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Abstract
The internal defects in rock masses can significantly impact the quality and safety 
of geotechnical projects. Mechanical waves, as a common nondestructive testing 
(NDT) method, can reflect the external and internal structures of rock or rock 
masses. Analyses on the reflected and transmitted waves enable nondestructive 
identification and assessment of potential defects within rocks. Previous studies 
mainly focused on the variation of single or limited wave features like main fre-
quency, amplitude and energy between the intact and non-intact samples. In fact, 
most information contained in the waveforms is neglected. Techniques of data 
mining can provide a powerful tool to reveal this information and therefore a more 
accurate determination of the internal structures. In this study, 995,412 NDT data 
from 14 types of granite and gypsum samples with different cross-section shapes 
and different types of defects are recorded by an ultrasonic wave generation and 
collection system. This dataset can be used not only as the training data for defect 
classification in NDT but also as a good reference for conventional NDT analyses. 
Besides, time-series data analysis is an opportunity and challenging issue, this 
dataset holds great potential for broader application in general time-series clas-
sification analysis.
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1   |   INTRODUCTION

As a natural material, rocks generally contain defects with 
various sizes created in the formation and the following 
weathering processes. In the past two centuries after the 
Industrial Revolution, intensive constructions became a 
significant force affecting the near-surface earth. Some 
presenting underground infrastructures can be seen as 
artificial defects in rocks for a new project. These defects 
are great threats to the stability and safety. The defects 
in rocks therefore contain two categories: (1) natural de-
fects, like microcracks (Kranz,  1983), fractures (Wong 
& Xiong,  2018; Zhao,  2000), joints (Zhao,  1997), voids 
or cavities (Hao & Azzam, 2005; Huang et al., 2021; Tao 
et al., 2017), discontinuities (Zou, Wong, et al., 2016) and 
faults (Doan & d'Hour,  2012) from microscopic to mac-
roscopic dimensions; (2) artificial defects, like caverns 
(Wang, Cao, et al., 2021; Zhao et al., 1999), tunnels (Grøv 
& Trinh, 2022; Medina et al., 2022) and shafts (Neupane 
et al., 2021; Xie et al., 2022). These defects can influence 
the evolution of the terrain in geology and the safety of in-
frastructures in engineering. Hence, techniques to detect 
these defects are crucial to designing safe underground 
structures with reasonable costs.

The non-destructive testing (NDT) methods of detect-
ing these defects in rocks are always challenging due to 
the diversity of defects and geological conditions. NDT is 
a method that uses the change of the physical quantities 
(such as deformation, displacement, conductivity, reso-
nance, temperature, magnetic fields, etc.) of the testing 
objectives to determine the integrity, defects or other condi-
tions without affecting the structure or normal use (Gupta 
et al., 2022; Zhu et al., 2011). In recent years, researchers 
have conducted extensive in-depth research on the detec-
tion of internal defects using a number of NDT solutions 
(Dwivedi et al., 2018; Wang et al., 2020; Xiong et al., 2024), 
for example, ultrasonic wave (Basu & Aydin, 2006; Shrifan 
et  al.,  2019), microwave (Ida,  2012; Wahab et  al.,  2019), 
impact-Echo (Zou et  al.,  2023; Zou, Chen, et  al.,  2016), 
GPR (Gao et al.,  2018; Sansalone & Streett,  1997), X-ray 
(Takano et al., 2006) and acoustic emission (AE) (Cheon 
et al., 2014; Jia et al., 2021; Pan et al., 2018). Most research 
mainly concentrated on the testing of structure members, 
like the anchor rods (Beard & Lowe, 2003; Li et al., 2022), 
bolts (Shi et al., 2018; Wang, Gao, et al., 2021), slabs (Li 
et al., 2017; Zou, Chen, et al., 2016) and structural body 
(Farahani et al., 2023; Lu et al., 2024). However, these in-
vestigations are relatively few.

NDT methods based on mechanical waves have ex-
tensive applications in structural engineering (Xie 
et al., 2018), geotechnical engineering (Soga et al., 2019) 
and geological surveys (Pileggi et al., 2011). In rock engi-
neering, the sizes of defects showing significance to the 

construction are usually larger than 1 cm ~10 cm which 
requires a wavelength of a similar dimension for the wave-
based NDT methods. In rocks, the frequency of this kind 
of wave is about 0.5 MHz for mechanical waves in case 
of the wave velocity of about 5000 m/s. Ultrasonic waves 
wavelength <2 cm, which are suitable for this goal.

On the other hand, with the development of AI and 
computing units (CPU, GPU and APU), data-driven re-
search has become a prominent trend. Data, as the corner-
stone in the fields of information science and computer 
science, serves not only as a carrier of information but 
also as the pivotal force propelling algorithmic evolution. 
Among various challenges encountered in data science, 
time-series classification (TSC) has consistently stood 
out as one of the most demanding and challenging prob-
lems in data mining (Bagnall et  al.,  2015; Ismail Fawaz 
et al., 2019; Kaushik et al., 2020; Susto et al., 2018).

Over the past decade, the development of TSC has 
been facilitated by advancements in computer perfor-
mance (Feremans et al., 2022; Ismail Fawaz et al., 2019). 
Time-series data, characterized by the sequence of data 
over time, exists in nearly every task requiring human 
cognition. More broadly, any classification or recog-
nition problem involving temporally ordered data can 
be considered a TSC issue (Bai et  al.,  2021; Längkvist 
et al., 2014; Li & Jung, 2023). Applications based on the 
features of time-series data have found widespread ap-
plication across various fields, including health sciences 
(Hasselgren et  al.,  2020; Rajkomar et  al.,  2018), human 
activity identification (Gupta, 2021), audio identification 
and classification (Barchiesi et  al.,  2015), system secu-
rity (Susto et al., 2018), etc. Furthermore, TSC has been 
implemented in numerous fields, with organized public 
competitions and openly available datasets. For instance, 
Nweke et  al. utilized sensors to collect time-series data 
on human physiological activities, applying it to medical 
applications such as motion injury detection and elderly 
care (Nweke et al., 2018). Bai et al. conducted data min-
ing on time-series data, proposing a symbolic aggregate 
approximation algorithm that enhanced TSC classifier 
performance through ensemble classifier construction, 
successfully applied to the recognition of speech signal 
data (Bai et al., 2021). Moreover, Farahani et al. applied 
TSC algorithms, including Machine Learning (ML) and 
Deep Learning (DL) models, to a large number of different 
data in the manufacturing industry to achieve an intelli-
gent assessment of the state of machinery and prompt the 
development of Industry 4.0 (Farahani et al., 2023).

Considering the above NDT and TSC recent research 
status, to fill the gap of a lack of dataset about the wave-
forms transmitted rock with defects and AI-based NDT 
method in rock mechanics, the authors introduced a 
NDT method powered by a machine learning technique 
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to evaluate the conditions of artificial defects in rock-
like gypsums through the time-series ultrasonic waves 
passing through the samples (Tian et al., 2024). In this 
process, a total of 259,595 sets of data were collected by 
a high-frequency data collection system. In the machine 
learning model, 70% and 30% of the data are used for 
the training dataset and the testing dataset, respectively. 
The test result shows that a high accuracy (>97%) of 
determining these defects can be provided by this NDT 
method with the assistance of the K-nearest neighbour 
(KNN) and support vector machine (SVM) supervised 
algorithms. After getting the expected result in this pri-
mary process, the authors collect more data and form a 
reusable dataset. Therefore, this paper aims to share this 
dataset to make it open-source to more researchers who 
are interested in the application of artificial intelligence 
methods in NDT and TSC problems. The data acquisi-
tion method, structure of the data, raw data and data 
will be stated in detail in the following sections. This 
dataset can be used to train more advanced and effective 
models. Furthermore, this dataset can be used not only 
for NDT data classification but also for stress wave anal-
ysis in rock mechanics.

2   |   DATA ACQUISITION METHOD

The data are a series of wave spectra in the time domain 
with a total number of 995,412 sets. The variable with time 
is the voltage transduced by a high-sensitive piezoceram-
ics sensor which can respond to extremely tiny acous-
tic vibration produced by microcracks. The mechanical 
wave in the form of pulse is generated continuously by 
a transducer of an ultrasonic-wave emission instrument. 
Since there are intrinsic changes in interface condition, 
electro-magnetic oscillation, sensory attenuation, slight 
displacement, alignment of sensors, platform vibra-
tion, environmental interferences and human operation, 
though the pulses are produced continuously by the same 
instrument, each pulse generated is different from others. 
The generated pulses go through samples containing vari-
ous types of defects and then are collected by the aforesaid 
acquisition system. The samples are fabricated by gran-
ite and moulded gypsum, and flaws are cast to simulate 
different defect conditions. This section introduces the 
preparation of the samples, wave generation and collec-
tion subsystems.

2.1  |  Sample preparation

Natural granite exhibits minimal internal defects and 
possesses high compressive strength attributed to its 

formation conditions. Therefore, it is frequently used in 
rock mechanics research (Zhao & Li,  2000; Zou, Wong, 
et  al.,  2016). However, due to its elevated strength and 
brittleness, it is challenging to fabricate artificial defects 
inside the rock. To avoid local damage that influences 
the rock's mechanical properties, gypsum, chosen for its 
comparable mechanical properties, is utilized as a substi-
tution. Gypsum is a type of rock-like material which fre-
quently used for the study of rock mechanical properties 
and failure processes (Deng et al., 2022; Li et al., 2016; Li 
& Ma,  2009; Zhao et  al.,  2023; Zou, Wong, et  al.,  2016). 
According to the literature (Park & Bobet,  2009; Zou 
et  al.,  2012; Zou & Wong,  2016), when mixing the gyp-
sum paste, the proportion of gypsum powder: water: dia-
tomaceous earth is advised to be 175:70:2 to obtain good 
strength. The addition of diatomaceous earth can prevent 
the separation of water from the paste.

Considering the dimensions of the ultrasonic trans-
ducer, the sample size is designed to be 35 mm in length, 
35 mm in width and 40 mm in height. The mould for fab-
ricating gypsum samples is manufactured by a 3D printer 
(Anycubic MONOX) that can provide accurate positions 
for the steel shims to create flaws. The fabrication of 
gypsum samples includes four steps: mould design and 
production, mould assembly, sample casting and sample 
drying, as shown in Figure 1 (Tian et al., 2023). Based on 
the materials and the flaw geometry, the samples are di-
vided into 14 types, as summarized in Table 1, and their 
dimensions are shown in Figure 2. To better understand 
the materials, the basic physical and mechanical proper-
ties of the intact samples are tested through a series of 
tests, as shown in Table 2.

2.2  |  Data collection

The mechanical wave is generated by an ultrasonic test-
ing instrument and collected by a high-sensitivity trans-
ducer and a high-frequency recording instrument. The 
ultrasonic testing instrument RSM-SY6 emits continuous 
ultrasonic pulses on the sample surface, naming the in-
cident pulse (Pile Integrity Tester, 2023; Sinorock, 2022). 
Simultaneously, a wave-detection instrument Vallen 
AMSY-6 with a high-sensitivity transducer is used to re-
ceive the transmitted wave pulse passing through the sam-
ple at the opposite surface. The process of data collection 
is illustrated in Figure 3 (GmbH, 2022; Group, 2022). The 
main technical parameters of the RSM-SY6 and Vallen 
AMSY-6 can be obtained in Table 3.

The ultrasonic pulse is generated by a transducer 
with a size (40 mm diameter circle) covering one end of 
the sample. The typical incident wave is a time-voltage 
pulse representing a single trigger. The Vallen AMSY-6 
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F I G U R E  1   Casting process of moulded gypsum samples (Tian et al., 2023).
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instrument uses a high-sensitive transducer, which 
is also a piezoelectric ceramic, to record the vibration 
at the other end. The transmitted signal is also a time-
voltage pulse, different from the incident pulse, contain-
ing the information of the sample and the defects in it. 
Due to the randomness of the incident pulse, the trans-
mitted pulse is also different from each other, even in 
the same group of pluses.

3   |   AN OVERVIEW OF DATASETS

Through continuous emission and collection of ultrasonic 
pulses, a large number of time-series signals are obtained 
for analysis. During data collection, the Vallen AMSY-6 
threshold is set at 34 dB (default value) to filter useless 
signals. The Vallen AMSY-6 captures a single signal pulse 
with a length of 1638.4 μs. Simultaneously, the dataset 

T A B L E  1   Summary of samples.

Sample number Material
Cross-section 
shape Integrity

Flaw properties

Flaw numbers Flaw width (x)
Flaw length 
(y)

R-S-0-0-0 Granite Square Intact 0 — —

R-C-0-0-0 Circular 0 — —

G-I-0-0-0 Gypsum Square Intact 0 — —

G-N-1-1-5 Non-intact 1 1 mm 5 mm

G-N-1-1-10 1 1 mm 10 mm

G-N-1-1-15 1 1 mm 15 mm

G-N-1-1-20 1 1 mm 20 mm

G-N-1-2-5 1 2 mm 5 mm

G-N-1-3-5 1 3 mm 5 mm

G-N-1-4-5 1 4 mm 5 mm

G-N-1-5-5 1 5 mm 5 mm

G-N-2-1-5 2 1 mm 5 mm

G-N-2-1-10 2 1 mm 10 mm

G-N-4-1-5 4 1 mm 5 mm

Total 14 types

F I G U R E  2   (a) Granite samples (top view), (b) prismatic gypsum samples (top view) and (c) dimensions of samples (side view).

T A B L E  2   Physical and mechanical properties of the present granite and gypsum (Zou et al., 2023).

Material type Wave velocity (m/s) UCS (MPa) Density (g/cm3) Elastic modulus (GPa) Poisson's ratio

Granite 4436 165 2.8 50 0.27

Gypsum 4300 63.6 1.55 8 0.12
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is manually labelled at each stage for the correspond-
ing sample number. The original database file of Vallen 
AMSY-6 constitutes a large time-series set, with a ‘tridb’ 
suffix, and is a proprietary format. The data structure of 
the database is key-value, specifically index - data. The da-
tabase contains all signals, each signal can be extracted 
via its index using the official Python module pyVallenAE 
(Berbuer, 2023). After the Python extract, the file format 
is single text, containing all original information and can 
open with any text processing software (like Notepad, 
Vim, Excel, etc.) to do further analysis. According to sam-
ple rate 0.2 �s, each signal data is in the form of a vector 
with dimensions 8192. After all the data are extracted, the 
dataset is organized into 14 subdirectories as illustrated in 
Figure 4, each named after the respective classes. Inside 
each folder is waveform signal data, and the amount 
of data in each category is summarized in Table  4. The 

F I G U R E  3   Diagram of the data collection system.

T A B L E  3   Specifications of the data collection system.

Instrument Specification Value

RSM-SY6 Frequency bandwidth 2 kHz ∼ 2 MHz

Period 1 �s ∼ 0.5 ms

Acoustic time accuracy ≤ 0.5%

Acoustic amplitude accuracy ≤ 3%

Vallen AMSY-6 Sampling rate (interval) 5 MHz (0.2 �s)

Sensor type VS45-H (with shield crosstalk <−80 dB)

Frequency range 500 Hz ∼ 2.4 MHz

RMS resolution <1 �V

Average noise <1 �V

Receiving sensitivity <1 �V

F I G U R E  4   Dataset subdirectory structure.
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proportions of each data group are shown in Figure  5. 
Besides, typical waveforms of each type are plotted in 
Figures 6 and 7.

4   |   PERSPECTIVES ON 
TIME-SERIES DATASETS

4.1  |  Current efforts of time-series 
datasets

With the increment of TSC applications, the algorithm 
for TSC problems has been developed by scientists 
(Faouzi, 2022; Li & Jung, 2023; Ruiz et al., 2021). These 
algorithms encompass not only the extraction of fea-
tures from time-series, used as inputs for standard ma-
chine learning classifiers but also direct processing of raw 
time-series data (like deep learning). Main time-series 
algorithms include nearest-neighbour classification with 
dynamic time warping (Kate,  2016), kernel methods 
(Patle & Chouhan,  2013), shapelet-based algorithms (Ji 
et al., 2019), tree-based algorithms (Mienye et al., 2019), 
Bag-of-words (dictionary-based) methods (Large 
et al., 2019), imaging time-series (Wang & Oates, 2015), 
deep learning (Ismail Fawaz et  al.,  2019), random con-
volutions (Dempster et  al.,  2020) and ensemble models 

(Wichard & Ogorzalek,  2004). These algorithms have 
great contributions to the exploration of time-series data 
mining.

Many scientists dedicate time-series datasets and 
make significant devotion. Regarding dataset collection 
for benchmarking TSC algorithms, the primary resources 
include the UCR TSC datasets archive (Bagnall, Lines, 
et  al.,  2018; Dau et  al.,  2019). This archive offers open-
source datasets about univariate TSC which have been 
pre-divided into training and testing sets. Moreover, those 
TSC datasets have been standardized for better reuse. The 
current version of this archive consists of 128 datasets from 
various domains such as audio, medicine, kinesiology, sen-
sors, simulation, spectroscopy, etc. For algorithms dealing 
with multivariate TSC, the main resources include the 
UEA multivariate TSC archive (Bagnall, Dau, et al., 2018) 
and a public access TSC archive (Baydogan,  2015), both 
containing several time-series datasets.

4.2  |  Opportunities and challenges

Over the past decade, extensive research on TSC has made 
significant progress in prediction accuracy, generaliza-
tion and robustness (Bai et  al.,  2021; Faouzi,  2022; Guo 
et al., 2021; Ismail Fawaz et al., 2019). Numerous methods 
have been investigated, encompassing specific metrics of 
simple and multiple complex feature extraction (includ-
ing transformation), as well as deep learning feature min-
ing (Faouzi, 2022; Guo et al., 2021). Time-series data, as a 
distinct form of data, has garnered widespread attention in 
contemporary science and engineering (Hamilton, 2020). 
Possessing dynamic, continuous and ordered characteris-
tics, time-series data finds extensive applications in vari-
ous fields such as finance (Sezer et al., 2020), meteorology 
(Duchon & Hale, 2012), healthcare (Kaushik et al., 2020) 
and industry (Mehdiyev et al., 2017).

Time-series data provides people with an opportu-
nity to more accurately capture the evolution of systems. 
Through the analysis of time-series data, scientists can un-
cover patterns and trends inherent in historical changes, 
facilitating effective prediction and decision-making. For 

T A B L E  4   Data distribution of the dataset.

Subdirectory
Number of data (unit: 
Unit) Subdirectory

Number of data (unit: 
Unit) Subdirectory

Number of 
data (unit: 
Unit)

R-S-0-0-0 82,930 G-N-1-1-15 59,227 G-N-1-5-5 58,696

R-C-0-0-0 109,217 G-N-1-1-20 90,721 G-N-2-1-5 61,088

G-I-0-0-0 112,596 G-N-1-2-5 53,833 G-N-2-1-10 61,340

G-N-1-1-5 31,814 G-N-1-3-5 57,700 G-N-4-1-5 81,908

G-N-1-1-10 56,403 G-N-1-4-5 77,939 Total 995,412

F I G U R E  5   Proportion of each type of data group.
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example, in finance, time-series analysis aids in predicting 
stock market trends (Sezer et al., 2020). In meteorology, it 
contributes to more accurate weather forecasts (Duchon 
& Hale, 2012). Furthermore, the widespread application 
of time-series data has propelled developments in re-
lated fields, sparking a series of data-driven innovations. 
Therefore, the dataset in this paper can give scientists 
more opportunities for wave propagation analysis, stress 
wave analysis, TSC analysis and even rock mechanical be-
haviour prediction.

However, the study of time-series data not only pres-
ents vast opportunities but also comes with a series of 
challenges. Firstly, time-series data is sensitive to the 

environment (Ismail Fawaz et al., 2019), making it con-
tain much noise and interference. Secondly, time-series 
data often displays non-stationary characteristics that 
contain much information, whereas traditional statisti-
cal methods appear limited in the interpretation of the 
data (Li & Jung, 2023). Additionally, the physical mean-
ing of analysing results is hard to explain and visualize. 
Finally, time-series data always appear larger, mak-
ing the analysis algorithm have higher time and space 
complexity (Read et al., 2020). Similarly, the dataset in 
this paper is very large and contains much implicit in-
formation, which is a challenge for high-performance 
algorithm applications. In a word, the challenges and 

F I G U R E  6   Typical waveform plot of sample R-C-0-0-0, R-S-0-0-0, G-I-0-0-0, G-N-1-1-5, G-N-1-1-10, G-N-1-1-15 and G-N-1-1-20.
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opportunities of time-series analysis coexist, which has 
great research value.

5   |   CONCLUSION

The detection and localization of complicated defects in 
rocks present significant challenges in NDT. While there 
have been numerous applications of TSC, standardized 
open-source datasets remain scarce. Building upon the 
authors' previous work demonstrating the efficacy of 
combining ML with NDT for classifying defect types in 

rocks, this paper addresses the deficiency in high-quality 
datasets related to mechanical wave propagation. We 
fabricated 14 types of rock samples with varying cross-
sectional shapes and flaws, generating a dataset compris-
ing 995,412 discrete nondestructive testing data points 
through a combination of ultrasonic and mechanical 
wave detection technologies. This dataset cannot only be 
used for accurate nondestructive testing signal classifica-
tion but also can be used as a valuable dataset for gen-
eral time-series data analysis. Besides, the complexities of 
time-series data analysis remain challenging and can be 
analysed by AI-powered methods, including ML (such as 

F I G U R E  7   Typical waveform plot of sample G-N-1-2-5, G-N-1-3-5, G-N-1-4-5, G-N-1-5-5, G-N-2-1-5, G-N-2-1-10 and G-N-4-1-5.
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KNN and SVM model) and DL (such as CNN and LSTM 
model) methods, which can be effectively applied to en-
hance our understanding of mechanical wave behaviours 
in rocks. Furthermore, the authors want these data can 
be good study material for the exploration of AI-powered 
NDT methods in construction or survey in geotechnical 
engineering.
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