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ABSTRACT
There has been an increasing interest in identifying the biological underpinnings
of human time perception, for which purpose research in non-human primates
(NHP) is common. Although previous work, based on behaviour, suggests that similar
mechanisms support time perception across species, the neural correlates of time
estimation in humans and NHP have not been directly compared. In this study, we
assess whether brain evoked responses during a time categorization task are similar
across species. Specifically, we assess putative differences in post-interval evoked
potentials as a function of perceived duration in human EEG (N = 24) and local
field potential (LFP) and spike recordings in pre-supplementary motor area (pre-
SMA) of one monkey. Event-related potentials (ERPs) differed significantly after
the presentation of the temporal interval between ‘‘short’’ and ‘‘long’’ perceived
durations in both species, even when the objective duration of the stimuli was the
same. Interestingly, the polarity of the reported ERPs was reversed for incorrect trials
(i.e., the ERP of a ‘‘long’’ stimulus looked like the ERP of a ‘‘short’’ stimulus when
a time categorization error was made). Hence, our results show that post-interval
potentials reflect the perceived (rather than the objective) duration of the presented
time interval in both NHP and humans. In addition, firing rates in monkey’s pre-SMA
also differed significantly between short and long perceived durations andwere reversed
in incorrect trials. Together, our results show that common neuralmechanisms support
time categorization inNHP and humans, thereby suggesting thatNHP are a goodmodel
for investigating human time perception.
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INTRODUCTION
Time estimation in the range of hundreds of milliseconds is a crucial ability for many
species, as it is necessary for a wide variety of behaviours including foraging and
communication. The last decade has seen an increasing interest in the identification
of neural underpinnings of motor and perceptual timing (Balasubramaniam et al., 2021;
Tsao et al., 2022). Neurophysiological experiments have suggested the existence of a core
timing network that includes the medial premotor areas (SMA and preSMA) and its (sub)
cortical connections (Merchant, Harrington & Meck, 2013). The current hypothesis is that
the medial premotor cortex encodes both elapsed time and the temporal scaling of its
neural population trajectories in state space (Gámez et al., 2019; Sohn et al., 2019). These
dynamics are linked to the existence of neural sequences that form patterns of active
neurons changing in rapid succession and that flexibly cover an interval depending on the
timed duration (Crowe et al., 2014;Merchant et al., 2015).

Electroencephalography (EEG) is an ideal tool to investigate the neural correlates of
time estimation in humans due to its high temporal resolution. For this purpose, previous
studies have combined EEG with different interval timing tasks (Bueno & Cravo, 2021;
Damsma, Schlichting & Van Rijn, 2021; Duzcu, 2019; Lindbergh & Kieffaber, 2013; Ng,
Tobin & Penney, 2011; Ofir & Landau, 2022; Özoğlu & Thomaschke, 2023; Pfeuty, Ragot &
Pouthas, 2005). Most of these tasks involve the presentation of visual or auditory stimuli
to signal a to-be-timed interval, which has to be compared to a reference time interval or
prototype. Early studies focused on ERPs during the presentation of the time interval
(Macar & Vidal, 2003; Pfeuty, Ragot & Pouthas, 2005). However, it has been recently
shown that time estimation is better reflected in post-interval potentials (i.e., evoked
responses emerging after the offset of the time interval) around fronto-central electrodes
(Kononowicz & Penney, 2016; Kononowicz & Rijn, 2014). Specifically, when the presented
stimulus is perceived as longer than the reference, a more pronounced positive potential
around 200 ms (P200) has been found, while for shorter stimuli a more pronounced Late
Positive Potential (LPP) and P300 have been found (Damsma, Schlichting & Van Rijn,
2021; Kononowicz & Rijn, 2014; Kruijne, Olivers & Van Rijn, 2021; Lindbergh & Kieffaber,
2013; Özoğlu & Thomaschke, 2023; Tarantino et al., 2010).

Although research in NHP has provided insights into the neural correlates of time
estimation (Merchant, Harrington & Meck, 2013), these have not yet beendirectly compared
to electrophysiological findings in humans. This is primarily because research in NHP is
often focused on spiking activity (Leon & Shadlen, 2003; Mendoza et al., 2018), which
cannot be recorded non-invasively in healthy human participants. Although no previous
study has investigated post-interval potentials during time estimation tasks in monkeys,
they are expected to be qualitatively similar to those found in humans. Indeed, the
behaviour of monkeys and humans on time estimation tasks shows similar psychometric
properties, which suggests a common neural substrate (Mendez et al., 2011; Zarco et al.,
2009). Moreover, evoked potentials have been reported inmonkeys in other cognitive tasks,
showing similar dynamics to the ones observed in humans (Godlove et al., 2011; Peissig et
al., 2007).
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Here, we assess whether the neurophysiological signatures of time perception are similar
in humans and NHP. For this purpose, we analysed EEG data from 24 humans and
extracellular recordings in pre-SMA from one monkey while they performed a temporal
interval categorization task. In this task, participants had to decide whether a visually
presented temporal interval had a shorter or longer duration than a previously learned
prototype. Based on prior work, we hypothesized that post-interval evoked potentials
would significantly differ between ‘‘short’’ and ‘‘long’’ perceived durations in both humans
and NHP, and that this would be accompanied by changes in firing rates in the latter.

METHODS
Portions of this text were previously published as part of a preprint (see https:
//doi.org/10.1101/2024.04.25.591075).

Participants
Humans. 27 healthy adult subjects (12 males) participated in the experiment. The mean
age was 25.6 years old (SD = 4.2). Participants reported normal or corrected-to-normal
vision and no history of neurologic or psychiatric diagnosis. Informed consent procedure
and study design were approved by the Institutional Review Board (IRB) of the New
York State Psychiatric Institute (protocol #8001). Participants were compensated for their
participation (at 25 USD per hour). Three participants were excluded from the analysis
due to technical problems during data acquisition.

Monkey. Although the original study included two animals (Mendoza et al., 2018), we
here only analysed the data of Monkey 1 because evoked responses in Monkey 2 could not
be obtained due to a lower signal-to-noise ratio in the LFP recordings (see Fig. S1). All
experimental procedures were approved by the National University of Mexico Institutional
Animal Care and Use Committee and conformed to the principles outlined in the Guide
for Care and Use of Laboratory Animals (NIH, publication number 85–23, revised 1985).
The monkey was obtained from a specialized Macaca mulatta breeding company in
Mexico City, called Proyecto Camina A.C., which follows international standards of
reproduction and animal care. The company does not catch animals in the wild and has
certified veterinary care. All the animal care, housing, and experimental procedures were
approved in the protocol 0.27A by bioethics in Research Committee of the Instituto de
Neurobiología, Universidad Nacional Autónoma de México The protocol follow the 3Rs
and conformed to the principles outlined in the Guide for Care and Use of Laboratory
Animals (NIH, publication number 85-23, revised 1985) and theNORMAOficialMexicana
NOM-062-ZOO-1999, ‘Especificaciones técnicas para la producción, cuidado y uso de los
animales de laboratorio’. The animals are housed in a monkey facility with cages of 2.2
m3, with controlled temperature, humidity and a 12-12 h day-night cycle. In our Institute
we have three certified veterinarians that continuously provide care for the monkeys and
perform regular health checkups and medical analysis of the animals. Animal care staff
keep the facilities clean, and they provide food and water to the animals 365 days of the
year. In addition, monkeys are monitored daily by researchers and the animal care staff
to check their conditions of health and welfare. The animals are fed ad libitum with a
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special diet of the brand LabDiet (Monkey Diet 5038). In addition, they have daily access
to fruits such as apples and bananas, as well as raisins and berries. The social intra-species
enrichment includes monkey pairing in the same cage for compatible individuals, and
cages that allow visual interaction. In addition, we play videos of Rhesus monkeys in the
wild to the animals a couple of hours a day. Regarding the non-social enrichment, we
routinely introduce toys (often containing food items that they liked) to their home cage
to promote their exploratory behavior.

Stimuli and task
Humans. Participants performed a temporal interval categorization task (see Fig. 1A). In
this task, participants had to categorize a visual stimulus based on its duration on screen.
Each trial startedwith the presentation of a fixation cross for 2 s. Then, the to-be-categorized
stimulus (a circle around the fixation cross) was shown for a specific time interval. After
another 2-s delay, participants had to report whether the presented stimulus was ‘‘short’’
or ‘‘long’’ according to previously learned prototypes by pressing the right or left arrow
key on a computer keyboard. Note that each block had a learning phase of ten trials in
which participants would learn the meaning of ‘‘short’’ and ‘‘long’’ durations for that
set (only the shortest and the longest intervals of each block were presented, allowing
participants to implicitly learn the category boundary for that set). In order to avoid motor
preparation, response mappings (i.e., left vs. right arrow key) were randomly changed on
a trial-by-trial basis. Feedback was presented at the end of each trial via a colored fixation
cross (green for correct and red for incorrect responses). The task involved three stimulus
sets (T1, T2 and T3) with different interval durations (see Fig. 1B). This design allowed us
to compare ‘‘short’’ and ‘‘long’’ decisions for stimuli with the same objective duration (see
two black boxes in Fig. 1B). The different sets were presented in a blocked design, with
order randomised per participant. A total of 336 trials (112 per block) were performed,
with the experiment lasting for approximately 1 h. The mean accuracy was 69.10% (std =
11.01) for T1, 72.08% (std = 9.94) for T2 and 75.49% (std = 9.56) for T3.

Monkeys. Task details have been reported previously (Mendoza et al., 2018). In short,
monkeys were trained to categorize the temporal interval between two visual stimuli
as either ‘‘short’’ or ‘‘long’’, according to previously learned prototypes. First, a circle
containing a fixation point was shown in the center of the screen. Then, the animal started
the trial by staring at the fixation point and by placing the cursor inside the central circle.
After a variable waiting period (500–1,000 ms), two parallel bars separated by constant
distance appeared for 50 ms, disappeared for a particular test interval, and reappeared in
the same position. The first and second stimulus presentations indicated the beginning
and the end of the test interval, respectively. After a fixed delay (500 ms) two response
targets (orange and blue circles) were presented. Both response targets could occupy one
of eight possible locations on the periphery of the screen. The monkeys were trained to
move the cursor from the central circle to the orange target if the test interval was short
or to the blue target if it was long. The monkey received a juice reward immediately after
each correct response. The task involved three stimulus sets (T1, T2 and T3) with different
interval durations (see Fig. 1B), presented in separate trial blocks. Each block had an initial
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Figure 1 Temporal categorization task. (A) Schematic of the time-interval categorization tasks adopted
for monkeys (first row) and humans (second row). Subjects had to indicate whether the test interval was
of ‘‘long’’ or ‘‘short’’ duration. Response mapping was randomized per trial and shown after the decision
delay. (B) Interval durations for each of the three sets. Note that certain intervals could be ‘‘short’’ in one
set but ‘‘long’’ in another (marked with black outline). (C) Psychometric curves (probability of answering
‘‘long’’) for humans (black) and one monkey (green), per stimulus set. Error bars represent standard error
across subjects for humans and across sessions for the monkey. Shaded area depicts standard error from
the mean (SEM).

Full-size DOI: 10.7717/peerj.18477/fig-1

instruction phase of 24 trials in which only the shortest and the longest intervals of each
block were presented. In these trials the color of the parallel bars matched the color of
the correct response target (orange for the short interval and blue for the long interval).
The following 96 trials constituted the test phase in which the color of the bars was green
regardless of the stimulus category. A total of 199 sessions (each of them involving 96
experimental trials) were performed. The mean accuracy was 68.59% (std = 5.02) for T1,
69.00% (std = 5.76) for T2 and 71.17% (std = 9.25) for T3.

Recordings
Humans. 96-electrode scalp EEG was collected using the BrainVision actiCAP system
(Brain Products GmbH, Munich, Germany) with a sampling rate of 500 Hz. Electrodes
were labelled according to the international 10-20 system. The reference electrode during
the recording was Cz. Amplification and digitalization of the EEG signal was done through
an actiCHamp DC amplifier (Brain Products GmbH, Munich, Germany) linked to
BrainVision Recorder software (version 2.1; Brain Products GmbH, Munich, Germany).
Vertical (VEOG) and horizontal (HEOG) eye movements were recorded by placing
additional bipolar electrodes above and below the left eye (VEOG) and next to the left and
right eye (HEOG).
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Monkey. Neurophysiological recordings were performed as described in previous
publications (Mendoza et al., 2018; Rassi et al., 2023). In short, recording chambers (8-
mm inner diameter) were implanted over the left pre-SMA and dorsolateral prefrontal
cortex (dlPFC) during aseptic surgery under Sevoflurane (1–2%) gas anesthesia. Chamber
positions were determined on the basis of structural MRI. Titanium posts for head
restraining were implanted on the skull. Broad spectrum antibiotics (Enrofloxacin,
5mg/kg/day, i.m.) and analgesics (Ketorolac 0.75mg/kg/6 h or Tramadol 50–100mg/4–6 h,
i.m.) were administered for 3 days after surgery. The extracellular activity of neurons in
pre-SMAwas recordedwith quartz-insulated tungstenmicroelectrodes (1–3M�)mounted
in multielectrode manipulators (Eckhorn System; Thomas Recording, GMbH, Giessen,
Germany). All neurons were recorded regardless of their activity during the task, and the
recording site changed from session to session. Spike waveform data were sorted online
employing window discriminators (Blackrock Microsystems LLC, Salt Lake City, UT,
USA). LFP data were simultaneously recorded from both pre-SMA and dlPFC using a
250-Hz low-pass filter and stored at 1,000 Hz for offline analysis. The titanium posts of the
head-restraining implant were used for grounding.

Pre-processing of electrophysiological data
Humans. Pre-processing was performed in MATLAB R2021a using custom scripts and
functions from EEGLAB (Delorme & Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011)
toolboxes. Data were first resampled to 250 Hz and filtered between 0.5 and 30 Hz.
Noisy electrodes were automatically detected (EEGLAB function clean_channels) and
interpolated. EEG data were re-referenced to the common average and independent
component analysis (runica algorithm) was performed. An automatic component rejection
algorithm (IClabel) was employed to discard components associated with muscle activity,
eye movements, heart activity or channel noise (threshold= 0.8) (Pion-Tonachini, Kreutz-
Delgado & Makeig, 2019). In addition, components with an absolute correlation with
HEOG, VEOG or ECG channels higher than 0.8 were discarded. Furthermore, artifact
subspace reconstruction (ASR) was employed to correct for abrupt noise with a cut-off
value of 20 SD (Chang et al., 2019) ERPs were obtained by averaging trials within subjects,
condition and electrodes. In order to reduce the dimensionality of the data, Principal
Component Analysis (PCA) was used to compute spatial filters that explained most of the
variance of the EEG data(Guarnieri et al., 2020; Zanotelli, Filho & Tierra-Criollo, 2010). We
concatenated ERPs across subjects to compute common spatial filters for all subjects (i.e.,
Group PCA analysis) (Dien, 2012).

Monkeys. All LFP pre-processing was done with Fieldtrip and custom MATLAB R2019a
code. Only data from pre-SMA was used based on prior work (Kononowicz & Penney,
2016). Epochs were visually inspected and excessively noisy channels and trials were
rejected (around 10% of data) (Rassi et al., 2023). Data were filtered between 0.5 and
30 Hz. ERPs were obtained by averaging trials within pre-SMA electrodes, sessions and
conditions.
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Statistical analysis
For the behavioural analysis, we calculated psychometric curves per subject (in humans)
or per session (in monkeys). For this purpose, the probability of categorizing each interval
of the corresponding set of stimuli as ‘‘long’’ was fitted with a logistic function, which was
defined as:

f (x)=
1

1+e−a(x−b)
.

The parameter a represents the steepness of the slope and b is the sigmoid midpoint. The
slope was extracted per subject (in humans) or per session (in monkeys) to be statistically
compared between sets and species. These comparisons were done using ANOVAs and
t -tests (paired and independent) as implemented in MATLAB.

For the electrophysiological data, a cluster-based permutation test (Maris & Oostenveld,
2007) was used to assess condition-related statistical differences in ERPs. In short, this test
uses non-parametric Montecarlo randomization in order to control for the type I error
rate arising from multiple comparisons while taking into account the dependency of the
data (see Maris & Oostenveld, 2007). The significance level for the cluster permutation
test was set to 0.025 (corresponding to a false alarm rate of 0.05 in a two-sided test).
A paired-samples t -test was chosen as the first-level statistic to compare experimental
conditions in humans and monkeys.

For the comparison of monkey and human ERPs we performed a cross-correlation
analysis. In short, the Pearson correlation coefficient was computed between the average
human ERP (per electrode and across subjects) and the monkey ERP across conditions for
different time lags. Because the lengths of the human and monkey post-interval ERPs were
different (i.e., the delay was longer in humans; see Fig. 1A), the human ERP time series
was resampled to match the monkey ERP in length. The false discovery rate method was
adopted to correct for multiple comparisons (Benjamini & Hochberg, 1995).

RESULTS
Behaviour
The psychometric curves of both the human participants and themonkey followed a typical
sigmoid shape showing that the probability of categorizing a particular interval as ‘’long’’
increased as a function of the interval duration (see Fig. 1C).

The slope of the psychometric curves, which reflects sensitivity, differed significantly
between sets in both the monkey (F (2,134) = 51.93; p< 0.001) and humans (F (2,69)
= 5.54; p= 0.006). In line with previous literature (Mendez et al., 2011), post-hoc t -tests
showed that the slope of the psychometric curve became flatter in blocks with longer
stimulus duration, thereby reflecting decreased sensitivity with longer intervals in both
species. Specifically, post-hoc t -tests showed that in humans the slope of the psychometric
curve was significantly flatter in set T2 relative to set T1 (t(23) = 3.30; p= 0.003) and in
set T3 relative to set T1 (t(23) = 3.27; p= 0.003), but not in set T3 relative to set T2 (t(23)
= 0.93; p= 0.35). In the monkey, the slope of the psychometric curve was significantly
flatter in set T3 relative to both set T1 (t(86) = 8.47; p< 0.001) and set T2 (t(83) =
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3.43; p< 0.001), and in set T2 relative to set T1 (t(99) = 7.07; p< 0.001). When directly
comparing the slope of the psychometric curve between species, we found that humans
had greater sensitivity (i.e., steeper slope) than monkeys in set T1 (t(74) = 2.64; p= 0.01),
set T2 (t(71) = 3.67; p< 0.001) and set T3 (t(59) = 2.39; p= 0.020).

In sum, these behavioural results indicate that both humans and themonkey successfully
categorized time intervals and that the psychometric properties of behavioural responses
were similar across species.

Post-interval evoked responses in humans
We first sought to replicate and extend previous findings showing differences between
‘‘long’’ and ‘‘short’’ temporal decisions in post-interval ERPs of human EEG. In order to
reduce the dimensionality of the data, we performed a group PCA. We selected the first
three components for further analysis since they cumulatively explained over 70% of the
variance (40.3%, 24.9% and 11.7%, respectively). Only the first two components showed
significant differences between ‘‘short’’ and ‘‘long’’ decisions (see below).

The first principal component (Fig. 2A) showed a more pronounced positive potential
around 300 ms for correct ‘‘short’’ decisions (tcluster = −113.89; pcluster = 0.002) and a
more pronounced negative potential around 600 ms for correct ‘‘long’’ decisions (tcluster =
−100.59; pcluster= 0.002; Fig. 2B). The same pattern of results was observed when selecting
correct trials with the same objective duration (i.e.,matched for physical stimulus properties
but belonging to a different category), although in this case, only the difference around
300 ms remained significant (tcluster = −95.64; pcluster = 0.003; Fig. 2C). No significant
differences were found for incorrect trials (Fig. 2D).

The second principal component (Fig. 2E) showed amore pronounced positive potential
around 200 ms for ‘‘long’’ decisions (tcluster= 231.63; pcluster < 0.001), a more pronounced
positive potential around 400 ms for ‘‘short’’ decisions (tcluster =−283.94; pcluster < 0.001),
and a more pronounced negative potential around 1,000 ms for ‘‘short’’ decisions
(tcluster= 64.89; pcluster= 0.024; Fig. 2F). The same pattern of results was observed when
selecting correct trials with the same objective duration (tcluster= 189.78, pcluster= 0.002;
tcluster = −99.44, pcluster= 0.003; tcluster = −71,03, pcluster= 0.009; Fig. 2G). Crucially, this
pattern of results was reversed for incorrect trials for the ERPs around 200 ms and 400 ms
(tcluster= 49.91, pcluster= 0.009 and tcluster =−45.96, pcluster= 0.018, respectively; Fig. 2H).

Based on previous literature, we repeated the analysis using a baseline correction of
200 ms prior to the offset of the stimulus to attenuate the putative effects of evoked
potentials emerging during the presentation of the visual stimulus (Kononowicz & Rijn,
2014). As depicted in Fig. S2, we obtained a qualitatively similar pattern of results.

Together, these results show that post-interval potentials reflect the perceived duration
of the stimuli as (i) ERPs for ‘‘short’’ and ‘‘long’’ decisions differed significantly even if the
objective duration of the stimulus was the same, and (ii) some of these ERP effects were
reversed for incorrect trials.
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Figure 2 Post-interval evoked potentials in humans. Each row depicts the ERPs after a Group PCA-
derived spatial filter is applied. (A) Topography of the spatial filters for the first principal component.
(B) ERPs for ‘‘long’’ and ‘‘short’’ responses for correct trials. (C) ERPs for ‘‘long’’ and ‘‘short’’ responses
for correct trials with the same objective (but differently perceived) duration. (D) ERPs for ‘‘long’’ and
‘‘short’’ responses for correct trials. (E–H) same as A–D for second component. Statistical significance at
p< 0.025 is marked with a black line, and 0 on the x-axis represents the offset of the stimulus whose dura-
tion was to be evaluated. Shaded area depicts standard error from the mean (SEM).

Full-size DOI: 10.7717/peerj.18477/fig-2

Post-interval responses in human and non-human primates
In order to compare post-interval potential differences between ‘‘long’’ and ‘‘short’’
temporal decisions across species, we selected a group of frontal electrodes in humans that
overlaps spatially with the recording locations in the monkey (Fig. 3AE).

In humans, correct ‘‘short’’ decisions were associated with a more pronounced negative
potential in the first 100 ms (tcluster= 123.64; pcluster= 0.002), a more pronounced positive
potential around 200 ms (tcluster = −166.69; pcluster < 0.001) and a more pronounced
negative potential around 1000 ms (tcluster= 56.42; pcluster= 0.021; Fig. 3B). A qualitatively
similar pattern of results was observed when selecting trials with the same objective
(but differently perceived) duration (tcluster = 68.53; pcluster = 0.016; tcluster = −108.58;
pcluster = 0.003; Fig. 3C). No significant differences were identified for incorrect trials
(Fig. 3D).

Similarly, correct ‘‘short’’ decisions in the monkey were associated with a more
pronounced negative potential in the first 100 ms (tcluster =13475; pcluster < 0.0001), a
more pronounced positive potential around 200 ms (tcluster =−71.18; pcluster= 0.004) and
a more pronounced negative potential around 300 ms (tcluster = 120.28; pcluster = 0.004;
Fig. 3F). A qualitatively similar pattern of results was observed when selecting trials with the
same objective (but differently perceived) duration (tcluster = 1147; pcluster < 0.001; Fig. 3G).
Moreover, this pattern of results was significantly reversed for incorrect trials (tcluster =
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Figure 3 Fronto-central post-interval evoked responses in human and non-human primates. (A)
Topography showing the location of electrode selection in humans. (B) ERPs for ‘‘short’’ (orange) and
‘‘long’’ responses (blue) in humans for correct trials. (C) ERPs for ‘‘short’’ (orange) and ‘‘long’’ responses
(blue) in humans for correct trials with the same objective (but differently perceived) duration. (D) ERPs
for ‘‘short’’ (orange) and ‘‘long’’ responses (blue) in humans for incorrect trials. (E) Analysed recording
sites in the monkey (pre-SMA). (F–H) Same as B–D but for the monkey. (I–K) Same as B-D but depicting
monkey’s firing rate instead of ERPs. Statistical significance at p < 0.025 is marked with a black line in
each subplot, and 0 on the x-axis represents the offset of the stimulus whose duration was to be evaluated.
Shaded area depicts standard error from the mean (SEM).

Full-size DOI: 10.7717/peerj.18477/fig-3

−71.96; pcluster < 0.001; tcluster = −333.35; pcluster < 0.001; Fig. 3H). In addition, relative
firing rate in the monkey was more pronounced for correct ‘‘short’’ decisions around 300
ms for all trials (tcluster = −197.68; pcluster = 0.002; Fig. 3I) as well as for trials matched
for duration (tcluster = −139.48; pcluster = 0.004; Fig. 3J), and this pattern of results was
reversed for incorrect trials (tcluster= 252.63; pcluster < 0.001; Fig. 3K).

Note that a qualitatively similar pattern of results was obtained when using a baseline
correction of 200 ms prior to the offset of the stimulus (see Fig. S3).

In order to quantify the qualitative similarities between themonkey and human ERPs, we
performed a cross-correlation analysis. Specifically, we computed the Pearson correlation
coefficient between the average human and monkey ERPs across conditions for different
time lags. This analysis revealed that human and monkey ERPs were maximally correlated
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Figure 4 Cross-correlation between human andmonkey ERPs. (A) Topography depicting the r-values
of the correlation between the average human and monkey post-interval potential (lag of 31 samples). (B)
Depiction of the human and monkey ERPs. The human ERP was obtained by computing a spatial filter
with the previously obtained r-values.

Full-size DOI: 10.7717/peerj.18477/fig-4

for a lag of 31 samples (maximal r-value = 0.83; see Fig. 4AB). For this lag, the majority
of the electrodes showed significant correlations after correction for multiple comparisons
(pfdr < 0.001). Correlations were positive for frontocentral electrodes and negative for
occipital electrodes (Fig. 4A).

Together, these results show that: (i) post-interval potentials in monkey pre-SMA and
human frontocentral EEG are similar and reflect perceived time durations, and (ii) some
of these differences are also mirrored in firing rates modulations in the monkey.

DISCUSSION
In this study, we assessed whether monkeys and humans share the same neural mechanisms
for time estimation. For this purpose, we analysed the electrophysiological signals of
24 humans (EEG) and one monkey (extracellular recordings in pre-SMA) while they
categorised a temporal interval as either ‘‘short’’ or ‘‘long’’ based on previously learned
prototypes. Our results show that evoked potentials after the presentation of the time
interval differed significantly between ‘‘short’’ and ‘‘long’’ decisions in both humans and
monkeys. Crucially, we show that these differences reflect the perceived (and not the
objective) duration of the time intervals because: (i) the same difference in post-interval
potentials was evident when stimuli had the same objective (but differently perceived)
duration, and (ii) the reversed pattern of results was observed for incorrect trials. In
addition, someof the differences in post-interval potentials were accompanied by significant
changes in monkey’s firing rates.

Previous literature has shown significant differences in post-interval ERPs as a
function of the perceived duration in human EEG (Damsma, Schlichting & Van Rijn,
2021; Kononowicz & Rijn, 2014; Kruijne, Olivers & Van Rijn, 2021; Lindbergh & Kieffaber,
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2013; Özoğlu & Thomaschke, 2023; Tarantino et al., 2010). These potentials are thought
to reflect comparison and decision processes (Kononowicz & Rijn, 2014; Lindbergh &
Kieffaber, 2013). Our results replicate these findings in humans and show that these
potentials are encompassed in two different components (P300 in the first PCA and
P200/LPP in the second PCA), which suggests different neural generators (Dien, 2012). In
addition to previously reported post-interval potentials, we found significant differences
between ‘‘short’’ and ‘‘long’’ decisions in a slow negative potential (occurring after 500 ms).
This slow negative potential peaked around 600 ms for ‘‘long’’ perceived durations and
around 1,000 ms for ‘‘short’’ perceived durations (Fig. 2B). Based on previous literature,
we speculate that these slow frontocentral negative potentials reflect working-memory
processes. Working memory retention has been associated with slow cortical potentials
lasting from 200 ms to several seconds that seem to vary depending on the type of stimulus
and cognitive load (Bosch, Mecklinger & Friederici, 2001; Ruchkin et al., 1992; Schneider et
al., 2020). Because in the temporal bisection task the duration of the presented temporal
interval has to be kept in working memory during the delay before a motor response is
performed (Treisman, 2013), ERPs associated with memory retention are expected during
this period.

It has been proposed that the differences in post-interval potentials as a function
of perceived duration observed in humans reflect differences in the timing of cognitive
processes supporting time estimation, rather than a timingmechanism in itself (Kononowicz
& Penney, 2016; Kononowicz & Rijn, 2014; Lindbergh & Kieffaber, 2013). It can be argued
that when the interval is longer than the category boundary, subjects can make a decision
before the interval offset. For stimuli shorter than the category boundary, participants
are only able to decide after the interval offset (Mendoza et al., 2018). This interpretation
is supported by differences in the ERPs reported here. Specifically, comparison/decision
processes could be reflected in the more pronounced P200 for long decisions and in the
later P300/LPP for short decisions (Fig. 2BF). Memory retention of the decision could be
reflected in the negative slow potential peaking at 600 ms for long decisions and at 1,000 ms
for short decisions.

In order to compare human and monkey post-interval neural responses, we selected
a cluster of frontocentral electrodes in humans that overlapped with the location of the
recordings in the monkey (around pre-SMA). Strikingly, the neural dynamics observed
in both species were highly similar, showing significant differences between short and
long perceived durations with the same polarity. In addition, the changes in the later
post-interval potential in the monkey were mirrored in the firing rate, which suggests
differential excitation levels in pre-SMA for short and long perceived durations. Since we
show shared neural substrate of time categorization between humans and monkeys, our
findings support the idea that research on the monkey brain can help elucidate the neural
mechanisms supporting human time estimation, and, by extension, its related deficits in
clinical populations (Merchant et al., 2008).

The main limitations of the current work are related to differences between species
in terms of experimental design and recording methods used. First, the temporal
categorization task was not exactly the same in the human and monkey experiments.
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The tasks differed in both the presentation of the temporal interval (empty interval in
monkey vs. filled interval in human) and the duration of the post-interval delay (2 s in
human and 0.5 s in monkey). Recordings in humans were done with scalp EEG, while
recordings in monkeys were with intracortical electrodes. These factors may have affected
the shape of the ERPs and should be controlled for in future research. To avoid possible
confounders, future studies should: (i) include EEG recordings in NHP, and (ii) make sure
that both species perform exactly the same task.

In conclusion, this study extends previous findings regarding post-interval evoked
potentials in the context of time estimation in humans and shows that similar neural
mechanisms are present in monkeys. Therefore, our results further support the idea that
the monkey brain is a good model to investigate the neural mechanisms underlying human
time perception.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Elie Rassi is supported by the Austrian Science Fund (FWF) Erwin Schrödinger Fellowship
J4580. Hugo Merchant is supported by UNAM-DGAPA-PAPIIT IG200424 and UNAM-
DGAPA-PASPA. Saskia Haegens is supported by NWO Vidi 016.Vidi.185.137 and NIH
R01 MH123679. German Mendozais supported by UNAM-DGAPA-PAPIIT IA202024.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Austrian Science Fund (FWF) Erwin Schrödinger Fellowship: J4580.
UNAM-DGAPA-PAPIIT IG200424 and UNAM-DGAPA-PASPA.
NWO Vidi 016.Vidi.185.137 and NIH R01 MH123679.
UNAM-DGAPA-PAPIIT IA202024.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Julio Rodriguez-Larios conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Elie Rassi analyzed the data, authored or reviewed drafts of the article, and approved the
final draft.
• GermanMendoza conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.
• Hugo Merchant conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

Rodriguez-Larios et al. (2024), PeerJ, DOI 10.7717/peerj.18477 13/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.18477


• Saskia Haegens conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Institutional Review Board (IRB) of the New York State Psychiatric Institute
National University of Mexico Institutional Animal Care and Use Committee

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

National University of Mexico Institutional Animal Care and Use Committee and
conformed to the principles outlined in the Guide for Care and Use of Laboratory Animals
(NIH, publication number 85–23, revised 1985).

Data Availability
The following information was supplied regarding data availability:

The data and code are available at OSF: Rodriguez-Larios, Julio. 2024. ‘‘Common
Neural Mechanisms Supporting Time Judgements in Humans and Monkeys.’’ OSF. June
14. https://osf.io/tm9bz/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.18477#supplemental-information.

REFERENCES
Balasubramaniam R, Haegens S, Jazayeri M, Merchant H, Sternad D, Song J-H. 2021.

Neural encoding and representation of time for sensorimotor control and learning.
Journal of Neuroscience 41(5):866–872 DOI 10.1523/JNEUROSCI.1652-20.2020.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society: Series
B (Methodological) 57(1):289–300 DOI 10.1111/j.2517-6161.1995.tb02031.x.

Bosch V, Mecklinger A, Friederici AD. 2001. Slow cortical potentials during retention
of object, spatial, and verbal information. Cognitive Brain Research 10(3):219–237
DOI 10.1016/S0926-6410(00)00040-9.

Bueno FD, Cravo AM. 2021. Post-interval EEG activity is related to task-goals in tempo-
ral discrimination. PLOS ONE 16(9):e0257378 DOI 10.1371/journal.pone.0257378.

Chang C-Y, Hsu S-H, Pion-Tonachini L, Jung T-P. 2019. Evaluation of artifact subspace
reconstruction for automatic artifact components removal in multi-channel EEG
recordings. In: IEEE transactions on biomedical engineering. Piscataway: IEEE, 1–1
DOI 10.1109/tbme.2019.2930186.

Rodriguez-Larios et al. (2024), PeerJ, DOI 10.7717/peerj.18477 14/17

https://peerj.com
https://osf.io/tm9bz/
http://dx.doi.org/10.7717/peerj.18477#supplemental-information
http://dx.doi.org/10.7717/peerj.18477#supplemental-information
http://dx.doi.org/10.1523/JNEUROSCI.1652-20.2020
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1016/S0926-6410(00)00040-9
http://dx.doi.org/10.1371/journal.pone.0257378
http://dx.doi.org/10.1109/tbme.2019.2930186
http://dx.doi.org/10.7717/peerj.18477


Crowe DA, ZarcoW, Bartolo R, Merchant H. 2014. Dynamic representation of
the temporal and sequential structure of rhythmic movements in the pri-
mate medial premotor cortex. Journal of Neuroscience 34(36):11972–11983
DOI 10.1523/JNEUROSCI.2177-14.2014.

Damsma A, Schlichting N, Van Rijn H. 2021. Temporal context actively shapes EEG
signatures of time perception. The Journal of Neuroscience 41(20):4514–4523
DOI 10.1523/JNEUROSCI.0628-20.2021.

Delorme A, Makeig S. 2004. EEGLAB: an open sorce toolbox for analysis of single-trail
EEG dynamics including independent component anlaysis. Journal of Neuroscience
Methods 134:9–21 DOI 10.1016/j.jneumeth.2003.10.009.

Dien J. 2012. Applying principal components analysis to event-related potentials: a
tutorial. Developmental Neuropsychology 37(6):497–517
DOI 10.1080/87565641.2012.697503.

Duzcu H. 2019. A neural marker of the start-gun in interval timing: onset N1P2.
Behavioral Neuroscience 133(4):414–427 DOI 10.1037/bne0000325.

Gámez J, Mendoza G, Prado L, Betancourt A, Merchant H. 2019. The amplitude in
periodic neural state trajectories underlies the tempo of rhythmic tapping. PLOS
Biology 17(4):e3000054 DOI 10.1371/journal.pbio.3000054.

Godlove DC, Emeric EE, Segovis CM, YoungMS, Schall JD,Woodman GF. 2011.
Event-related potentials elicited by errors during the stop-signal task. I. Macaque
Monkeys. The Journal of Neuroscience 31(44):15640–15649
DOI 10.1523/JNEUROSCI.3349-11.2011.

Guarnieri R, Brancucci A, D’Anselmo A, Manippa V, Swinnen SP, Tecchio F, Mantini
D. 2020. A computationally efficient method for the attenuation of alternating
current stimulation artifacts in electroencephalographic recordings. Journal of Neural
Engineering 17(4):046038 DOI 10.1088/1741-2552/aba99d.

Kononowicz TW, Penney TB. 2016. The contingent negative variation (CNV):
timing isn’t everything. Current Opinion in Behavioral Sciences 8:231–237
DOI 10.1016/J.COBEHA.2016.02.022.

Kononowicz TW, Rijn HV. 2014. Decoupling interval timing and climbing neural
activity: a dissociation between CNV and N1P2 amplitudes. Journal of Neuroscience
34(8):2931–2939 DOI 10.1523/JNEUROSCI.2523-13.2014.

KruijneW, Olivers CNL, Van Rijn H. 2021. Neural repetition suppression modulates
time perception: evidence from electrophysiology and pupillometry. Journal of
Cognitive Neuroscience 33(7):1230–1252 DOI 10.1162/jocn_a_01705.

LeonMI, ShadlenMN. 2003. Representation of time by neurons in the posterior parietal
cortex of the Macaque. Neuron 38(2):317–327 DOI 10.1016/S0896-6273(03)00185-5.

Lindbergh CA, Kieffaber PD. 2013. The neural correlates of temporal judgments in the
duration bisection task. Neuropsychologia 51(2):191–196
DOI 10.1016/J.NEUROPSYCHOLOGIA.2012.09.001.

Macar F, Vidal F. 2003. The CNV peak: an index of decision making and temporal
memory. Psychophysiology 40(6):950–954 DOI 10.1111/1469-8986.00113.

Rodriguez-Larios et al. (2024), PeerJ, DOI 10.7717/peerj.18477 15/17

https://peerj.com
http://dx.doi.org/10.1523/JNEUROSCI.2177-14.2014
http://dx.doi.org/10.1523/JNEUROSCI.0628-20.2021
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1080/87565641.2012.697503
http://dx.doi.org/10.1037/bne0000325
http://dx.doi.org/10.1371/journal.pbio.3000054
http://dx.doi.org/10.1523/JNEUROSCI.3349-11.2011
http://dx.doi.org/10.1088/1741-2552/aba99d
http://dx.doi.org/10.1016/J.COBEHA.2016.02.022
http://dx.doi.org/10.1523/JNEUROSCI.2523-13.2014
http://dx.doi.org/10.1162/jocn_a_01705
http://dx.doi.org/10.1016/S0896-6273(03)00185-5
http://dx.doi.org/10.1016/J.NEUROPSYCHOLOGIA.2012.09.001
http://dx.doi.org/10.1111/1469-8986.00113
http://dx.doi.org/10.7717/peerj.18477


Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG- and MEG-data.
Journal of Neuroscience Methods 164(1):177–190
DOI 10.1016/J.JNEUMETH.2007.03.024.

Mendez JC, Prado L, Mendoza G, Merchant H. 2011. Temporal and spatial categoriza-
tion in human and non-human primates. Frontiers in Integrative Neuroscience 5:50
DOI 10.3389/FNINT.2011.00050.

Mendoza G, Méndez JC, Pérez O, Prado L, Merchant H. 2018. Neural basis for cate-
gorical boundaries in the primate pre-SMA during relative categorization of time
intervals. Nature Communications 9:1098 DOI 10.1038/s41467-018-03482-8.

Merchant H, Harrington DL, MeckWH. 2013. Neural basis of the perception and
estimation of time. Annual Review of Neuroscience 36(1):313–336
DOI 10.1146/annurev-neuro-062012-170349.

Merchant H, LucianaM, Hooper C, Majestic S, Tuite P. 2008. Interval timing and
Parkinson’s disease: Heterogeneity in temporal performance. Experimental Brain
Research 184(2):233–248 DOI 10.1007/s00221-007-1097-7.

Merchant H, Pérez O, Bartolo R, Méndez JC, Mendoza G, Gámez J, Yc K, Prado L.
2015. Sensorimotor neural dynamics during isochronous tapping in the medial
premotor cortex of the macaque. European Journal of Neuroscience 41(5):586–602
DOI 10.1111/ejn.12811.

Ng KK, Tobin S, Penney TB. 2011. Temporal accumulation and decision processes in
the duration bisection task revealed by contingent negative variation. Frontiers in
Integrative Neuroscience 5:77 DOI 10.3389/FNINT.2011.00077.

Ofir N, Landau AN. 2022. Neural signatures of evidence accumulation in temporal
decisions. Current Biology 32(18):4093–4100.e6 DOI 10.1016/j.cub.2022.08.006.

Oostenveld R, Fries P, Maris E, Schoffelen JM. 2011. FieldTrip: open source software for
advanced analysis of MEG, EEG, and invasive electrophysiological data. Computa-
tional Intelligence and Neuroscience 2011:156869 DOI 10.1155/2011/156869.

Özoğlu E, Thomaschke R. 2023. Post-interval potentials in temporal judgements.
Experimental Brain Research 241(3):917–926 DOI 10.1007/s00221-023-06568-y.

Peissig JJ, Singer J, Kawasaki K, Sheinberg DL. 2007. Effects of long-term object famil-
iarity on event-related potentials in the monkey. Cerebral Cortex 17(6):1323–1334
DOI 10.1093/cercor/bhl043.

Pfeuty M, Ragot R, Pouthas V. 2005. Relationship between CNV and timing of an up-
coming event. Neuroscience Letters 382(1):106–111 DOI 10.1016/j.neulet.2005.02.067.

Pion-Tonachini L, Kreutz-Delgado K, Makeig S. 2019. ICLabel: an automated electroen-
cephalographic independent component classifier, dataset, and website. NeuroImage
198:181–197 DOI 10.1016/j.neuroimage.2019.05.026.

Rassi E, Zhang Y, Mendoza G, Méndez JC, Merchant H, Haegens S. 2023. Distinct
beta frequencies reflect categorical decisions. Nature Communications 14(1):1–10
DOI 10.1038/s41467-023-38675-3.

Ruchkin DS, Johnson R, Grafman J, Canoune H, RitterW. 1992. Distinctions and
similarities among working memory processes: an event-related potential study.
Cognitive Brain Research 1(1):53–66 DOI 10.1016/0926-6410(92)90005-C.

Rodriguez-Larios et al. (2024), PeerJ, DOI 10.7717/peerj.18477 16/17

https://peerj.com
http://dx.doi.org/10.1016/J.JNEUMETH.2007.03.024
http://dx.doi.org/10.3389/FNINT.2011.00050
http://dx.doi.org/10.1038/s41467-018-03482-8
http://dx.doi.org/10.1146/annurev-neuro-062012-170349
http://dx.doi.org/10.1007/s00221-007-1097-7
http://dx.doi.org/10.1111/ejn.12811
http://dx.doi.org/10.3389/FNINT.2011.00077
http://dx.doi.org/10.1016/j.cub.2022.08.006
http://dx.doi.org/10.1155/2011/156869
http://dx.doi.org/10.1007/s00221-023-06568-y
http://dx.doi.org/10.1093/cercor/bhl043
http://dx.doi.org/10.1016/j.neulet.2005.02.067
http://dx.doi.org/10.1016/j.neuroimage.2019.05.026
http://dx.doi.org/10.1038/s41467-023-38675-3
http://dx.doi.org/10.1016/0926-6410(92)90005-C
http://dx.doi.org/10.7717/peerj.18477


Schneider D, Zickerick B, Thönes S, Wascher E. 2020. Encoding, storage, and response
preparation—Distinct EEG correlates of stimulus and action representations in
working memory. Psychophysiology 57(6):e13577 DOI 10.1111/psyp.13577.

Sohn H, Narain D, Meirhaeghe N, Jazayeri M. 2019. Bayesian computation through
cortical latent dynamics. Neuron 103(5):934–947 DOI 10.1016/j.neuron.2019.06.012.

Tarantino V, Ehlis A-C, Baehne C, Boreatti-Huemmer A, Jacob C, Bisiacchi P, Fall-
gatter AJ. 2010. The time course of temporal discrimination: an ERP study. Clinical
Neurophysiology 121(1):43–52 DOI 10.1016/j.clinph.2009.09.014.

TreismanM. 2013. The information-processing model of timing (Treisman, 1963):
its sources and further development. Timing & Time Perception 1(2):131–158
DOI 10.1163/22134468-00002017.

Tsao A, Yousefzadeh SA, MeckWH,Moser M-B, Moser EI. 2022. The neural
bases for timing of durations. Nature Reviews Neuroscience 23(11):646–665
DOI 10.1038/s41583-022-00623-3.

Zanotelli T, Filho SAS, Tierra-Criollo CJ. 2010. Optimum principal components for
spatial filtering of EEG to detect imaginary movement by coherence. In: 2010 Annual
international conference of the IEEE engineering in medicine and biology. Piscataway:
IEEE, 3646–3649 DOI 10.1109/IEMBS.2010.5627418.

ZarcoW,Merchant H, Prado L, Mendez JC. 2009. Subsecond timing in primates:
comparison of interval production between human subjects and rhesus monkeys.
Journal of Neurophysiology 102(6):3191–3202 DOI 10.1152/jn.00066.2009.

Rodriguez-Larios et al. (2024), PeerJ, DOI 10.7717/peerj.18477 17/17

https://peerj.com
http://dx.doi.org/10.1111/psyp.13577
http://dx.doi.org/10.1016/j.neuron.2019.06.012
http://dx.doi.org/10.1016/j.clinph.2009.09.014
http://dx.doi.org/10.1163/22134468-00002017
http://dx.doi.org/10.1038/s41583-022-00623-3
http://dx.doi.org/10.1109/IEMBS.2010.5627418
http://dx.doi.org/10.1152/jn.00066.2009
http://dx.doi.org/10.7717/peerj.18477

