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Abstract 

 
The paper examines the problem of representing the dynamics of low order au-
toregressive models with variable coefficients. The existing literature computes 
the forecasts of the series from a recursion relation. Instead, we provide their 
linearly independent solutions. Our solution formulas enable us to derive the 
fundamental properties of these processes, and obtain explicit expressions for 
the optimal predictors. We illustrate our methodology and results with a few 
classic examples amenable to time varying treatment, e.g., periodic, cyclical, 
and models subject to multiple structural breaks. 
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1. Introduction 

The constancy of the parameters assumption made in the specification of time series 
econometric models has been the subject of criticism for a long time. It is argued 
that the assumption is inappropriate in the face of changing institutions and a dy-
namically responding economic policy. These evolving factors cause the coeffi-
cients values characterizing economic relationships to change over time. Partly to 
respond to the criticism and partly motivated by the desire to construct dynamic 
models, econometricians have developed an arsenal of powerful methods that at-
tempt to capture the evolving nature of our economy. Such frameworks include pro-
cesses which contain multiple abrupt breaks, and periodic and cyclical autoregres-
sive (AR) models. 

A methodology is presented in this paper for analyzing time varying systems1 
which is also applicable to the three aforementioned processes. A technique is set forth 
for examining the periodic AR model, which overcomes the usual requirement of ex-
pressing it in a vector AR (VAR) form. 

The first attempts to develop theories for time varying models, made in the 1960's, 
were based on a recursive approach (Whittle, 1965) and on evolutionary spectral rep-
resentations (Abdrabbo and Priestley, 1967). Rao (1970) used the method of weighted 
least squares to estimate an AR model with variable coefficients. Despite nearly half 
a century of research work, the great advances, and the widely recognized importance 
of time varying structures, the bulk of econometric models have constant coefficients. 
There is a lack of a general theory that can be employed to systematically explore their 
time series properties. Granger in some of his last contributions highlighted the im-
portance of the topic (see, Granger 2007, and 2008). 

There is a general agreement that the main obstacle to progress is the lack of a 
universally applicable method yielding a closed form solution to stochastic time var-
ying difference equations. The present paper is part of a research program aiming to 
produce and utilize closed form solutions to AR processes with deterministically time 
varying coefficients (DTV-AR). Our methodology attempts to trace the path of these 
changing coefficients. To be specific, in the time series literature, there is no method 
for finding the  linearly independent solutions that we need in order to obtain the 
explicit representation (or general solution) of the TV-AR model of order p. To keep 
the exposition tractable and reveal its practical significance we work with low order 
specifications. 

The main part of the paper begins with Subsection 2.2, where we state the second 
order difference equation with variable coefficients, which is our main object of in-
quiry. We start by writing this equation in a more efficient way as an infinite linear 
system. The next step is to define the matrix of coefficients, called the fundamental 
solution matrix, associated with the system representation. This matrix is the work-
horse of our research and it is derived step by step from the time varying coefficients 
of the difference equation. 

The reader will have noticed that we have moved the goalposts, paradoxically 
against us, from obtaining a solution for a time varying (low order) difference equa-
tion, to solving an infinite linear system. The reason is that the solution of such infinite 

                                                           
1 We will refer to the AR models with time varying coefficients (TV-AR) as time varying models. 
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systems has been made possible recently, due to an extension of the standard Gaussian 
elimination, called the infinite Gaussian elimination (Paraskevopoulos, 2012; see also 
Paraskevopoulos, 2014). Applying this infinite extension algorithm, we obtain the 
fundamental solutions, which take explicit forms in terms of the determinants of the 
fundamental solution matrix. 

Subsection 2.3 contains the main theoretical result of the paper. Pursuing the 
conventional route followed by the differential and difference equations literature, 
we construct the general solution by finding its two parts, the homogeneous one and 
a particular part. It is expressed as Theorem 1 and its proof is given in Appendix A. 
The coefficients in this solution are expressed as determinants of tridiagonal matri-
ces. The second order properties of the TV-AR process can easily be deduced from 
the general solution. An additional benefit of these solutions is the facility with 
which linear prediction can be produced. This allows us to provide a thorough de-
scription of time varying models by deriving: first, multistep ahead forecasts, the 
associated forecast error and the mean square error; second, the first two uncondi-
tional moments of the process and its covariance structure. In related works we pro-
vide results for the p-th order and the more general ascending order (see, for exam-
ple, Paraskevopoulos and Karanasos, 2021, and Karanasos et al., 2022). Our method 
is a natural extension of the first order solution formula. It also includes the linear 
difference equation with constant coefficients (see, for example, Karanasos, 2001) 
as a special case. 

The next two Sections of the paper, 3 and 4, apply our theoretical framework to 
a few classic time series models, which are obvious candidates for a time varying 
treatment. Linear systems with time dependent coefficients are not only of interest 
in their own right, but, because of their connection with periodic models and time 
series data which are subject to structural breaks. They also provide insight into 
these processes as well. Viewing a periodic AR (PAR) formulation as a TV model 
clearly obviates the need for VAR analysis. For surveys and a review of some im-
portant aspects of PAR processes see Franses (1996b), Ghysels and Osborn (2001), 
Franses and Paap (2004), and Hurd and Miamee (2007). The authoritative studies 
by Osborn (1988), Birchenhall et al. (1989), and Osborn and Smith (1989) applied 
these models to consumption. Del Barrio Castro and Osborn (2008) pointed out that 
“despite the attraction of PAR models from the perspective of economic decision 
making in a seasonal context, the more prominent approach of empirical workers 
is to assume that the AR coefficients, except for the intercept, are constant over the 
seasons of the year”.2 

Despite the recognized importance of periodic processes for economics there have 
been few attempts to investigate their time series properties (see, among others, 
Franses, 1994, Franses, 1996a, Lund and Basawa, 2000, Franses and Paap, 2005). 
Tiao and Grupe (1980) and Osborn (1991) analyzed these models by converting them 
into a VAR process with constant parameters. In this paper we develop a general the-
ory that can be employed to systematically explore the fundamental properties of the 

                                                           
2 Del Barrio Castro and Osborn (2008, 2012) (see the references therein for this stream of important re-
search; see also Taylor, 2002, 2003 and 2005) test for seasonal unit roots in integrated PAR models. 
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periodic formulation. We remain within the univariate framework and we look upon 
the PAR model as a stochastic difference equation with time varying (albeit periodi-
cally varying) parameters.  

Although some theoretical analysis of periodic specifications was carried out by 
the aforementioned studies the investigation of their fundamental properties appears 
to have been limited to date. Cipra and Tlustý (1987), Anderson and Vecchia (1993), 
Adams and Goodwin (1995), Shao (2008), and Tesfaye et al. (2011) discuss parameter 
estimation and asymptotic properties of periodic autoregressive moving average 
(PARMA) specifications. Bentarzi and Hallin (1994) and McLeod (1994) derive in-
vertibility conditions and diagnostic checks for such processes. Lund and Basawa 
(2000) develop a recursive scheme for computing one-step ahead predictors for 
PARMA specifications, and compute multi-step-ahead predictors recursively from 
the one-step-ahead predictions. Anderson et al. (2013) develop a recursive forecasting 
algorithm for periodic models. We derive explicit formulas that allow the analytic 
calculation of the multi-step-ahead predictors. 

We begin Subsection 3.1 with a PAR(2) model. We limit our analysis to a low 
order to save space and also since Franses (1996a) has documented that low order 
PAR specifications often emerge in practice. First, we formulate it as a TV model; 
then, we express its fundamental solution matrix as a block Toeplitz matrix. This rep-
resentation enables us to establish an explicit formula for the general solution in terms 
of the determinant of such a block matrix. The result is presented in Proposition 3, 
which is the equivalent to Theorem 1 with the incorporation of the seasonal effects. 
That is, by taking account of seasons and periodicities, we obtain the general solution, 
by constructing its homogeneous and particular parts and then adding them up. In 
Subsection 3.2, we turn our attention to a different type of seasonality, namely the 
cyclical AR (CAR) model and we provide its solution. 

Section 4 is an application of the time varying framework to time series subject to 
multiple structural breaks. We employ a technique analogous to the one used in Sec-
tion 3 on the PAR formulation. In particular, we express the fundamental solutions of 
the AR(2) model with  abrupt breaks, as determinants of block tridiagonal matrices. 
Again, we are able to obtain the general solution by finding and adding the homoge-
neous and particular solutions. 

One of the advantages of our time varying framework is that we can trace the entire 
path of the series under consideration. In Section 5, we employ this information fea-
ture to derive the fundamental properties of the various TV-AR processes. For exam-
ple, simplified closed-form expressions of the multi-step forecast error variances are 
derived for time series when low order PAR models adequately describe the data. 
These formulae allow a fast computation of the multi-step-ahead predictors. Finally, 
Section 6 concludes. 
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2. Time Varying AR Models 

2.1 Preliminaries and Purpose of Analysis 

Notation 
 
Throughout the paper we adhere to the following conventions: (𝑍𝑍>0) Z and (𝑅𝑅>0) 𝑅𝑅 

stand for the sets of (positive) integers, and (positive) real numbers, respectively. Matrices 
and vectors are denoted by upper and lower case boldface symbols, respectively. For 
square matrices 𝑋𝑋 = [𝑥𝑥𝑖𝑖𝑖𝑖]𝑖𝑖,𝑖𝑖=1,…,𝑘𝑘 ∈ 𝑅𝑅𝑘𝑘×𝑘𝑘 using standard notation, det(𝑋𝑋) or |𝑋𝑋| denotes 
the determinant of matrix X and adj(X) its adjoint matrix. 

The latest time-point of the observed random variables is denoted by t∈ Z, and k∈ 
𝑍𝑍>0 such that at time 𝜏𝜏 ≝ 𝜏𝜏𝑘𝑘 = 𝑡𝑡 − 𝑘𝑘 information is given. 
Let the triple (Ω, F, P) denote a probability space. Let also L2(Ω, F, P) (in short L2) 
stand for the Hilbert space of real random variables with finite first and second mo-
ments defined on (Ω, F, P). 

The Problem 
 
The solution of the second order linear difference equation with non variable co-

efficients is the building block for the extension of the well known closed form solu-
tion of the first order to the p-th order time varying equation. As noted by Sydsaeter 
et al. (2008), in their classic text (Further Mathematics for Economic Analysis, p. 
403), in the case of second order homogeneous linear difference equations with vari-
able coefficients: 

“There is no universally applicable method of discovering the two linearly inde-
pendent solutions that we need in order to find the general solution of the equation.” 

We can identify two lines of inquiry that can be pursued to solve linear difference 
equations with time varying coefficients. Searching for a solution, one can follow ei-
ther of the following two paths. The first is to develop an analogous method to the 
standard one that exists for the linear p-th order difference equation with constant 
coefficients: find the eigenvalues, solve the characteristic equation, and obtain the 
closed form. The second line of research searches for the generalization of the closed 
form formula that exists for first order time varying difference equations. Here, the 
way to proceed is to make up a conjecture and try to prove it by induction. The two 
strands of the literature have taken important steps, but have not provided us with a 
general solution method that we can apply; the existing results lack generality and 
applicability. To be more specific, the research problem we face is that there is a lack 
of a universally applicable method yielding a closed form solution to stochastic higher 
order difference equations with time dependent coefficients. 

A general method for solving infinite linear systems with row-finite coefficient 
matrices3 has recently been established by Paraskevopoulos (2012). It is a modified 

                                                           
3A row-finite matrix is an infinite matrix, each row of which comprises a finite number of non-zero en-
tries. 
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version of the standard Gauss-Jordan elimination method implemented under a right 
pivot strategy, called infinite Gauss-Jordan elimination. Expressing the linear differ-
ence equation of second order with time dependent coefficients as an infinite linear 
system, the Gaussian elimination part of the method is directly applicable. It generates 
two linearly independent homogeneous solution sequences. The general term of each 
solution sequence turns out to be a continuant determinant. The general solutions of 
the homogeneous and nonhomogeneous difference equation are expressible as a sin-
gle Hessenbergian, that is, a determinant of a lower Hessenberg matrix (see Karanasos 
et al., 2022). The results in Paraskevopoulos and Karanasos (2021) afford an easy 
means of finding, for a given lower Hessenberg matrix, its ordinary expansion in non-
determinant form. These results are extendible to the solution of the p-th and ascend-
ing order time varying linear difference equations in terms of a single Hessenbergian 
(see Paraskevopoulos and Karanasos, 2021). This makes it possible to introduce, in 
the above cited reference, a unified theory for time varying models. 

2.2 Fundamental Solution Matrices 

The main theoretical contribution of this Section is the development of a method 
that provides the closed form of the general solution to a TV-AR(2) model. 
Next we give the main definition that we will use in the rest of the paper. Consider a 
second order stochastic difference equation with time dependent coefficients, which 
is equivalent to the time varying AR(2) process, given by  
 

𝑦𝑦𝑡𝑡 = 𝜑𝜑0(𝑡𝑡) + 𝜑𝜑1(𝑡𝑡)𝑦𝑦𝑡𝑡−1 + 𝜑𝜑2(𝑡𝑡)𝑦𝑦𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 , 
                                                                                                                                 (1) 

where {𝜀𝜀𝑡𝑡 , 𝑡𝑡 ∈ 𝑍𝑍} is a sequence of zero mean serially uncorrelated random variables 
defined on 𝐿𝐿2(Ω,𝐹𝐹,𝑃𝑃) while {𝜀𝜀𝑡𝑡}𝑡𝑡 is a zero mean random process (that is 𝐸𝐸(𝜀𝜀𝑡𝑡) = 0) 
such that 𝐸𝐸(𝜀𝜀𝑡𝑡𝜀𝜀𝜏𝜏) = 0 for t≠τ (uncorrelatedness condition), 𝐸𝐸(𝜀𝜀𝑡𝑡|𝑦𝑦𝜏𝜏, 𝜏𝜏 < 𝑡𝑡) = 0  for 
all 𝑡𝑡 (that is, {𝜀𝜀𝑡𝑡} is a martingale difference sequence relative to {yt}), and the time 
varying variance σ2 (t) is non-zero and bounded, that is 0 < 𝜎𝜎2(𝑡𝑡) < 𝑀𝑀 < ∞, for all 
t and some M∈𝑅𝑅>0. The above conditions guarantee that 𝜀𝜀𝑡𝑡 ∈ 𝐿𝐿2  and 𝜀𝜀𝑡𝑡 ⊥ 𝜀𝜀𝜏𝜏  (𝜀𝜀𝑡𝑡, 𝜀𝜀𝜏𝜏 
are orthogonal) whenever t≠τ .   
 
Remark 1 We have relaxed the assumption of homoscedasticity (see also, among oth-
ers, Karanasos et. al., 2014, Canepa et al., 2022 and Karanasos et al., 2022), which 
is likely to be violated in practice and allow 𝜀𝜀𝑡𝑡 to follow, for example, a periodical 
GARCH type of process (see, Bollerslev and Ghysels, 1996). 
 

The relation between the process under consideration and its innovations is essen-
tially described by the Wold-Cramér decomposition (see Section 5.2), which is the 
main analytical tool for studying the asymptotic efficiency of the model. In this case, 
the latest time-point of the observed random variables, denoted here by τ, moves to 
the remote past 𝜏𝜏 = 𝑡𝑡 − 𝑘𝑘 → −∞ 𝑜𝑜𝑜𝑜 𝑘𝑘 → ∞, while the forecast time-point, denoted 
here by t, is kept fixed. 

The fundamental solution sequence, and in general all the solution sequences, 
must necessarily be functions of the independent variable t, so as to satisfy eq. (1). 
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Our intermediate objective is to obtain the fundamental solution matrix, denoted be-
low by 𝚽𝚽𝑡𝑡,𝜏𝜏, which is associated with our stochastic difference equation (1); the 𝚽𝚽𝑡𝑡,𝜏𝜏 
matrix will be derived from the time varying coefficients of eq. (1). The best way to 
appreciate the representation of the fundamental solution matrix is to view the sto-
chastic difference equation as a linear system. We carry out this construction below. 
Once we have this stepping stone in place, then we can pursue our ultimate objective, 
by computing the determinants of the 𝚽𝚽𝑡𝑡,𝜏𝜏, which will give us the linearly independent 
solutions sequences to the difference equation. 
Eq. (1) written as  

𝜑𝜑2(𝑡𝑡)𝑦𝑦𝑡𝑡−2 + 𝜑𝜑1(𝑡𝑡)𝑦𝑦𝑡𝑡−1 − 𝑦𝑦𝑡𝑡 = −[𝜑𝜑0(𝑡𝑡) + 𝜀𝜀𝑡𝑡],     (2) 

takes the infinite row (and column)-finite system form  

  
𝚽𝚽 ⋅ 𝐲𝐲 = −𝛗𝛗− 𝛆𝛆,           (3) 

where 
 

𝚽𝚽=�

𝜑𝜑2(𝜏𝜏 + 1) 𝜑𝜑1(𝜏𝜏 + 1) −1 0 0 0 ⋯
0 𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1 0 0 ⋯
0 0 𝜑𝜑2(𝜏𝜏 + 3) 𝜑𝜑1(𝜏𝜏 + 3) −1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮⋮⋮

�, 

 
 
(row-finite is an infinite matrix whose rows have finite non zero elements) and 
 

𝐲𝐲 =

⎝

⎜
⎜
⎛

𝑦𝑦𝜏𝜏−1
𝑦𝑦𝜏𝜏
𝑦𝑦𝜏𝜏+1
𝑦𝑦𝜏𝜏+2
𝑦𝑦𝜏𝜏+3
𝑦𝑦𝜏𝜏+4

⁞ ⎠

⎟
⎟
⎞

, 𝛗𝛗 = �

𝜑𝜑0(𝜏𝜏 + 1)
𝜑𝜑0(𝜏𝜏 + 2)
𝜑𝜑0(𝜏𝜏 + 3)

⁞

� , 𝛆𝛆 = �
𝜀𝜀𝜏𝜏+1
𝜀𝜀𝜏𝜏+2
𝜀𝜀𝜏𝜏+3

⁞

�  

 
(recall that τ=t-k). The system representation results from the values that the coeffi-
cients take in successive time periods. The equivalence of eqs. (2) and (3) follows 
from the fact that the i-th equation in (3), as a result of the multiplication of the i -th 
row of Φ by the column of ys equated to −[𝜑𝜑0(𝜏𝜏 + 𝑖𝑖) + 𝜀𝜀𝜏𝜏+𝑖𝑖], is equivalent to eq. (2), 
as of time τ+i. The Φ matrix in eq. (3) can be partitioned as  
 

𝚽𝚽 = (𝐏𝐏|𝐂𝐂) 
 
where 
 

𝐏𝐏 = �

𝜑𝜑2(𝜏𝜏 + 1) 𝜑𝜑1(𝜏𝜏 + 1)
0 𝜑𝜑2(𝜏𝜏 + 2)
0 0
⁞ ⁞

� , 𝐂𝐂 = �

−1 0 0 0 ⋯
𝜑𝜑1(𝜏𝜏 + 2) −1 0 0 ⋯
𝜑𝜑2(𝜏𝜏 + 3) 𝜑𝜑1(𝜏𝜏 + 3) −1 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮⋮⋮

�. 
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That is, P consists of the first 2 columns of 𝚽𝚽 and the j-th column of C, j = 1,2, …, 
is the (2+j)-th column of 𝚽𝚽. We will denote the 2nd column of the k×2 top submatrix 
of the matrix P by 𝛗𝛗𝑡𝑡,𝜏𝜏 : 
 

(𝛗𝛗𝑡𝑡,𝜏𝜏)′ = (𝜑𝜑1(𝜏𝜏 + 1), 𝜑𝜑2(𝜏𝜏 + 2), 0, … , 0). 
 

The k×(k-1) top submatrix of matrix C is called the core solution matrix and is 
denoted as 
 

𝐂𝐂𝑡𝑡,𝜏𝜏 =

⎝

⎜⎜
⎜
⎛

−1
𝜑𝜑1(𝜏𝜏 + 2) −1
𝜑𝜑2(𝜏𝜏 + 3) 𝜑𝜑1(𝜏𝜏 + 3) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1) −1

𝜑𝜑2(𝑡𝑡) 𝜑𝜑1(𝑡𝑡)⎠

⎟⎟
⎟
⎞

  

 (4) 
(here and in what follows empty spaces in a matrix have to be replaced by zeros). 
For every pair (𝑡𝑡, τ) ∈ 𝑍𝑍2 such that k=t-τ≥ 1, the fundamental solution matrix is ob-
tained from the core solution matrix 𝐂𝐂𝑡𝑡,𝜏𝜏 in eq. (4), augmented on the left by the 𝛗𝛗𝑡𝑡,𝜏𝜏 
column. That is, 

 

𝚽𝚽𝑡𝑡,𝜏𝜏 = (𝛗𝛗𝑡𝑡,𝜏𝜏 𝐂𝐂𝑡𝑡,𝜏𝜏) =

⎝

⎜⎜
⎛

𝜑𝜑1(𝜏𝜏 + 1) −1
𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1) −1

𝜑𝜑2(𝑡𝑡) 𝜑𝜑1(𝑡𝑡)⎠

⎟⎟
⎞

. 

     (5) 

Formally 𝚽𝚽𝑡𝑡,𝜏𝜏 (since τ=t-k) is a square k×k matrix whose (i,j) entry 1≤ i, j ≤ 𝑘𝑘 is 
given by 
 

�
−1 if 𝑖𝑖 = 𝑗𝑗 − 1, and 2 ≤ 𝑗𝑗 ≤ 𝑘𝑘,

𝜑𝜑1+𝑚𝑚(𝑡𝑡 − 𝑘𝑘 + 𝑖𝑖) if 𝑚𝑚 = 0,1, 𝑖𝑖 = 𝑗𝑗 + 𝑚𝑚, and 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘 −𝑚𝑚,
0 otherwise.

 

 
It is a continuant or tridiagonal matrix, that is a matrix that is both an upper and 

lower Hessenberg matrix. We may also characterize it as a time varying Toeplitz ma-
trix, because its time invariant version is a Toeplitz matrix of bandwidth 3. 

For every pair (𝑡𝑡, 𝜏𝜏) ∈ 𝑍𝑍2 with τ< t, the so called principal determinant associ-
ated with eq. (5) is given by  
 

𝜉𝜉(𝑡𝑡, 𝜏𝜏) = det�𝚽𝚽𝑡𝑡,𝜏𝜏�. 
          (6)  

That is, 𝜉𝜉(𝑡𝑡, 𝜏𝜏)for k≥ 2, is a determinant of a k× k matrix; each of the two nonzero 
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diagonals (below the superdiagonal) of this matrix consists of the time varying coef-
ficients 𝜑𝜑𝑚𝑚(∙), 𝑚𝑚 = 1, 2 from t-k+m to t. In other words, 𝜉𝜉(𝑡𝑡, 𝜏𝜏) is a k-th order tridi-
agonal determinant. Paraskevopoulos and Karanasos (2021) give its ordinary expan-
sion in non-determinant form (a closed form solution). 

We further extend the definition of 𝜉𝜉(𝑡𝑡, 𝜏𝜏) so as to be defined over 𝑍𝑍2 by assign-
ing the initial conditions:   
 

𝜉𝜉(𝑡𝑡, 𝜏𝜏) = �1 if 𝑡𝑡 = 𝜏𝜏,
0 if 𝑡𝑡 < 𝜏𝜏. 

         (7) 

2.3 Main Theorem 

This short section contains the statement of our main theorem. 
 
Theorem 1 An equivalent explicit representation of 𝑦𝑦𝑡𝑡 in eq. (1) in terms of pre-
scribed random variables  𝑦𝑦𝜏𝜏, 𝑦𝑦𝜏𝜏−1 is given by 
  

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡,𝑘𝑘
ℎ𝑜𝑜𝑚𝑚 + 𝑦𝑦𝑡𝑡,𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝  , 
          (8)  

where  
 

𝑦𝑦𝑡𝑡,𝑘𝑘
ℎ𝑜𝑜𝑚𝑚 = 𝜉𝜉(𝑡𝑡, 𝜏𝜏)𝑦𝑦𝜏𝜏 + 𝜑𝜑2(𝜏𝜏 + 1)𝜉𝜉(𝑡𝑡, 𝜏𝜏 + 1)𝑦𝑦𝜏𝜏−1, 

𝑦𝑦𝑡𝑡,𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 = � 𝜉𝜉(𝑡𝑡, 𝑖𝑖)[𝜑𝜑0(𝑖𝑖) + 𝜀𝜀𝑖𝑖]

𝑡𝑡

𝑖𝑖=𝜏𝜏+1
= � 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)[𝜑𝜑0(𝑡𝑡 − 𝑖𝑖) + 𝜀𝜀𝑡𝑡−𝑖𝑖]

𝑘𝑘−1

𝑖𝑖=0
. 

 
In the above Theorem  is decomposed into two parts: first, the 𝑦𝑦𝑡𝑡,𝑘𝑘

ℎ𝑜𝑜𝑚𝑚 part, which 
is the sum of the two fundamental solutions multiplied by observable random varia-
bles, and, second, the 𝑦𝑦𝑡𝑡,𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 part, which is formed by products involving the principal 
determinant  𝜉𝜉(𝑡𝑡, 𝑖𝑖) multiplied by the forcing term: 𝜑𝜑0(𝑖𝑖) + 𝜀𝜀𝑖𝑖.  

Notice that the coefficients of eq. (8), that is, the ξ's are expressed as continuant 
determinants. Moreover, for 𝑘𝑘 = 0, that is t =τ (for 𝑖𝑖 > 𝑗𝑗 we use the convention 
∑ (·) = 0𝑖𝑖
𝑞𝑞=𝑖𝑖 ), since 𝜉𝜉(𝑡𝑡, 𝑡𝑡) = 1 and 𝜉𝜉(𝑡𝑡, 𝑡𝑡 + 1) = 0 (see eqs. (6) and (7)), eq. (8) be-

comes an identity: 𝑦𝑦𝑡𝑡=𝑦𝑦𝑡𝑡. Similarly, when 𝑘𝑘 = 1, that is 𝜏𝜏 = 𝑡𝑡 − 1 eq. (8), since 
𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 1) = φ1(𝑡𝑡), 𝜉𝜉(𝑡𝑡, 𝑡𝑡) = 1, reduces to 𝑦𝑦𝑡𝑡 = 𝜑𝜑1(𝑡𝑡)𝑦𝑦𝑡𝑡−1 + 𝜑𝜑2(𝑡𝑡)𝑦𝑦𝑡𝑡−2 + 𝜑𝜑0(𝑡𝑡) +
𝜀𝜀𝑡𝑡 . 

The asymptotic stability problem is to provide sufficient conditions such that a 
class of stochastic processes solving eq. (1) approaches a solution independently of 
the two prescribed random variables (the effect of the prescribed random variables is 
gradually dying out) as τ→-∞, that is when the homogeneous solution in eq. (8) tends 
to zero, under a prescribed type of convergence. The explicit representation of the 
homogeneous solution in eq. (8) makes it possible to provide such type of conditions 
in Proposition 1 ensuring the L2 convergence to zero of the homogeneous solution, 
that is 𝑦𝑦𝑡𝑡,𝜏𝜏

ℎ𝑜𝑜𝑚𝑚 𝐿𝐿2→ 0 , as τ→-∞, which means that 𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞�𝑦𝑦𝑡𝑡,𝜏𝜏
ℎ𝑜𝑜𝑚𝑚�

𝐿𝐿2
= 0, or equiva-

lently that 𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞𝐸𝐸(𝑦𝑦𝑡𝑡,𝜏𝜏
ℎ𝑜𝑜𝑚𝑚)2 = 0. 
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Proposition 1 If 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡|𝜑𝜑𝑚𝑚(𝑡𝑡)| < ∞  for each 𝑚𝑚, with 𝑚𝑚 = 1,2 then a sufficient con-
dition for an 𝐿𝐿2-bounded stochastic process  (that is 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝐸𝐸(𝑦𝑦𝑡𝑡2) < ∞), which solves 
eq. (1) to be asymptotically stable (in 𝐿𝐿2 sense) is:  

                            𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→∞𝜉𝜉(𝑡𝑡, 𝜏𝜏) = 0 for each t.  
Next, we will introduce an alternative notation for either 𝚽𝚽𝑡𝑡,𝜏𝜏 or 𝜉𝜉(𝑡𝑡, 𝜏𝜏). 
 
Notation 1 We will use two alternative notations for the fundamental solution ma-
trix and the principal determinant: 
i) 𝚽𝚽𝑡𝑡,𝜏𝜏 = 𝚽𝚽𝑡𝑡,𝑡𝑡−𝑘𝑘 in eq. (5) can be re-expressed in an alternative notation as 𝚽𝚽𝑡𝑡,𝑘𝑘, 
where now the second subscript denotes the order of the square matrix, 
ii) Similarly,  𝜉𝜉(𝑡𝑡, 𝑘𝑘) is an alternative notation for 𝜉𝜉(𝑡𝑡, 𝜏𝜏) = 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑘𝑘) in eq. (6). 
  

In the next Section, we illustrate the above claims in the context of a simple sea-
sonal process with fixed periodicity, and a cyclical model as well. 

3. Seasons and Cycles 

3.1 Periodic AR(2) Model 

 
Periodic regularities are phenomena occurring at the same season every year, so anal-
ogous to each other that we can view them as recurrences of the same event. Many 
economic time series are periodic in this sense. In the present Section we express them 
in a mathematical model, so that we can then employ it for forecasting and control. 
Gladyshev (1961) introduced a technique which still dominates the literature. He be-
gins by decomposing the series into subperiods; then he treats each point within a 
subperiod as one part of a multivariate process. In this way he transforms a univariate 
non-stationary formulation into a multivariate stationary one. Following Gladyshev, 
Tiao and Grupe (1980) and Osborn (1991) treated periodic autoregressions as con-
ventional nonperiodic VAR processes (see Appendix C for details). But, as pointed 
out by Lund et al. (2006), even low order specifications can have an inordinately large 
numbers of parameters. A PAR(1) model for daily data, for example, has 365 auto-
regressive parameters. Its time invariant VAR form will contain 365 variables, and 
this is a handicap, especially for forecasting. 

To simplify our exposition, we also introduce the following notation for the sea-
sonal model: 
Notation 2 𝑇𝑇 ∈ 𝑍𝑍>0  denotes the periods (i.e., years); 𝑠𝑠 = 1, … , 𝑙𝑙, denotes the sea-
sons (i.e, quarters in a year: 𝑙𝑙 = 4), 𝑙𝑙 ∈ 𝑍𝑍>0.  
Now time is represented by 𝑡𝑡 ≝ 𝑡𝑡𝑠𝑠, where 𝑡𝑡𝑠𝑠 = (𝑇𝑇 − 1)𝑙𝑙 + 𝑠𝑠. That is, time 𝑡𝑡𝑠𝑠 (or for 
notational ease t) is at the 𝑠𝑠-th season of period 𝑇𝑇. 
 

The most common case is the modeling in one dimensional time repetition at equal 
intervals. In this Section we present a re-examination of the periodic modeling prob-
lem. Our approach differs from most of the existing literature in that we stay within 
the univariate framework (see also Karanasos et al., 2014a). 
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A periodic AR model of order 2 with 𝑙𝑙 seasons, PAR(2; 𝑙𝑙), can be expressed as 
the TV-AR(2) model in eq. (1): 
 

𝑦𝑦𝑡𝑡 = 𝜑𝜑0(𝑡𝑡) + 𝜑𝜑1(𝑡𝑡)𝑦𝑦𝑡𝑡−1 + 𝜑𝜑2(𝑡𝑡)𝑦𝑦𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 , 
     (9)  

where 𝑡𝑡 ≝ 𝑡𝑡𝑠𝑠, that is time 𝑡𝑡𝑠𝑠 is at the s-th season and the periodically (or seasonally) 
varying coefficients 𝜑𝜑𝑚𝑚(𝑡𝑡), 𝑚𝑚 = 1,2 are constant in each season: 
 

𝜑𝜑𝑚𝑚(𝑡𝑡𝑠𝑠) =
def
𝜑𝜑𝑚𝑚𝑠𝑠. 

           (10)  
For example, if 𝑠𝑠 = 1 (that is, we are at the l-th season) then the periodically var-

ying parameters are 𝜑𝜑𝑚𝑚𝑚𝑚 whereas if 𝑠𝑠 = 1 (that is, we are at the 1st season) then the 
periodically varying parameters are 𝜑𝜑𝑚𝑚1. The above process nests the AR(2) model 
as a special case if we assume that the drift and all the AR parameters are constant, 
that is: 𝜑𝜑𝑚𝑚𝑠𝑠 = 𝜑𝜑𝑚𝑚, 𝑚𝑚 = 0,1,2 for all s.  

In what follows we also assume, for ease of presentation and without loss of gen-
erality, that 𝑘𝑘 = 𝑛𝑛𝑙𝑙, 𝑛𝑛∈𝑍𝑍>0, that is 𝜏𝜏 = 𝑡𝑡 − 𝑛𝑛𝑙𝑙 (it can of course be given at any time 
𝜏𝜏 = 𝑡𝑡 − (𝑛𝑛 − 1)𝑙𝑙 + 𝑠𝑠).  

Since for the periodic process, 𝑡𝑡 ≝ 𝑡𝑡𝑠𝑠 = (𝑇𝑇 − 1)𝑙𝑙 + 𝑠𝑠, and 𝑘𝑘 = 𝑛𝑛𝑙𝑙, we will make 
use of the following alternative notation. 
 
Notation 3 i) 𝚽𝚽𝑡𝑡,𝑛𝑛𝑚𝑚 (see Notation 1(i)) or 𝚽𝚽𝑡𝑡𝑠𝑠,𝑛𝑛𝑚𝑚 can be re-expressed in an alternative 
notation as 𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚, 
ii) Similarly, 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) (see Notation 1(ii)) is an alternative notation for 𝜉𝜉(𝑡𝑡𝑠𝑠,𝑛𝑛𝑙𝑙). 
 

For the PAR(2;l) model the continuant matrix 𝚽𝚽𝑡𝑡,𝜏𝜏 in eq. (5) or 𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚 can be ex-
pressed as a block Toeplitz matrix. Thus, we have 
 

𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) = �𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚�, 
          (11)  

with 
 

𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚 =

⎝

⎜⎜
⎛

𝚽𝚽𝑠𝑠,𝑚𝑚 𝟎𝟎𝑚𝑚
𝟎𝟎𝑠𝑠,𝑚𝑚 𝚽𝚽𝑠𝑠,𝑚𝑚 𝟎𝟎𝑚𝑚

⋱ ⋱ ⋱
𝟎𝟎𝑠𝑠,𝑚𝑚 𝚽𝚽𝑠𝑠,𝑚𝑚 𝟎𝟎𝑚𝑚

𝟎𝟎𝑠𝑠,𝑚𝑚 𝚽𝚽𝑠𝑠,𝑚𝑚⎠

⎟⎟
⎞

, 

                       (12) 
where 𝟎𝟎𝑚𝑚 is an 𝑙𝑙 × 𝑙𝑙 matrix of zeros except for -1 in its (l,1)-th entry; 𝟎𝟎𝑠𝑠,𝑚𝑚 is an 
𝑙𝑙 × 𝑙𝑙 matrix of zeros except 𝜑𝜑2,𝑠𝑠+1, in its (1,l)-th entry and the block diagonal matrix 
𝚽𝚽𝑠𝑠,𝑚𝑚 is the continuant or tridiagonal matrix given by 
 



174 | M. Karanasos, A. G. Paraskevopoulos, S. Dafnos 
 

𝚽𝚽𝑠𝑠,𝑚𝑚 =

⎝

⎜⎜
⎛

𝜑𝜑1,𝑠𝑠−𝑚𝑚+1 −1
𝜑𝜑2,𝑠𝑠−𝑚𝑚+2 𝜑𝜑1,𝑠𝑠−𝑚𝑚+2 −1

⋱ ⋱ ⋱
𝜑𝜑2,𝑠𝑠 𝜑𝜑1,𝑠𝑠−1 −1

𝜑𝜑2,𝑠𝑠 𝜑𝜑1,𝑠𝑠⎠

⎟⎟
⎞

, 

   (13) 
 
where for 𝑠𝑠 ≤ j we replace 𝑠𝑠 − 𝑗𝑗 by 𝑠𝑠 − 𝑗𝑗 + 𝑙𝑙 (we recall that 𝜑𝜑𝑚𝑚(𝑡𝑡𝑠𝑠) ≝ 𝜑𝜑𝑚𝑚𝑠𝑠, see eq. 
(10)). For example, if either 𝑠𝑠 = 𝑙𝑙 or 𝑠𝑠 = 1, then  

𝚽𝚽𝑚𝑚,𝑚𝑚 =

⎝

⎜⎜
⎛

𝜑𝜑11 −1
𝜑𝜑22 𝜑𝜑12 −1

⋱ ⋱ ⋱
𝜑𝜑2𝑚𝑚 𝜑𝜑1,𝑚𝑚−1 −1

𝜑𝜑2𝑚𝑚 𝜑𝜑1𝑚𝑚⎠

⎟⎟
⎞

,𝚽𝚽1,𝑚𝑚 =

⎝

⎜⎜
⎛

𝜑𝜑12 −1
𝜑𝜑23 𝜑𝜑13 −1

⋱ ⋱ ⋱
𝜑𝜑2𝑚𝑚 𝜑𝜑1𝑚𝑚 −1

𝜑𝜑21 𝜑𝜑11⎠

⎟⎟
⎞

. 

 
Next we will make use of the above block Toeplitz matrix to obtain an explicit 

formula of ξs,nl in which we decompose it into tridiagonal determinants, 𝜉𝜉𝑠𝑠,𝑚𝑚. To pre-
pare the reader, before we present the main result we consider the case where 𝑛𝑛 = 2 
that is we go from time 𝑡𝑡 back to time 𝑡𝑡 − 2𝑙𝑙. The tridiagonal determinant 𝜉𝜉𝑠𝑠,2𝑚𝑚 can be 
written as the sum of two terms  
 

𝜉𝜉(𝑠𝑠, 2𝑙𝑙) = �
𝚽𝚽𝑠𝑠,𝑚𝑚 𝟎𝟎𝑚𝑚
𝟎𝟎𝑠𝑠,𝑚𝑚 𝚽𝚽𝑠𝑠,𝑚𝑚

� = 𝜉𝜉2(𝑠𝑠, 𝑙𝑙) + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1),     

  
                                                                                                               (14) 
where each term is the product of two continuant (or tridiagonal) determinants. 

Next let 𝑖𝑖𝑖𝑖 ∈ {0,1}, 𝑗𝑗 = 1,…,n-1, and define  
 

𝜙𝜙𝑖𝑖,𝑠𝑠 =
def
𝜙𝜙𝑖𝑖    :   𝜙𝜙𝑖𝑖 = �

1 if 𝑖𝑖𝑖𝑖 = 0,
𝜑𝜑2,𝑠𝑠+1 if 𝑖𝑖𝑖𝑖 = 1. 

     (15) 
 

Let also ∏ (·) = 1𝑖𝑖
𝑔𝑔=𝑖𝑖  for 𝑖𝑖 < 𝑗𝑗. We recall that 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) in eq. (11), is the determi-

nant of 𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚 in eq. (12).  
 Proposition 2 For the PAR(2; 𝑙𝑙) process, 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙), for , can be written as 
 
𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) = ∑ ⋯1

𝑖𝑖1=0 ∑ �𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 𝑖𝑖1)�∏ 𝜙𝜙𝑔𝑔−1𝜉𝜉(𝑠𝑠 −𝑛𝑛−1
𝑔𝑔=2 𝑖𝑖𝑔𝑔−1, 𝑙𝑙 − 𝑖𝑖𝑔𝑔 −1

𝑖𝑖𝑛𝑛−1=0

𝑖𝑖𝑔𝑔−1)�𝜙𝜙𝑛𝑛−1𝜉𝜉(𝑠𝑠 − 𝑖𝑖𝑛𝑛−1, 𝑙𝑙 − 𝑖𝑖𝑛𝑛−1)�,                                                                          (16)  
where 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) = �𝚽𝚽𝑠𝑠,𝑚𝑚� , 𝚽𝚽𝑠𝑠,𝑚𝑚 is given by eq. (13) and 𝜙𝜙𝑖𝑖  is defined in eq. (15). 

In the above Proposition (its proof is presented in Appendix B) 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) is ex-

pressed as the sum of ∑ �𝑛𝑛 − 1
𝑗𝑗 � = 2𝑛𝑛−1𝑛𝑛−1

𝑖𝑖=0  terms each of which is the product of 𝑛𝑛 

terms. In other words, it is decomposed into determinants of  continuant matrices, 
𝑚𝑚 = 0,1,2: 𝚽𝚽𝑠𝑠−𝑖𝑖𝑔𝑔−1,𝑚𝑚−𝑖𝑖𝑔𝑔−𝑖𝑖𝑔𝑔−1. 

When 𝑛𝑛 = 3 eq. (16) reduces to:  
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𝜉𝜉(𝑠𝑠, 3𝑙𝑙) = 𝜉𝜉3(𝑠𝑠, 𝑙𝑙) + 𝜑𝜑2,𝑠𝑠+1[𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠, 𝑙𝑙) + 𝜉𝜉(𝑠𝑠, 𝑙𝑙)𝜉𝜉(𝑠𝑠, 𝑙𝑙 −

1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1) + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 2)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1)]  
= 𝜉𝜉3(𝑠𝑠, 𝑙𝑙) + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1)[2𝜉𝜉(𝑠𝑠, 𝑙𝑙) + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 2)],  
 
that is, 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) is equal to the sum of four (𝑠𝑠𝑛𝑛−1 = 22;  𝑖𝑖1 = 𝑖𝑖2 = 0; 𝑖𝑖1 = 𝑖𝑖2 =
1; 𝑖𝑖1 = 0 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖2 = 1; 𝑖𝑖1 = 1 𝑎𝑎𝑛𝑛𝑎𝑎 𝑖𝑖2 = 0) terms each of which is the product of three 
(𝑛𝑛 = 3) ξ's (continuant determinants). 

When 𝑛𝑛 = 2, eq. (16) reduces to eq. (14): 
 

𝜉𝜉(𝑠𝑠, 2𝑙𝑙) = ∑ 𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 𝑖𝑖1)𝜙𝜙1𝜉𝜉(𝑠𝑠 − 𝑖𝑖1, 𝑙𝑙 − 𝑖𝑖1)1
𝑖𝑖1=0 = 

𝜉𝜉2(𝑠𝑠, 𝑙𝑙)�����
𝑖𝑖1=0

+ 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1)���������������������
𝑖𝑖1=1

. 

 
Proposition 3 An equivalent explicit representation of 𝑦𝑦𝑡𝑡 in eq. (9) in terms of the 
two prescribed random variables 𝑦𝑦𝑡𝑡−𝑛𝑛𝑚𝑚, 𝑦𝑦𝑡𝑡−𝑛𝑛𝑚𝑚−1  is given by  
 

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡,𝑛𝑛𝑚𝑚
ℎ𝑜𝑜𝑚𝑚 + 𝑦𝑦𝑡𝑡,𝑛𝑛𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝 , 
          (17) 

where  
 

𝑦𝑦𝑡𝑡,𝑛𝑛𝑚𝑚
ℎ𝑜𝑜𝑚𝑚 = 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙)𝑦𝑦𝑡𝑡−𝑛𝑛𝑚𝑚 + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙 − 1)𝑦𝑦𝑡𝑡−𝑛𝑛𝑚𝑚−1, 

 

𝑦𝑦𝑡𝑡,𝑛𝑛𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝 = ��𝜉𝜉(𝑠𝑠, 𝑖𝑖 + 𝑗𝑗𝑙𝑙)𝜑𝜑0,𝑠𝑠−𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

𝑚𝑚−1

𝑖𝑖=0

+ � 𝜉𝜉(𝑠𝑠, 𝑗𝑗)𝜀𝜀𝑡𝑡−𝑖𝑖 ,
𝑛𝑛𝑚𝑚−1

𝑖𝑖=0

 

and  𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) is given either in eq. (11) or in Proposition (2). 
 

The proof of eq. (17) in the above Proposition follows immediately from Theorem 
1 and the definition of the periodic model (9). 

3.2 Cyclical AR(2) Process 

Some economic series exhibit oscillations which are not associated with the same 
fixed period every year. Despite their lack of fixed periodicity, such time series are 
predictable to a certain degree. 

Rather than setting up a general model from first principles, we re-interpret the 
periodic model with some modifications. 

Before proceeding further, some additional notation is required. 
 
Notation 4 We assume that we have 𝑎𝑎 cycles, with 1≤ 𝑎𝑎 ≤ 𝑙𝑙. 
Then 𝑠𝑠𝑖𝑖 = 𝑙𝑙𝑖𝑖−1 + 1, … , 𝑙𝑙𝑖𝑖 j=1,…,d,(with 0 = 𝑙𝑙0 < 𝑙𝑙1 < ⋯ < 𝑙𝑙𝑑𝑑 = 𝑙𝑙) are the seasons 
in cycle 𝑗𝑗. Thus we can write 𝑡𝑡 ≝ 𝑡𝑡𝑠𝑠𝑗𝑗 = (𝑇𝑇 − 1)𝑙𝑙 + 𝑠𝑠𝑖𝑖 . 
 

A CAR(2) model with  seasons and  cycles (CAR(2;l;d)) is defined as a TV-
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AR(2) model: 
 

𝑦𝑦𝑡𝑡 = 𝜑𝜑0(𝑡𝑡) + 𝜑𝜑1(𝑡𝑡)𝑦𝑦𝑡𝑡−1 + 𝜑𝜑2(𝑡𝑡)𝑦𝑦𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 , 
     (18) 

where 𝜑𝜑𝑚𝑚(𝑡𝑡) ≝ 𝜑𝜑𝑚𝑚(𝑡𝑡𝑠𝑠𝑗𝑗) is given by 
 

𝜑𝜑𝑚𝑚 �𝑡𝑡𝑠𝑠𝑗𝑗� =
def
𝜑𝜑𝑚𝑚,𝑠𝑠𝑗𝑗 ,𝑚𝑚 = 0,1,2. 

        (19) 
      In what follows, for notational ease and without loss of generality we will assume 
that current time t, is at the last season of the last cycle, that is 𝑗𝑗 = 𝑎𝑎 and 𝑠𝑠𝑑𝑑 = 𝑙𝑙𝑑𝑑 =
𝑙𝑙: 𝑡𝑡 ≝ 𝑡𝑡𝑚𝑚 = 𝑇𝑇𝑙𝑙. 

For the above process, Φl,l in eq. (13) can be written as 

𝚽𝚽𝑚𝑚,𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢
⎡𝚽𝚽𝑚𝑚1,𝑚𝑚1 𝟎𝟎𝑑𝑑−1
𝟎𝟎�𝑑𝑑−1 𝚽𝚽𝑚𝑚2,𝑚𝑚2−𝑚𝑚1 𝟎𝟎𝑑𝑑−2

⋱ ⋱ ⋱
𝟎𝟎�2 𝚽𝚽𝑚𝑚𝑑𝑑−1,𝑚𝑚𝑑𝑑−1−𝑚𝑚𝑑𝑑−2 𝟎𝟎1

𝟎𝟎�1 𝚽𝚽𝑚𝑚 ,𝑚𝑚 −𝑚𝑚𝑑𝑑−1⎦
⎥
⎥
⎥
⎥
⎤

 

 
(20) 

 
where i) the j-th (𝑗𝑗 = 1,…,d) block of the main diagonal is 𝚽𝚽𝑚𝑚𝑗𝑗,𝑚𝑚𝑗𝑗−𝑚𝑚𝑗𝑗−1, which is a (𝑙𝑙𝑖𝑖 −
𝑙𝑙𝑖𝑖−1) × (𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑖𝑖−1) banded ‘time varying' Toeplitz matrix of bandwidth 3: 
 

𝚽𝚽𝑚𝑚𝑗𝑗,𝑚𝑚𝑗𝑗−𝑚𝑚𝑗𝑗−1 =

⎝

⎜⎜
⎜
⎛

𝜑𝜑1,𝑚𝑚𝑗𝑗−1+1 −1
𝜑𝜑2,𝑚𝑚𝑗𝑗−1+2 𝜑𝜑1,𝑚𝑚𝑗𝑗−1+2 −1

⋱ ⋱ ⋱
𝜑𝜑2,𝑚𝑚𝑗𝑗−1 𝜑𝜑1,𝑚𝑚𝑗𝑗−1 −1

𝜑𝜑2,𝑚𝑚𝑗𝑗 𝜑𝜑1,𝑚𝑚𝑗𝑗⎠

⎟⎟
⎟
⎞

,  

 
ii) the j-th (j = 1,…,d-1) block in the subdiagonal, is a (𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑖𝑖−1) × (𝑙𝑙𝑖𝑖+1 − 𝑙𝑙𝑖𝑖) matrix 
of zeros except for 𝜑𝜑2,𝑚𝑚𝑑𝑑−𝑗𝑗+1 in its  1 × (𝑙𝑙𝑖𝑖+1 − 𝑙𝑙𝑖𝑖) entry, and iii) the 0𝑖𝑖 block in the 
superdiagonal, is a (𝑙𝑙𝑖𝑖+1 − 𝑙𝑙𝑖𝑖) × (𝑙𝑙𝑖𝑖 − 𝑙𝑙𝑖𝑖−1) matrix of zeros except for  in its  
(𝑙𝑙𝑖𝑖+1 − 𝑙𝑙𝑖𝑖) × 1 entry, and iv) there are zeros elsewhere. 

Next we define 𝜑𝜑𝑖𝑖,𝑚𝑚𝑗𝑗 ≝ 𝜑𝜑𝑖𝑖:  

𝜙𝜙𝑖𝑖 = �
1 if 𝑖𝑖𝑖𝑖 = 0,

𝜑𝜑2,𝑚𝑚𝑗𝑗+1 if 𝑖𝑖𝑖𝑖 = 1. 
 

We recall that 𝜉𝜉(𝑙𝑙, 𝑙𝑙) = �𝚽𝚽𝑚𝑚,𝑚𝑚�, that is 𝜉𝜉(𝑙𝑙, 𝑙𝑙) is the determinant of 𝚽𝚽𝑚𝑚,𝑚𝑚 in eq. (20). 
 
Proposition 4 For the CAR(2;l;d) process in eqs. (18) and (19), with 2≤d≤ 𝑙𝑙, 
𝜉𝜉(𝑙𝑙, 𝑙𝑙) can be written as 
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𝜉𝜉(𝑙𝑙, 𝑙𝑙) = ∑ ⋯1
𝑖𝑖1=0 ∑ �𝜉𝜉(𝑙𝑙, 𝑙𝑙 − 𝑙𝑙𝑑𝑑−1 − 𝑖𝑖1)�∏ 𝜙𝜙2,𝑑𝑑−𝑔𝑔+1𝜉𝜉(𝑙𝑙𝑑𝑑−𝑔𝑔+1 −𝑑𝑑−1

𝑔𝑔=2
1
𝑖𝑖𝑑𝑑−1=0

𝑖𝑖𝑔𝑔−1, 𝑙𝑙𝑑𝑑−𝑔𝑔+1 − 𝑙𝑙𝑑𝑑−𝑔𝑔 − 𝑖𝑖𝑔𝑔 − 𝑖𝑖𝑔𝑔−1)� 𝜙𝜙2,𝑑𝑑−1𝜉𝜉(𝑙𝑙1 − 𝑖𝑖𝑑𝑑−1, 𝑙𝑙1 − 𝑖𝑖𝑑𝑑−1)}.              (21) 

(the proof of Proposition 4 is similar to that of Proposition 2). 
For example, when we have two cycles, that is 𝑎𝑎 = 2, 𝜉𝜉(𝑙𝑙, 𝑙𝑙) in eq. (21) is re-

duced to: 

𝜉𝜉(𝑙𝑙, 𝑙𝑙) = ∑ 𝜉𝜉(𝑙𝑙, 𝑙𝑙 − 𝑙𝑙1 − 𝑖𝑖1)𝜙𝜙2,1𝜉𝜉(𝑙𝑙1 − 𝑖𝑖1, 𝑙𝑙1 − 𝑖𝑖1)1
𝑖𝑖1=0 = 

𝜉𝜉(𝑙𝑙, 𝑙𝑙 − 𝑙𝑙1)𝜉𝜉(𝑙𝑙1, 𝑙𝑙1)�������������
𝑖𝑖1=0

+ 𝜉𝜉(𝑙𝑙, 𝑙𝑙 − 𝑙𝑙1 − 1)𝜑𝜑2,𝑚𝑚1+1𝜉𝜉(𝑙𝑙1 − 1, 𝑙𝑙1 − 1)�������������������������
𝑖𝑖1=1

. 

4. Abrupt Breaks 

Our general result has been presented in Section 2.3. In the current Section, we discuss 
still another example in order to both make our analysis clearer and to demonstrate its 
applicability. One important case is that of 𝑜𝑜, 0≤ r ≤ 𝑘𝑘 − 1, abrupt breaks at times 
t-k1, t-k2,  , t-kr, where 0 = 𝑘𝑘0 < 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑝𝑝 < 𝑘𝑘𝑝𝑝+1 = 𝑘𝑘, 𝑘𝑘𝑝𝑝 ∈ 𝑍𝑍>0. That 
is, between 𝑡𝑡 − 𝑘𝑘 = 𝑡𝑡 − 𝑘𝑘𝑝𝑝+1  and the present time 𝑡𝑡 = 𝑡𝑡 − 𝑘𝑘0 the AR(2) process con-
tains r structural breaks and the switch from one set of parameters to another is abrupt. 
In particular 
 

𝑦𝑦𝜏𝜏 = 𝜑𝜑0𝑖𝑖 + 𝜑𝜑1𝑖𝑖𝑦𝑦𝜏𝜏−1 + 𝜑𝜑2𝑖𝑖𝑦𝑦𝜏𝜏−2 + 𝜎𝜎𝑖𝑖2𝑒𝑒𝜏𝜏,𝑖𝑖 ,       (22) 
 

For  𝜏𝜏 = 𝑡𝑡 − 𝑘𝑘𝑖𝑖−1,… , 𝑡𝑡 − 𝑘𝑘𝑖𝑖 + 1, 𝑗𝑗 = 1, … , 𝑜𝑜 + 1 and 𝑒𝑒𝑡𝑡,𝑖𝑖  i.i.d (0,1) ∀ t,j. Within the 
class of AR(2) processes, this specification is quite general and allows for intercept 
and slope shifts as well as changes in the error variances (see also Pesaran et al., 2006). 
Each regime j is characterized by 𝜑𝜑0𝑖𝑖, a vector of autoregressive coefficients: 𝜑𝜑𝑖𝑖, and 
an error term variance, 0 < σj2<𝑀𝑀𝑖𝑖 ∀ , 𝑀𝑀𝑖𝑖 ∈ 𝑍𝑍>0. We term this model abrupt breaks 
AR process of order (2;r): ABAR(2;r). 
For the AR(2) model with r abrupt breaks, ξ(𝑡𝑡, 𝜏𝜏), 𝜏𝜏 = 𝑡𝑡 − 𝑘𝑘, in eq. (6) can be writ-
ten as the determinant of a partitioned (or a block) tridiagonal matrix 

  

ξ(t, τ) =
�

�

𝚽𝚽𝑡𝑡−𝑘𝑘𝑟𝑟,𝑘𝑘𝑟𝑟+1−𝑘𝑘𝑟𝑟 𝟎𝟎𝑝𝑝
𝟎𝟎�𝑝𝑝 𝚽𝚽𝑡𝑡−𝑘𝑘𝑟𝑟−1,𝑘𝑘𝑟𝑟−𝑘𝑘𝑟𝑟−1 𝟎𝟎𝑝𝑝−1

⋱ ⋱ ⋱
𝟎𝟎�2 𝚽𝚽𝑡𝑡−𝑘𝑘1,𝑘𝑘2−𝑘𝑘1 𝟎𝟎1

𝟎𝟎�1 𝚽𝚽𝑡𝑡,𝑘𝑘1

�

�
, 

 
(23) 

where first, the j-th (j=1,…r+1) block of the main diagonal is 𝚽𝚽𝑡𝑡−𝑘𝑘𝑗𝑗−1,𝑘𝑘𝑗𝑗−𝑘𝑘𝑗𝑗−1, which 
is a (𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1) × (𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1) banded Toeplitz matrix of bandwidth : 
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𝚽𝚽𝑡𝑡−𝑘𝑘𝑗𝑗−1,𝑘𝑘𝑗𝑗−𝑘𝑘𝑗𝑗−1 =

⎝

⎜⎜
⎛

𝜑𝜑1𝑖𝑖 −1
𝜑𝜑2𝑖𝑖 𝜑𝜑1𝑖𝑖 −1

⋱ ⋱ ⋱
𝜑𝜑2𝑖𝑖 𝜑𝜑1𝑖𝑖 −1

𝜑𝜑2𝑖𝑖 𝜑𝜑1𝑖𝑖⎠

⎟⎟
⎞

, 𝑗𝑗 

with  
 
𝜉𝜉�𝑡𝑡 − 𝑘𝑘𝑖𝑖−1, 𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1� = �𝚽𝚽𝑡𝑡−𝑘𝑘𝑗𝑗−1,𝑘𝑘𝑗𝑗−𝑘𝑘𝑗𝑗−1� = 1

𝜆𝜆1𝑗𝑗−𝜆𝜆2𝑗𝑗
= (𝜆𝜆1𝑖𝑖

𝑘𝑘𝑗𝑗−𝑘𝑘𝑗𝑗−1+1 − 𝜆𝜆2𝑖𝑖
𝑘𝑘𝑗𝑗−𝑘𝑘𝑗𝑗−1+1), and the 

second equality holds if and only if λ1j ≠ 𝜆𝜆2𝑖𝑖 (where 1 − 𝜑𝜑1𝑖𝑖𝐵𝐵 − 𝜑𝜑2𝑖𝑖𝐵𝐵2 = (1 −
𝜆𝜆1𝑖𝑖𝐵𝐵)(1 − 𝜆𝜆2𝑖𝑖𝐵𝐵); second, the j-th (j = 1,…,r) block of the subdiagonal, is a (kj-
𝑘𝑘𝑖𝑖−1) × (𝑘𝑘𝑖𝑖+1 − 𝑘𝑘𝑖𝑖) matrix of zeros except for 𝜑𝜑2𝑖𝑖  in its 1×(𝑘𝑘𝑖𝑖+1 − 𝑘𝑘𝑖𝑖) entry; and 
third, the j-th block of the superdiagonal, is a  (𝑘𝑘𝑖𝑖+1-𝑘𝑘𝑖𝑖) × (𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑖𝑖−1)matrix of zeros 
except for -1 in its  (𝑘𝑘𝑖𝑖+1 − 𝑘𝑘𝑖𝑖)× 1 entry, and iv) there are zeros elsewhere. 

Next we define 𝜙𝜙𝑖𝑖 ( j = 1,…,r):  
 

𝜙𝜙𝑖𝑖 = �
1 if 𝑖𝑖𝑖𝑖 = 0,
𝜑𝜑2𝑖𝑖 if 𝑖𝑖𝑖𝑖 = 1. 

 
 

We also recall the Notation 1(ii), that is ξ(𝑡𝑡, 𝑡𝑡 − 𝑘𝑘) ≝ξ(t,k). 
 
Proposition 5 For the ABAR (2; 𝑜𝑜) process in eq. (22), ξ(t,k) can be written as 

𝜉𝜉(𝑡𝑡, 𝑘𝑘) = ∑ ⋯1
𝑖𝑖1=0 ∑ �𝜉𝜉(𝑡𝑡, 𝑘𝑘1 − 𝑖𝑖1)�∏ 𝜙𝜙2,𝑔𝑔−1𝜉𝜉(𝑡𝑡 − 𝑘𝑘𝑔𝑔−1 − 𝑖𝑖𝑔𝑔−1,𝑘𝑘𝑔𝑔 −𝑝𝑝

𝑔𝑔=2 𝑘𝑘𝑔𝑔−1 −1
𝑖𝑖𝑟𝑟=0

𝑖𝑖𝑔𝑔 − 𝑖𝑖𝑔𝑔−1)�𝜙𝜙2𝑝𝑝𝜉𝜉(𝑡𝑡 − 𝑘𝑘𝑝𝑝 − 𝑖𝑖𝑝𝑝 ,𝑘𝑘 − 𝑘𝑘𝑝𝑝 − 𝑖𝑖𝑝𝑝)�                                                            (24) 

(the proof of Proposition 7 is similar to that of Proposition 2). 
As an example consider the case with one break, that is 𝑜𝑜 = 1. Then ξ(t,k) in eq. 

(24) reduces to:  
 

𝜉𝜉(𝑡𝑡, 𝑘𝑘) = � 𝜉𝜉(𝑡𝑡, 𝑘𝑘1 − 𝑖𝑖1)𝜙𝜙21𝜉𝜉(𝑡𝑡 − 𝑘𝑘1 − 𝑖𝑖1,𝑘𝑘 − 𝑘𝑘1 − 𝑖𝑖1)
1

𝑖𝑖1=0

 

= 𝜉𝜉(𝑡𝑡, 𝑘𝑘1)𝜉𝜉(𝑡𝑡 − 𝑘𝑘1, 𝑘𝑘 − 𝑘𝑘1)�����������������
𝑖𝑖1=0

+ 𝜉𝜉(𝑡𝑡, 𝑘𝑘1 − 1)𝜑𝜑21𝜉𝜉(𝑡𝑡 − 𝑘𝑘1 − 1, 𝑘𝑘 − 𝑘𝑘1 − 1)���������������������������
𝑖𝑖1=1

. 

 
Proposition 6 An equivalent explicit representation of 𝑦𝑦𝑡𝑡 in eq. (22) in terms of the 
two prescribed random variables 𝑦𝑦𝑡𝑡−𝑘𝑘, 𝑦𝑦𝑡𝑡−𝑘𝑘−1 , is given by  

𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡,𝑘𝑘
ℎ𝑜𝑜𝑚𝑚 + 𝑦𝑦𝑡𝑡,𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 , 

where 

𝑦𝑦𝑡𝑡,𝑘𝑘
ℎ𝑜𝑜𝑚𝑚 = 𝜉𝜉(𝑡𝑡, 𝑘𝑘)𝑦𝑦𝑡𝑡−𝑘𝑘 + 𝜑𝜑2,𝑝𝑝+1𝜉𝜉(𝑡𝑡, 𝑘𝑘 − 1)𝑦𝑦𝑡𝑡−𝑘𝑘−1, 

𝑦𝑦𝑡𝑡,𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 = � �𝜑𝜑0,𝑖𝑖� 𝜉𝜉(𝑡𝑡, 𝑖𝑖)

𝑘𝑘𝑗𝑗−1

𝑖𝑖=𝑘𝑘𝑗𝑗−1
+ 𝜎𝜎𝑖𝑖2� 𝜉𝜉(𝑡𝑡, 𝑖𝑖)𝑒𝑒𝑡𝑡−𝑖𝑖,𝑖𝑖

𝑘𝑘𝑗𝑗−1

𝑖𝑖=𝑘𝑘𝑗𝑗−1
� ,

𝑝𝑝+1

𝑖𝑖=1
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and ξ(t,k) is given either in eq. (23) or in Proposition 5.  
The proof of the above Proposition follows immediately from Theorem 1 and the 

definition of the ABAR(2; r) model in eq. (22). 
 

5. Prediction and Moment Structure 

We turn our attention to the fundamental properties of the various TV-AR(2) pro-
cesses. Armed with a powerful technique for manipulating time varying models we 
may now provide a thorough description of the processes (1) by deriving, first, its 
multistep ahead predictor, the associated forecast error and the mean square error; 
second, the first two unconditional moments of this process, and third, its covariance 
structure.  

5.1 Multi Step Forecasts 

Forecasts Based on Finite Observations. In what follows we discuss an approach 
focusing on small size sample forecasts. In this case the optimal linear forecast is based 
on the two past observations, including a nonzero time varying deterministic drift 𝜑𝜑0(𝑡𝑡). 
Let 𝐾𝐾𝜏𝜏 (𝜏𝜏 = 𝑡𝑡 − 𝑘𝑘) be the subspace of 𝐿𝐿2 spanned by the set of two past observations 
{1, yτ,𝑦𝑦𝜏𝜏−1} (also containing all constant functions). Following Karanasos et al. (2022), 
we shall denote the orthogonal projection of 𝑦𝑦𝑡𝑡 onto 𝐾𝐾𝜏𝜏 by 𝐸𝐸�(𝑦𝑦𝑡𝑡|𝐾𝐾𝜏𝜏) and we shall refer 
to it as the optimal linear predictor of 𝑦𝑦𝑡𝑡, based on 𝐾𝐾𝜏𝜏. 

The approach employed herein takes advantage of the explicit form of the process 
yt, established by eq. (8). Assuming further that {𝜀𝜀𝑡𝑡} is a martingale difference se-
quence, relative to 𝑦𝑦𝜏𝜏, then applying the optimal linear predictor of 𝑦𝑦𝑡𝑡 in eq. (8), based 
on 𝐾𝐾𝜏𝜏, the next Proposition follows: 
 
Proposition 7 For the TV-AR(2) model the k-step-ahead optimal (in -sense) lin-
ear predictor of 𝑦𝑦𝑡𝑡 based on 𝐾𝐾𝜏𝜏, is readily seen to be 
 

𝐸𝐸�(𝑦𝑦𝑡𝑡|𝐾𝐾𝜏𝜏) = � 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜑𝜑0(𝑡𝑡 − 𝑖𝑖) + 𝜉𝜉(𝑡𝑡, 𝜏𝜏)𝑦𝑦𝜏𝜏 + 𝜑𝜑2(𝜏𝜏 + 1)𝜉𝜉(𝑡𝑡, 𝜏𝜏 + 1)
𝑘𝑘−1

𝑖𝑖=0
𝑦𝑦𝜏𝜏−1. 

 
(25) 

 
The forecast error for the k-step-ahead predictor, and its associated mean square 
error (its variance), are given by: 
 

𝐹𝐹𝐸𝐸𝑡𝑡,𝜏𝜏 = ∑ 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜀𝜀𝑡𝑡−𝑖𝑖 ,𝑘𝑘−1
𝑖𝑖=0                                           

       (26) 
 

𝑀𝑀𝑀𝑀𝐸𝐸𝑡𝑡,𝜏𝜏 = ∑ 𝜉𝜉2(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜎𝜎2(𝑡𝑡 − 𝑖𝑖).𝑘𝑘−1
𝑖𝑖=0       (27) 

 
The following Proposition presents results for the forecasts from PAR and 

ABAR processes. We recall Notation 1(ii): 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑘𝑘) ≝ 𝜉𝜉(𝑡𝑡, 𝑘𝑘). 
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 Proposition 8 For the PAR(2;l) model the -step-ahead linear predictor in eq. 
(25) it becomes  
 
𝐸𝐸�(𝑦𝑦𝑡𝑡|𝐾𝐾𝜏𝜏) = ∑ ∑ 𝜉𝜉(𝑠𝑠, 𝑖𝑖 + 𝑗𝑗𝑙𝑙)𝜑𝜑0,𝑠𝑠−𝑖𝑖 + 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙)𝑦𝑦𝑡𝑡−𝑛𝑛𝑚𝑚 + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙 −𝑛𝑛−1

𝑖𝑖=0
𝑚𝑚−1
𝑖𝑖=0

1)𝑦𝑦𝑡𝑡−𝑛𝑛𝑚𝑚−1.  
 
where  𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙) is given in Proposition (2). 

  
For the ABAR(2; 𝑜𝑜) model in eq. (22) the -step-ahead optimal linear predictor is 
given by  
𝐸𝐸�(𝑦𝑦𝑡𝑡|𝐾𝐾𝜏𝜏) = ∑ 𝜑𝜑0,𝑖𝑖

𝑝𝑝+1
𝑖𝑖=1 ∑ 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖) + 𝜉𝜉(𝑡𝑡, 𝑘𝑘)𝑦𝑦𝑡𝑡−𝑘𝑘 + 𝜑𝜑2,𝑝𝑝+1𝜉𝜉(𝑡𝑡, 𝑘𝑘 − 1)𝑘𝑘𝑗𝑗−1

𝑖𝑖=𝑘𝑘𝑗𝑗−1
𝑦𝑦𝑡𝑡−𝑘𝑘−1.  

 
Where 𝜉𝜉(𝑡𝑡, 𝑖𝑖) is given either in eq. (23) or in Proposition 5. 
 

Franses and Paap (2005) employ the vector season representation to compute fore-
casts and forecast error variances for a PAR(1;4) process. In this way forecasts can be 
generated along the same lines with quadrivariate VAR(1) models. Franses (1996a) 
derives multi-step forecast error variances for low-order PAR models with 𝑙𝑙 = 4, us-
ing the VS representation. But, if l is large even low order specifications will have 
large VAR representations and this is a handicap especially for forecasting. In con-
trast, our formulae using the univariate framework allow a fast computation of the 
multi-step-ahead predictors even if l is large. 

In what follows we give conditions for the first and second unconditional mo-
ments of model (1) to exist.  

5.2 Wold-Cramér Representation 

In Proposition 9, we provide the existence of the Wold-Cramér decomposition (see 
Cramér, 1961)4 and, therefore, impulse response functions (IRFs), for the model in 
eq. (1). 

First, we need a Condition. 
 
Condition 1 ∑ |𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)|∞

𝑖𝑖=0 < ∞ (absolute summability condition). 
  

Condition 1 which, along with the boundedness of the drift, ensure the existence 
of the Wold-Cramér decomposition (see Proposition 9) of TV-AR( ) processes, 
which is second order, that is of finite first two unconditional moments and autocovar-
iance function (see Propositions 10-12). 
 
Proposition 9 Let the absolute summability condition hold. Let also 𝜑𝜑0(𝑡𝑡) be 
bounded function in 𝑡𝑡. Then there exists a solution of eq. (1) in 𝐿𝐿2 of the form:  

                                                           
4Since a non-stationary generalization of Wold's result was given by Cramér, it is referred to as Wold-
Cramér decomposition. 
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𝑦𝑦𝑡𝑡 = � 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)[𝜑𝜑0(𝑡𝑡 − 𝑖𝑖) + 𝜀𝜀𝑡𝑡−𝑖𝑖].
∞

𝑖𝑖=0
 

     (28) 
 

A direct proof of of Proposition 9 is available upon request. The solution of eq. (1) 
in eq. (28) is decomposed into two orthogonal parts, a deterministic part and a mean 
zero random part, that is, E(yt)= ∑ 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜑𝜑0(𝑡𝑡 − 𝑖𝑖)∞

𝑖𝑖=0  is the non random part (see 
eq. 29) in Proposition 10 below), while 𝑙𝑙𝑖𝑖𝑚𝑚𝑘𝑘→∞𝐹𝐹𝐸𝐸𝑡𝑡,𝜏𝜏 = ∑ 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜀𝜀𝑡𝑡−𝑖𝑖 ,∞

𝑖𝑖=0  (i.e., the 
limit of forecast errors, see eq. (26) is the mean zero random part of 𝑦𝑦𝑡𝑡. As eq. (28) is 
future independent, we shall also referred to it as a causal solution of TV-AR(2) mod-
els. 

Another immediate consequence of Theorem 1 is the following Proposition (its 
proof is available upon request), where we state an expression for the first uncondi-
tional moment of 𝑦𝑦𝑡𝑡. 
 
Proposition 10 Let the conditions of Proposition 9 hold. Then the unconditional 
mean of the process  in eq. (1), exists in  and is given by 
 

𝐸𝐸(𝑦𝑦𝑡𝑡) = 𝑙𝑙𝑖𝑖𝑚𝑚𝑘𝑘→∝𝐸𝐸(𝑦𝑦𝑡𝑡|𝐹𝐹𝜏𝜏) = � 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜑𝜑(𝑡𝑡 − 𝑖𝑖).
∞

𝑖𝑖=0
 

    (29) 

5.3 Second Moments 

In this subsection we state as a Proposition the result for the second moment 
structure.  
 
Proposition 11 Let Condition 1 hold. Then the unconditional variance of 𝑦𝑦𝑡𝑡 in eq. 
(1) is given by  
 

𝑉𝑉𝑎𝑎𝑜𝑜(𝑦𝑦𝑡𝑡) = � 𝜉𝜉2(𝑡𝑡, 𝑡𝑡 − 𝑖𝑖)𝜎𝜎2(𝑡𝑡 − 𝑖𝑖).
∞

𝑖𝑖=0
 

      (30) 
 

Necessary conditions for the 𝑦𝑦𝑡𝑡 process to be first and second order respectively 
are:  

         𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞ξ(t,τ)𝜑𝜑(τ)=0 and 𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞𝜉𝜉2(𝑡𝑡, 𝜏𝜏)𝜎𝜎2(𝜏𝜏) = 0 𝑓𝑓𝑜𝑜𝑜𝑜 𝑎𝑎𝑙𝑙𝑙𝑙 𝑡𝑡. 
 
Moreover, the stability condition, that is 𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞ξ(t,τ)=0, is sufficient for the 

above two limits to exist, due to the boundedness of φ(r) and σ2(r), while it is neces-
sary for the absolute summability to hold.  
 

Notice that the unconditional variance is the limit of the MSE in eq. (27) as 𝑘𝑘 → ∞. 
The main logical connections between the conditions, described in the above Prop-

osition, are summarized in the following commutative diagrams (the proof of (31) is 
available upon request): 
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� 𝜉𝜉(𝑡𝑡, 𝑜𝑜)𝜑𝜑(𝑜𝑜) ∈ 𝑅𝑅
𝑡𝑡

𝑝𝑝=−∞
⇐ � |𝜉𝜉(𝑡𝑡, 𝑜𝑜)| < ∞

𝑡𝑡

𝑝𝑝=−∞
⇒ � 𝜉𝜉2(𝑡𝑡, 𝑜𝑜)𝜎𝜎2(𝑜𝑜) < ∞

𝑡𝑡

𝑝𝑝=−∞
⇓ ⇙ ⇓ ⇘ ⇓

𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞𝜉𝜉(𝑡𝑡, 𝜏𝜏)𝜑𝜑(𝜏𝜏) = 0 ⇐ 𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞𝜉𝜉(𝑡𝑡, 𝜏𝜏) = 0 ⇒ 𝑙𝑙𝑖𝑖𝑚𝑚𝜏𝜏→−∞𝜉𝜉2(𝑡𝑡, 𝜏𝜏)𝜎𝜎2(𝜏𝜏) = 0.

 

 
Figure 1: Commutative Diagrams 

 (31) 
 
   In the following Proposition, we state an explicit expression for the covariance 
structure for the Wold-Cramér solution decomposition of the TV-AR(2) process. 
 
Proposition 12 Let the conditions of Proposition 9 hold. Then time varying ℓ -th order 
autocovariance function, γt(ℓ)=Cov(𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡−ℓ), ℓ ∈𝑍𝑍≥0, of 𝑦𝑦𝑡𝑡 in eq. (1), exists in R and 
is given by 
  

𝛾𝛾𝑡𝑡(ℓ) = � 𝜉𝜉(𝑡𝑡, 𝑜𝑜)𝜉𝜉(𝑡𝑡 − ℓ, 𝑜𝑜)𝜎𝜎2(𝑜𝑜),
𝑡𝑡−ℓ

𝑝𝑝=−∞
 

(for ℓ ≥ 1) = 𝜉𝜉(𝑡𝑡, ℓ)𝑉𝑉𝑎𝑎𝑜𝑜(𝑦𝑦𝑡𝑡−ℓ) + 𝜑𝜑2(𝑡𝑡 − ℓ + 1)𝜉𝜉(𝑡𝑡, ℓ − 1)𝛾𝛾𝑡𝑡−ℓ(1). 
 

 (32) 
 

The time-varying variance of 𝑦𝑦𝑡𝑡 in eq. (30), is recovered by applying 𝛾𝛾𝑡𝑡(ℓ) in eq. 
(32) for ℓ = 0 that is 𝛾𝛾𝑡𝑡(0)=Var(𝑦𝑦𝑡𝑡). Moreover, the absolute summability condition 
implies absolute summable autocovariances: ∑ |𝛾𝛾𝑡𝑡(ℓ)| < ∞ ∞

ℓ=0 for all t (formal proofs 
of Propositions 11 and 12 are not presented but are available upon request). 
 

6. Conclusions 

We have provided the general solutions to low order TV-AR models in terms of their 
homogeneous and particular parts. Our first step was to find the fundamental set of 
solutions by computing the determinants of the matrix of coefficients associated with 
the infinite linear system that represents the difference equation. 

The framework developed in Section 2, proved itself to be a general time varying 
theory, encompassing a number of seemingly unrelated models, discussed in Sections 
3 and 4. We have identified common properties (throughout the paper and in particular 
in Section 5), which are basic to each of the particular application. 

We believe that time varying models should take center stage in the time series 
literature; this is why we have labored to develop a theory with rigorous foundations 
that can encompass a variety of dynamic systems, i.e., periodic and cyclical processes, 
and AR models which contain multiple structural breaks. Work that remains to be 
done by us and fellow researchers is on estimation and testing (for one application on 
this front see the papers by Karanasos et al., 2014 and Canepa et al., 2022) to demon-
strate the usefulness of time varying models. In the long run, a sound mathematical 
theory has to be cointegrated with its applicability. 
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A APPENDIX 

In this appendix we prove Theorem 1. Before proceeding with the main body of the 
proof, we present two essential tools for carrying it out. 

The Infinite Gaussian Elimination. Following Paraskevopoulos (2012), we ap-
ply the infinite Gaussian elimination algorithm implemented under a rightmost pivot 
strategy to the coefficient matrix of eq. (3).  

The process is briefly described below. We recall that  .  
Call 𝐇𝐇(1) = (−𝜑𝜑2(𝜏𝜏 + 1) −𝜑𝜑1(𝜏𝜏 + 1) 1 0 ⋯)  the opposite-sign first row of 
𝚽𝚽. Insert the second row of 𝚽𝚽 below 𝐇𝐇(1) to build the matrix 𝐁𝐁(2) : 
 

𝐁𝐁(2) = �−𝜑𝜑2(𝜏𝜏 + 1) −𝜑𝜑1(𝜏𝜏 + 1) 1 0 …
0 𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1 …�. 

 
 

Use as pivot the rightmost one of 𝐇𝐇(1) to clear the element 𝜑𝜑1(𝜏𝜏 + 2) in the second 
row of 𝐁𝐁(2). After normalization it yields the matrix:  
 

𝐇𝐇(2) = � −𝜑𝜑2(𝜏𝜏 + 1) −𝜑𝜑1(𝜏𝜏 + 1) 1 0 …
−𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2) −𝜑𝜑2(𝜏𝜏 + 2) − 𝜑𝜑1(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2) 0 1 …�. 
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Insert the third row of Φ  below 𝐇𝐇(2) to build the matrix 𝐁𝐁(3) :  
 

�
−𝜑𝜑2(𝜏𝜏 + 1) −𝜑𝜑1(𝜏𝜏 + 1) 1 0 0 …

−𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2) −𝜑𝜑2(𝜏𝜏 + 2) − 𝜑𝜑1(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2) 0 1 0 …
0 0 𝜑𝜑2(𝜏𝜏 + 3) 𝜑𝜑1(𝜏𝜏 + 3) −1 …

�.  

 
 

Use the first two rows of 𝐁𝐁(3) as pivot rows and their rightmost 1 s as pivot elements 
to clear the entries 𝜑𝜑2(𝜏𝜏 + 3) and 𝜑𝜑1(𝜏𝜏 + 3) of 𝐁𝐁(3), producing the matrix 𝐇𝐇(3) :  
 

𝐇𝐇(3) = �
ℎ11 ℎ12 1 0 0 0 . . .
ℎ21 ℎ22 0 1 0 0 . . .
ℎ31 ℎ32 0 0 1 0 . . .

�, 

 
where the entries of the first column of 𝐇𝐇(3) are given by 
  

ℎ11 = −𝜑𝜑2(𝜏𝜏 + 1), ℎ21 = −𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2),
ℎ31 = −𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2)𝜑𝜑1(𝜏𝜏 + 3) − 𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑2(𝜏𝜏 + 3), . . . 

 
and the entries of the second column are given by 
 

ℎ12 = −𝜑𝜑1(𝜏𝜏 + 1), ℎ22 = −𝜑𝜑2(𝜏𝜏 + 2) − 𝜑𝜑1(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2),
ℎ32 = −𝜑𝜑1(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2)𝜑𝜑1(𝜏𝜏 + 3) − 𝜑𝜑2(𝜏𝜏 + 2)𝜑𝜑1(𝜏𝜏 + 3) − 𝜑𝜑2(𝜏𝜏 + 3)𝜑𝜑1(𝜏𝜏 + 1).  

 
This process continues ad infinitum, generating an infinite chain of submatrices 
 

𝐇𝐇(1)  ⫍  𝐇𝐇(2)  ⫍  𝐇𝐇(3)   ⫍  …  ⫍𝐇𝐇 
 
whose limit row-finite matrix 𝐇𝐇  is the Hermit Form (HF) of Φ. The i-th row of 𝐇𝐇  is 
defined to be the last row of 𝐇𝐇(𝑖𝑖).  
 
Two Fundamental Solutions. The opposite-sign two first columns of 𝐇𝐇 augmented 
at the top by (1,0) and (0,1), respectively, that is 
 
 𝜉𝜉𝜏𝜏

(2) = (1, 0,  𝜑𝜑2(𝜏𝜏 + 1),  𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑1(𝜏𝜏 + 2),  𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑1(𝑡𝑡 + 2)𝜑𝜑1(𝜏𝜏 + 3) +
 𝜑𝜑2(𝜏𝜏 + 1)𝜑𝜑2(𝑡𝑡 + 3), … )´, 
 

𝜉𝜉𝜏𝜏
(1) = (1, 0,  𝜑𝜑1(𝜏𝜏 + 1),  𝜑𝜑2(𝜏𝜏 + 2)+𝜑𝜑1(𝑡𝑡 + 1)𝜑𝜑1(𝜏𝜏 + 2),  𝜑𝜑1(𝜏𝜏 + 1)𝜑𝜑1(𝑡𝑡 +

2) 𝜑𝜑1(𝜏𝜏 + 3)+𝜑𝜑2(𝑡𝑡 + 2)𝜑𝜑1(𝜏𝜏 + 3) + 𝜑𝜑2(𝑡𝑡 + 3)𝜑𝜑1(𝜏𝜏 + 1), … )´  
 
are the two linearly independent solution sequences of the space of homogeneous so-
lutions of eq. (2). The linear independence of 𝜉𝜉𝜏𝜏

(1), 𝜉𝜉𝜏𝜏
(2) follows from the fact that they 

possess the Casoratian:  

𝑎𝑎𝑒𝑒𝑡𝑡 �1 0
0 1� ≠ 0. 
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We observe that the terms of the sequences of the two ξ’s are expansions of the 

following determinants  
 

𝜉𝜉𝜏𝜏
(2) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1
0

𝜑𝜑2(𝜏𝜏 + 1)

𝑎𝑎𝑒𝑒𝑡𝑡 �𝜑𝜑2(𝜏𝜏 + 1) −1
0 𝜑𝜑1(𝜏𝜏 + 2)�

𝑎𝑎𝑒𝑒𝑡𝑡 �
𝜑𝜑2(𝜏𝜏 + 1) −1 0

0 𝜑𝜑1(𝜏𝜏 + 2) −1
0 𝜑𝜑2(𝜏𝜏 + 3) 𝜑𝜑1(𝜏𝜏 + 3)

�

⁞

,                           

(A.1) 
 

𝜉𝜉𝜏𝜏
(1) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0
1

𝜑𝜑1(𝜏𝜏 + 1)

𝑎𝑎𝑒𝑒𝑡𝑡 �𝜑𝜑1(𝜏𝜏 + 1) −1
𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2)�

𝑎𝑎𝑒𝑒𝑡𝑡 �
𝜑𝜑1(𝜏𝜏 + 1) −1 0
𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1

0 𝜑𝜑2(𝜏𝜏 + 3) 𝜑𝜑1(𝜏𝜏 + 3)
�

⁞

. 

(A.2) 
 

The first few terms of the homogeneous solution sequences, as shown above, sug-
gest that the general terms of the two ξ’s (in eqs. (A.1) and (A.2), respectively) are  

𝜉𝜉(𝑚𝑚)(𝑡𝑡, 𝑘𝑘) = 𝑎𝑎𝑒𝑒𝑡𝑡(𝚽𝚽𝑡𝑡,𝑘𝑘
(𝑚𝑚)),   𝑚𝑚 = 1,2 

      (A.3) 
(we recall Notation 1(i): 𝚽𝚽𝑡𝑡,𝑡𝑡−𝑘𝑘 ≝ 𝚽𝚽𝑡𝑡,𝑘𝑘, and (ii): 𝜉𝜉(𝑡𝑡, 𝑡𝑡 − 𝑘𝑘) ≝ 𝜉𝜉(𝑡𝑡, 𝑘𝑘), where 
𝚽𝚽𝑡𝑡,𝑘𝑘

(1)   = 𝚽𝚽𝑡𝑡,𝑘𝑘 and 𝜉𝜉1(t,k)≝ 𝜉𝜉(𝑡𝑡, 𝑘𝑘) we drop the superscript  for notational conven-
ience), as introduced in eqs. (5) and (6), and  
 

𝚽𝚽𝑡𝑡,𝑘𝑘
(2) =

⎝

⎜⎜
⎛

𝜑𝜑2(𝜏𝜏 + 1) −1
𝜑𝜑1(𝜏𝜏 + 2) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1) −1

𝜑𝜑2(𝑡𝑡) 𝜑𝜑1(𝑡𝑡)⎠

⎟⎟
⎞

 . 

 
In the following Proposition we use mathematical induction to verify the above 

generalization formally.  
 
Proposition 13 The general terms of the fundamental solution sequences ξτ

(m), 𝑚𝑚 =
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1,2, are given by eq. (A.3), that is 
 

𝜉𝜉(2)(𝑡𝑡, 𝑘𝑘) = 𝑎𝑎𝑒𝑒𝑡𝑡

⎝

⎜⎜
⎛

𝜑𝜑2(𝜏𝜏 + 1) −1
𝜑𝜑1(𝜏𝜏 + 2) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1) −1

𝜑𝜑2(𝑡𝑡) 𝜑𝜑1(𝑡𝑡)⎠

⎟⎟
⎞

 

 (A.4) 
 
and  
 

𝜉𝜉(𝑡𝑡, 𝑘𝑘) = 𝑎𝑎𝑒𝑒𝑡𝑡

⎝

⎜⎜
⎛

𝜑𝜑1(𝜏𝜏 + 1) −1
𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1) −1

𝜑𝜑2(𝑡𝑡) 𝜑𝜑1(𝑡𝑡)⎠

⎟⎟
⎞

. 

 (A.5) 
 

Proof If t =τ+1 and 𝑡𝑡 = 𝜏𝜏 + 2 then 𝜉𝜉(𝜏𝜏 + 1,1) and 𝜉𝜉(𝜏𝜏 + 2,2) is the third term and 
fourth term of the sequences as directly verified by eq. (A.2). We assume that 𝜉𝜉(𝑡𝑡 −
2, 𝑘𝑘 − 2) and 𝜉𝜉(𝑡𝑡 − 1, 𝑘𝑘 − 1) are terms of 𝜉𝜉𝜏𝜏

(1). We show that 𝜉𝜉(𝑡𝑡, 𝑘𝑘) is also a term of 
𝜉𝜉𝜏𝜏

(1). Expanding 𝜉𝜉(𝑡𝑡, 𝑘𝑘) along the last row and taking into account that 𝚽𝚽𝑡𝑡,𝑘𝑘 is a 𝑘𝑘 × 𝑘𝑘 
matrix, we have:  

𝜉𝜉(𝑡𝑡, 𝑘𝑘) = (−1)2𝑘𝑘𝜑𝜑1(𝑡𝑡)𝑎𝑎𝑒𝑒𝑡𝑡

⎝

⎜⎜
⎛

𝜑𝜑1(𝜏𝜏 + 1) −1
𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 2) 𝜑𝜑1(𝑡𝑡 − 2) −1

𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1)⎠

⎟⎟
⎞

+

(−1)2𝑘𝑘−1(−1)𝜑𝜑2(𝑡𝑡)𝑎𝑎𝑒𝑒𝑡𝑡

⎝

⎜⎜
⎛

𝜑𝜑1(𝜏𝜏 + 1) −1
𝜑𝜑2(𝜏𝜏 + 2) 𝜑𝜑1(𝜏𝜏 + 2) −1

⋱ ⋱ ⋱
𝜑𝜑2(𝑡𝑡 − 3) 𝜑𝜑1(𝑡𝑡 − 3) −1

𝜑𝜑2(𝑡𝑡 − 2) 𝜑𝜑1(𝑡𝑡 − 2)⎠

⎟⎟
⎞

.

 

 
 
Using the induction hypothesis, the above result can be written as 
  

𝜉𝜉(𝑡𝑡, 𝑘𝑘) = 𝜑𝜑1(𝑡𝑡)𝜉𝜉(𝑡𝑡 − 1, 𝑘𝑘 − 1) + 𝜑𝜑2(𝑡𝑡)𝜉𝜉(𝑡𝑡 − 2, 𝑘𝑘 − 2), 
 

which shows that 𝜉𝜉(𝑡𝑡, 𝑘𝑘) is a homogeneous solution of eq. (2). Thus 𝜉𝜉(𝑡𝑡, 𝑘𝑘) in eq. 
(A.5) is a term of the solution sequence and the induction is complete. By analogy, 
we can show eq. (A.4) and the proof is complete. ■  

The fundamental solution 𝜉𝜉(𝑡𝑡, 𝑘𝑘) (respectively ξ2(t,k)) can be obtained by aug-
menting the core solution matrix 𝑪𝑪𝑡𝑡,𝑘𝑘 (see eq. (4) in the main body of the paper) on 
the left by a 𝑘𝑘 × 1 column consisting of the first 𝑘𝑘 entries of the second column (re-
spectively of the first column) of Por Φ .  
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Proof (of Theorem 1) As a direct consequence of Proposition 13, the general homo-
geneous solution of eq. (2) is the linear combination of the fundamental solutions as 
given below:  
 

𝑦𝑦𝑡𝑡,𝑘𝑘
ℎ𝑜𝑜𝑚𝑚 = 𝜉𝜉(𝑡𝑡, 𝑘𝑘)𝑦𝑦𝜏𝜏 + 𝜉𝜉(2)(𝑡𝑡, 𝑘𝑘)𝑦𝑦𝜏𝜏−1. 

      (A.6) 
 

By expanding ξ2(t,k) along the first column we obtain 
  

𝜉𝜉(2)(𝑡𝑡, 𝑘𝑘) = 𝜑𝜑2(𝜏𝜏 + 1)𝜉𝜉(𝑡𝑡, 𝑘𝑘 − 1) 
 
and therefore eq. (A.6) takes the form 
  

𝑦𝑦𝑡𝑡,𝑘𝑘
ℎ𝑜𝑜𝑚𝑚 = 𝜉𝜉(𝑡𝑡, 𝑘𝑘)𝑦𝑦𝜏𝜏 + 𝜑𝜑2(𝜏𝜏 + 1)𝜉𝜉(𝑡𝑡, 𝑘𝑘 − 1)𝑦𝑦𝜏𝜏−1 , 

 
which coincides with the general homogeneous solution employed in eq. (8).  
Next, we show that 𝑦𝑦𝑡𝑡,𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝, employed in eq. (8), is a particular solution of eq. (2). Using 
the same arguments as in the proof of Proposition 13 we can show that  
 

𝑦𝑦𝑡𝑡,𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎𝑒𝑒𝑡𝑡

⎝

⎜⎜
⎛

𝜑𝜑0(𝜏𝜏 + 1) + 𝜀𝜀𝜏𝜏+1 −1
𝜑𝜑0(𝜏𝜏 + 2) + 𝜀𝜀𝜏𝜏+2 𝜑𝜑1(𝜏𝜏 + 2) −1

⋮ ⋱ ⋱ ⋱
𝜑𝜑0(𝑡𝑡 − 1) + 𝜀𝜀𝑡𝑡−1 𝜑𝜑2(𝑡𝑡 − 1) 𝜑𝜑1(𝑡𝑡 − 1) −1

𝜑𝜑0(𝑡𝑡) + 𝜀𝜀𝑡𝑡 𝜑𝜑2(𝑡𝑡) 𝜑𝜑1(𝑡𝑡)⎠

⎟⎟
⎞

, 

 (A.7) 
 

is the solution of the initial value problem determined by eq. (2) subject to the initial 
values 𝑦𝑦−1 = 𝑦𝑦0 = 0.  This is the determinant of the core solution matrix 𝑪𝑪𝑡𝑡,𝑘𝑘  aug-
mented on the left by a 𝑘𝑘 × 1 column consisting of the opposite sign first 𝑘𝑘 entries  
of the right-hand side sequence of eq. (2).   
Now expanding the determinant in eq. (A.7) along the first column we obtain 𝑦𝑦𝑡𝑡,𝑘𝑘

𝑝𝑝𝑝𝑝𝑝𝑝 in 
terms of 𝜉𝜉(𝑡𝑡, 𝑖𝑖) and  𝜑𝜑0(t-i), 𝜀𝜀𝑡𝑡−𝑖𝑖 for 𝑖𝑖 = 0,1,…,k-1, as used in eq. (8). Therefore, the 
general solution in eq. (8), as the sum of the general homogeneous solution plus a 
particular solution, has been established. This completes the proof of Theorem 1. ■ 
 

B APPENDIX 

In this Appendix we will prove Proposition 2 by mathematical induction. For 𝑛𝑛+2 the 
result has been proved in eq. (14). If we assume it holds for 𝑛𝑛 then it will be sufficient 
to prove that it holds for 𝑛𝑛+1 as well. 
 
 Proof (Proposition 2) Assume that  
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𝜉𝜉𝑠𝑠,𝑛𝑛𝑚𝑚 = �𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚� = ∑ ⋯1

𝑖𝑖1=0 ∑ �𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 𝑖𝑖1)�∏ 𝜙𝜙𝑔𝑔−1𝜉𝜉(𝑠𝑠 − 𝑖𝑖𝑔𝑔−1, 𝑙𝑙 − 𝑖𝑖𝑔𝑔 −𝑛𝑛−1
𝑔𝑔=2

1
𝑖𝑖𝑛𝑛−1=0

𝑖𝑖𝑔𝑔−1)�𝜙𝜙𝑛𝑛−1𝜉𝜉(𝑠𝑠 − 𝑖𝑖𝑛𝑛−1, 𝑙𝑙 − 𝑖𝑖𝑛𝑛−1)�.  
 

 
Similarly to eq. (14) we can express 𝜉𝜉(𝑠𝑠, (𝑛𝑛 + 1)𝑙𝑙)as the determinant of a 2×2 

block matrix: 

𝜉𝜉(𝑠𝑠, (𝑛𝑛 + 1)𝑙𝑙) = �
𝚽𝚽𝑠𝑠,𝑚𝑚 𝟎𝟎𝑚𝑚×𝑛𝑛𝑚𝑚
𝟎𝟎𝑠𝑠,𝑛𝑛𝑚𝑚,𝑚𝑚 𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚

� = �𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚��𝚽𝚽𝑠𝑠,𝑚𝑚� + 𝜑𝜑2,𝑠𝑠+1�𝚽𝚽𝑠𝑠,𝑛𝑛𝑚𝑚−1��𝚽𝚽𝑠𝑠−1,𝑚𝑚−1� 

= 𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙)𝜉𝜉(𝑠𝑠, 𝑙𝑙) + 𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠,𝑛𝑛𝑙𝑙 − 1)𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1), 
 (B.2) 

 
where 𝟎𝟎𝑠𝑠,𝑛𝑛𝑚𝑚,𝑚𝑚, is a 𝑛𝑛𝑙𝑙 × 𝑙𝑙  matrix of zeros except for 𝜑𝜑2,𝑠𝑠+1 in its 1×l entry, 𝟎𝟎𝑚𝑚×𝑛𝑛𝑚𝑚 an 
𝑙𝑙 × 𝑛𝑛𝑙𝑙  matrix of zeros. Combining eqs. (B.1) and (B.2) yields 
 

𝜉𝜉(𝑠𝑠, (𝑛𝑛 + 1)𝑙𝑙)=∑ ⋯1
𝑖𝑖1=0 ∑ �𝜉𝜉(𝑠𝑠, 𝑙𝑙 − 𝑖𝑖1)�∏ 𝜙𝜙𝑔𝑔−1𝜉𝜉(𝑠𝑠 − 𝑖𝑖𝑔𝑔−1, 𝑙𝑙 − 𝑖𝑖𝑔𝑔 −𝑛𝑛−1

𝑔𝑔=2
1
𝑖𝑖𝑛𝑛−1=0

𝑖𝑖𝑔𝑔−1)�𝜙𝜙𝑛𝑛−1𝜉𝜉(𝑠𝑠 − 𝑖𝑖𝑛𝑛−1, 𝑙𝑙 − 𝑖𝑖𝑛𝑛−1)�𝜉𝜉(𝑠𝑠, 𝑙𝑙) +∑ ⋯1
𝑖𝑖1=0 ∑ �𝜉𝜉𝑠𝑠,𝑚𝑚−𝑖𝑖1�∏ 𝜙𝜙𝑔𝑔−1𝜉𝜉(𝑡𝑡 −𝑛𝑛−1

𝑔𝑔=2
1
𝑖𝑖𝑛𝑛−1=0

𝑖𝑖𝑔𝑔−1, 𝑙𝑙 − 𝑖𝑖𝑔𝑔 − 𝑖𝑖𝑔𝑔−1)�𝜙𝜙𝑛𝑛−1𝜉𝜉(𝑠𝑠 − 𝑖𝑖𝑛𝑛−1, 𝑙𝑙 − 1 − 𝑖𝑖𝑛𝑛−1)�𝜑𝜑2,𝑠𝑠+1𝜉𝜉(𝑠𝑠 − 1, 𝑙𝑙 − 1) 

which completes the proof. ■ 

 

C APPENDIX 

Vector Seasons Representation 
 
For the benefit of the reader this Appendix reviews some results on PARMA models. 
We recall that the drift and the autoregressive coefficients are periodically varying: 
𝜑𝜑𝑚𝑚(𝑡𝑡) = 𝜑𝜑𝑚𝑚(𝑡𝑡𝑠𝑠), 𝑚𝑚 = 1,2. We also recall that denotes time at 𝑡𝑡𝑠𝑠 the s-th season: 
𝑡𝑡𝑠𝑠=(T-1)l+s, s = 1,…,l, and that we can write 𝜑𝜑𝑚𝑚(𝑡𝑡𝑠𝑠) = 𝜑𝜑𝑚𝑚𝑠𝑠 (see eq. (9)). 

A convenient representation of the PAR(2;l) model (in eq. (9)) is the VAR(1) rep-
resentation- hereafter we will refer to it as the vector of seasons (VS) representation 
(see, for example, Tiao and Guttman, 1980; Osborn, 1991; Franses, 1994, 1996a,b; 
Del Barrio Castro and Osborn, 2008). 

The corresponding VS representation of the PAR(2;l) model (ignoring the drifts) 
is given by 
 

𝚽𝚽0𝐲𝐲𝑇𝑇 = 𝚽𝚽1𝐲𝐲𝑇𝑇−1 + 𝛆𝛆𝑇𝑇 , 
          (C.1) 

 
With  𝐲𝐲𝑇𝑇 = (𝑦𝑦1𝑇𝑇 , ⋯ , 𝑦𝑦𝑚𝑚𝑇𝑇)′, 𝛆𝛆𝑇𝑇 = (𝜀𝜀1𝑇𝑇 , ⋯ , 𝜀𝜀𝑚𝑚𝑇𝑇)′, where the first subscript re-
fers to the season (𝑠𝑠) and the second one to the period (T). Moreover, 𝚽𝚽0 is an 𝑙𝑙 × 𝑙𝑙 
parameter matrix whose (i,j) entry is: 

�
1 if 𝑖𝑖 = 𝑗𝑗,
0 if 𝑗𝑗 > 𝑖𝑖,

−𝜑𝜑𝑖𝑖−𝑖𝑖,𝑖𝑖 𝑖𝑖𝑓𝑓 𝑗𝑗 < 𝑖𝑖,
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and 𝚽𝚽1 is an 𝑙𝑙 × 𝑙𝑙 parameter matrix with (𝑖𝑖, 𝑗𝑗)  elements 𝜑𝜑𝑖𝑖+𝑚𝑚−𝑖𝑖,𝑖𝑖 (see, for example, 
Lund and Basawa, 2000, and Franses and Paap, 2005). 

As pointed out by Franses (1994), the idea of stacking was introduced by Glady-
shev (1961) and is also considered in e.g., Pagano (1978). Tiao and Guttman (1980), 
Osborn (1991) and Franses (1994) used it in the AR setting. The dynamic system in 
eq. (C.1) can be written in a compact form 
 

𝚽𝚽(𝐵𝐵)𝐲𝐲𝑇𝑇 = 𝛆𝛆𝑇𝑇  or |𝚽𝚽(𝐵𝐵)|𝐲𝐲𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑗𝑗[𝚽𝚽(𝐵𝐵)]𝛆𝛆T, 
 

 
where 𝚽𝚽(𝐵𝐵) = 𝚽𝚽0 −𝚽𝚽1(𝐵𝐵). Stationarity of 𝑦𝑦𝑇𝑇 requires the roots of |𝜱𝜱(𝑧𝑧−1)|=0 to 
lie strictly inside the unit circle (see, among others, Tiao and Guttman, 1980, Osborn, 
1991; Franses, 1994, 1996a; Franses and Paap, 2005; Del Barrio Castro and Osborn, 
2008). 

As an example, consider the PAR(2; 4) model for which the characteristic equa-
tion is 

 

|𝚽𝚽0 −𝚽𝚽1𝑧𝑧| = ��

1 0 −𝜑𝜑2,1𝑧𝑧 −𝜑𝜑1,1𝑧𝑧
−𝜑𝜑1,2 1 0 −𝜑𝜑2,2𝑧𝑧
−𝜑𝜑2,3 −𝜑𝜑1,3 1 0

0 −𝜑𝜑2,4 −𝜑𝜑1,4 1

�� = 0. 

 
Hence, when the nonlinear parameter restriction  

 
�𝜑𝜑2,2𝜑𝜑1,3𝜑𝜑1,4 + 𝜑𝜑2,2𝜑𝜑2,4 + 𝜑𝜑2,1𝜑𝜑1,2𝜑𝜑1,3 + 𝜑𝜑2,1𝜑𝜑2,3 + 𝜑𝜑1,1𝜑𝜑1,2𝜑𝜑1,3𝜑𝜑1,4 

+𝜑𝜑1,1𝜑𝜑1,2𝜑𝜑2,4 + 𝜑𝜑1,1𝜑𝜑1,4𝜑𝜑2,3 − 𝜑𝜑2,1𝜑𝜑2,2𝜑𝜑2,3𝜑𝜑2,4� < 1, 
 
is imposed on the parameters, the VS representation of the PAR(2;4) model is station-
ary (see Franses and Paap, 2005). When 𝜑𝜑2,𝑠𝑠 = 0 for all s, that is we have the 
PAR(1;4) model, then the stationarity condition reduces to: �φ1,1φ1,2φ1,3φ1,4�<1, 
which is equivalent to our condition �𝜉𝜉𝑡𝑡,𝑚𝑚� < 1, or in other words, that the absolute 
value of |𝚽𝚽(𝑙𝑙)| is less than one.  
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