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Abstract—This letter investigates an unmanned aerial vehicle
(UAV) network with integrated sensing and communication
(ISAC) systems, where multiple UAVs simultaneously sense the
locations of ground users with radrads and provide communica-
tion services. To find the trade-off between communication and
sensing (C&S) in the system, we formulate a multi-objective
optimization problem (MOP) to maximize the total network
utility and the localization Cramér-Rao bounds (CRB) of ground
users, which jointly optimizes the deployment and power control
of UAVs. Inspired by the huge potential of large language
models (LLM) for prediction and inference, we propose an
LLM-enabled decomposition-based multi-objective evolutionary
algorithm (LEDMA) for solving the highly non-convex MOP. We
first adopt a decomposition-based scheme to decompose the MOP
into a series of optimization sub-problems. We second integrate
LLMs as black-box search operators with MOP-specifically
designed prompt engineering into the framework of MOEA
to solve optimization sub-problems simultaneously. Numerical
results demonstrate that the proposed LEDMA can find the
clear trade-off between C&S and outperforms baseline MOEAs
in terms of obtained Pareto fronts and convergence.

Index Terms—Integrated sensing and communications, multi-
objective optimization, large language model.

I. INTRODUCTION

Beyond the fifth generation (B5G) mobile networks have
envisioned future mobile networks not only to provide ubiqui-
tous communication services but also to support high-precision
sensing capabilities. Toward this end, joint communication
and sensing (C&S) has motivated significant research interest
and applications in integrated sensing and communication
(ISAC) [1]. Thanks to high-quality line-of-sight (LoS) links
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for air-to-ground (A2G) communications and the controllable
mobility and agility of unmanned aerial vehicles (UAV), the
UAV networks have been expected to provide wider cover-
age and enhance C&S performance in ISAC systems [1].
Since communications and sensing share the same signals,
there is an inevitable trade-off between C&S. To investi-
gate this non-negligible trade-off in UAV networks, a multi-
objective optimization problem (MOP) can be formulated.
To solve this MOP, bio-inspired multi-objective evolutionary
algorithms (MOEAs) offer promising solutions, including the
multi-objective evolutionary algorithm based on decomposi-
tion (MOEAD) [2], the non-dominated sorting genetic algo-
rithm (NSGAII) [3], the reference vector guided evolutionary
algorithm (RVEA) [3], the adaptive geometry estimation-based
MOEA (AGE-MOEA) [3], and the multi-objective differential
evolution algorithm (MODEA) [4]. Each of these methods
contributes unique strengths: MOEAD divides complex prob-
lems into smaller subproblems, NSGAII employs dominance
sorting and crowding distance to maintain solution diversity,
RVEA integrates reference vectors to guide the search, AGE-
MOEA refines the shape of the Pareto front, and MODEA
applies differential evolution to efficiently explore solution
spaces. Despite their effectiveness, MOEAs generally exhibit
high computational complexity. Recent progress in large lan-
guage models (LLMs) has shown their strong reasoning and
predictive abilities, inspiring efforts to combine LLMs with
evolutionary algorithms (EAs) [5], [6]. Previous works mainly
focused on simple test problems with straightforward Pareto
front. Extending these techniques to real-world challenges,
such as those in UAV-enabled ISAC networks, is highly
appealing. In these networks, LLMs can improve data analysis,
speed up decision-making (such as deployment and route
planning), and simplify UAV control through natural language,
enhancing coordination between users, ground stations, and
cloud servers.

Motivated by this background, we aim to explore the trade-
off between C&S in a multi-UAV-enabled ISAC system, where
ground base stations (GBS) are non-functional due to disasters
or damages. In such scenarios, multiple UAVs are deployed
as aerial base stations to cooperatively sense the locations of
ground users while simultaneously providing communication
services. Our goal is to maximize the total network utility
of all users and minimize the Cramér-Rao bounds (CRB)
of user locations by jointly optimizing UAV deployment and
transmission power control. Leveraging the potential of LLMs,
we propose an LLM-enabled MOEA to solve this multi-
objective problem (MOP). Specifically, we adopt MOEAD [2]
as the primary MOEA framework to decompose the MOP
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into multiple optimization subproblems. We then integrate
the LLM as a black-box search operator into the MOEA
framework by designing tailored prompts that account for both
the multi-objective functions and constraint satisfaction. To the
best of our knowledge, this is the first attempt to apply LLMs
in optimizing multi-UAV-enabled ISAC systems. Numerical
results demonstrate that our LLM-enabled MOEA significantly
outperforms baseline algorithms in identifying Pareto fronts
and achieving convergence.

Notations: (·)† denotes the transpose, a ∝ b denotes a is
proportional to b, and x ∼ CN

(
µ, σ2

)
denotes that x follows

the circularly symmetric complex Gaussian distribution with
mean µ and variance σ2.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multi-UAV network-enabled ISAC system
that consists of K UAVs equipped with ISAC units and M
ground users. In the system, the multi-UAV network transmits
ISAC signals for downlink data via frequency division multiple
access (FDMA) to all ground users and simultaneously per-
forms radar sensing to locate the ground users. Then the net-
work decides the deployment and power control of each UAV.
For illustration, let K = {1, 2, . . . ,K} denote the set of UAVs.
Assume each UAV k ∈ K is located at (xk, yk, H) in a three-
dimensional (3D) coordinate system, where H ≥ 0 denotes the
altitude for UAVs, and qk = [xk, yk]

† denotes the horizontal
location of UAV k. To simplify the illustration, we assume all
UAVs have the same H . Let M = {1, 2, . . . ,M} denote the
set of ground users and assume each user m is an extended
target with its center of mass located at wm = [um, vm]† on
the ground. During each time slot t, the multi-UAV network
transmits a set of unit-power ISAC waveforms S = {sk(t)}.
For each UAV k, the transmitted ISAC waveform sk(t) is
the combination of radar waveform srad

k (t) and communication
waveform scom

k (t), i.e., sk(t) = srad
k (t)+scom

k (t), where srad
k (t)

is assumed to be orthogonal to all scom
k′ (t), k′ ∈ K. All radar

waveforms are assumed to be orthogonal to each other and
known to all UAVs, and all communication waveforms are
uncorrelated with each other [7].

According to [8], the spatially distributed multiple antennas
among all UAVs can act as a distributed multi-input and
multi-output (MIMO) radar system. Let τk,m,j =

Rk,m+Rj,m

c
denote the propagation delay from transmitter UAV k, reflected
by ground user target m, and received by UAV j, where c
denotes the speed of light, and Rk,m, Rj,m denote respectively
the distances from UAV k and UAV j to ground user m,

i.e, Rk,m =

√
(xk − um)

2
+ (yk − vm)

2
+H2. The radar

echo signal received at UAV j, reflected by ground user m,
transmitted from UAV k can be expressed as

srad
k,m,j(t) =

√
αk,m,jp

rad
k lk,m,js

rad
k (t− τk,m,j) + wrad

k,m,j(t),
(1)

where prad
k denotes the radar sensing power of UAV k,

αk,m,j ∝ 1
R2

k,mR2
j,m

represents the variation in the signal
strength due to path loss effects, lk,m,j is the target radar cross
section (RCS), and wrad

k,m,j(t) ∼ CN
(
0, σ2

w

)
.

The CRB is chosen as the metric to evaluate the radar sens-
ing performance of the distributed MIMO radar system, which
can be obtained by taking the inverse of the Fisher Information
matrix (FIM). Following a series of matrix manipulations, we
can obtain the lower bound of localization of user m based
on [8] as

tr
(
Cu,v

m

(
{qk},prad)) = a†mprad

prad†Qmprad
, (2)

where prad = [prad
1 , · · · , prad

K ]†, am = (bam
+ bbm), Qm =

bam
b†
bm

− bcmb†
cm , bam

= [ba1,m
, · · · , baK,m

]†, bbm =

[bb1,m , · · · , bbK,m
]†, bcm = [bc1,m , · · · , bcK,m

]†, ξ = 8π2B2

σ2
wc2

and

bak,m
= ξ

K∑
j=1

αk,m,j |lk,m,j |2
(
xk − um

Rk,m
+

xj − um

Rj,m

)2

,

(3)

bbk,m
= ξ

K∑
j=1

αk,m,j |lk,m,j |2
(
yk − vm
Rk,m

+
yj − vm
Rj,m

)2

, (4)

bck,m
= ξ

K∑
j=1

αk,m,j |lk,m,j |2
(
xk − um

Rk,m
+

xj − um

Rj,m

)
×
(
yk − vm
Rk,m

+
yj − vm
Rj,m

)
. (5)

We assume that the channel state information (CSI) between
UAVs and ground users can be obtained by channel estimation
techniques. For simplicity, the communication links between
UAVs and users are assumed to be dominated by LoS links.
Therefore, the A2G channel from UAV k to user m follows
the free-space path loss model, and the channel power gain is

hk,m =
√

ρ0R
−2
k,m, (6)

where ρ0 represents the channel power at the reference dis-
tance 1 m, and Rk,m is the distance from UAV k to ground
user m. It is assumed that the signals reflected by other users
at user m have a significantly decreased magnitude compared
with the LoS transmission from UAV k. Note that S rad is
orthogonal to Scom and assumed to be known to all UAVs.
Thus, the signal-to-interference-plus-noise ratio (SINR) of the
signal received by user m from UAV k is then given by

γk,m ({qk},pcom) =
pcom
k h2

k,m∑
k′∈K\k p

com
k′ h2

k′,m + σ2
w

, (7)

where pcom = [pcom
1 , · · · , pcom

K ]† denotes the communication
power of all UAVs. Each UAV is allocated a bandwidth of
B, and each user served by the same UAV is assumed to
be allocated with equal bandwidth. Thus, the achievable data
transmission rate from UAV k to user m is

rk,m ({qk},pcom) =
B

M
log2 (1 + γk,m ({qk},pcom)) . (8)

B. Problem Formulation

Our goal is to find the trade-off between C&S in the multi-
UAV network ISAC system. To evaluate the communication
performance, we adopt a proportionally fair network utility
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optimization framework of maximizing the sum log-utility
across all the users [9], which is expressed as

F1({qk},pcom) =
∑

m∈M
log

(∑
k∈K

rk,m ({qk},pcom)

)
. (9)

To evaluate the performance of location sensing performance,
we use the log sum of the CRBs of all ground users as the
second object to be optimized, which is expressed as

F2({qk},prad) = log

( ∑
m∈M

tr
(
Cu,v

m

(
{qk},prad))) . (10)

Based on the settings mentioned above, our goal is to
maximize the total network utility while minimizing the
log sum of CRBs by jointly optimizing {qk}, {prad

k }, and
{pcom

k },∀k ∈ K. Therefore, the optimization problem is a
CMOP formulated as

(P1) : min
{qk},{prad

k },{pcom
k }

[−F1,F2]

s.t. prad
k ≥ 0,∀k ∈ K, (11a)

pcom
k ≥ 0,∀k ∈ K, (11b)

pmin ≤ prad
k + pcom

k ≤ pmax,∀k ∈ K, (11c)
qk ∈ A,∀k ∈ K, (11d)

where (11a), (11b) respectively denote the radar sensing
power and communication power of each UAV, which should
be no less than zero, (11c) denotes the transmission power
of each UAV, between pmin and pmax, and (11d) denotes the
location constraints of UAVs, which are limited in the area of
interest, i.e., A.

It is clear that there is a trade-off between the two objects F1

and F2 in CMOP (P). Note that our proposed CMOP is highly
non-convex and NP-hard due to the non-convex objective
functions. Thus, it is challenging to solve the problem and
very hard to acquire the optimal closed-form solution directly.
Therefore, in the next section, we propose an LLM-enabled
decomposition-based MOEA (LEDMA) to solve our CMOP
and acquire near-optimal solutions.

III. PROPOSED ALGORITHM

To solve the problem, we first introduce the decomposi-
tion method of multi-objective optimization. Then we will
introduce the overall framework of LEDMA in detail. For
simplicity, we rewrite our proposed CMOP as

(P2) : min
{x}

F̃(x) = [F̃1(x), F̃2(x)]

s.t. x ∈ C, (12)

where x = [q†
1, · · · ,q

†
K , prad

1 , · · · , prad
K , pcom

1 , · · · , pcom
K ]† repre-

sents all optimization variables, C denotes the decision space,
and F̃1(x) = −F1(x), F̃2(x) = F2(x). The decomposition
of CMOP involves decomposing (P2) into a series of single-
objective sub-problems based on the Tchebycheff method, in
which the sub-problem is expressed as

min
{x}

f(x|ω, z∗) = max
1≤i≤2

{ωi(F̃i(x)− z∗i )}

s.t. x ∈ C, (13)

where ω = [ω1, ω2]
† denotes the weight vector satisfying

0 < ω1, ω2 < 1, ω1 + ω2 = 1, and z∗ = [z∗1 , z
∗
2 ]

† is the
global reference point contains the current minimum objective
function values, which is defined as z∗i = min{F̃i(x)} for
i = 1, 2. For Tchebycheff method, there always exists a weight
vector ω∗ for each Pareto-optimal point x∗ such that x∗ is the
optimal solution of (13), and each optimal solution of (13) is
a Pareto-optimal solution of (12) [2].

Inspired by [5], [6], we integrate the LLM as the search
operator into the framework of MOEAD [2], which consists
of initialization, evolution, and update processes. In each itera-
tion, we cooperatively solve all sub-problems and maintain an
external population (EP) Ψ containing non-dominated solution
points at the current iteration. The steps are as follows.

1) Initialization: The proposed LEDMA starts with ini-
tialized weight vectors with a population size of N , i.e.,
ωj , j = 1, · · · , N . Furthermore, the original CMOP (12)
is decomposed into N single-objective sub-problem based on
(13). The objective function to be minimized in the j-th sub-
problem associated with ωj can be expressed as

f j(x|ωj , z∗) = max
1≤i≤2

{ωj
i (F̃i(x)− z∗i )}. (14)

Accordingly, an initial population of size N is uniformly and
randomly generated from C, i.e., xj ∈ C, j = 1, · · · , N ,
where xj represents the initial solution of the j-th sub-
problem. Note that f j(x|ωj , z∗) is continuous functions of
ωj , which indicates that the optimal solution of the j-th sub-
problem is supposed to be close to that of the j′-th sub-
problem if ωj is close enough to ωj′ in terms of Euclidean dis-
tances. Hence, we define the neighbor set of ωj as S indexes
of weight vectors closest to ωj , i.e., N (j) = {j1, · · · , jS}.

Example Input for the LLM:

You are an expert in UAV-enabled integrated sensing and communication and multi-objective optimization. You are given a multi-UAV joint 

location and power optimization problem. The problem has 2 objectives with 8 variables. Object 1 represents the multi-UAV communication

performance, and object 2 represents the multi-UAV sensing performance. Variables 1, 2 represent the x-axis locations of two UAVs , 

respectively. Variables 3, 4 represent the y-axis locations of two UAVs, respectively. Variables 5, 6 represent the transmission powers of two

UAVs, respectively. Variables 7, 8 represent the power allocation factors of two UAVs, respectively. Your task is to minimize the optimization

problem. The variable points will be represented in the following form: <solution> ...,... </solution> with their objective values, where lower

values are better.

point:<solution>0.3345,0.4651,0.1298,0.0794,0.1223,0.2286,0.131,0.429</solution> 

objective 1: -10.6571 objective 2: 5.4756

…

point:<solution>0.0594,0.5573,0.7572,0.7209,0.8093,0.152,0.4728,0.9049</solution> 

objective 1: -11.5469 objective 2: -1.5601

Give me two new points that are different from all the points above and not dominated by any of the above. Do not write code. Do not give any

explanation. Each output new point must start with <solution> and end with </solution>.

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Response:

<solution>0.3621,0.1254,0.4783,0.8192,0.2315,0.6984,0.7532,0.3659</solution>

<solution>0.7512,0.4983,0.9281,0.6247,0.4269,0.8135,0.4251,0.2376</solution>

Fig. 1: An example prompt for generating points for the j-th
sub-problem.

2) Evolution: We utilize the LLM as a black-box crossover
and mutation operator to generate new points by prompt
engineering. To carefully design prompts, we integrate the
following three kinds of information into the prompt:

• Problem description: LLM is supposed to know the
objectives and variables of the CMOP (P2) and the
optimization task.

• In-context examples: LLM is supposed to know a few
solutions to the CMOP (P2) and their corresponding
fitness at the current sub-problem.

• Task instructions: LLM is instructed to generate new
solution points as expected.

To be more specific, for in-context examples of the j-th sub-
problem at each evolution generation, we provide d selected
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Algorithm 1: LEDMA
Input: The optimization problem: CMOP (P2). The population size: N . The neighbor size: S. The number

of parents: d. The number of new points generated by LLM: no . The maximum number of
iterations: Niter .

Output: EP Ψ.
1 Step 1: Initialization:
2 Step 1.1) Ψ = ∅.
3 Step 1.2) Initialize ω1, · · · ,ωN based on Das and Dennis method.
4 Step 1.3) Find the S closest weight vectors to each weight vector ωj, j = 1, · · · , N and construct

the neighbor set Nj .

5 Step 1.4) Randomly and uniformly generate an initial population xj , j = 1, · · · , N and compute
F̃(xj).

6 Step 1.5) Initialize reference point z∗ .
7 for i = 1, · · · , Niter do
8 Step 2: Evolution:
9 for j = 1, · · · , N do

10 Step 2.1) Selection:
11 Select d parent solution points partly from Nj with a probability of ϵ and partly from the

entire population with a probability of 1 − ϵ.
12 Step 2.2) Reproduction via the LLM:
13 a) Design textual prompts for the j-th sub-problem based on d selected parent points.
14 b) Let LLM generate a number of o new offspring points {x′

1, · · · , x′
no

} given the
instruction prompt.

15 Step 2.3) Update:
16 Update the reference point z∗ , neighboring solutions {xj1 , · · · , xjS }, and Ψ

based on {x′
1, · · · , x′

no
}.

17 end
18 end
19 return Final EP Ψ.

parent solution points together with their objective function
values that are partly from Nj and partly from the entire
population to the LLM. For constraint handling, LLM may
output unexpected points if the LLM is asked to strictly follow
(11c). In this sense, we introduce the transmit powers ptx =
prad + pcom and power allocation factors β = [β1, · · · , βK ]†

as new variables where βk =
pcom
k

ptx
k

, k = 1, · · · ,K. The
constraints (11a)-(11c) are transformed as

0 ≤ βk ≤ 1,∀k ∈ K, (15a)
pmin ≤ ptx

k ≤ pmax,∀k ∈ K. (15b)

Moreover, each variable is normalized in the prompt to ensure
the generated points are within their viable ranges. A detailed
example of the prompt and the generated solution points is
given in Fig. 1.

3) Update: With each generated output point x′ from the
LLM, we first update the reference point z∗: for i = 1, 2,
if z∗i > F̃i(x

′), then z∗i = F̃i(x
′). We then update the

population by updating neighboring solutions: for ji ∈ Nj ,
if f ji(x′|ωji , z∗) ≤ f ji(xji |ωji , z∗), then xji = x′ and
F̃(xji) = F̃(x′). We finally update EP Ψ via removing all
solution points dominated by x′ and adding x′ to Ψ if no
points in Ψ dominate x′.

In summary, we summarize the complete algorithm in Algo-
rithm 1. For algorithm complexity, due to the unknown model
structures of LLMs, we can only provide the computational
analysis of updating reference points and neighbor solutions
in each iteration, which is O(2 ×N × no) [2]. To guarantee
the performance of the algorithm considering the constraints
of UAVs and delay requirements, we assume the algorithm
is performed on a cloud server with strong computation
capabilities like Microsoft Azure Virtual Machines with up
to 8 NVIDIA A100 GPUs interconnected with NVLink, 96
AMD EPYC CPU cores, and 1.9 TB of system memory. The
cloud server runs the algorithm to optimize the strategies and
send them back to UAVs. In this sense, this work considers an
offline system in which we focus on optimizing locations and
power allocation of UAVs in an offline manner, i.e., the UAVs
only connect the cloud server when exchanging information.

Therefore, the delay and energy consumption resulting from
data transmission between the UAVs and the cloud server
are out of this work’s scope. The execution frequency of the
algorithm depends on the time interval at which the system
environment largely changes like the layout of surrounding
buildings, weather, and surrounding environment, etc. Authors
in [10] introduced the HiveMind platform in reality and
verified the scalability of UAVs can be supported by the
computing power of external controllers or servers. With
increasing UAVs, the distances among them may be larger
to avoid collisions, which may require more energy for C&S.
However, such a problem can be compensated by increasing
each UAV’s energy and decreasing the need for long-distance
travel of each UAV to perform services since service areas of
each UAV are decreased with increasing numbers of UAVs.

IV. NUMERICAL RESULTS

This section provides numerical results to verify the per-
formance of our proposed LEDMA. We assume all ground
users are randomly and uniformly distributed in an area of 2
km × 2 km. In this work, we assume all grounds are quasi-
static. For scenarios with dynamic ground users, carefully
designing user mobility and tracking models can significantly
reduce the likelihood that UAVs arrive to find no users to
serve. How UAVs can serve dynamic ground users is out
of this work’s scope. To focus on the horizontal location
optimization of all UAVs, we assume all UAVs fly at a fixed
altitude H = 100 m. The magnitude of the RCS is assumed
to be uniformly distributed between 0.8 and 1. The received
noise power is assumed to be σ2

w = −110 dBm. The channel
power at the reference distance 1 m is set as ρ0 = −60
dB. The bandwidth of each UAV is set as B = 51.2 MHz.
The maximum and minimum UAV transmission powers are
assumed as pmax = 20 dBm and pmin = 0 dBm, respectively.
The number of UAVs is assumed as K = 2. The number of
ground users is assumed as M = 4. Moreover, we consider
RVEA [3], MOEAD [2], AGE-MOEA [3], NSGAII [3], and
MODEA [4] as baseline algorithms for comparison. For our
proposed algorithm, we utilize the GPT-3.5 Turbo model as the
LLM search operator considering its competitive performance
and favorable cost-effectiveness. We also tested the GPT-3.0
and GPT-4.0 models. However, the GPT-3.0 model can hardly
understand our problem and produce low-quality solutions.
The GPT-4.0 model is designed for advanced natural language
understanding and generation, which makes it better at “chat-
ting” or handling complex conversation flows but less suited
for mathematical optimization, resulting in the unstable quality
of generated solution points in our experiments. Compared
with MOEAs, traditional convex methods are not good enough
when dealing with highly non-convex problems since they
introduce scaling and approximation to reformulate original
objective functions with convex forms, resulting in a decrease
in the accuracy of the solutions [11]. LLMs integrate extensive
prior knowledge from massive training corpora, which enables
them to handle MOPs through prompt engineering rather than
requiring problem-specific architectures and retraining [12].
Hence, LLMs can be easily adapted to new tasks, significantly
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reduce both training overhead and time, and overcome the
problem- and dataset-specific limits of traditional machine
learning. The experimental parameters for the LEDMA include
the population size N of 50, the neighbor size S of 15, the
number of parents d of 10, and the number of new points
generated by LLM no of 2. The algorithm runs for a maximum
of iterations Niter of 260, with a probability of neighbor
selection ϵ of 0.9. N and Niter of all MOEAs are set the same.
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Fig. 2: (a) Convergence curves of HV with respect to the
number of evaluations. (b) Comparison of Pareto-optimal
points distribution acquired by different algorithms.

Fig. 2(a) depicts the convergence curves of Hypervolume
(HV) of our proposed algorithm as well as baseline algorithms
with respect to the number of evaluations. A larger HV value, a
widely used metric for evaluating multi-objective optimization
algorithms, implies that an algorithm has a larger size of
covered space and achieves better performance regarding both
convergence and diversity [13]. After normalizing the obtained
Pareto-optimal points and setting the HV reference point as
[1.1, 1.1], Fig. 2(a) demonstrates that our proposed algorithm
converges faster than the RVEA, NSGAII, and MOEAD.
Moreover, our proposed algorithm achieves the highest HV
of 1.194, while the MOEAD, AGEMOEA, NSGAII, RVEA,
and MODEA achieve HVs of 1.129, 1.166, 1.164, 1.176
and 1.136, respectively. It demonstrates the effectiveness and
superiority of our proposed algorithm in terms of convergence.
Figure 2(b) compares the distributions of Pareto-optimal points
from different algorithms. Our proposed algorithm acquires a
clear Pareto front aligned with the ideal direction and outper-
forms the baseline methods. Moreover, it generates smoother
and denser Pareto-optimal points in the circled area of the
ideal trade-off between network utility and localization CRBs,
which confirms the superior performance of our algorithm and
underscores the potential for integrating LLM with MOEAs.
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Fig. 3: (a) Optimized locations of two UAVs with respect
to different Pareto points, where each pair of two UAVs is
connected by a gray dotted line. (b) Optimized power control
of two UAVs with respect to different Pareto points.

Fig. 3(a) shows that locations of UAV 1 converge near
ground users at the bottom, while locations of UAV 2 converge
near ground users at the top. Consequently, the inter-UAV
distances among different Pareto points stabilize within a small
range The inter-UAV distances are large enough to prevent
collisions and mitigate interference since the UAV collision
scenario does not satisfy the Pareto-optimal requirement. Fig.
3(b) illustrates that UAV 1 prioritizes ISAC tasks for all ground
users and allocates more power to communications as network
utility and CRBs increase, while UAV 2 focuses on sensing
tasks to reduce co-channel interference to UAV 1 and allocates
a small portion of power to provide communication services.

V. CONCLUSIONS

We studied a multi-UAV-enabled ISAC system to opti-
mize network utility and minimize localization CRBs. To
achieve this, we proposed an LLM-enabled decomposition-
based MOEA (LEDMA). In LEDMA, the original MOP
was broken into sub-problems with LLMs serving as search
operators guided by MOP-specific prompts to solve these
sub-problems simultaneously. Numerical results showed that
LEDMA outperformed baseline MOEAs in achieving better
Pareto fronts and faster convergence. Furthermore, our findings
highlighted the significant potential of LLMs in addressing op-
timization problems in wireless communications. In our future
work, we will extend our work into mobile user scenarios and
explore to what extent the scalability of the network topology
can affect the effectiveness of the proposed algorithm.
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