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Abstract

Scalability is one of the important parameters for mobile communication networks of the
present generation and further to the future 5G and beyond networks. When a user is in
motion transferring from one cell site to another, then the handover procedure becomes
important in the sense that it ensures that a user gets consistent connection without inter-
ruption. Nevertheless, the classic handover process in cellular networks has some sort of
drawback like causing service interruptions, affecting packet transmission, and increased
latency which is highly uncongenial to the evolving applications which have stringent
requirement to latency. To overcome these challenges and improve the mobile handover
in 5G and future mobile networks, this article puts forth a predictive handover mechanism
using reinforcement learning algorithm. The RL algorithm outperforms the ML algorithm
in several aspects. Compared to ML, RL has a higher handover success rate (∼95% vs.
∼90%), lower latency (∼30 ms vs. ∼40 ms), reduced failure rate (∼5% vs. ∼10%), and
shorter disconnection time (∼50 ms vs. ∼70 ms). This demonstrates the RL algorithm’s
superior ability to adapt to dynamic network conditions.

1 INTRODUCTION

Handover is an important process that determines the qual-
ity of mobile communication networks that are in place today
because they enable users to maintain constant and highly effec-
tive communication throughout the available communication
cells in their operating network. Previous schemes in handover
management in cellular networks, for instance, the 4G LTE sys-
tems, normally employ distinct signal strength-based reactive
actions [1]. This can lead to unusual delay in handover decision
and is not effective in high user mobility or complex network
structure.

An overview of how handovers in 5G networks are man-
aged is presented in this article [2], using various approaches
and challenges of user mobility, along with providing evalu-
ations against key performance indicators, which are crucial
in ensuring seamless connectivity in high-density environ-
ments. One of the strategies to overcome constraints is
based on the applied machine learning algorithms to pre-
dict the mobility of the user and future handover events
[3].
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This survey [4] focuses on the challenges in handover and
mobility management inside HetNets at 5G. It investigates the
impact of increased user density and proposes solutions that
maintain QoS and QoE during handovers. Through predicting
the user’s movement, the network proactively optimizes the tar-
get cell and its resources which helps to avoid interruption of
the service during handover. Other related works have explored
the use of context, for instance, the user location, velocity,
and the current network conditions to aid decision-making for
handover [5].

Various issues concerning mobility management in 5G and
beyond networks, among which are predictive handover mech-
anisms are addressed in this review [6]. It reviews network
flattening and distributed mobility management as a means
for improving the user experience and reducing latency during
handovers.

A predictive handover mechanism using machine learning
techniques to improve the performance of 5G networks han-
dovers is proposed in this article [7]. The proposed approach
will be intended for minimizing latency by predicting user
mobility and enhancing user experience.
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The evolution of mobile networks has introduced signif-
icant requirements for handover mechanisms, particularly in
the context of 5G and beyond. Predictive handover mecha-
nisms enhance the network efficiency by reducing latency and
maintaining connectivity.

As users move between different cells in a mobile network,
handover mechanisms are essential for maintaining seamless
connectivity. Traditional handover techniques often suffer from
delays and dropped connections, especially in high-speed con-
text. Predictive handover mechanisms use machine learning and
data analytics to anticipate user movement and optimize han-
dover processes. Device-to-device (D2D) communication and
its impact on handover in 5G systems, highlighting new strate-
gies to optimize mobility management, are investigated in [8].
A new handover scheme using prediction of user behaviour
in order to optimize handover decisions in 5G networks is
proposed in this article [9], therefore reducing the latency
of handovers and enhancing the overall performance of the
network.

Recent studies have focused on various predictive approaches
to enhance handover efficiency in 5G networks:

Machine learning techniques: A machine-learning-
based predictive handover framework is proposed by
Zhang et al. (2021) [10]. The user mobility data is uti-
lized to forecast the next cell a user is likely to connect
to. This model demonstrated a significant reduction in
handover latency, improving user experience in dense
urban environments [10].

Context-aware handover: A context-aware predictive
handover mechanism was introduced by Liu et al. (2022)
[11], which integrates real-time network conditions,
user behaviour, and environmental factors. The user
movement prediction accuracy was improved by this
approach, which leads to optimized resource allocation
during handovers [11].

Deep learning models: In 2023, a deep learning model
was developed by Chen et al. for predictive handover
that utilized recurrent neural networks (RNNs) to anal-
yse user trajectory patterns [12]. Their results indicated
enhanced prediction accuracy and reduced interruption
times during handovers [12].

While predictive handover mechanisms offer promising
solutions, several challenges remain such as:

Data privacy: The user privacy and data security should
be considered during collection and analysis of mobil-
ity. Privacy-preserving techniques that can be integrated
into predictive handover algorithms to safeguard user
information while maintaining performance are studied
by Wang et al. [13].

Real-time processing: The network resources are utilized
by the real-time data processing. To address this issue, a
decentralized architecture that distributes the computa-
tional load across edge devices, enabling faster decision-
making during handover events is proposed by Kumar

et al. [14]. To enhance connectivity and reduce latency,
innovative hybrid predictive handover mechanisims are
produced for Beyond 5G networks. Multiple prediction
techniques are integrated to improve performance in
dynamic network environments [15].

Integration with beyond 5G networks: As networks
evolve towards 6G, utilization of predictive handover
mechanisms with emerging technologies such as the
Internet of Things (IoT) and artificial intelligence (AI)
is required. The importance of interoperability is high-
lighted by Zhao et al., suggesting that future networks
should incorporate hybrid models that leverage both
predictive analytics and traditional methods [10].

From the previously presented papers in this section, we
noticed that Zhang et al. [10] have used AI in 5G handover
improvement. The article discussed the implementation of sev-
eral machine learning algorithms, such as decision trees and
support vector machines, for predicting handover events. The
performance of these algorithms is evaluated based on pre-
diction accuracy and latency [10]. On the other hand, in this
work, another algorithm (reinforcement learning) is going to be
explored and compared with support vector machines. It has
been proven that reinforcement learning algorithm overcame
the support vector machines in many mobile network contexts.

The future of predictive handover mechanisms in 5G and
beyond is to integrate advanced technologies such as AI, edge
computing, and blockchain. Continued research is needed to
refine predictive algorithms, enhance privacy measures, and
ensure scalability in diverse network environments.

Predictive handover mechanisms represent a significant
enhancement in mobile network technology, particularly in the
context of 5G and future generations. Using machine learning
and real-time data analytics, these mechanisms can significantly
enhance user experience and network efficiency. However,
addressing challenges related to privacy, real-time processing,
and integration with emerging technologies will be crucial for
the successful deployment of these solutions.

1.1 Seamless mobility in the 5G era:
Advancements in handover mechanisms

5G is the evolving mobile communication technology that
promises high-speed broadband connections and capability to
the added billions of connected devices. Nevertheless, one of
the main pre-requisites that are deemed necessary in the actual-
ization of 5G is the ability to maintain continuity for users while
moving between adjacent cell sites or distinct network domains.
This level of mobility can only be realized depending on the
efficiency of the handover processes that are in 5G and beyond
networks.

Multi-connectivity or the ability of a user equipment (UE)
to maintain multiple connections with the cells or the net-
work domains concurrently has also been postulated as a viable
solution to increase the resilience of handovers and achiev-
ing seamless mobility [16]. Through simultaneous connections,

 17518636, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cm

u2.12878 by T
est, W

iley O
nline L

ibrary on [20/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SULAIMAN and AL-RAWESHIDY 3 of 16

the UE manages to create a smoother transition during the
handover reducing the chances of a discontinuity in service.
Reference [17] throws light on challenges associated with seam-
less handover in 5G networks. It discusses various solutions
that may facilitate the efficiency of handovers, considering
the importance of predictive algorithms in handling mobility
effectively.

Thus as 5G and other next generation networks are devel-
oped, it becomes very significant to support the requirement for
service continuity control (SCC) and mobility as users require
fast and uninterrupted service while on the move. The innova-
tions in handover methods with predictive methods, contextual
decision-making methods, and multi-connectivity provide the
hope for increased levels of mobility and user satisfaction in the
5G and the future network generations.

2 MOTIVATION AND OBJECTIVES

Usual handover strategies applied in cellular networks currently
are generally organized around using information measured in
real time, and decision-making which is reactive. This hopefully
can lead to delayed handover decisions and also suboptimal per-
formance especially when there is a lot of mobility of the user
or the network architecture is complicated. The rationale for this
study stems from the need to design a proactive handover mech-
anism that would enable the prediction of future handovers so
as to mitigate on the interruptions in the Continuity of Service
for users who are on the move. The first of those is the devel-
opment of a promising handover prediction algorithm suitable
for integration into the future 5G and beyond networks.

2.1 The key contributions of this work
include

1. Machine learning algorithms simulation comparison and
selection to predict user mobility pattern as well as predicting
handover occurrences using previous mobility pattern, user
context, and network information in 5G mobile networks.

2. Exploring an accurate prediction-based handover decision-
making system that can initiate the configuration of the
target cell and provide resources, with the help of which a
particular mobile user can be easily handed over.

3. Real time updates of the predictive handover algorithm as
well as the feedback mechanisms employed throughout the
network will also have to be incorporated into the overall
framework.

4. Testing of the solution and the assessment of its efficiency,
precision and speed, as well as of issues related to the
solution’s realization.

5. Proving that the application of the predictive handover
mechanism (RL) can enhance the mobility management
in 5G and beyond networks, decreasing a failure rate of
handovers and handover time compared to the reactive
approach.

3 PREDICTION AND ARTIFICIAL
INTELLIGENCE IN COMMUNICATIONS

Artificial Intelligence or AI can be defined as an enhanced pro-
cedure or a way of thinking that is changing the relation between
man and his environment. But what AI can do best of all is to
predict, and predict is what lies at the heart of many uses of AI
and capacity to predict the future.

As for the total skill of prognosis, there is no doubt; in fact,
it has been the driving force of diversified human initiatives for
several decades. As for the sense of expectation of the future
events in the most general sense, and as for such purposes as
weather forecasts, expectations and predictions of economical
state of affairs, expecting the future is one of the most basic
and most congenital of human instincts. However, here AI has
taken it to the next level using tens of thousands of data inputs,
complex calculations and state-of-the-art computers to provide
much better predictions that humans could ever think of.

Their biggest strength when applied to the process of pre-
diction is their capability to identify concealed correlations in
data that are not discernible by the human intellect. This is so
empowered with the ability to analyse and compute massive
amounts of information and unearth obscure phenomena as
well as the capability of predicting with effects that are mostly
monumental. For instance, in the sphere of medicine, artifi-
cial intelligence algorithms can study patients’ records, patients’
genetics, patients’ environment, and further calculate a person’s
probability of receiving diseases on the basis of early diagnostic
and individualized therapy. Similarly, in the financial fields, the
AI models are capable of identifying the trends in the stock price
movements, investment options, and associated risks depend-
ing on the market movements, consumers’ behaviour, other
economic factors etc.

Beyond these depressing careers, it is making routine pre-
dictable through AI’s predictive processing. Recommendation
systems hence which are derived by AI are in a position to
discover several products, or even a piece of content or even ser-
vices that will be the most fascinating or useful to us. It would
be easier if smart personal agents could forecast our needs and
present us with the necessary information or suggestions.

Nevertheless, the ability to use employing AI to predict the
capability of the system has advantages and disadvantages in
addition to ethical considerations. The use of AI system in
influencing important decisions also poses a worry especially
on matters concerning bias included, infringement of privacy,
and influence of the decisions made by the AI systems. It
has become a new focal area for researchers, policymakers
and stakeholders, AI enthusiasts to make sure that predic-
tions made by AI systems are understandable, explainable and
unbiased.

Yet, it must be noted that the prospect of using AI in the pre-
diction of events is huge. It is the only approach to reconciling
with the fact that the complexity is growing rapidly, and we must
learn to cope with it; it is not about the automation of work pro-
cesses but rather about making sound decisions, planning, and
searching for new business opportunities.
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As we continue to progress down the road of progressing
into artificial intelligence then foresight is going to be one of
the most beneficial and crucial resources that have ever been
invented. AI prediction might be revealing other opportunities
as a way of making the world a better one in the respect that it
becomes responsive to our needs, sustainable and in a position
to build and bring into existence what we as humanity, want to
see in our life.

In this work, a new predictive handover mechanism is incor-
porated into the machine learning algorithms to predict the
user’s mobility behaviour and probable handovers.

Handover target cell as well as the time for the handover
to occur can be predicted by the mobility data that can be
derived from past usage history, user related factors and net-
work circumstances all of which are gathered and analysed by
the implementable AI algorithm. This information is then used
to set up the target cell and every resource required to use
to make the transition smooth for 5G mobile user. And feed-
back mechanism incorporation and real time adjustments are
thought to be capable of capturing these changes in the network
environment.

4 HANDOVER IN MOBILE NETWORKS

In a typical mobile network, the average latency due to han-
dover can vary depending on several factors, including the type
of handover (intra-frequency, inter-frequency, or inter-RAT),
the technology in use (e.g. 4G LTE, 5G), and the network’s
configuration.

1. Latency due to handover:
- 4G LTE Networks: It is takes approximately 50 to 150

ms of handover latency in normal circumstances. This
embraces the time taken to detect the need to perform
the handover, the time taken to communicate with adja-
cent cells for handover and the time taken to switch to the
new cell.

- 5G Networks: Latency can even go well below 10 ms for
instance; 10 ms below in the best scenario owing to hand
over processes and network design.

2. Disconnection during handover:
- 4G LTE Networks: Latency and interruption during

handover are negligible and are hardly noticeable in
well-optimized network. However, such problems as bad
connection signal, or too many people using the network
might lead to brief interruptions.

- 5G Networks: To this extent, handover is one of the key
features of 5G, which is created in a way that makes it very
tough for the connection to be dropped. As shown with
the use of some of the technologies like Dual Connectivity,
the transition is often smoother than in the 4G networks.

On the whole the time delay that occurs during a hand
over is averaged to range between 10 and 150 ms and hand
over drops are very rare and may not be felt by the users

TABLE 1 Handover performance metrics in 5G network.

Metric

Scenario 1

(urban, high

mobility)

Scenario 2

(urban, low

mobility)

Scenario 3

(rural)

Handover success
rate (%)

95.2% 98.7% 93.5%

Handover latency
(ms)

15 ms 10 ms 20 ms

Handover failure
rate (%)

4.8% 1.3% 6.5%

Average
disconnection time
(ms)

50 ms 30 ms 70 ms

Packet loss during
handover (%)

0.3% 0.1% 0.5%

at all. Performance is relative and therefore depends on the
specific network optimization, the technology applied and the
environment.

In 5G system there are usually impacts from handover fail-
ure and operators usually assess them based on metrics and
simulations.

For instance, the handover success rate and failure rate such
as the Key Performance Indicators (KPIs) are mostly examined
in the studies. These outcomes are often illustrated in simu-
lations where various factors which include the TTT (Timer
To Trigger) and the gNB density are varied to exemplify how
they influence the performance of handover. For instance, in
cases of ultra-dense networks, Failure ratio could be experienced
when TTT values are set to very low values that lead to early
handovers.

Actual operator data might show graphs where handover
success rates decline sharply with increased user speed or
poor signal quality. A typical graph might plot the number of
handovers versus user speed or SINR (Signal-to-Interference-
plus-Noise Ratio), with an evident spike in failures as these
factors worsen. Some operators use techniques like “conditional
handover” to reduce these failures, which are illustrated through
comparison graphs showing reduced failure rates when these
methods are applied.

Actual results of 5G handover failures are typically presented
including metrics like handover success rates, latency, packet
loss, and specific failure rates in different scenarios (e.g. urban
vs. rural, different frequency bands) as shown in Table 1.

5 5G HANDOVER PROCESS
IMPROVEMENT USING AI ALGORITHMS

Based on the literature survey, some AI algorithms are as
follows since they can support the enhancement of the 5G
handover procedure in decision-making, failure prediction and
management of the network resources. The following are some
of the best AI algorithms suited for this purpose:
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5.1 Reinforcement learning (RL)

- Algorithm: Classes of reinforcement learning methods
include Q-Learning, Deep Q-Networks (DQN), … and
Proximal Policy Optimization (PPO).

- Application: The other basing RL algorithms can adjust han-
dover parameters such as TTT and HOM (Handover Margin)
through practical interactions within a network environment.
They assist in reducing the handover failure and there-
fore are useful in enhancing the performance of handover
process.

- Advantages: They help the network to have the real-time con-
trol of the factors such as user speed, signal strength and cell
load resulting in an enhanced handover process.

5.1.1 Key Components of RL

Agent: It can be called the learner or decision-maker.
Environment: The external system that interacts with the

agent.
State (s): It shows the current situation of the agent in the

environment.
DATE (a): Agent’s choices based on the agent’s action that

might affect the state.
REWARD (r): Feedback from the environment with respect

to its action; hence it is either positive or negative.

5.1.2 RL mechanism workflow

1. Initialization: This is the initial state of the agent.
2. Action Selection: The agent chooses an action according to

some policy, strategy for selecting actions.
3. State Transition: The agent executes an action and ends up

in a new state in the environment.
4. Reward Signal: The environment produces a reward signal

depending on the action taken.
5. Policy Update: An agent then updates its policy to maximize

the cumulative rewards it gets over time.

5.1.3 Key algorithms

a. Q-learning is model-free. It learns an action-value function
using Bellman equation updates. It keeps an estimate of
expected return in a Q-table for every state or state-action
pair after receiving a reward.

b. Deep Q-networks: Combine Q-learning with deep neural
networks for approximations of the Q-value function, which
allows them to work in high-dimensional state spaces.

c. Policy gradient methods: Direct optimization of the policy
by altering its parameters according to rewards obtained.
Typical methods include REINFORCE and Actor-Critic
methods.

Machine learning (ML) mechanisms:
On the other hand, machine learning (ML) consists of various

algorithms, which can be further categorized into supervised,
unsupervised, and semi-supervised learning.

Major varieties of ML algorithms are:

1. Supervised learning: Algorithms learn from labelled data.
The model is trained on input–output pairs.

These are some examples of the supervised learning
algorithms:
A. Linear regression: Continuous outcome prediction.
B. Support vector machines: SVM classifies data by finding

a separating hyperplane.
C. Decision trees: Decision Trees use a tree-like model for

making decisions.
2. Unsupervised learning: There are no labelled outputs for

algorithms to learn patterns in data.
Examples:

A. K-means clustering: It groups similar data points.
B. Principal component analysis (PCA): Reduces the

dimensionality while preserving the useful variance.
3. Semi-supervised learning:

This involves a mix of a small amount of labelled data and
a large amount of unlabelled data.

Example: Very often used in scenarios where labelling is
expensive or time-consuming, such as image classification.

ML mechanism components:

∙ Data pre-processing: Cleaning and preparing data for train-
ing. Examples include normalization and handling missing
values.

∙ Feature extraction: The identification of relevant features that
contribute to the outcome.

∙ Model training: The process of adjusting model parameters
on a training dataset.

∙ Evaluation: The process of drawing inferences about model
performance based on metrics that include but are not limited
to accuracy, precision, recall, and F1 score.

∙ Prediction: The process of making inferences from new data
based on the trained model.

Applications in networks:

∙ Traffic prediction: This involves the use of flow history for
the forecast of network flow with the objective of optimizing
resource allocation.

∙ Anomaly detection: This helps in the detection of unusual
behaviour that may depict security threats or failures in any
system.

∙ Quality of service management: It is aimed at predicting and
managing metrics related to network performance.

Block representations for both RL and ML are shown in
Figures 1a and b, respectively.
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FIGURE 1 Block representation: (a) Reinforcement learning and (b) machine learning.

5.2 Supervised learning

- Algorithm: Support Vector Machine (SVM), Decision Trees,
and Random Forests are some of the important algorithms
in performing dependable binary classification, even when
there are a large number of instances and comparatively fewer
features available.

- Application: Such algorithms are capable of forecasting out-
comes of handover based on statistical information. Drawing
from user mobility and network condition, they assist in
decision making on the right time and location to initiate
handovers.

- Advantages: A high level of accuracy in the forecasts besides
its ability to work even when there exist threshold conditions
and non-linear interdependencies between input data.

5.3 Unsupervised learning

- Algorithm: The tools which were used in the research car-
ried out are K-Means Clustering and Principal Component
Analysis (PCA).

- Application: In unsupervised learning, anomaly detectors are
employed for the identification of anomalies and similar
handover events are grouped. It can also assist in deter-
mining conditions that could potentially lead to handover
failures and therefore handover pre-emptive measures be
made.

- Advantages: These methods are helpful in recognizing new
patterns in unlabelled data sets which can be paramount in
identifying new handover behaviour on the field.

5.4 Deep learning

- Algorithm: ‘Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) Networks.

- Application: CNNs can be used to analyse spatial aspects of
the network environment and LSTMs work well when they
are to predict the temporal sequence of the environment

wherein the user is present thus helping to predict the user
trajectory and thereby identify the best time for handing over
the user to another base station.

- Advantages: High capability to accommodate complex pat-
terns and dependencies over the time intervals necessary for
the exact prediction of users’ movements and other network
conditions’ shifts.

5.5 Federated learning

- Algorithm: Federated averaging.
- Application: This algorithm enables multiple edge devices to

cooperate for learning the same prediction model, without
transferring any training data to other devices. It is espe-
cially helpful in 5G to perform optimization of handover
procedures without a negative impact on users’ privacy.

- Advantages: Supplements the model with the data of different
origins, without the re-collection of the data, and maintains
confidentiality while increasing the effectiveness of the model.

5.6 Genetic algorithms

- Application: Due to the dynamic nature of the system there
could be evolution of the framework to decide on the best
handover decision rules out of a possible very large number
of combinations.

- Advantages: Optimisation can be used and are efficient in
identifying global optima in large problem spaces and this
may be particularly suitable for multi-objective problems in
handovers.

5.7 Fuzzy logic systems

- Application: Handover decisions can also be made with fuzzy
logic when some of the input variables such as signal strength
are not well defined or are fuzzy. It assists in coming up with
more versatile and sound handover decisions.
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- Advantages: Flexibility with regard to any vagueness and
ambiguity so that more accurately can be configured corre-
sponding with the real-world conditions during the handover
or shift.

5.8 Transfer learning

- Application: Transfer learning is the use of models learnt
in one environment (e.g. a particular city or situation) for
application in another environment helping to speed up opti-
mization process for making appropriate handover decisions
in other unknown or less learnt environment.

- Advantages: Reduces the amount of labelled data that is
required at a specific moment, thus making implementation
faster, and more effective.

Among these algorithms including RL, deep learning algo-
rithms, genetic algorithms, federated learning etc., they are
helpful in enhancing the 5G handover process. They assist in
more accurate handover decisions; avoidance of failures in han-
dover; and delivery of excellent user experience particularly
during the worst network conditions. Moreover, it is possible
to incorporate these algorithms into self-organizing networks
as well as they are being implemented by more and more tele-
com operators to increase the reliability and performance of 5G
networks.

6 AI ALGORITHMS TO HANDLE
HANDOVER PROCESS IN 5G AND
BEYOND NETWORKS

This is a comparison of two AI algorithms that can improve the
5G and beyond handover process: Reinforcement learning (RL)
and the support vector machines (SVM).

6.1 Reinforcement learning (RL)

Reinforcement learning is a type of machine learning mech-
anism wherein the agent learns to make decisions through
interaction with the environment. Based on its actions, it
receives rewards or penalties to lead toward the optimization
of its strategy over time.

6.1.1 Advantages

∙ Dynamic adaptation: RL is always tuned to network condi-
tions and user behaviours, making it appropriate to deal with
dynamic nature in 5G environments.

∙ Long-term optimization: The RL will optimize the policy
for long-term cumulative rewards, which would pay off def-
initely with respect to the minimization of handover failure
and latency for long-term performance.

∙ Exploration-exploitation trade-off: The RL strikes a balance
between the exploration of new policies and the exploitation
of the policies already known to be good, thereby making
decisions enhanced through trial-and-error.

6.1.2 Challenges

Complexity in training: RL generally involves large amounts of
data and time for training, which could be its disadvantage in
rapidly changing environments.

Convergence problems: Ensuring convergence of the RL
algorithm to an optimal policy may sometimes be very
problematic in a complex state space.

6.2 Support vector machines (SVM)

Support vector machines represent the supervised learning
models for performing classification and regression tasks. Sup-
port vector machines perform their function by finding the
hyperplane that best separates different classes in feature space.

6.2.1 Advantages

∙ High accuracy: SVMs are often highly effective in classifica-
tion problems and thus very efficient in the forecasting of
Handover based on past trends of data.

∙ Robustness to overfitting: If proper kernel functions and
regularization are introduced, SVMs can perform well with
high-dimensional data without overfitting.

∙ Easy interpretation: SVM yields transparent decision bound-
aries that may help in analysing various other factors
influencing the handover decisions.

6.2.2 Challenges

∙ Static nature: SVMs are relatively less adaptable to dynamic
changes than RL; every time the conditions vary, they need
to be re-trained with new data to adapt to those changes.

∙ Computationally expensive: Training in SVMs for larger
datasets may be computationally expensive and might take
up much time.

This is compared in Table 2 by explaining that the benefits
in terms of improvement regarding the 5G handover procedure
of both reinforcement learning and support vector machines are
again based on the use case and the environment of the network.
For example:

∙ Reinforcement Learning is more applicable to dynamic, high-
mobility environments with fast-changing conditions; that’s
because it keeps learning and will adapt continuously with
any new knowledge for further optimization of the handover
decisions.
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8 of 16 SULAIMAN and AL-RAWESHIDY

TABLE 2 Comparison Summary.

Feature Reinforcement Learning Support Vector Machines

Adaptability Highly adaptive to dynamic environments Less adaptive; requires retraining

Training Complexity High; requires extensive interaction Moderate; requires labelled data

Long-Term Optimization Focuses on cumulative rewards Generally optimized for immediate classification

Accuracy Can be high with sufficient data Known for high accuracy in classification

Interpretability Less interpretable More interpretable with clear boundaries

Computational Resources Can be resource-intensive during training Can be computationally intensive, especially with large
datasets

Performance in Dynamic
Environments

Excellent (Learns and adapts to changing
conditions)

Limited (Static once trained, needs updates)

Training Requirements High (Requires dynamic exploration and feedback) Medium (Trains on labelled historical data)

Best Use Cases High-mobility scenarios, dynamic environments Stable environments, predictable patterns

Computational Demand High (Requires continuous learning) Lower (Training can be done offline)

FIGURE 2 Handover performance based on RL.

∙ Supervised Learning is suitable for certain environments
which change very slowly and the conditions within the net-
work can be predicted. It is simpler to implement but less
capable than RL in handling sudden changes

7 HANDOVER SIMULATION RESULTS
ANALYSIS (WITH AND WITHOUT RL
ALGORITHM)

As shown in Figure 2, MATLAB is used to compare 5G han-
dover performance with and without a Reinforcement Learning

(RL) algorithm. In simulation, 5 Cells and 100 mobile users
are used. The following is a brief prestation of results per each
parameter:

7.1 Handover success rate (%)

∙ With RL, the success rate is comparatively higher, averag-
ing around 95%, and with fewer fluctuations. This therefore
shows that reinforcement learning algorithms optimize han-
dover decision making, hence giving a higher rate of
successful handovers.
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SULAIMAN and AL-RAWESHIDY 9 of 16

∙ Without RL, the success rate is comparatively lower, aver-
aging about 85% but with a higher variability. Thus,
this indicates that classic handover mechanisms lack good
decision-making during dynamic conditions.

RL learns optimum policies depending on network con-
ditions to enhance the success rate of handovers in mobile
5G networks. It is essential in 5G networks where high-speed
movement and dense user environments are well-known.

7.2 Handover latency (ms)

∙ With RL: The latency of handover is ∼30 ms, variance
reduced, which means execution of a faster handover.

∙ Without RL: The latency is higher with larger fluctuations.
This is likely due to the more frequent suboptimal handover
decisions.

RL-based algorithms are much better at predicting when a
handover in mobile networks will be needed. Consequently,
the process is smoother and latency much lower. In 5G and
beyond, there is a need to minimize latency to enable real time
applications, for instance virtual reality and autonomous driving.

7.3 Handover failure rate percentage

∙ RL: The failure rate is low, at around 5%, with very little
variance. It is most probable that the RL algorithm foresees
poor handover conditions and acts to prevent this or chooses
better options.

∙ No RL: Much higher failure rate at about 15% points out that
without RL, there are more failed attempts at handover.

Handover failures result in service interruption in mobile
networks, which exacerbates the user experience, especially for
critical services. As this work has demonstrated, RL decreases
failure rates by learning from the historical data and real-time
condition which cells are better targets.

7.4 Average disconnection time (ms)

∙ With RL: The disconnection time is shorter, almost 50
ms, with less fluctuation. This may be indicative that
RL optimizes the process of reconnecting users during
handovers.

∙ No RL: longer disconnection times (close to 80 ms)—this
could be either due to delayed actions or poorly chosen target
cells.

Disconnection time reduction during handovers is of critical
importance for applications relying on continuous connectiv-
ity in mobile networks, including video calls or IoT. As the
results have just shown, simulation results show how RL min-

imizes disconnection by learning to predict and prevent any
event resulting in disconnections.

7.5 Packet loss during handover percentage

∙ RL: Packet loss is low at about 1%, implying that in the case
of RL, selected conditions reduce disturbances and maintain
data integrity during the handover.

∙ Without RL: Higher packet loss, about 3%, which shows the
usual handover procedures are less reliable to hold the data
transmission during the handovers.

The data-intensive service for 5G should guarantee the qual-
ity of experience of the applications with video streaming or
online gaming by reducing packet loss. The RL is going to
reduce packet loss by making decisions in real time on which
congestions or weak cells to avoid.

Graphs in Figure 3 prove that reinforcement learning sig-
nificantly enhances all the handover performance metrics of
5G networks: reduces latency and packet loss, enhances success
rates, while times of disconnection and failures are minimized,
which is shown by simulation results. Therefore, it can be
assumed that in 5G networks, RL will be a very important
approach since these networks require high reliability with low
latency and seamless user experience, especially in dynamic and
high-mobility environments.

8 AI BASED HO (RL VS. ML)
COMPARISON AND RESULTS
DISCUSSION

MATLAB simulation tool is used to test and compare the han-
dover performance based on two algorithms: Reinforcement
learning (RL) and machine learning (ML) algorithms in a 5G
network with 5 cells and 100 users. As shown in Figure 3,
comparison graphs are generated for the following metrics:

∙ Handover success rate percentage
∙ Handover latency (ms)
∙ Handover failure rate percentage
∙ Average disconnection time (ms)
∙ Packet loss during handover percentage

8.1 The results analysis and discussion

Below are the main observations about the graphs results as
shown in Figure 3.

1. Handover success rate percentage

∙ RL algorithm: The success rate is higher (∼95%), with
relatively small variations. This demonstrates that the RL
algorithm learns and adapts to changing network conditions
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10 of 16 SULAIMAN and AL-RAWESHIDY

FIGURE 3 5G handover performance RL vs ML algorithms.

more effectively comparing with ML algorithm, ensuring
smoother handovers.

∙ ML algorithm: The success rate is slightly lower (∼90%), and
there is more variability. This reflects that the ML algorithm
may not learn as effectively as the RL algorithm in dynamic
environments.

∙ The algorithms designed for reinforcement learning learn
optimal policies through interaction with the environment
and may achieve higher success rates against their traditional
or supervised machine learning-based competitors. This is
particularly useful in 5G and beyond wireless networks,
where user mobility and network conditions are fluctuating
on a very fast scale.

2. Handover latency (ms)

∙ RL algorithm: Lower latency (∼30 ms), which signifies faster
handover decision and execution.

∙ ML algorithm: Higher latency (∼40 ms). This may indicate
that the ML-based algorithm takes a little longer to react, or
is less effective at predicting the optimum time for handover.

This therefore means that lower latency in the decision-
making of RL-based algorithms for handovers will go a long way
in 5G and beyond networks, which are to support even real-time
applications like autonomous driving or virtual reality. In fact,
the RL algorithm learned to minimize latency by improving on
the ML algorithm through better prediction.

3. Handover failure rate percentage

∙ RL algorithm: Compared with ML, it has a much lower fail-
ure rate (∼5%). It shows that RL works well in reducing the
failure rate of handovers.

∙ ML algorithm: More failures (∼10%), which means ML-
based handover decisions are more prone to failures.

In any mobile network, the handover failure rate is a vital
factor to be reduced in order to maintain connectivity uninter-
rupted, particularly for cases of high speed and mobility. The RL
algorithm can better avoid the occurrence of handovers at sub-
optimal conditions, hence reducing the failure rate compared to
the ML algorithms.

4. Average disconnection time (ms)

∙ RL algorithm: The disconnection time is much lesser
(∼50 ms), which shows that RL is far better in the continuity
of the connection during the handover.

∙ ML algorithm: Longer disconnection time (∼70 ms) means
ML is not as efficient in minimizing service interruptions
while compared with the RL algorithm.

In 5G and beyond mobile networks, services like online gam-
ing or video calls require seamless connectivity. The capability
of the RL algorithm in minimizing disconnection time proves
its superiority to handle fast and seamless handovers compared
to the ML algorithm.

5. Packet loss during handover (%)
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SULAIMAN and AL-RAWESHIDY 11 of 16

∙ RL algorithm: Low packet loss (∼1%) reflects that data
integrity is maintained by the reinforcement learning-based
handover mechanism during a handover.

∙ Packet loss is more significant with the ML algorithm, about
2%, which is to mean that packet loss cannot be prevented
efficiently by only using the ML algorithm.

Due to the emergence of high-data demanding applications
in mobile communication, such as video streaming and cloud
gaming, a low packet loss is very important. This means that the
RL algorithm is more capable of efficient handovers, as it gives
better performance in light of packet loss.

The results developed across the five parameters in the brief
presentation show that, overall, RL outperforms ML algorithms
in 5G handovers. Evidence includes key metrics such as:

∙ Handover success rate: The ability of RL algorithms to learn
and adapt better against network changes will ensure higher
success rates.

∙ Handover latency: Better and faster decision-making in RL
reduces latency.

∙ Handover failure rate: RL minimizes handover failure by
making better predictions on when to initiate or avoid a
handover.

∙ Disconnected time: RL reduces the disconnection time of
users in any handovers.

∙ Packet loss: RL-based handovers result in fewer packet losses
in order to retain data integrity.

It has already been derived that RL is highly suitable for
dynamic and unpredictable environments, such as 5G networks,
where the mobility of users is high and network conditions may
change in a very short time. ML algorithms work toward solving
this by offering various decision-making algorithms; however,
they are not as adaptive in real time as their RL counter-
parts, hence recording lower performances across key handover
metrics.

These are very valuable insights that support the fact that
RL-based algorithms will surely meet the complexity of 5G
handovers since speed and accuracy are the main concerns.

8.2 Overview and key insights

From the comparative analysis, it is evident that RL algorithms
outperform ML algorithms along all handover performance
metrics in a 5G network. The reason, of course, is due to
the capability of RL for adaptability and real-time decisions,
thus making it very suitable in a 5G environment character-
ized by high mobility, high speed, and unpredictability. The main
insights that can be derived from this comparative analysis are
as follows:

Higher success rate: The RL algorithms provide higher
handover success rates through continuous learning and
adaptation-critical in ensuring reliable service in the dynamic 5G
environment.

Lower latency: Fast decision-making in real time leads to low
latency due to RL, something crucial for applications in real time
that require seamless transitions over networks.

Lower rates of failure: RL’s predict-and-avoid capability with
respect to suboptimal conditions in handovers means fewer
failures to knit together connectivity and user experience.

Minimum disconnection time: RL minimizes the disconnec-
tion time of users during handover; hence, applications which
require continuous connectivity, like gaming and video calls,
may be supported through it.

Less packet loss: Effective handover management in RL
assures minimum packet loss during transitions, thus assuring
data integrity.

The gist of the analysis is that RL algorithms have huge
potential in handling 5G handover because of the learning-
based methodology; thus, this produces real-time continuous
optimization for the decisions of handovers. Further, it places
RL as a robust solution toward handling the numerous complex-
ities associated with 5G networks, specifically on use cases that
require high speed with low latency, such as autonomous vehi-
cles, augmented reality, and smart city applications. Even ML
algorithms, while offering some improvements in performance
compared with traditional methods, are only bounded by their
inept nature for dynamic 5G environments. This also under-
lines the suitability of RL-based algorithms for meeting such
performance requirements related to next-generation wireless
networks for improved handover efficiency, reduced latency,
and greater continuity of services.

8.3 The limits of the proposed approach
and validity of experimental results

The assessment of reinforcement learning as an approach
compared to the traditional machine learning algorithm in
improving handover performance in 5G networks does present
relevant information. However, to comprehensively obtain
the applicability of this method in field operation, considera-
tions of limitations with respect to the current approach and
experimental results have to be considered with due care.

8.3.1 Limitations of the proposed approach

Model assumptions: Simplified network model: The simulation
was performed in an artificial environment with a fixed network
configuration - 5 cells and 100 users. Actually, the structure of a
5G network is much more complex, having different user densi-
ties, a different mobility pattern, and many other environmental
factors not taken into account by the modeling.

Static parameters: This often means that the parameters that
are used in RL and ML models do not have direct similarities
to reflecting the real live conditions. For instance, interference
level, flexibility of user behaviour, and the amount of network
load could differ significantly under the given conditions which
may have an effect on the algorithms.
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12 of 16 SULAIMAN and AL-RAWESHIDY

8.3.2 Training and convergence

Training requirements: RL methods converge to optimal poli-
cies after considerable amounts of training. When applied in
real life, this may mean heavy investment in time and resources
into training, instead of the implementation of the RL method
in itself, which may get quite delayed. Convergence Issues:
RL algorithms do not always converge to a satisfying solution
in highly volatile environments. Regarding this aspect, per-
formance may be poorer compared with other classical ML
techniques.

8.3.3 Computational complexity

Resource intensive: Many of the RL algorithms are computa-
tional expensive, especially when deep learning strategies are
used. This could be an issue anytime a system must operate on
limited IoT devices or have to make decisions in real-time.

Latency in decision-making: It may demonstrate near-real
time latency when applied in simulation form, an implementa-
tion of RL may prove to be high latency when used in real-time
learning and real time adaptability required to make decisions.

Generalization may be poor: The results that have been
obtained from the various simulations may not be very good in
terms of generalizing to so many other real-life problems. There
are large-scale changes in algorithm performance depending on
user behavior, mobility, and environment variations. »

Testbed environment: Lack of a testbed environment that
is critical in terms of validating the results obtained from the
simulations restricts confidence in the proposed approach. Real-
world conditions may pose unexpected challenges that were not
considered during the simulations.

8.4 Validity of experimental results

8.4.1 Reproducibility

Simulation-based results: The results here are based on simula-
tions done using MATLAB. Although this helps in controlled
experimentation, much has to be done in order to ensure the
parameters of simulation and its configuration are reproducible
to verify the findings.

Independent verification: This needs independently to be
checked by further simulations or experiments in different
scenarios to enhance the credibility of the results.

8.4.2 Benchmarking against established
methods

Baseline algorithm comparison: The proposed RL goes well
against the ML algorithms. Still, it may be considered a more
complete work by comparison with other known algorithms or
hybrid approaches. Performance Metrics: The metrics chosen
are indeed relevant, namely handover success rate, latency, fail-

ure rate, time of disconnection, packet loss; several other metrics
could give more wholeness to the view, in relation to energy
consumption and user experience.

8.4.3 Statistical analysis

Statistical significance: The report has to contain the calcula-
tions of the statistical tests to show if the differential of the
performance metrics is significant or may be caused by pure
chance, with multiple trials with statistically valid tests may be
necessary here.

While the proposed RL approach here demonstrates very
promising results for the performance improvement of han-
dovers in 5G networks, several limitations do need to be
identified. These experimental results are only valid with regards
to model assumptions, complexity of real-world conditions, and
further testing and validation. Only when the limitations of
the proposed approach are addressed by comprehensive real-
world evaluations and benchmarks against established methods
will it be more reliable and have wider applicability. Therefore,
the future direction of research should be towards these, so
that overcoming these challenges will pave the way for effec-
tively integrating RL algorithms into next-generation wireless
networks.

9 REAL-WORLD DEPLOYMENT
SCENARIOS

Deploying RL in handover management for high-speed vehic-
ular networks and ultra-dense urban environments in 5G
and beyond mobile networks presents new opportunities with
unique challenges. Two real deployment scenarios are discussed
next, along with ways in which RL mechanisms can handle
handovers in such contexts with efficiency:

A. High-speed vehicular networks

Scenario: High-speed vehicle communications, for example,
over the highways, require a faster and more efficient handover
to maintain the connectivity intact. Since the location is chang-
ing rapidly, quick decisions are to be made to avoid dropped
calls.

Dynamic state monitoring: These RL algorithms will contin-
uously monitor the speed at which the vehicle is moving, its
direction, and also the quality of the signal it is receiving at every
instant of time to dynamically estimate the most opportune
moment for handover.

Predictive models: The learned traffic patterns and vehicle
trajectories through RL can be used to predict when a vehicle is
going to enter into the coverage area of a new base station, thus
triggering proactive handovers.

Cooperative decision: RL can enable vehicles to exchange
information about network conditions with other vehicles; this
may create a cooperative environment and improve the overall
performance of the network.
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SULAIMAN and AL-RAWESHIDY 13 of 16

Load balancing: It will dynamically change the thresholds
in the handover based on the real-time network load. It will
ensure that base stations are not overloaded without affecting
user connectivity.

Following are some of the parameters that the RL agent
may consider: Signal strength, Latency, User’s Velocity and Tra-
jectory, Network load and congestion, Distance towards the
nearest base stations.

The learned policy by the RL mechanism can select among
various actions like: Trigger a handover to one base station,
Delay a handover, Change transmission power, and Change
communication channels.

The reward signal for the RL agent could be designed
in various ways to represent desired objectives of rewarding
successful completion of a handover without unnecessary inter-
ruptions, reducing handover delay, and using network resources
efficiently without overloading any particular base station.

9.1 Challenges for the approach

Challenges and considerations for this approach are:

A. Environment dynamics

Fast-moving environments: High-speed environments and
city environments have rapidly changing conditions to which
the RL algorithms must be robust and adapt to.

Training in varied conditions: The RL models need to be
trained on simulations that can represent real-world conditions
operating under variable traffic flow and user behaviors.

B. Scalability

Scaling up: The RL approach shall be able to scale up effi-
ciently for thousands of vehicles and base stations in ultra-dense
urban areas; techniques such as distributed RL or hierarchical
models may be used.

C. Integration with existing systems

Legacy systems: Any integration of the RL mechanisms to
the existing network management systems shall be carefully
planned so as to ensure that compatibility is retained, together
with seamless operations.

Reinforcement learning for handover management in high-
speed vehicular networks and ultra-dense urban environments
opens up new vistas that help in reinforcing connectivity and
improving user experience. Since it employs dynamic state
monitoring, predictive modeling, and collaborative decision
making, RL effectively copes with the unique challenges aris-
ing within the context of such complicated environments. As
5G and beyond continue to evolve, integration with rein-
forcement learning mechanisms will very much remain a
cornerstone for top-notch network performance to ensure
seamless connectivity for mobile users.

10 COMPUTATIONAL
REQUIREMENTS

Different computational requirements for the use of reinforce-
ment learning to enhance handover prediction in real-time and
considerations of feasibility within a 5G mobile network are
manifold. This section explores these aspects in detail, including
insight into how the solution will scale with increased network
complexity.

A. Processing power

Real-time decision making and latency sensitivity: The deci-
sion of handovers provided in 5G networks should be within
milliseconds or less for service continuity. High-power com-
puting resources such as CPUs and GPUs are essential to big
volumes and high-speed processing.

Algorithmic complexity: The advanced RL algorithms, with
deep learning (Deep Reinforcement Learning-DRL), especially
have great demand in computational power both in training and
inference phases.

B. Data handling capabilities

Real-time data ingestion: Continuous streams of data from
different sources, such as user devices and environmental sen-
sors should be processed by the system. These range from signal
strength, user speed, to network load.

High throughput: Architecture has to support high through-
put for processing incoming data coming from several vehicles
and devices at the same time.

C. Training requirements

Simulation environments and complex simulations: Most of
the training of RL models requires sophisticated simulations,
which actually should emulate real-world scenarios of 5G net-
works. These kinds of simulations, in order to create more
realistic scenarios, can actually be computationally intensive and
demanding in terms of large resources.

Online learning: To implement the capability for online learn-
ing, the updates to the RL model have to be continuous
concerning arriving data. Regular computational resources are
required to process and learn from newer experiences.

10.1 Feasibility of implementation

A. Infrastructure considerations

Localized processing: The utilization of RL algorithms on
edge devices such as Roadside Units or small cells contributes
significantly to a drastic reduction of latency, since computa-
tions are done closer to the source. In this case, only minimal
information needs to be transmitted back to the centralized
servers to reduce latency bottlenecks.
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14 of 16 SULAIMAN and AL-RAWESHIDY

Scalable training: During training phases, scalable process-
ing resources are provided by cloud computing to handle the
computational load by allocating resources dynamically.

B. Network latency and reliability

Execution latency: The time from data collection to exe-
cuting the decision should be minimized for timely prediction
of handover. Delays in processing may lead to interruption of
service, which is particularly important in high-speed vehicular
environments.

Fault tolerance: The design of the system should be on a
redundant basis so that any failure in real time is handled to
ensure continuous operation without any failure in hardware or
software.

10.2 Scalability w.r.t increasing network
complexity

A. Hierarchical RL approaches

Hierarchical models: Hierarchical RL can decompose the
problem into smaller task, while the network complexity is
increased. For example, agents localized within specific areas or
sectors of the network make decisions, and then a global agent
coordinates the overall network performance.

Modular learning frameworks: Independent learning is
enabled at each individual agent, though sharing of strategies
allows scalability without overloading any one agent.

B. Distributed RL frameworks

Parallel learning: Many agents may learn in parallel with lower
computational loads using Distributed RL methods. For exam-
ple, simultaneous learning of multiple vehicles or base stations
can result in faster learning speeds.

Collaborative learning: Without actually sharing data, devices
can collaboratively learn from the local data at some advantage
to privacy and bandwidth. Agents update their models based on
local experiences and share only model updates.

C. Adaptive resource allocation

Dynamic adjustments: Bandwidth, processing power, and
other resources dynamically scale up (to keep performance at
an optimum), when complexity increases, (increasing number
of users and volume of traffic).

Load balancing: The decisions regarding handovers may be
optimally done by the RL mechanisms so that the load on each
base station depends precisely on the occupancy such that no
single base station acts as a bottleneck.

Given adequate computational resources and infrastructures,
the implementation of Reinforcement Learning for handover
prediction can be materialized in 5G mobile networks. With
edge computing, hierarchical RL, and distributed learning
frameworks, massive real-time processing and handling will

definitely be required to scale up most of these approaches.
These approaches will automatically handle resource man-
agement and performance optimization when network com-
plexity rises in order to enable seamless connectivity and
enhanced user experience in high-speed and ultra-dense
environments.

11 RAPIDLY CHANGING NETWORK
CONDITIONS ADAPTION

Adaptability in the system ensures that in case of sudden shifts
in network conditions, such as bursts in traffic or changes in
user mobility, reinforcement learning will make handover pre-
dictions suitable for 5G mobile networks. The objectives are to
ensure seamless connectivity, hence optimally assuring network
performance. It is contingent upon the following described con-
ditions: Each system adaptation towards optimization can be
carried out as follows:

11.1 Dynamic state representation

A. Real-time monitoring

Continuous state updates: The system continuously moni-
tors key network parameters, such as signal strength and quality,
for instance, RSSI (received signal strength indicator) and SINR
(signal to interference plus noise ratio).

∙ User mobility patterns: Speed and direction
∙ Network load: The number of active users and bandwidth

utilization
∙ Environmental factors: For example, weather conditions,

physical obstacles
∙ Feature Engineering: The RL agent may also use some

derived features, like historical trends of the traffic flow,
peak hour usage, and location history of users, for better
understanding of the current state.

11.2 Adaptive action selection

A. Context-aware decision-making

Flexibility in action space: The action space of the RL agent
may vary w.r.t. prevailing context. For example: The agent will
perform handovers during peak hours to less congested base
stations. In a high-mobility scenario, it could use proactive
handovers to avoid latency.

B. Policy adaptation

Online learning: The agent follows online learning methods
for updating the policy at runtime. When a stream of new data
arrives, it updates knowledge about the environment and revises
the decision-making strategy.
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Exploration vs. exploitation: The RL system creates a balance
in exploring new actions and exploits the previous profit-
making ones. For example, an unplanned traffic spike: the agent
will explore new handover strategies hardly ever used previously.

11.3 Robustness to traffic spikes

A. Predictive modeling

Traffic prediction: Increases in traffic prediction is learnt by
the RL agent from the historical data. It learns to identify pat-
terns related to user behavior, and prepare accordingly for an
increase in demand.

Anomaly detection: It can be designed to host several
anomaly detection algorithms that would compute spikes in
traffic that happen without prior knowledge and adapt to rapidly
changing conditions.

B. Load balancing strategies

Dynamic resource allocation: The RL agent may, upon
detecting spikes in traffic, dynamically allocate resources by
threshold tuning for handover will be performed to ensure the
users are shifted to the least congested base stations.

Load balancing: Any load, if at all, will have to be distributed
across the neighbors such that no base station gets overloaded.

Multi-agent coordination: Deploying multiple RL agents, for
example, multiple base stations can share the information of
the surge in traffic and respond accordingly for good overall
performance of the network.

11.4 Adaptation to user mobility

A. Trajectory prediction

User behavior modeling: The RL system will learn from the
historical data to have the predictive pattern about user mobility.
For example, if users often travel through certain routes, the RL
system could initiate a handover when the users approach the
coverage area boarder of a cell.

B. Contextual awareness

Adaptation to changes of environment: RL will be enabled to
adapt to changes in the environment, that is, any mobility factor
such as road construction, detours, or routes introduced. This
may allow for handover strategies timely adaptations.

11.5 Feedback mechanisms

A. Reward structuring

Dynamic reward signals: The reward function can be
designed to reflect real-time network conditions. During peak

times or when low latency is required this mechanism could be
applied. In such cases, higher rewards for successful handovers
could be given.

B. Continuous improvement

Feedback loop: The result of the handover will be feedback to
the RL agent for decision-making in the future. If any handover
results in degraded network performance, then the agent will
learn from that to make an alternative decision.

The adaptability of the RL-enhanced handover prediction
system in 5G mobile networks depends upon continuous real-
time monitoring, dynamic state representation, and robustness
of decision-making. Predictive modeling, anomaly detection,
and coordinated multi-agent strategies are shared to address
rapid network changes for ensuring seamless connectivity in the
midst of unexpected spikes or shifting traffic and user mobility.
This flexibility lends considerable robustness to the approach
and is well-placed for application to the modern mobile network
with its complexity and dynamics.

12 CONCLUSIONS AND FUTURE
WORK

A novel RL AI based handover mechanism is introduced in this
work to enhance seamless mobility in 5G and beyond mobile
communication networks. The proposed solution uses machine
learning techniques (Reinforcement Learning algorithm) to
minimize service disruptions and maintain high-quality connec-
tivity for mobile networks. A significant improvement has been
proven comparing with other machine learning (ML) mech-
anisms in this research. Future research is to improve 6G
networks using predictive handover mechanism such as context-
aware resource management, multi-connectivity, and network
slicing, to further improve the overall mobility and quality of
experience in next-generation mobile networks.
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