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  Abstract—Negative emotion (e.g., anger, fear) may influence 

normal driver behavior, resulting in serious traffic accidents. Thus, 

developing an automatic driver emotion classification method is 

necessary and urgent. Most of the existing methods are performed 

in realistic indoor environment and always lack effective 

utilization of heterogeneous information, resulting in low accuracy 

and reliability. In this paper, a novel dual-pathway driver emotion 

classification network using multi-task learning strategy is 

proposed. To illustrate the design of the proposed driver emotion 

classification network, three modules are constructed: 1) visual-

facial data processing module; 2) driving behavioral data 

processing module; 3) fusion output module. Meanwhile, 

considering the influence of emotional states on driving behavior, 

a comprehensive analysis is conducted to distinguish the positive, 

neutral, and negative influence on driving behavior. Furthermore, 

a joint verification in both realistic indoor environment (i.e., 

laboratory simulation on the PPB-Emo dataset) and real-world 

outdoor scenario is performed. The experimental results illustrate 

that the proposed network exhibits superior performance in terms 

of classification accuracy and response time, achieving good 

balance between classification accuracy and running speed in 

internet of things scenarios. 

Index Terms—Dual-pathway, driver emotion classification, 

driving behavior, joint verification 

I. INTRODUCTION

n the process of vehicle driving, a driver’s emotion is affected

by different factors (e.g., the traffic conditions, 

psychophysiological states), which may result in hazardous 

driving behaviours and potentially severe traffic accidents, 

particularly during significant emotional fluctuations [1-3]. 

Based on this, timely and accurate recognition of emotional 

state using internet of thing (IoT) embedded technologies is 

beneficial to implement healthcare and safety interventions, as 

well as for the development of a friendly and well-organized 

driving environment in smart city. 

In general, driver emotion classification technology mainly 

relies on analysing available invasive physiological signals and 
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non-invasive multi-modal signals through different 

machine/deep learning methods [4, 5]. Accordingly, driver 

emotion classification methods can be divided into two 

categories, i.e., the invasive methods [4-8] and non-invasive 

methods [9-17]. For the invasive methods, the physiological 

signals, including electroencephalography (EEG) signal, 

electrocardiography (ECG) signal, and electromyography 

(EMG) signal can be directly measured to achieve accurate 

classification performance, while having negative impact on 

driving behavior, especially when an emergency occurs. 

Different with the invasive methods, non-invasive methods 

implement the driver emotion classification using non-invasive 

multi-modal signals (e.g., facial expression and voice signal), 

which has almost no effect on driving performance, thereby 

developing a secure and comfortable driving environment [9-

17]. For example, a deep learning approach is proposed to 

monitor various drivers’ expressions in different pose variations, 

illuminations, and occlusions using facial images [9]. A driver 

emotion classification network based on voice modality was 

proposed, which achieves accurate classification results by 

fusing the global acoustic features and local spectrogram 

features [10]. In [11], a driver emotion classification network 

using facial expressions and cognitive process features (age, 

gender, driving experience) was proposed. [12] proposed a 

hybrid network (i.e., Emotion-FAN) using frame attention and 

deep convolutional neural network (CNN) for emotion 

classification. Then, a dynamic driver emotion classification 

network (i.e., Former-DFER) was introduced to tackle the 

challenges posed by occlusion and non-frontal poses during 

driving [13]. After that, [14] proposed a clip-ware emotion-rich 

feature learning network (i.e., CEFLNET) for robust driver 

emotion classification. A facial expression-based driver 

emotion classification network with intensity-aware loss (IAL) 

function was designed [15]. In [16], a self-supervised 

autoencoder (i.e., MARLIN) that can learn universal facial 

representations from non-annotated web-crawled videos was 
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proposed to perform the accurate driver emotion classification. 

[17] developed a multi-3D dynamic facial emotion

classification network (i.e., M3DFEL), which can improve the

driver emotion classification accuracy.

Non-invasive methods have been proved effective in driver 

emotion classification task, enabling a safer and more 

comfortable driving environment. However, these methods still 

suffer from three limitations [18-20]: 

Limitation 1: Recent studies almost focus on single modality, 

e.g., visual-facial data (VFD), which may degrade the accuracy

and reliability of driver emotion classification. The

complementary modality, e.g., driving behavioral data (DBD),

and coupling relationship between cross-modal information

have not been fully considered.

Limitation 2: Since different modalities have their own 

characteristics (e.g., data structure, spatial-temporal 

complexity), it is challenging to effectively fuse and learn cross-

modal features.  

Limitation 3: The existing methods are almost conducted in 

the realistic indoor environment (e.g., laboratory simulation). It 

is hard to balance the trade-off between classification accuracy 

and running speed in the real-world outdoor scenario.  

Based on this, a novel non-intrusive driver emotion 

classification network is proposed in this work, which aims to 

address the above-mentioned three limitations. For clarity, the 

systemic comparison of the existing driver emotion 

classification methods versus the proposed method is illustrated 

in Fig. 1. The main contributions can be summarized below: 

1) A dual-pathway driver emotion classification network

(DDECNet) is proposed, which can effectively capture high-

level facial features from spatial-temporal perspectives and 

time-series features from different receptive fields, enabling 

efficient utilization of heterogeneous information to improve 

the classification performance. 

2) A fusion output module with multi-task learning strategy

is designed that can sufficiently integrate cross-modal features 

and provide a reliable analysis to distinguish the positive, 

neutral, and negative influence on driving behavior. 

3) The proposed emotion classification network is performed

in both the realistic indoor environment and the real-world 

outdoor scenarios. The experimental results demonstrate that 

the entire scheme has advantages in balancing the trade-off 

between running speed and classification performance. 

The remaining of this work is organized as follows: Section 

II elaborates on the design of the entire driver emotion 

classification network from the perspectives of VFD processing 

module, DBD processing module, and fusion output module. In 

Section III, the dataset and the corresponding pre-processing 

method is provided detailed. In Section IV, a joint verification 

is conducted to demonstrate the correctness and effectiveness 

of the entire scheme. Section V provides the conclusion and 

future direction of the entire work. 

II. DESIGN OF THE PROPOSED DDECNET

A. Overall Network Architecture

In this work, we propose a novel driver emotion

classification network (i.e., DDECNet) which can effectively 

capture and fuse heterogeneous information from in-vehicle 

environment, enabling automatic driver emotion classification. 

The specific architecture is illustrated in Fig. 2. To facilitate 

understanding of the DDECNet design, we describe it using 

three modules, i.e., the VFD processing module, the DBD 

processing module, and the fusion output module. 

B. Visual-Facial Data Processing Module

In VFD processing module, each video sample is uniformly

partitioned into 8 segments. We then randomly select 2 frames 

per segment, transforming each video sample into a 16-frame 

facial image sequence with dimensions 112×112, denoted as 

XFVℝ163112112. For each facial image frame, initial features 

are extracted using a two-dimensional (2D) convolutional layer 

and three residual convolutional blocks. The generated feature 

map is denoted as Mℝ HWC, where H, W, and C are the height, 

width, and channel number of feature map, respectively. Then, 

the feature map is converted into Q one-dimensional (1D) 

vectors with the length of C (denoted as MfℝQC, where 

Q=H∙W). Furthermore, the feature map is subsequently injected 

into the spatial transformer that consists of spatial positional 

embedding and S-layer spatial encoders. In spatial positional 

embedding, the spatial positions can be encoded by adding 

visual word embeddings m
f 

p to a learnable position embedding 

ep, which can be mathematically expressed by: 
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Fig. 1. Systemic comparison of the existing driver emotion classification methods versus the proposed method 
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 0    1, 2, ,f

p p pz m e p Q= +  (1) 

where encoded result z
0 

p  is then input to the S-layer spatial 

encoders (mainly comprising multi-head self-attention and 

feedforward network). In the l-th layer of the spatial encoder, 

the self-attention computation can be achieved by: 
( , ) ( , ) 1( )l k l k l

p Q pq W LN z −= (2) 

( , ) ( , ) 1( )l k l k l

p K pk W LN z −= (3) 

( , ) ( , ) 1( )l k l k l

p V pv W LN z −= (4) 

where q
(l,k) 

p , k
(l,k) 

p , and v
(l,k) 

p  denote the query, key, and value 

vectors. LN(·) represents the layer normalization. W
(l,k) 

Q , W
(l,k) 

K , 

and W
(l,k) 

V  are all weight matrices for the k-th head in the l-th 

layer, where k1, ‧‧‧, K, and K is the total number of attention 

heads. For the k-th attention head, the self-attention weight λ
(l,k) 

p  

can be calculated by: 

 
( , )

( , ) ( , )

' ' 1, ,
max( )

'

l k

pl k l k

p p p Q

q
soft k

C


=
=  (5) 

where C' denotes the latent dimensionality of each attention 

head. 

Then, the output of the l-layer spatial encoder z
l 

p  can be 

mathematically expressed by: 

( ( ))l l l

p p pz MLP LN z z= + (6) 

( ,1)

1

( , )

l

p

l l l

p p

l k

p

s

z W z

s

−

 
 

= + 
 
 

(7) 

( , ) ( , ) ( , )

, ' '

' 1

Q
l k l k l k

p p p p

p

s v
=

=  (8) 

where W, MLP(·), λ
(l,k) 

p,p’  are the projection matrix, MLP mapping 

operation, and self-attention weight, respectively. 

Furthermore, the Q encodings z
S 

p  are concatenated at the 

spatial level to generate the refined feature map Mrℝ HWC. 

The feature embedding x t́ℝF for each frame is computed by: 

 ' ( ( ))  1, 2, 16tx GAP g Mr t=  (9) 

where g(·) and GAP(‧) represent the convolution and global 

average pooling operations, respectively.  

Next, the temporal transformer consisting of temporal 

positional embedding and T-layer temporal encoder is 

introduced. The input to the temporal encoder can be given by: 

 0

' ' ''   ' 0,1, ,16t t tz x e t= +  (10) 

where et denotes the learned temporal positional embedding. 

The output of the temporal encoder z
T 

0  represents the high-

level facial features. The emotion classification results ŷ1 can be 

written by:  

1 0
ˆ ( )Ty FC z= (11) 

where FC(‧) denotes a fully connected network. 

C. Driving Behavioral Data Processing Module

In the DBD processing module, eight driving behavior data,

including steering wheel position, gas pedal position, brake 

pedal force, forward direction acceleration, lateral acceleration, 

forward direction velocity, lateral velocity, and vertical velocity 

are selected as inputs XDB. The DBD processing module 

consists of two residual blocks and a global average pooling 

layer. Notably, a max-pooling operation cascaded with 1D 

convolution is introduced to alleviate the sensitivity to minor 

noise. An average pooling layer is incorporated to average the 

output features over the entire temporal dimension. 

After a fully connected network, the time-series features FDB 

from different receptive fields can be captured. The emotion 

classification results ŷ2 can be expressed by: 

2 DB
ˆ ( )y FC F= (12) 
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Fig. 2. Architecture of the proposed DDECNet. 
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D. Fusion Output Module

In fusion output module, the features derived from dual-

pathway processing modules (i.e., the VFD processing module 

and DBD processing module) are directly fused through a 

concatenation unit. The final emotion classification result ŷ can 

be obtained by: 

ˆ ( )y FC F= (13) 

0( , )T

DBF cat z F= (14) 

where F is the fused features and cat(‧) denotes the 

concatenation operation. 

E. Multi-task Learning Strategy and Loss Functions

During the training process, the driver emotion classification

task can be decomposed into three classification subtasks. 

Specifically, the classification subtask 1 independently employs 

the high-level facial features with loss function Loss1; The 

classification subtask 2 independently utilizes the time-series 

features with loss function Loss2; The classification subtask 3 

used the fused features with loss function Loss3.  

1
ˆ1 ( , )Loss CrossEntropyLoss y y= (15) 

2
ˆ2 ( , )Loss CrossEntropyLoss y y= (16) 

3
ˆ3 ( , )Loss CrossEntropyLoss y y= (17) 

where y is the ground-truth label, CrossEntropyLoss(‧) denotes 

the cross-entropy loss function. 

Although each subtask focuses on different features, there 

are synergies between subtasks. Namely, these three subtasks 

are learned jointly. The overall loss function of DDECNet can 

be given by weighted summation of the individual subtask loss 

functions: 

1 2 3Loss Loss Loss Loss  = + + (18) 

where parameters α, β, and γ denote the weight assignments.

F. Influence of Driver Emotion on Driving Behavior

Different emotional states always have different influences

on the driving behavior. Inspired by [21-24], seven basic 

emotions (i.e., surprise, fear, disgust, sadness, anger, neutral, 

and happiness) are mapped into three categories (negative, 

neutral, and positive) according to their different impacts on 

driving behavior. The specific mapping relationship between 

the driver emotion and driving behavior is illustrated in Fig. 3. 

Driver emotion
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Disperse Attention

Narrow Attention
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Broaden Attention

 Maintain Attention

Negative

Neutral

Positive

Fig. 3. The correspondence between the driver emotion and driving behavior 

From Fig. 3, the feeling of anger is one of the negative 

emotions during driving, it may disperse the driver’s attention 

and even lead to aggressive driving behavior, making the entire 

driving process challengeable and unpredictable. Similarly, the 

feeling of sadness may narrow or reduce attention, which may 

also trigger aggressive driving behavior. The feeling of fear may 

have a broad impact on driver attention, e.g., 

narrowing/weakening attentional focus, increasing attentional 

difficulty, and excessive focusing on the threatening stimuli. 

The feeling of disgust weakens or blocks the perception ability, 

which may impair driver’s attention. The feeling of surprise 

may delay the initiation of discrete actions and interrupt 

continuous actions, which may shift driver’s attention. The 

feeling of happiness is associated with an assimilative 

processing style, which may broaden attentional focus. The 

feeling of neutral is able to maintain attention, which has 

negligible effect on driving behavior. 

III. DATASET AND PRE-PROCESSING

A. Dataset Description

In this work, the PPB-Emo dataset [25], a widely used

multimodal dataset, is employed to verify the effectiveness and 

feasibility of the proposed DDECNet in realistic indoor 

environment. Specifically, the PPB-Emo dataset records VFD 

and DBD from 40 participants in 240 valid driving tasks. Each 

sample has a certain driver emotion label, including seven 

categories, i.e., surprise, fear, disgust, sadness, anger, neutral, 

and happiness. Each driver emotion in the PPB-dataset is 

evenly distributed. During the training and testing phases, the 

5-fold cross-validation [13] is employed to evaluate the

proposed DDECNet.

To demonstrate the generalizability and transferability, the 

well-trained DDECNet is also evaluated on a real-world 

outdoor dataset collected by an electric vehicle (Leapmotor 

T03). Specifically, this dataset includes 50 participants (25 

males and 25 females) with five different age groups (18 ~ 27 

years old, 28 ~ 37 years old, 38 ~ 47 years old, 48 ~ 57 years 

old, more than 58 years old), five different driving experiences 

(less than 10,000km, 10,000 ~ 30,000km, 30,000 ~ 50,000km, 

50,000 ~ 100,000km, more than 100,000km), and five different 

education backgrounds (primary school, junior middle school, 

senior middle school, university, and higher education). 

Meanwhile, more than 10 scenarios (urban road, highway, rural 

road, tunnel under different weather and light conditions) are 

included in this dataset. Similar with PPB-Emo dataset, seven 

emotion categories are also evenly-distributed, and each 

emotion category contains 50 samples. The necessary sensor 

devices and the corresponding data samples are provided in 

Table I. Specifically, the signal acquisition devices include the 

near-infrared camera, CAN bus analyzer, and inertial 

measurement unit. Notably, considering these devices are all 

mature, reliable, and commercially available, they can be easily 

installed and run in the vehicle. Different with the invasive 

sensors, these non- invasive devices have minimal impact on 

driving performance and help create a secure and comfortable 

driving environment. 
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TABLE I 

THE SENSOR DEVICES AND THE CORRESPONDING DATA 

Sensor devices Collected Data Unit 

Near-infrared camera 

(ZWAK 3306) 
Visual-facial data Frame 

CAN bus analyzer 
(GCAN USBCAN-Ⅰ Pro) 

Steering wheel position Rad 

Gas pedal position Degree 
Brake pedal force N 

Forward direction velocity m/s 

Lateral velocity m/s 

Vertical velocity m/s 

Inertial measurement unit 

(Wit-motion HWT906) 

Forward acceleration m/s2 

Lateral acceleration m/s2 

B. Dataset Pre-processing

The dataset pre-processing contains the linear interpolation

& normalization for DBD and the face alignment for FVD. 

Notably, the face alignment is performed to ensure the face is 

in a standard position, as illustrated in Fig. 4. The specific 

process can be divided to three steps: 

Step 1 (Landmarks detection): We first employ a facial 

landmark predictor to detect facial landmarks.  

Step 2 (Transformation matrix calculation): we calculate the 

centre coordinates of both eyes using the coordinates of 

landmarks. The horizontal distance dX, the vertical distance dY, 

and the angle θ between the two eyes can be obtained. After 

calculating the rotation angle, scaling factor, and translation 

position, a transformation matrix is developed for translating, 

rotating, and scaling.  

Step 3 (Face alignment): According to the obtained 

transformation matrix, the aligned facial image can be achieved 

by translating, rotating, and scaling operations. 

Original inputs

dXdY
θ

dX
dY

θ

dX
dY

θ

Face 

alignment
Landmarks 

detection

Transformation 

matrix calculation

Step 1 Step 2 Step 3

I

II

III

I

II

III

I

II

III

I

II

III

Fig. 4. The preprocessing procedure for near-infrared facial images 

IV. EXPERIMENT AND ANALYSIS

A joint verification in both realistic indoor environment (i.e., 

laboratory simulation on the PPB-Emo dataset) and real-world 

outdoor scenario is carried out. The specific experimental 

description is provided below: 

A. Experimental Setup and Evaluation Metrics

The proposed DDECNet is trained on an open-source

PyTorch platform (dual NVIDIA GeForce RTX 4090 GPUs). 

During the training phase, the total training epochs are set as 

300. The dynamic learning rate (with the initial value of 0.01)

is divided by 10 every 100 epochs, and the batch size is set to

128. The stochastic gradient descent (SGD) optimizer

(momentum and weight decay are set as 0.9 and 0.0001,

respectively) is utilized for parameter optimization.

Notably, the random cropping and horizontal flipping 

operations are performed on VFD to improve the robustness of 

the model. Meanwhile, the Gaussian random noise is 

introduced to DBD to better simulate the real signal acquisition 

process in real-world scenario.  

To evaluate the performance of the proposed DDECNet, a 

series of common evaluation metrics [26, 27] including seven-

class classification accuracy (Acc-7), Macro F1 score (F1-7), 

three-class classification accuracy (Acc-3), weighted F1 score 

(F1-3), average accuracy (Acc), F1 score (F1), and 

computational complexity are introduced in this work. 

B. Model Hyperparameter Selection

The success of most deep learning models in classification

tasks is largely attributed to the depth of their architectures [28]. 

Based on this, the influence of depth of spatial transformer, 

temporal transformer, and inception unit on the performance of 

DDECNet are explored. In our model, the initial depths of 

spatial encoder, temporal encoder, and inception unit are set as 

1, 1, 6 respectively. Then, a series of experiments comparing 

different depth combinations (S, T, I) on PPB-Emo dataset are 

conducted. The specific experimental and visualization results 

are collected in Table II and Fig. 5, respectively. 

TABLE Ⅱ 

THE INFLUENCE OF DEPTH COMBINATION ON MODEL PERFORMANCE 

Setting Metrics 

S T I 
Acc-7 

(%) 

F1-7 

(%) 

Acc-3 

(%) 

F1-3 

(%) 

Complexity  

(GFLOPs) 

1 1 6 77.87 77.90 90.37 90.07 8.33 

3 1 6 79.00 79.18 90.72 90.59 9.15 

1 3 6 81.63 82.49 94.00 93.95 8.40 

3 3 6 80.37 80.56 91.89 91.77 9.23 

6 3 6 78.16 78.21 90.62 90.38 10.46 

3 6 6 80.67 80.70 91.80 91.75 9.33 

6 6 6 80.29 80.34 91.83 91.71 10.57 

1 3 3 77.58 77.53 90.90 90.78 10.53 

1 3 9 80.21 80.43 91.27 91.18 10.61 

Fig. 5. The visualization results with different depth combinations 

From Table II and Fig. 5, when the neural network depth 

combination (S, T, I) is set as (1, 3, 6), the proposed DDECNet 

achieves the best classification performance. 
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C. Comparison with State-of-the-Art Models

To evaluate the overall performance of the proposed

DDECNet, a fair comparison between the proposed DDECNet 

and state-of-the-art (SOTA) methods (including CogEmoNet 

[11], Emotion-FAN [12], Former-DFER [13], CEFLNET [14], 

IAL [15], MARLIN [16], M3DFEL [17]) is conducted. The 

convergence curves of accuracy and loss during training and 

testing phases are illustrated in Fig. 6.  
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Fig. 6. The convergence curves of accuracy and loss during training and testing 
phases. (a) Acc-7 curve during training phase (b) Loss curve during training 

phase (c) Acc-7 curve during testing phase (d) Loss curve during testing phase 

From Fig. 6, the proposed DDECNet model converges 

rapidly with variable learning rate, demonstrating that the 

proposed DDECNet has better convergence performance, 

compared to SOTA methods. Meanwhile, the similar results can 

also be observed in the accuracy curves during training and 

testing phase. 

Then, the specific experimental results are recorded in Table 

Ⅲ and Table Ⅳ. The visualization results are shown in Fig. 7 

and Fig. 8, respectively.  

For the driver emotion classification task (as illustrated in 

Table III and Fig. 7), the proposed DDECNet achieves the 

highest classification Acc and F1 in surprise, fear, disgust, and 

neutral emotion over all the SOTA methods. Meanwhile, the 

classification performance of happiness, sadness, and anger 

emotions also wins the second place over currently advanced 

approaches in terms of Acc and F1. Notably, both the Acc-7 and 

F1-7 achieve the first place, outperforming other competitors. 

For the exploration of influence of driver emotion on driving 

behavior (as illustrated in Table IV and Fig. 8), the proposed 

DDECNet outperforms other competitors, especially for the 

negative influence on driving behavior (+0.85% Acc, +0.98% 

F1) and neutral influence on driving behavior (+2.46% Acc, 

+1.59% F1). Meanwhile, the proposed method is superior to the

other competitors in terms of Acc-3 and F1-3.

D. Ablation Analysis

To validate the role of VFD and DBD, as well as the

effectiveness of the multi-task learning strategy, a series of 

ablation experiments are carried out. 
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Fig. 7. The comparative results for driver emotion classification task 
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Fig. 8. The comparative results for the exploration of influence of driver emotion on driving behavior 
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Modality ablation: the proposed DDECNet is performed 

under single modality (i.e., pure VFD or pure DBD) and dual 

modalities (both VFD and DBD), respectively. The specific 

experimental results are illustrated in Table Ⅴ and Table Ⅵ.  

Specifically, the dual-modality setting achieves best 

classification performance in terms of Acc and F1, compared to 

single-modality setting. For diver emotion classification (as 

shown in Table V), the dual-modality setting shows a 17.12% 

and a 18.27% increase in Acc-7 and F1-7 respectively, 

compared to the pure VFD setting. Meanwhile, compared to the 

pure DBD setting, a 34.03% and a 35.04% improvement in 

Acc-7 and F1-7 are observed in the dual-modality setting. For 

the exploration of influence of driver emotion on driving 

behavior (as shown in Table VI), the dual-modality setting 

shows a 9.60% and a 9.96% increase in Acc-3 and F1-3 

respectively, compared to the pure VFD setting. Meanwhile, 

compared to the pure DBD setting, a 22.55% and a 22.95% 

improvement in Acc-3 and F1-3 are observed in the dual-

modality setting. Correspondingly, the confusion matrix (as 

shown in Fig. 9) also illustrates that the proposed DDECNet 

using dual modalities can achieve better classification 

performance. Because dual-pathway construction enables the 

effective fusion of data from both VFD and DBD. 

Learning strategy ablation: the proposed DDECNet is 

performed using single-task learning (STL) strategy, multi-task 

independent learning (MT-IL) strategy, and multi-task joint 

TABLE Ⅲ 

THE COMPARATIVE RESULTS OF DRIVER EMOTION CLASSIFICATION TASK 

Ref. 
Surprise Fear Disgust Happiness Sadness Anger Neutral Average 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc-7 F1-7 

[11] 73.33 68.75 62.16 64.79 80.39 78.10 71.01 75.97 67.57 69.44 80.301 69.74 75.29 81.01 72.44 72.54 

[12] 68.49 67.57 66.18 67.16 84.09 80.43 84.211 84.961 68.18 65.93 70.89 73.682 80.00 81.75 73.49 74.50 

[13] 61.19 63.08 56.25 53.33 70.83 74.73 81.58 80.00 71.62 69.74 61.54 63.16 84.72 85.31 69.94 69.91 

[14] 46.03 44.27 38.55 40.25 70.97 65.67 59.78 68.75 64.00 64.43 68.00 56.67 85.19 87.622 60.13 61.09 

[15] 79.102 76.26 60.94 57.35 81.25 82.112 75.00 78.62 64.86 66.21 64.10 68.03 86.112 82.12 72.65 72.96 

[16] 75.00 66.18 59.46 68.75 82.352 73.04 78.26 71.05 60.81 62.94 62.12 62.60 70.59 78.43 69.10 68.84 

[17] 76.62 76.622 79.712 73.832 68.89 72.94 68.18 70.87 81.161 75.172 70.15 71.76 80.23 84.66 75.572 75.122

This Work 79.451 79.451 86.761 77.631 88.641 87.641 82.462 83.932 77.272 79.531 74.682 79.191 88.571 89.211 81.841 82.371

Note: the subscript 1 and 2 represent the specific ranking results. 

TABLE Ⅳ 

THE COMPARATIVE RESULTS FOR THE EXPLORATION OF INFLUENCE OF DRIVER EMOTION ON DRIVING BEHAVIOR 

Ref. 
Negative influence Neutral influence Positive influence Average 

Acc F1 Acc F1 Acc F1 Acc-3 F1-3 

[11] 94.46 91.51 75.29 81.01 71.01 75.97 87.68 87.41 
[12] 94.892 94.352 80.00 81.75 84.211 84.961 91.442 91.392 

[13] 93.35 93.64 84.72 85.31 81.58 80.00 90.19 90.22 
[14] 94.892 91.20 85.19 87.622 59.78 68.75 87.06 86.48 

[15] 92.75 92.75 86.112 82.12 75.00 78.62 88.94 88.91 

[16] 90.15 89.74 70.59 78.43 78.26 71.05 84.97 85.04 
[17] 93.27 91.32 80.23 84.66 68.18 70.87 87.47 87.30 

This Work 95.741 95.331 88.571 89.211 82.462 83.932 93.111 93.081 

TABLE Ⅴ 

ABLATION ANALYSIS ON DRIVER EMOTION CLASSIFICATION TASK 

Setting 
Surprise Fear Disgust Happiness Sadness Anger Neutral Average 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc-7 F1-7 

Modality 

ablation 

FVD 70.13 70.13 55.07 56.30 62.22 55.45 63.64 66.14 60.87 63.64 73.13 64.05 66.28 73.08 64.72 64.10 

DBD 59.74 58.23 53.62 49.66 42.22 42.22 46.97 46.97 42.03 41.13 44.78 46.88 43.02 46.25 47.81 47.33 

FVD+DBD 79.45 79.45 86.76 77.63 88.64 87.64 82.46 83.93 77.27 79.53 74.68 79.19 88.57 89.21 81.84 82.37 

Learning 

strategy 
ablation 

STL 58.44 53.25 40.58 38.10 31.11 32.18 34.85 34.07 40.58 40.29 41.79 43.75 43.02 48.37 42.38 41.43 

MT-IL  71.64 71.64 71.19 68.29 74.47 73.68 84.72 82.43 63.53 67.92 73.49 75.78 86.36 82.61 74.74 74.62 

MT-JL 79.45 79.45 86.76 77.63 88.64 87.64 82.46 83.93 77.27 79.53 74.68 79.19 88.57 89.21 81.84 82.37 

Note: STL denotes the single-task learning strategy, MT-IL denotes multi-task independent learning, MT-JL denotes multi-task joint learning. 

TABLE Ⅵ 

ABLATION ANALYSIS ON THE EXPLORATION OF INFLUENCE OF DRIVER EMOTION ON DRIVING BEHAVIOR 

Setting 
Negative influence Neutral influence Positive influence Average 

Acc F1 Acc F1 Acc F1 Acc-3 F1-3 

Modality 

ablation 

FVD 92.05 89.19 66.28 73.08 63.64 66.14 83.51 83.12 
DBD 82.57 81.08 43.02 46.25 46.97 46.97 70.56 70.13 

FVD+DBD 95.74 95.33 88.57 89.21 82.46 83.93 93.11 93.08 

Learning strategy 

ablation 

STL 80.43 78.51 43.02 48.37 34.85 34.07 67.43 66.97 

MT-IL 92.08 93.45 86.36 82.61 84.72 82.43 90.19 90.07 

MT-JL 95.74 95.33 88.57 89.21 82.46 83.93 93.11 93.08 
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learning (MT-JL) strategy, respectively. The experimental 

results are presented in Table Ⅴ and Table Ⅵ.  

From these two tables, it can be seen that the MT-JL strategy 

achieves best classification performance in terms of Acc and F1, 

compared to STL strategy and MT-IL strategy. Specifically, the 

MT-JL strategy shows obvious improvement (+39.46% Acc-7, 

+40.94% F1-7 compared to the STL strategy; +7.10% Acc-7,

+7.75% F1-7 compared to the MT-IL strategy) on driver

emotion classification task (as shown in Table V). For the

exploration of influence of driver emotion on driving behavior

(as shown in Table VI), the MT-JL strategy exhibits obvious

improvement (+25.68% Acc-3, +26.11% F1-3 compared to the

STL strategy; +2.92% Acc-3, +3.01% F1-3 compared to the

MT-IL strategy). Correspondingly, the confusion matrix in Fig.

9 also illustrates that the proposed DDECNet using MT-JL

strategy can achieve best classification performance. The main

reason may be that the MT-JL strategy aims to learn multiple 

related tasks jointly, so that the knowledge contained in a task 

can be leveraged by other tasks. 

E. Effectiveness Analysis

To study the necessity and effectiveness of core components

each module (i.e., VFD processing module, the DBD 

processing module, and the fusion output module), the 

effectiveness analysis is carried out. The specific comparison 

results are collected in Table VII. 

1) Evaluation of the Spatial Transformer

The convolutional block attention module (CBAM) [29] is

applied to replace the spatial transformer, an obvious decrease 

can be observed in terms of Acc-7 (−3.55%), F1-7 (−4.09%), 

Acc-3 (−2.09%), and F1-3 (−2.08%). Because the spatial 

transformer can guide the proposed DDECNet to capture spatial 
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Fig. 9. Confusion matrix. (a) Driver emotion classification with pure FVD. (b) Driver emotion classification with pure DBD. (c) Dual-modality driver emotion 
classification with STL. (d) Dual-modality driver emotion classification with MT-IL. (e) Dual-modality driver emotion classification with MT-JL. (f) Exploration 

of influence of driver emotion on driving behavior with FVD. (g) Exploration of influence of driver emotion on driving behavior with pure DBD. (h) Exploration 

of influence of driver emotion on driving behavior with STL and dual-modality inputs. (i) Exploration of influence of driver emotion on driving behavior with MT-

IL and dual-modality inputs. (j) Exploration of influence of driver emotion on driving behavior with MT-JL and dual-modality inputs. 

TABLE Ⅶ 

EVALUATION OF CORE COMPONENTS IN DDECNET 

Setting Acc-7 

(%) 

F1-7 

(%) 

Acc-3 

(%) 

F1-3 

(%) S1 S2 S3 S4 

CBAM [29] Temporal Transformer Inception Unit Concatenation Unit 78.29 78.28 91.02 91.00 

Spatial Transformer GRU [30] Inception Unit Concatenation Unit 75.37 75.14 87.89 87.71 

Spatial Transformer BiLSTM [31] Inception Unit Concatenation Unit 56.58 56.00 74.32 74.14 

Spatial Transformer Temporal Transformer Transformer [32] Concatenation Unit 77.04 77.12 90.61 90.48 

Spatial Transformer Temporal Transformer GRU [30] Concatenation Unit 75.16 74.88 89.56 89.47 

Spatial Transformer Temporal Transformer LSTM [33] Concatenation Unit 74.32 74.58 89.14 89.20 

Spatial Transformer Temporal Transformer Inception Unit Cross Attention Fusion [34] 78.29 78.52 88.52 88.36 

Spatial Transformer Temporal Transformer Inception Unit Transformer-based Fusion [36] 73.70 73.09 84.55 84.35 

Spatial Transformer Temporal Transformer Inception Unit MISA Fusion [35] 61.38 61.07 80.79 81.55 

Spatial Transformer Temporal Transformer Inception Unit Learned Weights Fusion [37] 78.29 78.26 92.28 92.20 

Spatial Transformer Temporal Transformer Inception Unit Concatenation Unit 81.84 82.37 93.11 93.08 

Note: S1Extract spatial features from FVD. S2Extract temporal features from FVD. S3Extract time-series features from DBD.S4Concatenate operation. 
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features, compared to CBAM. Meanwhile, the self-attention 

mechanism in spatial transformer enables capturing facial 

features with long-range dependencies. 

2) Evaluation of the Temporal Transformer

The gated recurrent unit (GRU) [30] and bidirectional long

short-term memory (BiLSTM) [31] are applied to replace the 

temporal transformer, the obvious decrease can be observed in 

classification performance (GRU: −6.47% Acc-7, −7.23% F1-

7, −5.22% Acc-3, −5.37% F1-3; BiLSTM: −25.26% Acc-7, 

−26.37% F1-7, −18.79% Acc-3, −18.94% F1-3). Because the

contextual facial features can be effectively extracted from

temporal perspective in the temporal transformer.

3) Evaluation of the Inception Unit

The GRU [30], Transformer [32], and LSTM [33] are applied

to replace the inception unit, the obvious decrease can be 

witnessed in classification performance (GRU: −6.68% Acc-7, 

−7.49% F1-7, −3.55% Acc-3, −3.61% F1-3; Transformer:

−4.80% Acc-7, −5.25% F1-7, −2.50% Acc-3, −2.60% F1-3;

LSTM: −7.52% Acc-7, −7.79% F1-7, −3.97% Acc-3, −3.88%

F1-3). Because the inception unit using parallel convolutional

blocks can speed up the learning of time-series features from

different receptive fields.

4) Evaluation of Concatenation Unit

The cross-modal attention (CMA) fusion [34], MISA fusion

[35], transformer-based fusion [36], and learned weights fusion 

[37] are applied to replace the concatenation unit, the obvious

reduction can be witnessed in classification performance (CMA

fusion: −3.55% Acc-7, −3.85% F1-7, −4.59% Acc-3, −4.72%

F1-3; MISA fusion: −20.46% Acc-7, −21.30% F1-7, −12.32%

Acc-3, −11.53% F1-3; transformer-based fusion: −8.14% Acc-

7, −9.28% F1-7, −8.56% Acc-3, −8.73% F1-3; learned weight

fusion: −3.55% Acc-7, −4.11% F1-7, −0.83% Acc-3, −0.88%

F1-3). Because the correlation between VFD and DBD is

difficult to explore by self-attention mechanism.

F. Validation in Real-World Scenarios

In this work, all the classification methods are further

performed in an electric vehicle (Leapmotor T03) to validate 

the effectiveness in different real-world scenarios. The 

necessary sensor device deployment is shown in the middle of 

Fig. 10, the corresponding collected data samples are provided 

in the right of Fig. 10, and the negative (represented by red face), 

neutral (represented by yellow face), and positive (represented 

by green face) output examples can be seen in the screen 

embedded in the electric vehicle, as shown in the left of Fig. 10. 

Notably, all the classification methods are well-trained and 

deployed on the NVIDIA Jetson AGX Orin.  

The experimental results of different classification methods 

are provided in Fig. 11 (i.e., Latency, processing time and 

response time) and Table VIII respectively.  
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Fig. 11. The letancy, processing time and response time of different methods 

TABLE VIII 

THE COMPARATIVE RESULTS ON REAL-WORLD SCENARIO 

Ref. 

Negative 

influence 

Neutral 

influence 

Positive 

influence 
Average 

Acc F1 Acc F1 Acc F1 Acc-3 F1-3 

[11] 85.97 83.28 69.94 75.72 65.82 69.85 73.91 76.28 

[12] 86.552 86.232 74.62 75.25 78.191 78.331 79.792 79.942 

[13] 85.63 85.41 78.35 79.43 75.34 74.16 79.77 79.67 

[14] 86.33 83.32 79.03 81.542 53.97 62.29 73.11 75.72 

[15] 84.95 84.15 80.062 76.36 69.45 72.47 78.15 77.66 

[16] 83.84 81.84 64.78 72.61 72.23 65.62 73.61 73.36 

[17] 85.50 83.67 74.11 78.88 62.58 64.54 74.06 75.70 

Ours 87.461 87.701 82.291 83.171 76.662 77.912 82.131 82.931 

Note: the subscript 1 and 2 represent the specific ranking results. 

It can be seen that the latency, processing time, and response 

time of the proposed DDECNet (approximately 0.277s, 0.031s, 

and 0.585s) are smaller than almost all the other competitors 

(except for [11]), achieving the real-time requirements in the 

IoT scenario. Meanwhile, the comparative results of Acc and 

F1 demonstrate that the proposed DDECNet is superior in 

classification performance (ranking 1st in negative and neutral, 
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ranking 2nd in positive). Notably, the average results (Acc-3: 

82.13%, F1-3: 82.93%) win the first place over currently 

advanced approaches. Namely, the proposed DDECNet is able 

to achieve a better trade-off between running speed and 

classification performance, compared with other competitors. 

V. CONCLUSIONS

This paper focuses on the investigation of driver emotion 

classification network based on VFD and DBD (i.e., DDECNet). 

Specifically, the proposed DDECNet consists of three modules: 

the VFD processing module, the DBD processing module, and 

the fusion output module. The VFD processing module 

efficiently extracts high-level facial features from both spatial 

and temporal perspectives. The DBD processing module 

captures time-series features from different receptive fields. 

The fusion output module effectively integrates dual-modality 

features. Meanwhile, a multi-task learning strategy with a 

combined loss function is developed to oversee feature 

extraction across different modalities, enabling a reliable 

analysis to distinguish the positive, neutral, and negative 

influence on driving behavior. To verify the effectiveness of the 

proposed DDECNet, a joint verification in both realistic indoor 

environment (i.e., laboratory simulation on the PPB-Emo 

dataset) and real-world outdoor scenarios is carried out. The 

experimental results demonstrate that the proposed network is 

able to achieve a good balance between classification accuracy 

and running speed in the IoT scenario. 
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