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Abstract—The efficient tracking of Construction and 

Demolition Wastes (CDWs) is pivotal in a perspective of 

sustainability and circularity in the construction sector. Sensing 

and digital technologies can undoubtedly play a relevant role in 

this context. This paper proposes an innovative approach for 

detection, quantification, and characterization of CDWs in 

order to provide information exploitable through optimized 

valorization routes made available via dedicated service 

platforms. The preliminary results are promising, and the 

solution will be iteratively refined and improved thanks to 

continuous data collection from real-world scenarios. 

Keywords—CDWs, sensors, vision systems, AI, sustainability, 

building life cycle, waste valorization, circular economy. 

I. INTRODUCTION

In a perspective of sustainable and circular economy, it is 
essential to enhance the durability of construction materials 
and promote their valorisation and reuse at the end of a 
building life cycle. In this context, construction and 
demolition wastes (CDWs) sourcing plays a pivotal role; in 
fact, CDWs represent a third of the total wastes amount 
generated in Europe [1]. Digital technologies can help to 
automate detection, quantification, and characterization 
processes, providing information potentially useful for 
valorising these wastes and prevent them from being disposed, 
with a perspective of sustainability and circularity in the 
construction sector [2]. Data quality surely determines the 
reliability of results and sensing technologies as well as 
Artificial Intelligence (AI) algorithms must be properly 
selected to maximize the performance of such solutions. Also, 
the plethora of interfering factors present in real scenarios 
must be considered since they directly impact on the effective 

applicability of these tools, determining the measurement 
accuracy of the output. 

Looking at the literature, it is immediately clear that 
computer vision (CV) represents a powerful tool for waste 
sorting, involving image preprocessing, feature extraction, 
and Machine Learning (ML) [3–5]. Indeed, RGB-D (i.e., 
sensors working in the red, green, and blue colour space, with 
the addition of depth sensor), Infrared (IR), and video sensors 
can be used together with AI technologies [6,7] and the 
information for CDWs classification can be obtained also in 
the HSV (Hue Saturation Value) colour space [8]. However, 
most studies consider controlled conditions to develop these 
solutions, namely homogeneous (black) background, 
conveyor belts with objects separated each other [9,10], 
optimal lighting, etc. Digital cameras seem to represent a 
major trend for future development [3]. Li et al. [6] have 
exploited a fusion of three-channel RGB image and single-
channel depth image, trying to mitigate issues related to 
material heterogeneity and surface contamination. Some 
studies limit to determine the presence of the object of interest, 
others look for object detection, which also locates the object 
in the scene with bounding boxes [11] or even pixel areas 
segmentation [12].  

Deep Learning (DL) based approach plays a pivotal role 
in the context of end-to-end Computer Vision (CV) for CDW 
classification. State-of-the-art Convolutional Neural 
Networks (CNNs) algorithms, such as AlexNet [13] and 
ResNet, are widely used, reporting accuracies above 96% and 
85%, respectively [3]. Among other examples it is worth 
mentioning the YOLACT algorithm [14] and VGG-16 [15]. 
Transfer learning can be exploited to adapt previously trained 
models to a new domain [16], hence using pre-trained weights 
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of models trained on a different dataset (e.g., Tensorflow [17] 
and Detectron [18]). CNNs have been applied to extract
features, then classification is performed with ML techniques 
(e.g., SVM or kNN, useful when new categories are added
[3]). Both single- (e.g., SSD and YOLO) and two-stage (e.g., 
Faster-CNN and Mask R-CNN) detector architectures have 
been employed together with CNN-based feature extractors
(e.g., ResNet, MobileNetV2, efficientDet), but Faster-RCNN 
models remain the most robust [19]. Zhang et al. [20] 
proposed a two-stage algorithm that at first recognizes wastes
into 13 classes, then classifies into 4 categories, namely 
recyclable waste, household food waste, hazardous waste, and 
residual waste. Data augmentation techniques are applied
comprising scaling, rotation, shear mapping, and flipping 
operations. Besides noise addition (influencing the image 
resolution and size), blur effect (correlated with the image
focus), hue and saturation variations can be considered [21].

Data annotation is pivotal; Lu et al. [22] developed a 
segmentation model exploiting a CV semantic segmentation 
technique (with a better granularity – classification is 
performed in a pixelwise manner [23], hence spatial geometry 
is more precise and better solutions for characterization and 
robotic sorting are enabled), namely DeepLabv3+; their 
trained models are available on GitHub to be further fine-
tuned for specific applications. 

CDW data annotation plays a critical role in the 
development of CV models. The wide availability of CDW 
datasets enables DL models implementation since these 
require an extensive amount of contextual information during 
the training stage and evaluation [16]. This poses multiple 
challenges due to the manual nature of the data annotation 
process, quality and uniformity of annotations, scalability 
constraints reliant of annotator expertise, annotator’s bias 
which may lead to model bias, and technological 
considerations within, but not limited to, available annotation 
tools and infrastructure [24]. 

The state-of-the-art solutions (including automated sorting 
technologies and advanced analytical techniques like 
spectroscopy and chromatography) can be considered quite 
effective in laboratory conditions. Spectroscopy and 
chromatography sorting solutions are promising if combined 
with Internet of Things enabled technologies, in fact the score 
obtained linking supervised AI techniques and RGB-images 
and/or spectral imaging goes from 63.9% to 98.8% [25]. 

However, most of these techniques are not applicable in 
real scenarios due to material heterogeneity and heavy 
presence of dust. In fact, currently most of the waste 
management sites rely on manual classification and sorting 
approaches. This is obviously affected by subjectivity as well 
as health and safety issues, inconsistency, and cost 
inefficiency [26]. Advances in AI, robotics, and data analytics 
may further contribute to improvements in waste management 
processes, allowing for more accurate sorting and recycling of 
materials [27]. 

Hence, a not-negligible list of drawbacks can be identified 
in current technologies: 

• Most of the studies are performed in laboratory

conditions (e.g., simplified background, such as

black conveyor belt [9,28,29], optimal lighting

conditions, etc.);

• Datasets are artificially collected in non-real

scenarios; also, images from the web are used for

training [30]. For CDWs not many public wide

datasets are available (mainly referred to residential

and municipal wastes). TrashNet [31] is the most 

widely used, but it includes pictures of individual 

wastes with a white poster board as background, 

hence not capturing the complexity of real scenarios; 

however, accuracy beyond 90% has been achieved 

[32,33]. Lu et al. [22] built a real-life scenarios 

database based on images collected with cameras 

installed at upper-rear direction of trucks, 

considering both daytime and night; the annotation 

was performed by professional annotators via the 

Taobao platform. They evidenced the limits in 

depicting materials edges and boundaries as well as 

in balancing the datasets among the different classes 

to be distinguished. 

The literature approaches cannot be applied in-field since 
AI models need to be trained in conditions very close to the 
operating ones. In real scenarios presence of dust and intricate 
cluttered backgrounds significantly degrade the classification 
models performance, as well as changing lighting conditions. 
In addition, CDWs are usually overlapped with each other. 
For these reasons, the exploitation of computer vision is still 
limited for CDWs sorting [3] leading to substantial 
opportunities for further research. Sensor combination can be 
a way forward (e.g., Near-Infrared Radiation – NIR – and 
Raman spectroscopy, spectroscopic and visual sensors, 
computer vision and NIR, etc. [34]); for example, thermal 
characteristics of CDWs can be considered using thermal 
sensors and active thermography [35]. 

Hence, the aim of this paper is to propose a methodology 
based on sensors and AI algorithms for identifying, 
quantifying, and characterizing CDWs and provide relevant 
information to a platform dedicated to valorisation of such 
materials, with a view of circularity and sustainability of the 
construction sector. 

II. PROPOSED SENSOR- AND AI-BASED SOLUTION

Within the framework of the RECONSTRUCT project (A 
Territorial Construction System for a Circular Low-Carbon 
Built Environment, GA no. 101082265), the Authors are 
developing a solution for CDWs sourcing based on sensing 
technologies and AI-based algorithms for detection, 
quantification, and characterization of CDWs. The idea is 
based on the collection of data with vision systems in real-life 
scenarios in different working conditions (e.g., lighting, 
presence of dust, etc.) to include the normal variability in the 
methodology and be robust in field applications. The proposed 
solution aims at being applicable to real world scenarios, 
hence it is trickier to be developed with respect to laboratory 
conditions but can be really beneficial for CDWs 
management. HSI (Hyperspectral Imaging) systems could be 
exploited to consider the spectral signature for the assessment 
of quality of the wastes to be valorised (e.g., Serranti et al. [36] 
exploited the NIR range of 1000-1700 nm). 

The first step of the approach (Fig. 1) consists in 
evaluating different types of sensors in diverse spectral ranges, 
including RGB, depth, IR, and HSI solutions. Indeed, 
complementary information can be obtained exploiting them 
and this can be useful to discriminate among different classes 
of waste. In fact, using different input data the extraction of 
the characteristic features of each waste class is wider. 
Dimension, colour, texture, geometry, shapes are 
discriminating attributes for different types of waste. The 
collected information is hence used to build a dataset for the 
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AI model training. Accurate data annotation and segmentation 
of CDW samples are fundamental steps to train robust models 
to be applied in real scenarios. An empirical validation of the 
produced model efficacy is required to ensure that 
performance aligns with expectations under a diverse set of 
conditions. This enhances the stakeholder’s confidence and 
provides a clear set of representations that highlight areas for 
continuous refinement. Outlining equitable biases, opening 
the opportunity to refine responses to edge cases and optimise 
model based on real world data, enable to assess the possibility 
of sustainable scalability. Furthermore, real world 
demonstration highlights the potential of AI-based tools to 
optimise and enhance operational efficiencies while enabling 
interdisciplinary innovations. It is worthy to underline that AI 
models trained on real scenarios can be more robust and 
outperform the state of the art given that they learn from real-
world variety, hence becoming capable to efficiently 
generalize and manage new scenarios. This can be beneficial 
for waste management, supporting everyday activities of 
operators dealing with waste sorting; it is important to use the 
European Waste Codes (EWC) [37] to label data for the sake 
of interoperability, scalability, and, hence, to broaden the 
proposed methodology. 

A. Sensors and scenarios of interest

Selecting the optimal sensors for the target application is
fundamental; for sure, different constraints must be 
considered, such as budget, operating conditions (e.g., lighting 
and environmental conditions), and requirements (e.g., power 
supply and Internet connection for remote access to the 
measured data). The idea is to develop solutions scalable in 
terms of accuracy and complexity, depending on the 
requirements in terms of data quality and information of 
interest to be inferred from data analysis.  

Diverse types of vision systems can be included in the 
monitoring systems, such as RGB cameras, IR thermal 
cameras, LiDAR sensors, RGB-D cameras, and HSI systems. 
Not all of them are intended to be permanently installed, some 
(e.g., IR and HSI systems) can be dedicated to more in-depth 
analyses and other (e.g., drone equipped with multispectral 

cameras) only for complementary/additional inspection 
operations on the site of interest. Three segments of 
monitoring systems could be considered: 

• Basic solution, including only CCTV sensors. Both
quantification and characterization of CDWs would
rely on the analysis of data in the visible range;

• Intermediate solution, enclosing CCTV and LiDAR
sensors (or depth sensors) to have depth data useful
for quantification purposes;

• Advanced solution, incorporating CCTV, LiDAR,
and IR sensors. Additional data in the infrared range
can provide information useful to discriminate among
subclasses of wastes (e.g., distinct types of metals).

Moreover, advanced systems, such as hyperspectral 
cameras and drones embedding multispectral vision systems, 
can supplement the monitoring system as laboratory 
equipment to perform more in-depth analysis on material 
samples of interest (e.g., discrimination among different 
classes of metal waste through HSI [38]). 

Different scenarios can be of interest for CDWs 
recognition, for example focusing on trucks entering a 
construction/demolition/waste management site (Fig. 2), 
waste piles in a waste management site, and waste containers 
in construction/demolition sites. Clearly the field of view of 
the employed sensors has to be adequate for the target scene. 

B. Dataset and labelling

CDW data collection under real world conditions as well
as accurate labelling are required for precise classification, 
quantification, and characterisation of waste under the EWC 
standard, underpinning efficient waste valorisation. This 
methodology ensures accurate waste composition analysis, 
enhancing the accuracy of material segregation and 
quantification. 

C. AI Models

Among the various AI models employed in the literature,
the YOLO series emerges as a particularly powerful tool for 
object detection and segmentation. YOLO unifies class 
prediction and localisation in one stage detector, allowing the 
entire image to be analysed at once. This approach not only 
speeds up the detection process, but also reduces the chances 
of losing objects during analysis, making it an ideal solution 
for tracking objects in videos [19,39–41]. One of the most 
widely used models in the literature for segmentation is 
YOLOv8-seg. Its ability to process images quickly and 
accurately makes it the ideal choice for real-time object 
identification  [42,43]. Its deep learning architecture, trained 

Fig. 1 Pipeline of the proposed approach. 
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Fig. 2 Proposed experimental setup (truck scenario). 
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on a complete set of images taken in very similar contexts with 
respect to end-use can enable the recognition of various types 
of CDWs, which is crucial for effective waste management. 
This model has been chosen for the first test for the 
classification of the CDWs, as shown in Section III. 

However, Mask R-CNN represents a viable alternative; it 
is based on and extends the architecture of Faster R-CNN by 
introducing an additional level of complexity to deal with the 
segmentation of instances. While Faster R-CNN focuses on 
the detection of objects and the prediction of their bounding 
boxes, Mask R-CNN adds a parallel branch for the prediction 
of pixel-level binary masks for each region of interest (ROI). 
Being a multi-stage detector, Mask R-CNN processes images 
through several stages, first identifying ROIs, then classifying 
and localising objects, and finally generating precise masks 
for each detected instance. This approach makes it particularly 
powerful for applications requiring granular detail [44,45]. 

For a more complete understanding of the scenarios of 
interest for the present work, the integration with LiDAR 
technology may be particularly appropriate. In fact, by 
incorporating point cloud data obtained from LiDAR, the 
approach goes beyond the simple detection, enabling an 
accurate quantification of waste volumes. The fusion of AI-
model-based sensing with spatial data from LiDAR would 
allow for a more in-depth analysis of waste materials, 
identifying the type of material and estimating the related 
volume. This integration promises to improve the efficiency 
and effectiveness of waste identification and quantification 
processes, paving the way for more informed and sustainable 
waste management practices in construction and demolition 
operations. 

As a more advanced approach, AI models exploiting 
imaging in both visible and IR can be used. By combining the 
detailed resolution of visible images with the detection of 
emission variations in thermal images, this innovative method 
can significantly improve the AI ability to recognise and 
classify CDWs in different environmental conditions. This 
capability is particularly useful for distinguishing materials 
that may appear similar in visible light but have different 
thermal properties.  

III. PROOF OF CONCEPT

The feasibility of the proposed solution has been 
preliminarily tested considering waste piles scenario and 
using a pre-trained CNN (i.e., YOLOv8-seg), re-trained with 
labelled data from online sources [46] to identify three main 
classes of wastes, namely concrete, rebar, and plastic (PVC). 
The dataset, consisting of 370 images, was divided into a 
training set (75%) and a validation set (25%) – 16% concrete, 
38% plastic, and 46% rebar. 

It is worth to notice that the datasets available online, 
although easily accessible, have several limitations, as it can 
be expected. In particular, the images contained are few in 
number and lack the variety and realism necessary to achieve 
satisfactory result. Therefore, the results of the present test 
must be interpreted with caution, as preliminary results. In 
fact, the performance of YOLOv8-seg, although promising in 
terms of its ability to identify and segment waste materials, 
was inevitably hampered by the shortcomings of the dataset, 
especially for the recognition of concrete, which is due to the 
non-balanced dataset across classes. However, it is crucial to 
consider this initial test as a stepping stone rather than a 
definitive assessment of the potential of the proposed 
approach.  

Then, the trained model was tested on a few data collected 
in the first experimental campaigns carried out in the 
framework of the RECONSTRUCT project in two demo sites 
provided by COMSA Corporación (Barcelona, Spain) and 
Sorigué (Barcelona, Spain), investigating the trained model 
generalisation potential. In particular, this dataset equates to a 
total of 5579 images containing multiple material samples. 
Multiple scenarios of interest were identified based on specific 
activities including waste piles, truck, and waste containers. 
These were accordingly labelled with the aid of expert 
annotators (Fig. 3).  

Fig. 4 shows examples of the CDWs recognition by the 
first model with the bounding box, typical of YOLO models, 
and the confidence levels. The main outcome of this phase is 
the validation of YOLOv8-seg as a valid tool for waste 
detection and classification. This test served as an important 
learning experience, highlighting the critical role of data 
quality in AI-driven waste management. 

Fig. 3 Example of image annotation in the truck scenario. Labelling 

courtesy of Brunel University London. 

Fig. 4  First results from CDWs recognition, mainly considering concrete 

and rebars. 
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IV. CONCLUSION AND FUTURE PERSPECTIVES

In this paper a solution based on sensors and AI algorithms 
for CDWs recognition and valorisation has been proposed. 
This approach can be applicable in-field. The information 
inferred is exploitable for the automatization of CDWs 
detection, characterization, and, hence, sorting. An 
uncertainty analysis will be performed on the developed 
models to provide results with associated confidence intervals. 
This analysis will include both hardware and software parts of 
the entire pipeline for CDWs characterization, to characterize 
the whole measurement chain from a metrological point of 
view, also identifying the steps that could be improved. In this 
way, the final users can properly interpret and exploit the 
results, especially for valorisation purposes. This goes in the 
direction of enhancing sustainability and circularity in the 
construction sector, supporting CDWs valorisation and avoid 
that potential wastes remain so. Indeed, these solutions allow 
to give these materials an added value, providing information 
exploitable in platforms specifically dedicated to valorisation 
(e.g., Synerplatform) that are connected with a dense network 
of enterprises potentially interested in reuse such resources.  

The proposed solution (including both hardware and 
software parts) will be validated in a few project demo cases, 
including both waste management sites and 
construction/demolition sites applications. Once it is deployed 
in the framework of the RECONSTRUCT project, it can be 
easily scaled to different applications (e.g., management of 
urban wastes). The interoperability of the proposed approach 
should be considered in order to make the process easily 
scalable and open to different applications and other sensors. 
For ease of scalability and interoperability, standards in force 
as well as semantics should be always considered [47]. The 
owners of both waste management sites and 
construction/demolition sites should be supported in raising 
their awareness on the potential benefits of these solutions, in 
order to widen their applications and taking advantage of new 
scenarios to improve the models performance the developed 
model(s) will be evaluated through standard metrics like 
accuracy, precision, recall, and F1 score. 

The following tips can be considered for the development 
of solutions contributing to innovation in this field: 

• Data-fusion considering multiple sensors working in
diverse spectral regions can represent a good way to
achieve a complete footprint of the materials for their
classification;

• Real scenarios should be considered to obtain robust
models. Datasets should be collected in real-life
conditions, as close as possible to the final application;

• Data augmentation techniques (e.g., Fréchet Inception
Distance method as employed by Na et al. [21]) could
be used to widen the sample population and mitigate
the noise effect typical of in-field applications;

• Smart segmentation techniques could be exploited to
efficiently annotate datasets; zero-shot segmentation
and SAM tools could be used as well as object
detection features as suggested in [47].
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