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Abstract—Machine learning and more specifically deep 

learning has achieved remarkable results in a range of computer 

vision tasks such as classification. Despite this, their black-box 

nature means researchers are largely unable to explain and interpret 

the decisions these systems make. Researchers use various 

techniques to explain deep learning classification models, e.g. Class 

Activation Maps (CAM) and Gradient Weighted Class Activation 

Maps (Grad-CAM) which produce heat maps of the input image 

highlighting the regions that contribute most to the model’s 

decision. In this paper we present a novel technique based on 

Principal Component Analysis (PCA) to explain deep learning 

model decisions at a higher level, with results similar to those 

produced by Grad-CAM.  This technique is applied directly to our 

dataset of COVID-19 blood test images, and we compare the PCA 

results with Grad-CAM using the convolutional neural network 

model we developed using the same dataset. As the PCA is applied 

to the dataset directly, no deep learning model needs to be trained 

allowing for faster and simpler computation than techniques such as 

Grad-CAM while producing similar explanation results.  The results 

indicated that the reconstructed PCA map using the first two 

principal components and Grad-CAM have a similarity score of 

85.7% and 71.4% respectively for COVID-19 positive and negative 

images, with an average similarity score of 78.6%.   

Keywords—explainablility, principal component analysis, deep 

learning, COVID-19, Grad-CAM 

I. INTRODUCTION

Machine learning and deep learning can provide 
exceptional results, enabling many breakthroughs in a host of 
computer vision tasks. One such field is COVID-19 detection 
and diagnostics, where recent studies have shown that deep 
learning can accurately predict COVID-19 in patients. Many 
of these papers use image processing based on CT and X-ray 
images [1]. We have previously developed novel deep 
learning models for COVID-19 detection using flow 
cytometry images from complete blood count (CBC) tests [2]. 
However, their black-box nature and the lack of 
decomposability into intuitive and understandable 
components make them difficult to interpret [3]. 
Consequently, when such kinds of AI systems fail, they do not 
give the user any warning or explanation of the incoherent 
output.  The interpretability and explainability of AI models 
are particularly important for their applications in medicine 
and healthcare.  

To build trust in AI systems and have them more 
integrated into our lives we need to develop models which are 
‘transparent’ and can explain why they predict what they 
predict [4]. Transparency is useful in three different stages in 
the evolution of artificial intelligence. When AI performance 
is weaker than humans and is not considered deployable,  the 
transparency and explanations can pinpoint potential failure 
modes [5], thus enabling researchers to identify more 
promising research directions. When AI performance is on par 
with humans and is considered deployable, the transparency 
and explanations can help establish trust and confidence in the 
users. When AI performance is significantly stronger than 
humans, transparency and explainability can learn from the 
system and teach humans how to make better decisions [6].  

There is generally a trade-off between model accuracy and 
simplicity or interpretability. Classical rule-based or expert 
systems prioritize interpretability over accuracy and 
robustness [7]. Decomposable pipelines are considered more 
interpretable since each stage is hand-designed and each 
component offers an intuitive explanation. However, when 
using deep models, we tend to trade interpretable modules for 
uninterpretable ones aiming at higher performance through 
increased abstraction with more layers and tighter integration 
with end-to-end training.  

Currently there are various methods used by researchers 
for explainability of deep learning classification models, two 
popular methods are Class Activation Maps and Gradient 
Weighted Class Activation Maps (Grad-CAM). These 
techniques produce heat maps that highlight the regions of the 
input image that have the greatest influence on the model’s 
decisions. In this paper we first apply Grad-CAM to the deep 
learning model we developed for COVID-19 detection and 
then compare it with a novel explainability method we 
developed using Principal Component Analysis (PCA). The 
application of the PCA method to our dataset images has 
produced similar maps to those produced by Grad-CAM, thus 
allowing it to be used for explainability without having to train 
a deep learning model as well as assist with classification.  Our 
empirical work has established the use of PCA as a reliable 
alternative method for the general explainability of machine 
learning (ML) and AI models.  This method is simpler and 
faster to compute than Grad-CAM, and does not depend on 

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-
policies/post-publication-policies/ 

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/I2MTC60896.2024.10560613, 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)



the specific models, thus suitable for wider ML/AI application 
scenarios. 

II. DEEP LEARNING MODEL

The deep learning convolutional neural network (CNN) 
model we previously developed is briefly described in this 
section to allow its explainability to be studied.   

A. Dataset

A dataset was obtained from Wuhan Union Hospital in
China. The data is based on a blood test known as Full or 
Complete Blood Count (CBC) from patients admitted to the 
hospital during the initial outbreak of the pandemic. This 
blood test data is of 1744 (799 COVID positive and 945 
control) patients’ Side Fluorescence Light - Side Scattered 
(SFL-SSC) images (Fig. 1 and Fig. 2) generated from the 
Mindray series of Haematology Analysers used for CBC test.  
The images were used to train convolutional neural networks 
and also to apply our novel explainability technique based on 
PCA. 

Fig. 1. Sample SFL-SSC Image (2D scattergram) from the CBC Flow 

Cytometry Dataset. 

Fig. 2. Labelled Regions of 3D Scattergrams from the CBC Flow 

Cytometry Imaging. 

B. Model Design

For our experiments, a convolutional neural network was

trained to classify the images from the SFL-SSC image 

dataset [2]. The architecture of the CNN model is shown in 

Fig. 3.  This model was trained 10 times and the performance 

metrics are then calculated for sensitivity, specificity, and 

accuracy. 

Fig. 3. The Architecture of the CNN Model for COVID-19 Detection Using 

SFL-SSC Images. 

C. Model Results

The CNN produced very strong results, achieving very

high sensitivity and specificity, 98.3% and 97.5%, 

respectively as well as high accuracies 97.8%, based on the 

test data set (15% of the total dataset), as shown in Fig. 4. 

Table 1 shows the ten repetitions of the CNN model results. 

  (a)  (b) 

Fig. 4. Prediction Performance of the CNN Models Using SFL-SSC 

Images. (a) Prediction Confusion Matrix  Based on Test Images; (b) 

Prediction Confusion Matrix Based on All (training+validation +test) 

Images. 

TABLE I. CNN RESULTS (10 REPETITIONS) 

III. EXPLAINABILITY USING GRAD-CAM

A. Class-Activation-Maps(CAM)

Zhou introduced a technique called Class Activation
Mapping (CAM) which emerged as a method to identify 
discriminative regions in image classification using CNN [8]. 
To apply the CAM to a typical CNN deep learning model, the 
fully-connected layers before the final output are removed and 
replaced with a global average pooling (GAP) layer, followed 
by a fully-connected Softmax layer. The GAP is applied to the 
last convolutional feature maps, and the resulting pooled 
values are utilized as features for a subsequent fully connected 
layer responsible for generating the desired output. Based on 
this straightforward connectivity structure, it then becomes 
possible to discern the significance of different regions within 
an image. This is achieved by projecting the weights of the 
output layer back onto the convolutional feature maps. The 
GAP calculates the spatial average of the feature map for each 
channel at the last convolutional layer. These spatial averages 
are then combined using weighted sums to produce the final 
output. A similar weighted sum is employed to compute the 
feature maps of the last convolutional layer, resulting in the 
generation of class activation maps.  

Below, the process is more formally outlined for the case 
of SoftMax, though the same approach can be adapted for 
regression and other loss functions. 

For a given image, let 𝑓𝑘(𝑥, 𝑦) represent the activation of
channel 𝑘 in the last convolutional layer at spatial coordinates 
(𝑥, 𝑦). For channel 𝑘, the result of global average pooling, 𝐹𝑘,
is calculated as the summation of 𝑓𝑘(𝑥, 𝑦)  over all spatial
locations (𝑥, 𝑦), 𝑖. 𝑒. 

Sensitivity Specificity accuracy SensitivitySpecificity accuracy SensitivitySpecificity accuracy SensitivitySpecificity accuracy

1 96.1% 96.4% 96.3% 97.0% 99.0% 98.3% 92.2% 95.3% 94.1% 96.2% 98.1% 97.3%

2 98.0% 97.6% 97.8% 98.3% 99.5% 99.1% 94.1% 94.1% 94.1% 97.6% 98.4% 98.1%

3 90.2% 96.4% 94.1% 96.6% 98.0% 97.5% 92.2% 98.8% 96.3% 95.0% 97.9% 96.8%

4 90.2% 92.9% 91.9% 97.5% 98.2% 97.9% 94.1% 92.9% 93.4% 95.9% 96.6% 96.3%

5 100.0% 92.9% 95.6% 99.6% 99.7% 99.7% 98.0% 97.6% 97.8% 99.4% 98.4% 98.8%

6 92.2% 98.8% 96.3% 98.7% 99.2% 99.1% 88.2% 97.6% 94.1% 96.2% 98.9% 97.9%

7 96.1% 94.0% 94.8% 97.9% 98.7% 98.4% 98.0% 96.5% 97.1% 97.6% 97.7% 97.7%

8 98.0% 97.6% 97.8% 99.2% 99.7% 99.5% 92.2% 97.6% 95.6% 97.9% 99.1% 98.7%

9 96.1% 91.7% 93.3% 96.6% 98.0% 97.5% 96.1% 96.5% 96.3% 96.5% 96.8% 96.7%

10 94.1% 95.2% 94.8% 97.9% 99.2% 98.7% 94.1% 98.8% 97.1% 96.8% 98.6% 97.9%

Average 95.1% 95.4% 95.3% 97.9% 98.9% 98.6% 93.9% 96.6% 95.6% 96.9% 98.1% 97.6%

Validation Training Test All

No.
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𝐹𝑘  =  ∑𝑥,𝑦 𝑓𝑘(𝑥, 𝑦)  (1) 

Given a specific class 𝑐,  the input to the SoftMax 
activation function for this class, 𝑆𝑐, is computed using 𝐹𝑘 as
follows:  

𝑆𝑐  =  ∑𝑘  𝑤𝑘
𝑐𝐹𝑘 = ∑𝑘 𝑤𝑘

𝑐 ∑𝑥,𝑦 𝑓𝑘(𝑥, 𝑦) = ∑𝑥,𝑦∑𝑘𝑤𝑘
𝑐 𝑓𝑘(𝑥, 𝑦)    (2)

where 𝑤𝑘
𝑐  signifies the importance (weighting) of the

feature map 𝑓𝑘 for class 𝑐.

Introducing the concept of  𝑀𝑐 as the class activation map
(CAM) for class c, where each spatial element is calculated as 
follows: 

𝑀𝑐(𝑥, 𝑦)  = ∑𝑘𝑤𝑘
𝑐𝑓𝑘(𝑥, 𝑦)  (3) 

we can simply express the class score 𝑆𝑐 as:

𝑆𝑐 =  ∑𝑥,𝑦  𝑀𝑐(𝑥, 𝑦)     (4)

Thus  𝑀𝑐(𝑥, 𝑦) directly represents the significance or
importance of the activation at spatial position (𝑥, 𝑦)  in 
relation to the classification of an image into class 𝑐 . In 
essence, it explains which regions of the input image are 
important for the decision that predict the image as a specific 
class. 

Each neuron in the network is designed to be activated by 
specific visual patterns within its receptive field. Therefore, 
the feature map 𝑓𝑘  can be thought of as representing the
activation (or presence) of these visual patterns. The CAM is 
essentially a weighted linear combination of these visual 
pattern activations at various spatial locations. 

By performing a straightforward up-sampling of the CAM 
to match the size of the input image, we can locate the regions 
within the image that are most relevant to a specific class. This 
process allows us to locate and highlight the image regions 
that contribute the most to the model's decision for a specific 
class, providing valuable explanation how the model performs 
classification. 

The main limitation of CAM is that it is only applicable to 
a specific class of CNN architectures that follow a particular 
sequence of operations, namely global average pooling over 
convolutional maps immediately before making predictions. 
This sequence typically involves convolutional feature maps 

being processed as follows: convolutional feature maps → 

global average pooling → SoftMax layer.  For other more 

general CNNs,  the architecture will need to be altered to have 
the above sequence.  This constraint means that CAM may not 
be readily applicable to CNN architectures with different 
configurations or those that do not incorporate global average 
pooling in the specified manner.  The altering of the 
architecture can generally degrade the classification 
performance. 

B. Gradient Weighted Class Activation Mapping (Grad-

CAM)

The CAM  [8] was proposed to identify discriminative
regions in the context of image classification using CNNs 
which do not contain fully connected layers.  This means the 
model will trade off complexity and performance for 
increased transparency into the workings of the model.  

In contrast, Ramprasaath [4] presents a novel approach, 
known as Grad-CAM, for combining feature maps utilizing 

the gradient signal, and unlike CAM, it does not need any 
modifications to the network architecture. This unique feature 
enables the approach to be applied to a wide range of CNN-
based architectures, including those designed for tasks like 
image captioning and visual question answering. In the case 
of a fully convolutional architecture, the method effectively 
simplifies to the conventional CAM (Class Activation 
Mapping). Therefore, Grad-CAM can be viewed as a 
generalization of CAM, offering a more versatile and 
adaptable solution that can be used across a broader spectrum 
of CNN-based applications. 

Deeper layers within a CNN are known to capture higher-
level visual constructs [9]. Moreover, convolutional layers 
inherently preserve spatial information, a characteristic that is 
often lost in fully-connected layers. As a result, it can be 
anticipated that the last convolutional layers of a CNN strike 
the best balance between high-level semantics and detailed 
spatial information. Neurons in these layers are typically 
responsible for identifying semantic, class-specific 
information within an image, such as object parts or 
distinctive features. 

The Grad-CAM leverages the gradient information that 
flows into the final convolutional layer of the CNN to discern 
the significance of each neuron for a particular decision or 
classification of interest [4]. By analysing this gradient 
information, Grad-CAM can explain which regions of the 
input image each neuron in the last convolutional layer finds 
most relevant for making a specific decision. This process 
helps highlight the key visual cues that guide the network's 
decision-making process. 

To generate the Grad-CAM 𝑀𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ 𝑅𝑢 ×𝑣 , which 

represents a discriminative localization map, for any class 𝑐 
with a width 𝑢 and height v, we initially calculate the gradient 
of the class score for class 𝑐, denoted as 𝑦𝑐 (computed prior to 
the softmax operation), with respect to the feature maps 
𝐴𝑘 originating from a convolutional layer. This gradient is 

expressed as 
∂y𝑐 

∂A𝑘 and calculated using backpropagation. 

The gradients flowing back are subject to global-average-
pooling to derive the neuron importance weights, denoted as 
𝛼𝑘

𝑐  [4]: 

𝛼𝑘
𝑐 =

1

𝑁
∑ ∑

∂y𝑐 

∂𝐴𝑖𝑗
𝑘𝑗𝑖     (5) 

where N is the total number of pixels in the feature map; i 
and j index the pixels.   

This weight 𝛼𝑘
𝑐  signifies a partial linearization of the deep 

neural network downstream from 𝐴  and determines the 
significance or relevance of feature map 𝑘 for a specific target 
class 𝑐. Subsequently, we execute a weighted combination of 
the forward activation maps, followed by the application of a 
Rectified Linear Unit (ReLU) activation function to achieve 
the following [4]: 

𝑀𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘

𝑐
𝑘 𝐴𝐾)    (6) 

This will result in a heat-map which is the same size as the 
convolutional feature maps. ReLU activation function is 
applied to the linear combination of feature maps ∑ 𝛼𝑘

𝑐
𝑘 𝐴𝐾

since the focus is solely on the features that exert a positive 
influence on the class of interest. In other words, the aim is to 
identify pixels whose intensity should be increased to enhance 
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the class score 𝑦𝑐 . Pixels with negative values are more likely 
associated with other categories or classes within the image. 
Without the ReLU, localization maps may inadvertently 
highlight not only the intended class but also other undesired 
elements, leading to diminished localization performance [4].  
The inclusion of the ReLU activation function is essential in 
preventing this issue. 

C. Grad-CAM Results

Due to its ease of implementation and good performance
for localization and classification, we first applied Grad-CAM 
to the convolutional neural network we developed and trained 
for COVID-19 detection.  This was applied using the SFL-
SFC dataset images with the COVID positive and negative 
images averaged to produce an average image for both 
COVID positive and negative samples (Fig. 5).   

Fig. 5. Average SFL-SSC Images for COVID-19 Positive Patients (left) 

and COVID-19 Negative Patients (right). 

The results of applying Grad-CAM to the average SFL-
SSC images of COVID positive and negative patients are 
shown in Fig 6.  Here we can see the regions of the image the 
network uses to make its decisions for both positive and 
negative classifications, and they are shown by the redder 
regions of the heatmap marking it as more important. If 
compared with Fig. 2, you can see the parts of the image 
corresponding to the specific blood cell in the patients’ blood 
generated from the haematology analyses. From this we can 
see that patients who are classified as COVID positive have a 
higher concentration of Neutrophils and Basophils (Neu + 
Bas), which is higher if the body is under stress when fighting 
infections. On the other hand, COVID negative patients have 
a higher concentration of Eosinophils (Eos) and Monocytes 
(Mon) in their blood which are white blood cells that supports 
the immune system. 

Fig. 6. Grad-CAM of Average SFL-SSC Images for COVID-19 Positive 

Patients (left) and COVID-19 Negative Patients (right). 

D. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a multivariate
method employed for the analysis of a dataset where 
observations are characterized by multiple interrelated 
quantitative dependent variables. Its primary objective is to 
gain crucial insights from the dataset by transforming it into a 
collection of new orthogonal variables known as principal 

components to reduce the dimensionality of high-dimensional 
datasets while preserving as much relevant information as 
possible. These principal components serve to reveal the 
underlying structure of the data and facilitate the visualization 
of the relationships between observations and variables, often 
presented as points on maps [10]. 

 PCA begins with the computation of the covariance 
matrix, typically represented as 𝚺, for a dataset containing n 
observations and p variables. The covariance matrix 𝚺  is 
calculated as follows: 

𝚺 =  
1

𝑛
∑ (𝒙𝑖 − �̅�)(𝒙𝑖 − �̅�)𝑇𝑛

𝑖=1    (7) 

where 𝒙𝒊 represents an observation vector and �̅� denotes
the mean vector of observations. The principal components 
are obtained by solving the eigenvalue problem for 𝚺: 

𝚺𝒗 = λ𝒗      (8) 

where 𝒗  represents the eigenvector and λ  is the 
corresponding eigenvalue. The eigenvectors 𝒗  are the 
principal components, and the eigenvalues λ  indicate the 
amount of variance explained by each principal component.  
The eigenvalue problem can be solved in Singular value 
decomposition (SVD) or eigenvalue decomposition. 

Typically PCA involves the following steps: 

1) Centre the data by subtracting the mean of each
variable (feature).

2) Calculating the covariance matrix 𝚺.

3) Computing the eigenvalues and eigenvectors of 𝚺.

4) Selecting the top k eigenvectors corresponding to the
k largest eigenvalues to form the new feature space.

5) Transforming the original data into this new feature
space.

The transformed data retains as much variance as possible 
while reducing the dimensionality, making it suitable for 
visualization or subsequent analysis, which is also the basis 
for its novel use for AI explainability.   

E. Using PCA for Explainability

As mentioned previously each image has 128×128 pixels,
allowing these images to be converted into a row vector with 
a length of 128×128×3. To apply PCA to every image in the 
dataset, we stack each image sample into two large matrices, 
for COVID positive images and for COVID negative images. 
The mean is removed from these matrices before PCA is 
performed. The PCA is applied to all the image vectors in the 
high dimensional space (each has 128×128×3 = 49152 pixels). 

The principal components are essentially the new 
orthogonal axes with the 1st largest variances, 2nd largest 
variance, etc.  The original values of each image as a vector 
are the coordinates seen in the original data axes. During the 
PCA, these coordinates are projected onto the new axes 
represented by the principal components with the new 
coordinates as scores. The original image can then be 
reconstructed using: 

𝑿𝑟𝑐 = 𝑺 ∙ 𝑽𝑘
𝑇 (9)
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where 𝑺 represents the principal component scores as a 
matrix and 𝑽 represents the principal component coefficients 
as matrix, with column containing coefficients for one 
principal component. By multiplying the 𝑺 coordinates with 
the transposed 𝑽𝑘

𝑇 principal axes, the new coordinates in the
principal component’s axes are converted back to the 
coordinates in the original axes using the first 𝑘  principal 
components approximation. Since each row of 𝑺 is an image, 
we can reconstruct individual image using 𝑘  principal 
components. These principal components can be displayed to 
show partially reconstructed images, meaning the mean has 
not been added back and represent or explain the most 
important features of the sample images. 

F. Explainability Results Using PCA

PCA was applied directly to the combined COVID-19
positive and negative images of the SFL-SFC dataset. The 
reconstructed average image of both the COVID-19 positive 
and negative images using the first 10 principal components 
can be seen below in Fig. 7.   Fig.  8 shows the partially 
reconstructed images for COVID-19 positive and negative 
using only the first 1, 3 and 10 principal components. 

Fig. 7. Reconstructed Mean SFL-SSC Image of COVID-19 

Positive/Negative Patients with First 10 Principal Components 

Fig. 8.  Partially Reconstructed Images for COVID-19 Positive (left) and 

Negative (right) Using the First 1, 3 and 10 Principal Components. 

It can be seen in Fig. 9 that first 1, 2, 3 and 10 principal 
components have explained 13.3%, 21.8%, 27.4% and 43.7% 
of the total variance, respectively. The first two principal 

components have explained the half of the variance explained 
by the first ten principal components. 

Fig. 9. Percentage of the Total Variance Explained by Each of the First 10 
Principal Components. 

IV. DISCUSSIONS

From the above two sections, we can see that there are 
clear similarities between both the PCA and Grad-CAM 
results. For example, in the positive COVID images the same 
regions of the images are highlighted in the heatmap as well 
as the reconstructed PCA image (Fig. 10). This is also true for 
the COVID negative Grad-CAM and PCA images (Fig. 11). 

Fig. 10. Highlighted Similarities between COVID-19 Positive GRAD-CAM 
and Partially Reconstructed PCA Images. 

Fig. 11. Highlighted Similarities between COVID-19 Negative GRAD-

CAM and Partially Reconstructed PCA Images. 

Further close examinations of Fig. 10 and Fig. 11 indicate 
that both COVID positive and negative Grad-CAM images 
have 7 sub-regions with significant local maximal values and 
the PCA maps have located 6 and 5 of these sub-regions,  thus 
giving a similarity score of  85.7% and 71.4% respectively for 
COVID-19 positive and negative images, and an average 
similarity score of 78.6%. It is worth noting that the average 
similarity score of 78.6% is achieved with only the first two 
principal components.   

These similarities demonstrated that PCA can achieve 
similar results to those using Grad-CAM for explainability. 
While PCA is directly applied to the data and not the model 
itself therefore not directly explaining the model’s decision 
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like Grad-CAM, it can be seen as a higher-level explanation 
of the model. In a way, its explanation can be regarded as the 
interpretation of the overall operation of the AI model and 
Grad-CAM. 

As well as offering a higher-level explanation of the 
model, due to being directly applied to the data, PCA is 
computationally much faster and simpler to perform than 
training convolutional neural networks and applying Grad-
CAM to the model. It can be used to gain important insights 
into the data even before the model is trained and it can also 
assist in classifications. 

V. CONCLUSIONS

In this paper, we discussed a novel use of PCA to explain 
a convolutional neural network's classification in comparison 
with the well-known Grad-CAM method. The proposed PCA 
method was applied to a dataset comprising COVID-19 blood 
test results using CBC SFL-SSC images and tested with the 
CNN model we previously developed.  

Based on the significant local maximal values in the Grad-
CAM and the PCA reconstructed map using two principal 
components, the PCA map and Grad-CAM have a similarity 
score of 85.7% and 71.4% respectively for COVID-19 
positive and negative images, with an average similarity score 
of 78.6%. These results have confirmed that the proposed 
PCA method can reliably generate heatmaps closely 
resembling those produced by Grad-CAM, which means that 
the proposed PCA method can be a reliable alternative for the 
general explainability of ML/AI models.  Since the proposed 
PCA is simpler and faster to compute than Grad-CAM and it 

does not depend on the specific models, it is suitable for very 
wide application scenarios using various ML/AI models. 
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