices. It first
predicts the load on each network slice and then the incoming
traffic is allocated to a slice which is most suitable and not heavily
loaded. The DeepSlice dataset on 5G slicing is horizontally splited
into multiple segments to train a federated CNN model which are
deployed across multiple clients. The model is analyzed with vary-
ing number of clients and parameters such as accuracy and loss
are observed. The performance of federated approach is compared
with centralized approach of prediction keeping essential hyper
parameters unchanged. Outcomes in terms of training and testing
is presented for better interpretation of the proposed framework.
Observation shows that the federated learning outperform the cen-
tralized technique in accuracy as well as loss.
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1 INTRODUCTION
The advent of 5G technology marks a significant milestone in
the evolution of telecommunications, promising substantial en-
hancements over its predecessor, 4G [12]. Characterized by higher
data rates, reduced latency, increased connectivity, and greater
bandwidth, 5G networks are set to revolutionize various sectors
including healthcare, automotive, entertainment, and industrial
automation. The ultra fast speed supported by 5G network has
transformed the real-time data processing by integrating a massive
scale of IoT devices deployed in various environments including
smart cities and industries. Moreover, it also capable of manag-
ing thousands of connected devices per square kilometer thereby
leveraging the urban management and sustainability. The enhanced
mobile broadband (eMBB) offered by 5G can support new multime-
dia applications, virtual reality experiences, and advanced gaming
technologies, thereby enriching the user experience and creating
new business models. Additionally, 5G networks are poised to boost
the economy by unlocking new economic opportunities through
innovative services and applications.

On the other hand, the network slicing in 5G enables a single
physical network to support multiple virtual networks called net-
work slices. Each of these slices could be tailored to serve different
applications, or user groups [14]. For example, a slice could be con-
figured with ultra-reliable low-latency communication (URLLC) for
critical applications like remote surgeries or autonomous driving.
Another slice could prioritize eMBB to cater high-speed data ser-
vices needed for video streaming or large-scale broadcasts. Hence,
the network slicing significantly increases operational efficiency of
network operators by allowing them to deploy andmanage multiple
virtual networks with varying service levels, security, and perfor-
mance characteristics. Even it does not demand multiple physical
networks. Moreover, slicing improves user experience by seam-
lessly meeting network specific demands of different applications.
....In the recent past, the research on 5G networks slicing has been
targeting to optimize various operations focusing in lifecycle man-
agement, ensuring security, isolation between slices, and developing
dynamic slicing algorithms [7]. Many research have also explored
the integration of AI and machine learning methods [8] to predict
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network demands and allocate resources proactively. Work is also
reported on provisioning network slicing with edge computing to
reduce latency and improve data handling capabilities. Recently,
many researchers have demonstrated the use of FL in 5G network
slicing, particularly for resource allocation and data security. Few
of such works are discussed in the next section. The FL can also be
used to predict network load and manage resources dynamically
across slices, thereby improving scalability and responsiveness. This
decentralized learning model through FL aligns with the distributed
nature of 5G architectures and makes it ideal for real-time applica-
tions in diverse and sensitive environments. This fact motivates us
to carry out this research.
....Rest of the paper is organized as follows. In Section 2 few of
the recent works on applications of Federated learning in network
slicing is explained. Section 3 describes the proposed FL model for
network slicing. Simulation results are found in Section 4 and paper
is concluded in Section 5.

2 RELATEDWORK
Although ample of research on 5G network slicing is found in the
literature, the exploration with federated learning is limited. Few
of the most prominent work with respect to the federated learning
in 5G network slicing is presented in this section.

The work described in [3] is an implementation of FL technique
to design a distributed defense systems for 5G network slicing. The
proposed architecture is capable of detecting internal as well as ex-
ternal attacks targeting the critical components involved in network
slicing. The framework is tested for certain well known attacks such
as distributed DoS, botnets and cache poisoning. As stated by the
authors, the system produces large overheads. A federated learning
influenced digital twin architecture is reported in [4]. Authors have
proposed to create a digital replica of the physical slicing network
to mimic its complicated infrastructure. The federated approach
of the stated scheme enables forecasting the network’s dynamic
performance. In proposed digital twin of network slicing is des-
ignated as a non-Euclidean graph representation which supports
estimation of QoS metrics of the underlying network slices. The
intelligent self-supervision method used in the technique demands
accurate and appropriate hyperparameters for the success of the
model.

In [5] a Stackelberg multi-leader and multi-follower game model
for network slicing in peer-to-peer (P2P) network is proposed. Au-
thors suggest a decentralized resource trading system integrating
blockchain and federated deep reinforcement learning. It assists the
network tenants to perform inter-slice resource sharing securely.
Integration of block chain in the system introduces additional com-
putational complexity in the framework. Another federated deep
reinforcement learning approach for network slicing is described in
[2] for RAN. A collaboration among multiple DL models deployed
for aggregation in the federated learning phase. The synchroniza-
tion and coordination among multiple agents is a critical operation
for the success of the model.

There are few FL motivated slicing approaches found in var-
ious applications such as IoT, Edge computing etc. One of such
work is discussed in [11] that integrates FL in IoT network. It is
a two-tier resource allocation method that involves coordination

between InP and IoT devices. Authors have designed a federated
deep reinforcement learning-based resource allocation algorithm to
explore the optimization. The proposed algorithm converges to the
optimal solution and effectively maximizes utilization. Extension
of federated model to slicing in Edge computing is reported in [13].
They adopted SDN to learn the local model’s data distribution. The
edge devices with its local model communicate with a global SDN
federated model to meet the demand of dynamic network slicing.
This model requires an accurate prediction by a global SDN fed-
erated controller for successful prediction accuracy for network
slices. The research reported in [10] is a FL technique for slicing in
optical network. They suggest that each client needs to periodically
upload local model parameters and download global parameters.
As suggested by the authors, this approach is also suitable for fog
computing in passive optical network. Due to periodic upload and
download of global parameters the algorithm consumes compara-
tively large bandwidth.

From the above discussions, it is noticed that there is a research
gap in the area of 5G network slicing that incorporates distributed
approach through FL. Proper prediction of network traffic load may
significantly improve the performance of 5G network in terms of
service provisioning. Furthermore, the FL can perform considerably
better than the centralized DL models in analysing the hidden pat-
tern in datasets. However, before considering FL for deployment in
real applications a thorough analysis of the technique is necessary.
In that context this research is aimed at exploring the FL model in
5G network slicing.

3 FEDERATED LEARNING FOR NETWORK
SLICING

Each slice is considered as an independent, logical network tailored
tomeet specific requirements of a service or application. This allows
for optimized use of the network’s resources by dedicating different
slices to different types of traffic. A network infrastructure which
supports virtualization technique, divides the network functions
and resources into isolated slices and characterise by their own
performance parameters. This customization is managed through
software-defined networking (SDN) and network function virtual-
ization (NFV), which allows dynamic allocation and reallocation of
network resources based on real-time demand.

3.1 Problem description and dataset
The problem of this research work is to optimize the network traffic
allocation among all the slices using federated learning approach.
The designed model first predicts the network load on each network
slice based on the previous information. It assists in determining
the utilization of output ‘network slices’. Based on this analysis, the
incoming traffic is allocated to a slice which is most suitable and
not heavily loaded. The DeepSlice dataset on 5G slicing technology
as described in [15] is used in this work. It comprises extensive
data used by researchers and developers to train machine learning
models that optimize and manage network slices. It features diverse
data points including network traffic patterns, service requirements,
quality of service metrics, and other operational parameters of
network slices. For detailed information about the dataset readers
may refer to [16] and [6].
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3.2 Methodology
After defining the objective (optimized allocation of traffic to dif-
ferent slices), and performance parameters (maximize the accuracy
and minimize the loss) as in previous subsection, the CNN model
is planned to use through federated learning approach. Following
the principles of FL, the proposed framework operates in two dif-
ferent levels, namely client and server levels. The training of the
CNN is performed in both these levels. For the ease of computation,
only shallow layer parameters are communicated to clients. After
a certain rounds of iteration the clients performs deep parameter
update. The ratio of the shallow layers to total neural layers and
interval of deep update are considered as hyper-parameters. The
server initializes the model with basic parameters and distribute
it to the participating clients. Clients perform local data cleaning
and pre-processing to ensure the suitability of data for training.
Then each client trains the model locally with its own data. This
step models that all training data remains on the local device and
it preserves the security. Local training adapts the model to the
specific conditions and patterns of each slice. After certain rounds
of training each client perform a deep update where server is in-
formed with the results of each client. On receipt of the update, the
server aggregates various weights and train its own model with its
holding data. Likewise, the server accordingly adjust its weights
and update clients for the second round of training. This update
reflects the learned patterns across all participating nodes in the
network. Detailed description of the model is explained in Section
4.B. Further, aggregation of training results of clients can be per-
formed in a decentralized manner among peers however, in this
work centralized aggregation is considered. The CNN model works
by means of repeating the above described process of local train-
ing, aggregation, and global updating iteratively. Each cycle refines
the model’s performance. Incorporating new data and feedback
into the model during the training process can further enhance the
prediction of the model.

3.3 Proposed algorithm
The algorithm works with two different procedures. One for the
client and another for the server. The client receives hyperparame-
ters from the server and perform the training on its local dataset.
After the training it performs deep update with the server. The
procedure is given in Algorithm 1. On receipt of the deep update
from all clients, the central server aggregate all the received pa-
rameters. Based on the aggregated parameters, it trains its own
model. The performance of the model is then evaluated and check
for required error level. If the error of the current model is within
the permissible limit then server stops model training and sends
the updated parameters to all clients. Otherwise the training of
the model continues in the server. The procedure is described in
Algorithm 2.

The proposed expert system if implemented in a real network,
can assists the system intelligently in learning and adapting to
changes or new requirements. It does not need any clear rules
for handling incoming service types (such as handovers, voice
transmission, data etc.) This module can also support in identifying
and accommodating previously unknown demands in the network.

Algorithm 1: clientTrain (local model𝑀𝑙 )
Input: hyperperameters
Output: trained model with deep parameters for𝑀𝑐
for 𝑖 = 1 to noofrounds do

Train𝑀𝑢 locally
if 𝑖 == noofrounds then

Perform deep update𝑀𝑐
end

end
Return𝑀𝑐 ;

Algorithm 2: serverTrain(central model𝑀𝑠 )
Input: Deep parameters from clients
Output: trained model𝑀𝑠
for each client do

Perform aggregation on deep parameters
end
Update model𝑀𝑠
Send Feedback updated model to all clients
if (currLoss ≤ minLoss) then

break
end
Return𝑀𝑠 ;

4 SIMULATION
In order to evaluate the performance of federated learning on the
network slicing data a simulation is carried out in python. Details of
the simulation setup and setup for federated learning environment
is described in this section.

4.1 Simulation environment
The deep neural network namely a CNN model is designed for the
simulation of the proposed federated scheme. The model comprises
of single input and single output layer and three fully connected
hidden layers with 256, 128, and 120 neurons, respectively. In the
first two layers ReLU activation function is used with a discount
factor to 𝛾=0.9 and in the last layer softmax activation is integrated.
The Keras library for deep learning is used within Python. The
episode and batch sizes for the FLmodel are experiment specific and
is described ialong with the results in Section 4.C. All simulations
are executed in a NVDIA DGX Server 5.5.1 which comprises of
8 NVIDIA Tesla V100 GPUs, has computation capacity of 1 Peta
Flops and 20 number of Intel Xeon E5 CPU cores. The system has
the GPU memory of 128GB and system memory of 512GB.

4.2 Federated computation
The federated members in FL’s real world application is distributed
in the network with their own data. Each of these members work
in isolation with their local dataset. In the simulation of FL, shards
of clients are created to replicate the real world environment. In
this simulation training is performed with 10 to 30 shades of clients.
The training dataset is partitioned horizontally and distributed
to all clients after scuffling them. All these clients interact with
a central server for federated computation. The shuffled training
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(a) (b) (c)

Figure 1: Accuracy analysis of training and testing for federated and standard SGD. (a) Impact of volume of clients (the global epoch is 500,
local epoch 200, batch size 32). (b) Impact of global epoch (number of clients 10, local epoch 200, batch size 32). (c) Impact of batch size
(number of clients 10, the global epoch is 500, local epoch 200).

(a) (b) (c)

Figure 2: Loss analysis of training and testing for federated and standard SGD. (a) Impact of volume of clients (the global epoch is 500, local
epoch 200, batch size 32). (b) Impact of global epoch (number of clients 10, local epoch 200, batch size 32). (c) Impact of batch size
(number of clients 10, the global epoch is 500, local epoch 200).

data set is assumed to be a the local copy of data for the client. In
the initial round of the computation the server sends few hyper-
parameters to all clients and each client train their multi layer
perceptron DNN model on their local dataset. The model uses SGD
as a optimizer with a horizontal data partitioning for all clients. The
clients executes the model for number of local epochs (assumed 100)
to complete one iteration, also called a communication round. After
completion of the number of 𝑐𝑜𝑚𝑚_𝑟𝑜𝑢𝑛𝑑 (such communication
rounds varying between 100 to 900 in this implementation also
denoted as global epochs) an aggregation on local parameters is
performed by the client. At this point the client initiates a deep
update by sending computed wights to the to the server. The server
then aggregates all the client parameters and train its own model.
Once the server meets the loss requirement of the system it stops
and update weights to all clients based on certain criteria set by the
model. This step triggers the learning rate of the FL model. Here,

rather than decaying the learning rate with respect to the number of
local epochs (in client) like in general centralized DL, in FL based DL,
decay happens with respect to the number of global aggregations.
This is certainly determined by the value of the 𝑐𝑜𝑚𝑚_𝑟𝑜𝑢𝑛𝑑 which
is a hyper parameter for the model.

The central point of success of FL is the parameter aggrega-
tion process of the model. The method of federated aggregation as
defined in [9] is used in this work and stated below,

𝑓 (𝑤) =
∑︁

𝐾
𝑘=1

𝑛𝑘

𝑛
𝐹𝑘 (𝑤) (1)

where, 𝐹𝑘 (𝑤) is defined as

𝐹𝑘 (𝑤) = 1
𝑛𝑘

∑︁
𝑖∈𝑃𝑘 𝑓𝑖 (𝑤)

The Eqn. (1) is the component-wise sum of all scaled parameters
generated by various clients. The 𝐹𝑘 (𝑤) on the other hand is the
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estimation of weight parameters for each client based on the loss
values recorded across every data point every client has trained
upon. These calculations are influenced by the proportion of a
client’s local training data with the overall training data held by all
clients. Further, the parameter is influenced by the client’s batch
size which determines the total number of data points a client model
is trained upon. In real world applications training data is disjoint
and hence no single client can correctly estimate the quantity of the
combined set. So, in such scenario each client has to send the the
number of data points they trained upon while performing a deep
update to the server. The client receives global hyper-parameters
from the server at the beginning and train on the local data (shared
shad) for a period determined by the local epochs. After the training,
the newweights are scaled and scaled weights are send to the server.
It completes single local training session in all clients. All the scaled
weights are summed up by the server ans scaled the received local
trained weights and updated the global model to this new aggregate.
That ends a single full global training epoch. This process continues
for number of times denoted by 𝑐𝑜𝑚𝑚_𝑟𝑜𝑢𝑛𝑑𝑠 . In order to compare
the results of federated approach with standard centralized CNN
model, same set of training dataset is used. All the hyper parameters
used for the FL training is used in the centralized model. However,
batch size in this case is taken as the sum of all clients in FL model.
This setting ensures that the centralized model possess exactly the
same number of training samples per epoch as the global model
did per communication round in FL model. A single MLP model
is trained in a single batch. Performance of both the approaches
are evaluated in terms of accuracy and loss. A cross entropy loss
model is used in the evaluation. Simulated results are presented in
the following subsection.

4.3 Results and analysis
(i) Accuracy. Accuracy of both the approaches with respect to
training and testing is presented in Fig. 1 to understand the effec-
tiveness of the model. Overall performance of FL model is better
than centralized model. The testing accuracy is nearly 3-4% less
than training accuracy. However, for centralized model, parameters
like number of clients and batch size does not effect the perfor-
mance. Fig. 1(a) shows the data against number of clients. With the
increase in clients, accuracy of training and testing both increases.
In Fig 1(b) the performance with respect to global epoch is shown.
Accuracy increases till 400 and after that it remains consistent in
96%. The impact of batch size is depicted in Fig. 1(c). After a batch
size of nearly 28, the accuracy becomes stable around 96%.
(ii) Loss rate. Fig. 2 shows the loss in both the models using the
cross entropy loss. The loss suffered by FL framework is better than
the centralized model. For Federated model the loss is nearly 1.5
and that other is 2.4. Detailed loss analysis is presented in various
graphs. Fig. 2(a) shows the impact of number of clients on loss.
Figure depicts that the loss get stabilized for clients more than 10
and above. Loss rate is presented for varying global epochs in Fig.
2(b) and against batch size in Fig. 2(c). Loss get stable at 1.5 near
the global epochs of 500 and batch size of 30.

5 CONCLUSION AND FUTUREWORK
In this paper an approach to analyze 5G network slicing data using
the federated learning is described. To simulate the FL model a set
of clients and a server is created and the dataset is splited to all
clients and server. After every round of computation the clients send
back the weights to the server. The server aggregates weights and
modifies the parameters. The modified parameters are then again
sent to clients and it repeats another round of training. This process
repeats several rounds till the loss reaches a required threshold.
The performance of the FL model is analyzed in terms of accuracy
and loss and is compared with Standard Gradient Descent (SGD)
without FL. The results show that federated learning surpasses
SGD in both accuracy and loss. The results are presented for both
training and testing phases.

Although in simulated scenario FL performs better than standard
DL approach, it may slightly vary in real world applications. It is
because of the fact that in real world scenarios federated data held
by clients are mostly NON independent and identically distributed
(IID). Because of the heterogeneity of Data (non-IID data) in Feder-
ated Learning, when each client node updates its local model, its
local objective may be far from the global objective. The averaged
global model which is obtained by averaging the weights of the
client nodes (following vanilla federated learning model algorithm
used in the paper) do not meet the global optima. Hence, the Model-
contrastive learning (MOON) [1], may be used to tackles Non-IID
Data distribution by correcting the local updates. However, this
concept is not examined in this version of the paper and left as a
future work.
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