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Abstract: Autonomous driving has demonstrated impressive driving capabilities, with
behavior decision-making playing a crucial role as a bridge between perception and control.
Imitation Learning (IL) and Reinforcement Learning (RL) have introduced innovative
approaches to behavior decision-making in autonomous driving, but challenges remain.
On one hand, RL’s policy networks often lack sufficient reasoning ability to make optimal
decisions in highly complex and stochastic environments. On the other hand, the com-
plexity of these environments leads to low sample efficiency in RL, making it difficult to
efficiently learn driving policies. To address these challenges, we propose an innovative
Knowledge Distillation-Enhanced Behavior Transformer (KD-BeT) framework. Building
on the successful application of Transformers in large language models, we introduce the
Behavior Transformer as the policy network in RL, using observation–action history as
input for sequential decision-making, thereby leveraging the Transformer’s contextual
reasoning capabilities. Using a teacher–student paradigm, we first train a small-capacity
teacher model quickly and accurately through IL, then apply knowledge distillation to
accelerate RL’s training efficiency and performance. Simulation results demonstrate that
KD-BeT maintains fast convergence and high asymptotic performance during training. In
the CARLA NoCrash benchmark tests, KD-BeT outperforms other state-of-the-art methods
in terms of traffic efficiency and driving safety, offering a novel solution for addressing
real-world autonomous driving tasks.

Keywords: imitation learning; reinforcement learning; behavior transformer; autonomous
driving; knowledge distillation; decision-making

1. Introduction
Autonomous driving technology has seen increasingly widespread applications in the

transportation sector, becoming a key force driving the development of intelligent trans-
portation systems [1–4]. This technology holds the promise of significantly improving traffic
efficiency and reducing accident risks caused by human errors, thereby impacting future
mobility in profound ways. Autonomous driving systems are typically composed of several
core modules, including perception, decision-making, and motion control. Among these,
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decision-making plays a crucial role as the bridge between perception and control [5–12].
The decision-making system is responsible for autonomous judgment and choice-making
within complex traffic environments, covering areas such as path planning, obstacle avoid-
ance, lane-keeping, and interactions with other traffic participants. Accurate and efficient
decision-making is critical to ensuring the safety, reliability, and user experience of au-
tonomous driving systems.

Traditional approaches to decision-making are generally divided into rule-based,
optimization-driven, and utility-based strategies. Common rule-based methods include
standard-based approaches [13], finite state machines [14], and Bayesian networks [15],
among others. While these methods are straightforward to implement, their application
scope is limited. Typical optimization-based methods, such as techniques for decision
generation [16] or goal trajectory planning [17], can often find optimal solutions but face
challenges when dealing with model-free scenarios. Utility function-based methods have
simple structures and usually take into account metrics such as safety, comfort, efficiency,
and traffic rules [18]. However, selecting and balancing these metrics can be complex.
In motion planning, there are two main frameworks. The first framework involves using
geometric curves [19–21] for trajectory planning, followed by trajectory tracking based
on proportional–integral–derivative (PID) control [22], sliding mode control (SMC) [23],
or model predictive control (MPC) [24]. The second framework treats planning and tracking
as a unified whole, handling the coupling relationship between the two [25]. Research in
this area is already well established, especially with MPC-based methods [26,27], which
excel in handling multiple constraints and are easily integrated with traffic prediction [28].
However, traditional decision-making methods lack generalization capabilities and robust-
ness, making them less adaptable to complex and stochastic environments.

To achieve advanced autonomous driving in dynamic and open environments, Imita-
tion Learning (IL) and Reinforcement Learning (RL) techniques have been widely studied.
IL learns from expert demonstration datasets, with the most common approach being Behav-
ioral Cloning (BC). For example, methods based on Support Vector Machines (SVMs) [29]
and Long Short-Term Memory (LSTM) networks [30] have been extensively applied to
decision-making [31]. To apply IL in multi-task learning, Codevilla et al. [32,33] proposed
Conditional Imitation Learning (CIL) to learn both low-level controls and high-level instruc-
tions from human drivers. Xiao et al. [34] further utilized CIL to address multimodal issues.
Chen et al. [35] introduced the LBC method, using privileged information in simulators
to train IL models. Ozcelik et al. [8] proposed a method combining Generative Adversar-
ial Imitation Learning (GAIL) with Curriculum Learning (CL) to imitate expert driving
behavior on highways. Tian et al. [9] introduced an IL method that enabled a model predic-
tive control (MPC)-based lane-changing strategy through limited demonstration learning.
Additionally, to address domain transfer issues, Li et al. [36] developed an off-policy IL
method based on knowledge distillation. To enhance IL stability and interpretability,
Teng et al. [37] proposed a two-stage IL framework incorporating bird’s-eye-view (BEV)
masks, and Wang et al. [38] introduced a BC approach that extracts explicit features from
real-world trajectories. Another typical IL method is Inverse Learning, which derives
parametric planning objectives by learning from human demonstrations [39].

However, despite the advantages of IL in terms of high sample efficiency and rapid
learning, it still faces challenges related to distributional shift. RL, which updates policies
through interaction with the environment, shows great potential in mitigating these in-
herent IL issues. Hoel et al. [6] proposed a policy based on Deep Q-Networks (DQNs) to
determine lane selection and acceleration decisions for autonomous vehicles. Tang et al. [7]
introduced a decision-making strategy based on Soft Actor–Critic (SAC), which performed
well in highway driving scenarios. Fu et al. [5] presented a decision framework based
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on Deep Deterministic Policy Gradient (DDPG) for emergency maneuver control, demon-
strating its effectiveness in handling critical situations. Kamran et al. [10] combined DQN
with MPC for decision-making, impacting the low-level planner in merging scenarios.
Valiente et al. [11] utilized DQN for navigation in environments such as highways and
roundabouts. Zhang et al. [12] developed a two-tier lane-changing system that combines
rule-based and RL methods to enhance vehicle cooperation. To address uncertainty in
autonomous driving, researchers proposed robust Actor–Critic methods [40,41] to cope
with traffic uncertainties and avoid complex motion dynamics modeling. Wu et al. [42]
built an action-conditioned ensemble model to evaluate environmental uncertainty and
combined it with model-based RL. Additionally, to improve computational efficiency,
Li et al. [43] developed a lightweight Transformer model for image semantic extraction
and integrated it with RL methods. Chen et al. [44] proposed WOR, assuming “world on
rails” to enable model-based RL training. Zhao et al. [45] introduced CADRE, which first
trains a Co-attention Perception Module (CoPM), then freezes this module and trains it
with Proximal Policy Optimization (PPO). Chekroun et al. [46] proposed GRIAD, which
processes both offline datasets and data explored via online RL. Coelho et al. [47] intro-
duced RLfOLD, incorporating a policy network outputting two standard deviations to help
the agent adapt to the inherent uncertainty levels of IL and RL.

Despite the substantial potential of RL in decision-making, its policy networks still
lack sufficient inference capabilities for complex driving environments. Transformer mod-
els [48], which have demonstrated strong reasoning abilities in natural language processing
and computer vision, show promise for solving complex decision-making problems in
autonomous driving. Recent studies have successfully applied Transformers to various
autonomous driving tasks. Chitta et al. [49] used a multimodal Transformer to fuse camera
and LiDAR data for better environmental perception. Shao et al. [50,51] utilized Trans-
formers for temporal behavior inference and hazard prediction. Wang et al. [52] and
Xu et al. [53] developed Transformer-based systems for driving decisions and behavior
explanation. However, applying Transformers to RL in autonomous driving faces chal-
lenges. RL methods suffer from low sample efficiency, requiring millions of interaction
steps for training. Research by Toromanoff et al. [54] shows that even with pretraining,
convergence needs over 20 million steps. Additionally, Transformer models’ complexity
increases computational demands and training difficulty.

To address these issues, this study proposes a novel Knowledge Distillation-Enhanced
Behavior Transformer (KD-BeT), aimed at improving RL efficiency and performance in au-
tonomous driving decision-making. Specifically, we used IL to train a teacher model quickly
and accurately, enabling it to make optimal decisions in complex scenarios. Subsequently,
during the RL training process, we modeled the autonomous driving decision problem
as a Partially Observable Markov Decision Process (POMDP) and leveraged knowledge
distillation to transfer the teacher model’s knowledge to the Transformer student model,
thus enhancing the training efficiency of the student model. We employed PPO as the policy
update algorithm. During training, we gradually decayed the teacher model’s influence,
initially relying more on its guidance to expedite convergence, and later, as the teacher
model’s influence diminishes, the Transformer student model increasingly utilized its
own capabilities, ensuring high final performance. The knowledge distillation mechanism
enables efficient knowledge transfer from a compact teacher model to the student model,
significantly reducing the required training samples while maintaining high performance.
The Transformer architecture, with its powerful attention mechanism and sequential pro-
cessing capabilities, excels at capturing temporal dependencies and contextual relationships
in driving scenarios, leading to more informed decision-making. This approach not only



Sensors 2025, 25, 191 4 of 26

addresses the traditional sample inefficiency issue of RL but also significantly enhances
decision accuracy and generalization capabilities in complex driving scenarios.

The main contributions of this study include the following:

• Propose the Behavior Transformer as a novel policy network for autonomous driving
decision-making in RL, which innovatively processes temporal sequences of historical
observations and actions as input. By harnessing the Transformer’s powerful con-
textual learning capabilities and attention mechanisms, this approach significantly
enhances both decision-making accuracy and generalization ability.

• Develop an innovative knowledge distillation framework that establishes a teacher–student
paradigm to boost RL training efficiency. The teacher model swiftly and precisely
acquires expert knowledge through IL, while the student model accelerates learning
through knowledge transfer. Furthermore, an adaptive decaying coefficient gradu-
ally reduces the teacher’s influence, enabling the student model to fully develop its
capabilities and ultimately surpass the teacher’s performance.

• Perform comprehensive evaluations on the CARLA NoCrash benchmark suite, with
extensive experimental results demonstrating that KD-BeT achieves state-of-the-art
performance in terms of both decision-making accuracy and generalization capabilities
across various challenging driving conditions.

The rest of this paper is organized as follows: Section 2 introduces the framework of
the autonomous driving method based on KD-BeT. In Section 3, the decision-making prob-
lem in autonomous driving is formulated as a POMDP problem, including a description of
the observation space, action space, and reward function. Section 4 provides a detailed ex-
planation of the proposed KD-BeT method, designed to solve the aforementioned POMDP
problem. Section 5 presents the experimental study, where the performance of KD-BeT is
evaluated through benchmark tests. Finally, Section 6 concludes the paper.

2. Method Framework for Decision-Making of Autonomous Driving
Based on KD-BeT

In this study, the driving goal for the ego vehicle is to safely and efficiently travel
from the starting point to the destination while adhering to traffic rules. The task scenario
involves a dynamic traffic environment, including other vehicles, traffic participants, traf-
fic signals, and varying road conditions. The autonomous driving system must handle
navigation tasks, follow traffic regulations, and perceive and avoid obstacles in a dynamic
environment to ensure driving safety, as illustrated in Figure 1. Additionally, the ego vehi-
cle needs to complete the route efficiently within the allotted time, avoiding unnecessary
delays and congestion.

(a) (b)

Figure 1. Problem definition illustration: (a) The ego vehicle must comply with traffic rules to reach
its destination safely and efficiently. (b) The ego vehicle must avoid obstacles and prevent lane
departure to ensure safety.



Sensors 2025, 25, 191 5 of 26

The problem is defined as follows: At each time step in RL, the ego vehicle receives
observation information, including its own motion state, information about surrounding
traffic participants, traffic rules (e.g., traffic lights), and the given target point. The ego
vehicle, combining historical observation and action sequences, uses the policy network
to decide the current time step’s acceleration and steering angle. If the vehicle ahead
slows down or changes lanes, the ego vehicle must take timely actions, such as avoiding
or slowing down, to ensure driving safety. Meanwhile, the ego vehicle should maintain
a reasonable speed to avoid unnecessary delays and ensure efficient task completion. When
encountering traffic lights or other traffic rules, the ego vehicle must strictly comply to
ensure safe driving.

As shown in Figure 2, the framework of this study is divided into two main stages:
teacher policy training and student policy training. The teacher policy is trained through
IL. First, an expert agent collects a dataset as a demonstration, and a small-capacity teacher
model is trained quickly and accurately using the BC method. Through this process,
the teacher model learns expert behaviors from the demonstration dataset, laying a solid
foundation for the subsequent RL phase.

Figure 2. The proposed KD-BeT framework consists of two main components: a teacher policy
trained using IL and a student policy trained using RL. The teacher policy accelerates the training
efficiency of the student policy through knowledge distillation during the RL process.

After completing the teacher policy training, the process moves to the student policy
training stage. In this stage, the Behavior Transformer model is proposed as the student
model and is trained within the RL framework. Knowledge distillation is employed to
effectively transfer the knowledge learned by the teacher model to the student model,
thereby improving the training efficiency of the student model. As training progresses,
the influence of the teacher policy gradually decreases, enabling the student model to
exceed the teacher’s performance, fully realize its potential, and achieve greater accuracy
and efficiency in executing decisions.

This two-stage training framework, combining IL and RL with knowledge distillation,
leverages expert-level decision-making for fast convergence while enabling the student
model to surpass initial limitations. Through a combination of direct imitation and gradual
reinforcement, the Behavior Transformer model can generalize more effectively, ensuring
robust performance in dynamic environments.
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3. Partially Observable Markov Decision Process for Decision-Making of
Autonomous Driving

To address the autonomous driving decision-making problem described above, this
paper adopts a Markov modeling approach, formalizing the autonomous driving decision
problem as a POMDP. This section first introduces the basic concepts of POMDP, then
provides a detailed description of the observation and action representations of the ego
vehicle, and finally explains the reward function design.

3.1. Partially Observable Markov Decision Process

The POMDP framework allows an agent to reason and make decisions when the state
is not fully observable. By introducing an observation space and an observation function,
the agent can make decisions based on noisy observation information. The components of
a POMDP are as follows:

• S : State space, representing the set of all possible system states.
• A: Action space, representing the set of all possible actions the agent can take.
• T(s, a, s′): State transition probability, representing the probability of transitioning

from state s to state s′ after taking action a.
• R(s, a): Reward function, representing the reward received when taking action a

in state s.
• O: Observation space, representing the set of possible observations the system

can receive.
• Z(o, s′, a): Observation probability, representing the probability of observing o after

taking action a and transitioning to a new state s′.
• γ: Discount factor, used to discount the influence of future rewards.

Under the POMDP framework, the ego vehicle infers the current hidden state from the
received partial observation information and reasons to maximize the future cumulative
reward. This enables the vehicle to make decisions in complex traffic environments, such
as timely avoiding obstacles or other vehicles while maintaining lane stability. When faced
with changing road and traffic conditions, POMDP allows the vehicle to take actions based
on uncertain environmental information, thereby enhancing the safety and robustness of
autonomous driving.

3.2. Observation Representation

In autonomous driving decision-making research, a well-designed observation space is
critical for RL training, as it directly determines the environmental information that the ego
vehicle can perceive and understand. In this study, the observation space of the ego vehicle
consists of three main components: the ego vehicle’s current motion state, information
about surrounding traffic participants, and information about the given target point. These
elements together provide comprehensive perceptual input for the ego vehicle’s driving
decisions, enabling it to handle complex and dynamically changing traffic environments.
The formal representation of the observation space is as follows:

O = OEgo ∪OTraffic ∪OTarget (1)

where OEgo represents the ego vehicle’s motion state, covering information such as the
current speed, position, and heading. OTraffic provides detailed data about surrounding
traffic participants, including their relative position, speed, and traffic signal status. OTarget

contains the relative position of the target point, which is used to guide the ego vehicle’s
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path planning and navigation. The ego vehicle’s motion state OEgo is defined in detail
as follows:

OEgo = {vego, vref, dlat, dlon, ∆ψ} (2)

where vego represents the real-time speed of the ego vehicle, reflecting its dynamic charac-
teristics at the present moment. vref denotes the target speed of the ego vehicle, typically
set by the control strategy to ensure smooth and efficient driving. dlat and dlon represent
the lateral and longitudinal distances between the ego vehicle and the next target point,
which are crucial for lane-keeping, obstacle avoidance, and future path planning. ∆ψ is the
heading angle difference between the ego vehicle and the target point, ensuring that the
vehicle can steer accurately and effectively track the planned path. The information about
surrounding traffic participants OTraffic includes

OTraffic = {σsig, ξpart} (3)

where σsig represents the status of traffic signals, such as red, green, or yellow lights.
These signals directly affect the driving decisions of the ego vehicle, especially in complex
scenarios like intersections. ξpart represents the relative information of surrounding traffic
participants, including their position, speed, and heading angle relative to the ego vehicle.
By continuously monitoring this information, the ego vehicle can respond in a timely
manner to avoid collisions and maintain a safe distance. Finally, the target point information
OTarget is defined as

OTarget = {(∆xi, ∆yi)}N
i=1 (4)

where (∆xi, ∆yi) represent the lateral and longitudinal distances of the i-th target point
relative to the ego vehicle’s coordinate system. N is the number of target points, serving as
a core input for path planning. By continuously tracking these target points, the ego vehicle
can ensure that its path planning adapts to the current traffic and road conditions, achieving
smooth and safe driving. Additionally, these target points provide the ego vehicle with
clear navigational direction, helping it accurately reach its intended destination.

By integrating these three components, the observation space provides the ego ve-
hicle with comprehensive and detailed environmental information, enabling it to make
informed decisions in complex traffic environments. This design not only enhances the
vehicle’s perception of its surroundings but also improves the safety and efficiency of its
driving behavior.

3.3. Action Representation

In autonomous driving decision-making research, the design of the action space is
as critical as that of the observation space, as it directly influences the effectiveness of the
vehicle’s interaction with the environment. Previous studies have primarily employed
two common types of action representations: trajectory waypoints and control signals.
The trajectory waypoint method guides vehicle motion through predefined paths. How-
ever, Wu et al. [55] demonstrated that this method has limitations in certain operational
scenarios. For example, during sharp turns or starting from a stationary position at traffic
lights, the accuracy of the predefined trajectory may decline, leading to unstable control.
Additionally, the trajectory waypoints approach requires the use of additional PID con-
trollers to convert the planned trajectory into actual throttle, brake, and steering control
signals. This not only increases the system’s complexity but also requires fine-tuning
of the PID parameters, which may negatively impact the system’s overall performance.
In contrast, the control signal output directly provides the necessary commands to the
vehicle’s actuators, simplifying the control system and avoiding the intermediate trajectory
conversion step. Although this method is focused on the current time step, it avoids the
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complexities associated with trajectory conversion. However, relying solely on control
signals for the current time step may result in delayed responses to potential future hazards,
as the vehicle lacks foresight of upcoming events.

To address this limitation, this study employs a Transformer model that combines
state and action sequences with contextual information to predict future control signals.
The self-attention mechanism of the Transformer allows the model to capture long-range
dependencies and potential future threats from the global temporal context, reducing
response delays and enhancing adaptability in complex traffic scenarios. Based on these
considerations, we opted to directly output control signals as the action space to reduce
system complexity and improve control response efficiency. Specifically, the action space A
is defined as

A = {aacc, δsteer} (5)

where aacc represents the acceleration control command, which influences the vehicle’s
speed through throttle and brake inputs, and δsteer represents the steering angle control
command, determining the vehicle’s directional changes. To effectively model these control
signals, this study employs a Beta distribution, denoted as Beta(α, β), where α and β

are shape parameters that control the concentration of the distribution around 0 and 1,
respectively. The probability density function of the Beta distribution is defined as

f (x; α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ [0, 1], α > 0, β > 0 (6)

where Γ(·) is the Gamma function. Choosing the Beta distribution has several advantages.
First, the Beta distribution is defined on the interval [0, 1], which naturally constrains control
signals within a valid range without requiring additional activation functions to enforce
limits. This aligns well with the physical constraints of vehicle control signals, such as the
range of acceleration and steering angle. Secondly, by adjusting the parameters α and β,
the Beta distribution can take on various shapes, including uniform, unimodal, or bimodal
distributions. This flexibility allows it to capture a wide range of control behaviors in
driving scenarios, such as smooth acceleration or emergency braking. Additionally, the Beta
distribution can represent multimodal distributions, which is especially useful in driving
contexts, as the vehicle may need to perform extreme control actions (e.g., emergency
braking or sharp turns).

3.4. Reward Function

In autonomous driving, the vehicle’s objective is to efficiently complete navigation
tasks while ensuring safe and smooth driving. To achieve this goal, the reward function
designed in this study consists of multiple components, each optimized for specific driving
requirements. These components include a speed reward, position reward, orientation
reward, action reward, and termination reward. The weights of these components are rep-
resented by ωi and Ci, ensuring a proper balance across different objectives. By aggregating
these sub-reward functions, the overall reward function effectively reflects safety, efficiency,
and driving comfort. It is defined as follows:

r = rspeed + rposition + rrotation + rsteer + rterminal (7)

First, the speed reward rspeed measures the difference between the current speed of
the ego vehicle and the desired speed, aiming to encourage the ego vehicle to drive close to
the target speed. It is defined as follows:

rspeed = ω1 ·
(

1−
|vego − vdesired|

vmax

)
(8)
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where vego is the current speed of the ego vehicle, vdesired is the target speed, and vmax is the
maximum speed. This term incentivizes the ego vehicle to optimize its speed performance
while ensuring smooth driving.

Next, the position reward rposition is calculated based on the lateral deviation of the
ego vehicle from the centerline of the target route. By penalizing excessive deviation, this
term encourages the ego vehicle to stay on the predefined trajectory, defined as follows:

rposition = −ω2 · ∆lateral (9)

where ∆lateral represents the lateral distance between the center of the ego vehicle and the
centerline of the route. Maintaining accurate lane positioning is essential for safe driving.

The rotation reward rrotation helps the ego vehicle maintain the correct driving direction
by assessing the angular difference between the vehicle’s heading and the route’s heading.
It is defined as

rrotation = −ω3 · ∆angular (10)

where ∆angular is the absolute angular difference between the ego vehicle’s heading and the
route heading. This reward term enhances the ego vehicle’s path-following capability by
reducing heading error.

The steer reward rsteer is used to limit abrupt changes in steering, avoiding excessive
fluctuations in steering angle between consecutive time steps. It is defined as

rsteer =

−C1 if |δcurrent − δprevious| > 0.01

0 otherwise
(11)

where δcurrent and δprevious represent the steering angles at the current and previous time
steps, respectively. This term ensures smooth steering adjustments, enhancing driving
comfort and stability.

Finally, the terminal reward rterminal applies in cases where the episode terminates,
typically triggered by unsafe behaviors such as running a red light, collisions, or veering
off-route. It is defined as

rterminal = ω4 · (−1− vego) (12)

This reward imposes a significant penalty when unsafe events occur, and applies more
severe penalties at higher speeds to reflect the greater negative impact in high-risk scenarios.

The reward function design of the KD-BeT framework considers multiple key di-
mensions in autonomous driving decision-making. The speed reward rspeed guides the
vehicle to maintain appropriate speed by evaluating the difference between actual and
desired speeds. The position reward rposition ensures correct path-following by calculating
lateral deviation from the lane center. The rotation reward rrotation helps maintain proper
heading direction by measuring angular difference. These three rewards together evaluate
driving efficiency. For comfort, the steering reward rsteer limits abrupt steering changes
between consecutive time steps by applying penalty C1 when steering angle change ex-
ceeds 0.01. For safety, the terminal reward rterminal penalizes dangerous behaviors like
running red lights or collisions, with higher penalties at higher speeds reflecting increased
risk. The weights ω1 to ω4 and C1 enable flexible adjustment between multiple objectives.
The immediate rewards (speed, position, rotation, steering) provide short-term feedback
while the terminal reward evaluates long-term safety. This multi-level reward mecha-
nism enables balanced decision-making considering safety, efficiency, and comfort across
complex scenarios.
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4. Knowledge Distillation-Enhanced Behavior Transformer for
Decision-Making of Autonomous Driving

Based on the proposed POMDP problem, this section introduces how the KD-BeT
model addresses this issue. First, we present the Behavior Transformer for sequen-
tial decision-making, followed by a detailed description of the training processes for
the teacher and student models, and finally, an explanation of the entire algorithm’s
implementation workflow.

4.1. Behavior Transformer for Sequential Decision Making

In autonomous driving, effectively utilizing contextual temporal information is crucial
for accurate and efficient decision-making. The current decisions in driving environments
depend not only on immediate observations but also on historical behaviors and environ-
mental changes. Therefore, temporal information plays a vital role in the decision-making
process, helping models capture temporal dependencies and better understand the dy-
namic changes in driving scenarios. To address this challenge, sequence modeling has been
widely applied to decision-making tasks, enabling the extraction of potential temporal de-
pendencies from historical observation–action pair sequences to inform current decisions.

In this context, the Transformer model offers significant advantages in handling
sequential decision-making tasks. Through its self-attention mechanism, it captures long-
range dependencies while avoiding gradient vanishing or exploding problems that Re-
current Neural Networks (RNNs) might encounter in long sequences. The student policy
employs a Transformer model for sequential decision-making, utilizing contextual temporal
information to predict the next action. To fully leverage this temporal information, the stu-
dent policy uses a context window of length K, processing historical observation–action
pairs from time t − K to t, including ot, at−1, ot−1, . . ., ot−K+1, at−K, to predict the next
action ât, as shown in Figure 3. In the Transformer, each token represents an observation–
action pair, containing current observation information and corresponding action decisions.
As sequential input units, tokens carry environmental states and decision behaviors at each
time step, helping the model to capture temporal dependencies. A detailed introduction to
the Transformer can be found in Appendix A.

Figure 3. The student policy, based on the Behavior Transformer, utilizes contextual temporal
information as input to predict the current action based on the observation and action from previous
time steps.

Figure 4 illustrates the detailed architecture of KD-BeT. As shown in the figure, the KD-
BeT architecture primarily consists of a teacher model and a student model. The teacher
model, based on multi-layer perceptron (MLP), learns driving strategies from expert demon-
stration data and transfers these strategies to the student model through knowledge dis-
tillation. The student model, based on the Behavior Transformer, utilizes contextual data
from environmental interactions for sequential decision-making and is trained through
Reinforcement Learning. The discrepancy between the teacher and student model outputs
is measured using KL divergence. Through this approach, the student model can effectively
absorb knowledge from the teacher model, enabling efficient decision-making in a shorter
time frame.
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Figure 4. Illustration of the knowledge distillation process, where an MLP-based teacher policy learns
from expert demonstrations through Imitation Learning while a Behavior Transformer-based student
policy leverages contextual data from environmental interactions through Reinforcement Learning.

4.2. Knowledge Distillation-Enhanced Behavior Transformer
4.2.1. Imitation Learning for Teacher Model

This study first employs IL to train a smaller-capacity teacher model. This teacher
model offers the advantages of making quick decisions, achieving high accuracy, and being
easier to train. The teacher model learns driving strategies from expert demonstration
data and transfers these strategies to the student model through knowledge distillation.
During the IL phase, the teacher model focuses on minimizing the discrepancy between
its predictions and the expert demonstration data, ensuring that it can provide effective
guidance to the student model in the subsequent RL phase.

In this study, we choose Roach [56] as the expert agent for data collection. Roach
adopts a two-stage training approach: first by training expert policy through Reinforcement
Learning, then using this policy to collect data for training IL agents. During training, Roach
fully utilizes privileged information, including detailed information about roads, lanes,
routes, vehicles, pedestrians, traffic signals, and stop signs, and renders this information
into bird’s-eye-view images. Compared to traditional rule-based expert systems, this
learning-based expert can better capture and transmit rich information beyond direct
supervision signals. This capability enables it to extract more subtle driving behavior
features, thereby significantly improving the training effectiveness of downstream models,
ultimately achieving more intelligent decision-making in complex driving scenarios.

During the IL phase, the primary objective of the teacher model is to learn and ap-
proximate the optimal policy by minimizing the error between its outputs and the expert
demonstration data. The core of this process lies in optimizing the parameters of the teacher
model to ensure that the actions it outputs under various observation conditions closely match
those in the expert demonstration data. To achieve this, the Mean-Squared Error (MSE) was
chosen as the loss function in this study. The specific form of the MSE loss function is

LTE(πTE
θ ) = E

[∥∥∥aE
t − ât(π

TE
θ )

∥∥∥2
]

(13)

where aE
t represents the expert action at time step t in the expert demonstration data, ât is

the action predicted by the teacher model under the state st, and πTE
θ denotes teacher policy.

Based on the aforementioned loss function, the parameters of the teacher model are
optimized iteratively. Specifically, in each iteration, the model parameters are updated
according to the following formula:

θTE
k+1 ← θTE

k − αIL · ∇LTE(πTE
θ ) (14)
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where αIL represents the learning rate in IL process and ∇ denotes the gradient of the loss
function LTE(πTE

θ ) with respect to the parameters θ.
Through the aforementioned optimization process, the teacher model can gradually

adjust its parameters, enabling it to effectively learn and approximate reasonable driving
strategies during the IL phase. This process not only ensures the accuracy of the model
when handling expert demonstration data but also lays a solid foundation for further
optimization and knowledge transfer through RL.

4.2.2. Reinforcement Learning for Student Model with Knowledge Distillation

After training the teacher model, knowledge distillation is employed to transfer the
knowledge learned by the teacher model to the student model. This approach further enhances
the performance of the student model, particularly in complex tasks, where it effectively guides
the student model in learning the correct policy more rapidly. By incorporating the knowledge
of the teacher model into the student model’s learning process, the student model can benefit
from the teacher model’s experience, thereby reducing training time and improving the
overall quality of the policy. In RL training, knowledge distillation not only helps the student
model minimize unnecessary exploration but also enables it to converge more quickly to
a higher-performing policy. During this process, we integrated knowledge distillation with
PPO to maximize the expected cumulative reward. The student model’s parameters were
optimized through the following gradient update formula:

θk+1 = argmax
θ

Eτ∼πθk

[
Lppo + Lent + Lexp + Limi

]
(15)

where Lppo is the core policy gradient objective, which ensures the stability and effective-
ness of the model policy through PPO. The PPO algorithm uses a clipping mechanism to
prevent excessive changes in policy during updates, thus avoiding instability in model
training. The specific PPO objective function is as follows:

Lppo = Et
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(16)

where rt(θ) is the probability ratio between the new policy πθ and the old policy πθold
, ϵ

is the clipping threshold, and Ât is the advantage function. The PPO algorithm is opti-
mized using Generalized Advantage Estimation (GAE) to enhance the model’s estimation
of policy advantage, thereby balancing exploration and exploitation in longer-sequence
tasks. To further encourage policy exploration by the student model, this study introduces
an entropy objective Lent, defined as

Lent = −λent · H(πθ(· | {ot, at}Tobs−1
Tobs−K ∪ {oTobs})) (17)

where λent is the weight coefficient of the entropy term, Tobs denotes the current time step,
andH represents the entropy of the policy. By maximizing the entropy of the policy, this
entropy objective allows the student model to retain a degree of randomness in action
selection, preventing it from prematurely converging to a local optimum. Maximizing
entropy encourages the student model to explore a wider range of possibilities, helping
it find a more comprehensive policy in complex environments. In addition, this study
introduces an exploration objective Lexp, which primarily guides the student model to
follow predefined rules in specific situations. The formula is as follows:

Lexp = λexp · KL(πθ(· | {ot, at}Tobs−1
Tobs−K ∪ {oTobs}) ∥ πB) (18)

where λexp represents a variable weight coefficient of the exploration term, which activates
only in the time steps immediately following termination events. The KL divergence is
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used to measure the discrepancy between the current policy distribution and the target dis-
tribution. πB is the distribution associated with specific traffic rules, designed to constrain
the model’s actions after termination events occur. Termination events include collisions,
running red lights, veering off-route, and blocking. Specifically, when a collision or red
light violation occurs, we apply πB = B(1, 2.5) to the acceleration to encourage the model
to decelerate without altering steering behavior. When the vehicle is blocked, we use
the acceleration prior B(2.5, 1) to address the situation; if the vehicle deviates from the
route, a uniform prior B(1, 1) is applied to steering. While this mechanism is somewhat
similar to maximizing entropy in certain cases, it optimizes model behavior more effectively
under termination conditions by incorporating specific exploration priors, enabling the
model to adhere to traffic rules and avoid repeated mistakes. By introducing a combination
of indicator functions and exploration priors, this approach better guides the model in
correcting erroneous behaviors after termination events. Additionally, Limi represents the
KL divergence objective between the student and teacher models, guiding the student
model to learn from the teacher’s policy. It is defined as follows:

Limi = −λimi · KL(πθ(· | {ot, at}Tobs−1
Tobs−K ∪ {oTobs}) ∥ πTE

θ (· | oTobs)) (19)

where λimi represents the weight coefficient of the teacher policy term, which decays
linearly throughout the training process. During knowledge distillation, the choice of
weight decay strategy significantly impacts model training effectiveness, with common
decay strategies including linear decay, exponential decay, cosine decay, and step decay.
This study chooses the linear decay strategy because it is not only simple and intuitive to
implement, but also provides a smooth and predictable decay process that avoids sudden
changes. This strategy maintains strong teacher guidance in the early stages of training to
help the student model quickly grasp fundamental knowledge, while gradually reducing
teacher influence in later stages to give the student model more opportunities to explore and
optimize its own strategy, thereby achieving a natural transition from teacher dependence
to independent learning. The linear decay strategy is expressed as

λimi = λ0
imi · (1−

e
Ne

) (20)

where λ0
imi is an adjustable initial weight coefficient (typically 1.0) used to control the

initial intensity of knowledge distillation, e represents the current iteration number, and Ne

represents the total number of iterations. This decay strategy, by setting an appropriate
initial weight λ0, amplifies the knowledge distillation effect of the teacher model in the
early stages, allowing the student model to fully utilize the teacher’s guidance, while
encouraging the student model to develop its own performance potential in the later
stages. KL divergence is used to measure the difference between student model and teacher
model policies. By minimizing the KL divergence between student and teacher model
policies, this objective helps the student model gradually approach the optimal policy
learned by the teacher model, thereby accelerating the training process and improving
policy performance. The teacher model’s knowledge serves as a reference for the student
model, playing an important guiding role throughout the training process. In the overall
objective function, Lppo ensures policy effectiveness and stability, Lent enhances policy
exploration, Lexp handles specific termination conditions and imposes rule constraints
through πB , while Limi helps the student model absorb knowledge from the teacher model,
ensuring it achieves optimal policy in less time.



Sensors 2025, 25, 191 14 of 26

4.3. Knowledge Distillation-Enhanced Behavior Transformer Algorithm

The proposed KD-BeT algorithm is shown in Algorithm 1. The required inputs in-
clude the expert demonstration dataset D, batch sizes BIL and BRL, iteration counts for the
two learning stages Ni and Ne, as well as learning rates αIL and αRL, among other parameters.
The entire training process is primarily divided into two stages: Imitation Learning for teacher
policy and Reinforcement Learning for student policy with knowledge distillation. In the IL
stage, the expert demonstration dataset is initially split into batches of size BIL (lines 1–3).
Each batch is then trained iteratively, with the data in each batch being processed through the
teacher model to compute the MSE loss function, after which the parameters of the teacher
model are updated in a loop (lines 4–11). In the RL stage, the replay bufferR is first initial-
ized, followed by obtaining initial observations from the online environment (lines 12–15).
At each time step, the student model outputs the action for the current time step based on the
observation–action history, while the teacher model outputs the action for the current time
step based on the current observation. The student model’s action is then executed, and the
subsequent observation and reward are obtained, storing this information in the replay buffer
(lines 16–23). A batch of size BRL is then sampled from the replay buffer to calculate the
objective function and update the student model’s parameters θ (lines 24–27). Throughout the
training process, the student model learns from the teacher model via knowledge distillation,
improving the training efficiency and decision accuracy of the student model.

Algorithm 1 Knowledge Distillation-Enhanced Behavior Transformer (KD-BeT)

Require: expert demonstration dataset D, batch size BIL, BRL, IL iterations Ni, learning
rate αIL, αRL, RL iterations Ne, timesteps of episode Nt, context length K, online env

1: ▷ Imitation Learning for Teacher Policy
2: for each iteration i in Ni do
3: Sample trajectories of batch size BIL from expert demonstration {τ} ∼ D
4: for each τ in {τ} do
5: Predict action ât by teacher policy ât ∼ πTE

θ (· | ot)
6: Compute the loss function
7: LTE(πTE

θ ) = E
[∥∥aE

t − ât(πTE
θ )

∥∥2
]

8: update policy parameters θTE

9: θTE
k+1 = θTE

k − αIL · ∇LTE(πTE
θ )

10: end for
11: end for
12: ▷ Reinforcement Learning for Student Policy with Knowledge Distillation
13: for each iteration e in Ne do
14: Initialize the replay bufferR
15: Get the initial observation o1 from online env
16: for each timestep t in Nt do
17: Predict action at by student policy at current timestep Tobs

18: ât ∼ πθ(· | {ot, at}Tobs−1
Tobs−K ∪ {oTobs})

19: Predict action aTE
t by teacher policy at current timestep Tobs

20: âTE
t ∼ πTE

θ (· | oTobs)
21: Execute the action and get st+1, rt
22: Store the transition (ot, ât, âTE

t , rt, ot+1) inR
23: end for
24: Sample transitions of batch size BRL fromR
25: Compute the objective function and update student policy parameters θ
26: θk+1 = argmax

θ
Eτ∼πθk

[
Lppo + Lent + Lexp + Limi

]
27: end for
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5. Experiment
The experiments were conducted on the CARLA high-fidelity autonomous driving

simulator [57] to evaluate the performance of KD-BeT. This section first details the parame-
ters and benchmarks used in the implementation, then evaluates the model’s performance
in comparison with current state-of-the-art methods. Finally, a comprehensive ablation
study is conducted to validate the model.

5.1. Experimental Settings

The experimental evaluation in this study was conducted using CARLA simulator
version 0.9.10. During the teacher model training phase, we utilized the Roach frame-
work [56] to build a large-scale expert demonstration dataset, which covers diverse town
scenarios and weather conditions, containing over 3 million time steps of high-quality
driving data. In the Reinforcement Learning training phase, we implemented an efficient
PPO-clip algorithm based on [58]. To significantly improve training efficiency, we adopted
a parallel training strategy, deploying six CARLA simulators simultaneously in each train-
ing iteration. During model development, we used the PyTorch deep learning framework
to build and optimize both Imitation Learning and Reinforcement Learning models. All
experiments were conducted on a high-performance computing platform equipped with
an NVIDIA GeForce RTX 4090 GPU. In the specific training process, the Imitation Learning
training cycle for the teacher model took approximately 5 h, while the Reinforcement
Learning training of the student model on six parallel CARLA servers required about
120 h. Notably, in actual inference, the student model achieved an inference latency of
only 30 milliseconds on a single RTX 4090 GPU, fully meeting the strict real-time inference
requirements of autonomous driving systems. Table 1 lists the detailed hyperparameters
for both Imitation Learning and reinforcement learning.

To assess the performance of the trained model, the NoCrash benchmark [33] was
used, which is designed to evaluate the driving capability of autonomous systems in
a simulated environment. In the training phase of the NoCrash benchmark, the model
was trained in Town01. Town01 is a European-style town with single-lane roads and
T-junctions, making it well suited to evaluate the model’s performance in basic urban
driving scenarios. Specifically, Town01 includes 25 routes with a total driving distance of
17.4 km and 110 traffic lights along the way. The testing phase was conducted in Town02,
a scaled-down version of Town01 with additional variations, to evaluate the model’s
zero-shot adaptation capabilities. Town02 also includes 25 routes, covering a total distance
of 8.9 km with 94 traffic lights. Neither Town01 nor Town02 have stop signs. Additionally,
NoCrash defines three traffic densities, Empty, Regular, and Dense, representing increasing
levels of traffic density, which serve to evaluate the model’s generalization and adaptability
across different traffic conditions.

The primary evaluation metric in the NoCrash benchmark is the success rate, de-
fined as the percentage of test runs in which the autonomous driving system successfully
reaches the target location without any collisions. If the vehicle reaches its destination
but experiences a collision during the journey, that attempt is not considered successful.
Consequently, the success rate serves as a key metric for assessing the model’s performance
in a simulated environment, reflecting the system’s safety and reliability.
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Table 1. Hyperparameters used in the experiments.

Parameter Value

Imitation Learning
Optimizer Adam
Learning Rate 5 × 10−4

Batch Size 256
Iterations Ni 50
Teacher Policy Hidden Size [512, 512, 256, 128]

Reinforcement Learning
Learning Rate 1 × 10−5

Minibatch Size 256
Iterations Ne 2000
Epochs per Iteration 20
time steps per Iteration Nt 12,288
Context Length K 5
Discount Factor γ 0.99
MLP Ratio 2.0
Number of Attention Heads nh 4
Number of Blocks nb 4
Embedding Dimension 192
GAE Coefficient λGAE 0.9
Clip Range ϵ 0.2
Entropy Coefficient λent 0.01
Exploration Coefficient λexp 0.05
Distillation Coefficient λimi 0.1
Target KL 0.01
Max Gradient Norm 0.5
Reward Coefficient ω1, ω2, ω3, ω4, C1 5, 0.5, 1, 5, 0.1

5.2. Comparison with State of the Art

The teacher policy is first trained through IL, then knowledge distillation accelerates
the training of the student policy, and the trained model achieves a significant improvement
in success rates on the NoCrash benchmark. Table 2 presents a comparison of success
rates between KD-BeT and current state-of-the-art methods across different traffic den-
sity conditions in both training and testing scenarios. The compared methods include
CILRS [33], LBC [35], WOR [44], CADRE [45], GRIAD [46], and RLfOLD [47]. Among them,
CILRS and LBC are IL-based methods, while WOR, CADRE, GRIAD, and RLfOLD are
RL-based methods.

Table 2. Comparison of test results for different methods, focusing on the success rate across three
different traffic density conditions.

Method Source

Success Rate ↑ (%)

Training Scenarios Testing Scenarios

Empty Regular Dense Empty Regular Dense

CILRS [33] CVPR 19 97 83 42 66 56 24
LBC [35] CoRL 20 89 87 75 36 36 12
WOR [44] ICCV 21 98 100 96 78 82 66
CADRE [45] AAAI 22 95 92 82 78 72 52
GRIAD [46] Robotics 23 98 98 94 69 63 52
RLfOLD [47] AAAI 24 100 94 90 100 86 66
KD-BeT Ours 100 96 93 100 94 85
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As shown in Table 2, in the sparse environment of the training scenario, both KD-BeT
and RLfOLD achieved a 100% success rate, demonstrating their excellent zero-collision
performance in sparse settings. Compared to traditional IL methods like CILRS and LBC,
KD-BeT effectively inherits the advantages of the teacher policy through knowledge dis-
tillation, significantly improving model performance. In normal- and high-density traffic
environments, WOR achieved the best results with success rates of 100% and 96%, respec-
tively, mainly due to its use of model-based RL, which delivers outstanding performance in
training scenarios. In comparison, KD-BeT reached success rates of 96% and 93% under the
same conditions, slightly lower than WOR and GRIAD but still demonstrating a high de-
gree of success and stability in training scenarios. This demonstrates that KD-BeT achieves
comparable performance to state-of-the-art methods in training scenarios by combining
the advantages of knowledge distillation and Reinforcement Learning.

In the testing scenario, KD-BeT achieved success rates of 100%, 94%, and 85% in
sparse, normal, and high-density environments. Compared to other methods, KD-BeT
demonstrates superior generalization capabilities in testing scenarios, primarily due to its
unique teacher–student training paradigm and objective function design. Notably, in high-
density traffic environments, KD-BeT’s performance advantage becomes more pronounced,
showing an approximately 20-percentage-point improvement over WOR and RLfOLD, and
a more than 60-percentage-point improvement compared to CILRS and LBC. This result
indicates that KD-BeT performs excellently across different traffic densities, particularly
maintaining robust performance in high-density environments, highlighting its strong
generalization and zero-shot adaptation capabilities in testing scenarios. Additionally, we
also conducted tests on the Town05 map to further evaluate the generalization ability of
KD-BeT. The decision-making processes for waiting for the preceding vehicle to pass and
for waiting at traffic signals are illustrated in Appendix B.

5.3. Ablation Study

To evaluate the impact of different components of KD-BeT on model performance,
an ablation study was conducted and is presented in this section. Specifically, the influence
of different terms in the objective function was analyzed. Ablation experiments were
performed on the Lent, Lexp, and Limi terms to assess their effects on model performance.

The average reward comparison curve for the RL training process of the student
model is shown in Figure 5. As seen in the figure, the KD-BeT method exhibits strong
performance during training, with fast convergence and good stability. After removing
each of the three terms individually from the objective function, both the convergence speed
and asymptotic performance of the model decreased. Removing the Lexp term had the
least impact on model performance, while removing the Lent term led to a more noticeable
decrease, indicating that the entropy objective plays an important role in model exploration
and stability. The most significant performance drop occurred when the Limi term was
removed, suggesting that knowledge distillation from the teacher policy is crucial for the
model’s learning and generalization abilities.

Additionally, an ablation study was conducted during evaluation and the results are
shown in Table 3. Evaluations were conducted from three perspectives: success metrics,
collision metrics, and other metrics. The success rate belongs to the success metrics, and the
evaluation performance is shown in Figure 6. Besides the success rate, the success metrics
include driving score, route completion, and infraction score. Route completion represents
the percentage of the route the vehicle actually traversed relative to the total route length,
reflecting the model’s ability in navigation and route-following. The infraction score
measures the extent of infractions during driving, such as collisions, running red lights,
and driving against traffic. A lower IS score indicates more infractions. The driving score,
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a comprehensive measure of overall driving performance, is calculated as the product of
route completion and the infraction score. A high driving score indicates that the vehicle
not only completed more of the route successfully but also adhered to traffic rules, reducing
infractions and collisions.

Figure 5. Performance comparison between KD-BeT and ablation of objective function terms
during training.

(a) (b)

Figure 6. Success rate comparison on the NoCrash benchmark: (a) Evaluation on training scenarios.
(b) Evaluation on testing scenarios.

Collision metrics include collision with other vehicles, collision with other objects,
and red light infractions, indicating the number of incidents for each type. Other metrics
include vehicle blockage, representing the number of times the vehicle stopped due to
blockages or other reasons.

As shown in Figure 6 and Table 3, in line with training performance, the model
performed worst without the Limi term. Success rate, driving score, route completion,
and infraction score were all lower, while collisions with vehicles, objects, red light infrac-
tions, and vehicle blockage counts were higher. This underscores the importance of the
teacher policy for model performance. Performance decreased the least without Lexp and
fell to an intermediate level when Lent was removed.

The impact of ablating different terms on the model’s training and testing performance
leads to the following conclusions: the teacher policy distillation term has the most signifi-
cant impact on performance improvement. The teacher–student training paradigm plays
a key role in enhancing both training efficiency and overall performance. The entropy
term also has a substantial impact, primarily in encouraging exploration and preventing
premature convergence. Comparatively, the exploration term has the smallest effect on
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performance, as it mainly functions in specific scenarios—such as imminent collisions, run-
ning red lights, encountering stop signs, blockages, or route deviations—where it corrects
specific errors and enhances driving safety.

Table 3. Driving performance and infraction analysis of KD-BeT on the NoCrash benchmark with
dense traffic in the testing scenarios. Results are reported as the mean and standard deviation over
three evaluation speeds.

Method

Success Metrics (↑) Collision Metrics (↓) Other
Metrics (↓)

Success
Rate

Driving
Score

Route
Compl.

Infrac.
Score

Collision
Others

Collision
Vehicle

Red Light
Infraction

Vehicle
Blocked

KD-BeT w/o Lent 71± 3 75± 6 91± 4 79± 5 0.57± 0.39 0.87± 0.35 0.75± 0.43 1.52± 0.45
KD-BeT w/o Lexp 73± 5 78± 4 94± 2 81± 3 0± 0 0.67± 0.49 0.56± 0.31 0.92± 0.19
KD-BeT w/o Limi 68± 8 69± 9 86± 2 78± 2 0.86± 0.54 1.75± 0.86 1.59± 0.23 2.16± 1.65

KD-BeT 85± 3 87± 4 100± 0 87± 4 0± 0 0.32± 0.25 0.24± 0.17 0± 0

6. Conclusions
This paper presents the KD-BeT algorithm, which is based on a “teacher–student”

model in autonomous driving. The teacher model is first trained using IL, while the stu-
dent model learns through knowledge distillation within RL. The Behavior Transformer is
employed as the policy network in RL, leveraging observation–action histories to enable se-
quential decision-making. With the context-learning capabilities of the Transformer, KD-BeT
significantly improves decision-making accuracy and demonstrates superior generalization
ability in zero-shot scenarios. The KD-BeT framework achieved the best performance on
the NoCrash benchmark, showcasing exceptional generalization, zero-shot adaptability,
and overall advantages.

This research has achieved significant performance breakthroughs in autonomous
driving by innovatively combining IL and RL. However, there are still some challenges in
actual deployment. Firstly, in real environments, sensor data quality is often affected by
factors such as weather and lighting, leading to noise and uncertainty, which may impact
the model’s decision quality. To address this issue, multi-sensor fusion technology can be
used to improve data reliability, thereby providing more stable and accurate perception
data in various environments. Secondly, model training and inference efficiency is also
an important challenge. In terms of training, training on datasets is both time-consuming
and prone to overfitting issues. To this end, we will explore more advanced training algo-
rithms, such as meta-learning, implement distributed training based on data parallelism,
model parallelism, and simulator parallelism, and adopt data augmentation techniques
to accelerate training efficiency. For inference, limited computing resources in vehicle
environments place higher demands on real-time decision-making and control. To meet
these needs, future work will explore model compression and quantization methods to
reduce model size, decrease memory usage, and accelerate inference. Thirdly, although
Roach provides high-quality demonstration data as an expert agent for data collection,
it relies on privileged information (such as complete road, lane, traffic signal data, etc.)
for decision-making, which is difficult to obtain in real environments. Therefore, future
work will consider using domain randomization techniques to enhance data diversity,
combine real-world data to supplement simulation data, reduce dependence on privileged
information, and design more robust learning algorithms to improve model generalization
ability. Ultimately, through these measures, we hope to develop more robust and adaptive
autonomous driving systems that better handle complex real-world environments.
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Looking ahead, we will explore the application prospects of this method in more
challenging driving environments, including driving under different weather conditions,
high-density traffic scenarios, and complex urban road systems. To address these chal-
lenges, we will focus on optimizing model architecture and training strategies to further
enhance system performance and generalization capabilities in complex scenarios. In terms
of technical innovation, we plan to deeply integrate cutting-edge technologies with the
existing framework. The introduction of large language models (LLMs) may bring about
a breakthrough in progress—their excellent context understanding and reasoning capabili-
ties will help systems better understand complex traffic scenarios and make more intelligent
and reasonable decisions. Meanwhile, we will also explore the potential applications of
diffusion models in autonomous driving, leveraging their powerful generative capabilities
to improve system decision-making efficiency, safety, and overall performance. Addition-
ally, we will introduce Reinforcement Learning from Human Feedback (RLHF) to enable
models to better understand and adapt to human driving behavior characteristics, thereby
achieving a more natural and humanized autonomous driving experience. These innova-
tive improvements and optimizations will lay a solid foundation for building safer and
more reliable autonomous driving systems.
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Appendix A
In this section, the structure and implementation of the Behavior Transformer are

introduced. The Transformer model is a deep learning model based on a self-attention
mechanism, which is widely used in natural language processing, computer vision, and
other fields. In autonomous driving decision-making tasks, the Transformer model captures
temporal dependencies in input sequences through the self-attention mechanism, realizes
a deep feature extraction of input sequences, and thus achieves more accurate decision
prediction. The following content will introduce the core structure and implementation
principles of the Transformer model in detail.

In the self-attention mechanism, the model learns contextual information at each
time step by computing correlations between tokens, enabling more accurate decision
predictions. Self-attention, the core of the Transformer, captures temporal dependencies in
the input sequence by assigning different weights to each token. The key idea behind self-
attention is using query (Q), key (K), and value (V) representations to compute relationships
between tokens. The input sequence Fin ∈ RM×D f represents M tokens, each represented
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by a feature vector of dimension D f . Through linear transformations, the model computes
query, key, and value representations as follows:

Q = FinWq, K = FinWk, V = FinWv (A1)

where Wq, Wk, and Wv are learnable weight matrices in the model. The core of the self-
attention mechanism lies in computing correlations between tokens through scaled dot
products of queries and keys. These correlation weights are then normalized through a soft-
max function and used to weight the value tokens to generate output features. The specific
formula is

Attn(Q, K, V) = softmax
(

QKT
√

dk

)
V (A2)

where dk is the dimension of the keys. This allows the model to automatically identify
the most relevant observations and actions in the input sequence for current decisions.
To enhance the model’s expressiveness, the Transformer also employs a multi-head at-
tention mechanism. This mechanism computes multiple independent attention heads in
parallel, learning feature representations from different subspaces. Each attention head
independently computes attention, and the results are then concatenated and transformed
through a linear layer to generate the final output. The multi-head attention computation
formula is

MultiHead(Q, K, V) = concat(head1, · · · , headh)WO (A3)

where each attention head headi is computed similarly to single-head attention:

headi = Attn(Qi, Ki, Vi) (A4)

where WO is the output weight matrix for the multi-head attention mechanism. In addi-
tion to self-attention, the Transformer model introduces positional encoding to capture
temporal information in the input sequence, enabling it to perceive the order of the input
sequence. Since the Transformer model is inherently sequence-agnostic, we added sinu-
soidal positional encoding to each input token, allowing the model to learn relative position
information in the input sequence. In this way, the model can attend not only to important
observations in the input sequence but also to their temporal structure.

To handle sequential data, we further adopted a causal Transformer. The causal
Transformer restricts each token to only attend to previous tokens, ensuring that the model’s
output does not depend on future information, thus maintaining temporal consistency.
This is crucial for decision-making tasks in autonomous driving, as vehicle decisions can
only be based on past observations and cannot “peek” into future situations. The causal
Transformer effectively meets this requirement.

Finally, after computing self-attention, the Transformer applies an MLP to perform
nonlinear transformations on the generated features. Specifically, the MLP processes each
attention result and adds it to the input features Fin to generate the final output features Fout:

Fout = MLP(Attn(Q, K, V)) + Fin (A5)

Through this structure, the Transformer can perform deep feature extraction on input
sequences and generate corresponding action decisions based on these features. Due to the
Transformer’s powerful self-attention and multi-head attention mechanisms, it excels at
handling complex temporal dependencies, making it particularly suitable for autonomous
driving tasks in dynamic environments.
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Appendix B
In this section, we provide a detailed demonstration of the intelligent decision-making

process of the ego vehicle in complex traffic scenarios. Specifically, we focus on analyzing two
typical scenarios: first, the ego vehicle’s decision behavior of waiting for the vehicle ahead to
pass through an intersection, as shown in Figure A1; and second, the ego vehicle’s waiting
decision process at traffic signals, as shown in Figure A2. These scenarios fully demonstrate
our system’s decision-making capabilities and safety awareness in real traffic environments.

Figure A1. Illustration of ego vehicle’s decision-making process: waiting for the vehicle ahead and
passing through the intersection.
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Figure A2. Illustration of ego vehicle’s decision-making process: waiting and passing through the
intersection with a traffic light.

Figure A1 illustrates the decision-making process of the ego vehicle, i.e., waiting for
the vehicle ahead to pass through the intersection. The process consists of four main stages:
First, detecting a vehicle ahead and preparing to slow down to yield. Second, maintaining
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a safe following distance and braking behind the front vehicle. Third, the traffic light turns
green and the front vehicle proceeds. Finally, with no vehicle ahead and a green light,
the ego vehicle advances and passes through the intersection.

Figure A2 illustrates the decision-making process of the ego vehicle, i.e., waiting for
the traffic light to turn green. The process consists of four main stages: First, stopping at the
red light at the intersection ahead. Second, proceeding when the traffic light turns green.
Third, entering the intersection. Finally, exiting the intersection.
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