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Abstract
In this paper, a hyperparameter optimization approach is proposed for the phase prediction of multi-principal element alloys
(MPEAs) through the introduction of two novel hyperparameters: outlier detection and feature subset selection. To gain a
deeper understanding of the connection between alloy phases and their elemental properties, an artificial neural network is
employed, with hyperparameter optimization performed using a genetic algorithm to select the optimumhyperparameters. The
two novel hyperparameters, outlier detection and feature subset selection, are introduced within the optimization framework,
along with new crossover and mutation operators for handling single and multi-valued genes simultaneously. Ablation
studies are conducted, illustrating an improvement in prediction accuracy with the inclusion of these new hyperparameters.
A comparison with five existing algorithms in multi-class classification is made, demonstrating an improvement in the
performance of phase prediction, thereby providing a better perception of the alloy phase space for high-throughput MPEA
design.

Keywords Hyperparameter optimization · Outlier detection · Feature selection · Artificial neural networks ·
Genetic algorithm · Multi-principal element alloys

Introduction

The study of metals and their combinations as alloys has
spanned many centuries. Recently, interest has been devel-
oped in exploring alloys beyond conventional limits. In 2004,
two seminal papers byCantor [5] andYeh [62] introduced the
study of a new type of alloys, termedmulti-principal element
alloys (MPEAs).Unlike conventional alloys,MPEAs contain
multiple principal elements with (near) equiatomic concen-
trations. These alloys have been shown to exhibit excellent
mechanical and functional properties [16] compared to con-
ventional alloys and are expected to be applied across a wider
range of fields. However, the existence of multiple phases
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and the large search space make the selection of elements
and their compositions for MPEAs with desirable properties
challenging. Experimental study of such alloys has tradition-
ally relied on trial-and-error approaches, which have proven
insufficient due to the vastness of the search space, making
trial-and-error discovery infeasible. This has compelled the
adoption of data science approaches for alloy discovery.

With the availability of large datasets and advancements
in algorithms, a surge of interest in the field of machine
learning has recently been observed. Various machine learn-
ing techniques have been applied to different aspects of
material science, such as property analysis, the discovery of
new materials, and quantum chemistry [56]. Among various
applications, phase prediction of MPEAs has received con-
siderable attention due to the fact that alloy phases tend to
influence physical properties [25]. Certain phases are more
desirable than others when mechanical performance, such as
ductility and yield strength, is considered. MPEAs with mul-
tiple phases can offer a balance between strength andductility
[17]. These guiding factors are crucial when alloy applica-
tions are considered, highlighting the need for a universal
indicator for phase prediction of MPEAs. Unfortunately, a
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solid theoretical framework for phase prediction does not
exist due to the astronomical number of possible materi-
als. An estimate of the possible alloys that could be formed
is approximately ∼ 1078 [4]. Only a tiny fraction of these
alloys has been synthesized and studied. This renders the
current trial-and-error method for exploring new alloy con-
figurations obsolete, prompting the need for enhanced search
techniques, whether model-driven or data-driven.

When phase prediction of MPEAs is translated into
machine learning, it becomes a supervised multi-class clas-
sification problem, where each class represents a particular
alloy phase, and these phases are treated as mutually exclu-
sive. Numerous studies have been conducted to address this
problem using various features and strategies [21, 29, 31,
41, 43, 66]. These studies have involved the application of
artificial neural networks, support vector machines, random
forests, and deep learning with generative adversarial net-
works.

It is worth mentioning that Artificial Neural Networks
(ANNs) have been widely employed to develop various pre-
dictive models. ANNs are computational models inspired by
the structure and functioning of biological neurons, such as
those in the human brain [19, 33]. These models consist
of interconnected nodes, referred to as neurons, which are
organized into layers. Each neuron receives input signals,
processes them using an activation function, and gener-
ates an output signal. ANNs are well suited for handling
high-dimensional data, as they can learn complex non-linear
relationships between input and output data.

Amajor challenge in the use of ANNs for predictive mod-
eling is the determination of hyperparameters. Numerous
adjustable parameters need to be tuned prior to classifica-
tion, such as the number of neurons per layer, learning rate,
and regularization strength. Identifying the optimal set of
hyperparameters is a challenging yet necessary task, as it ulti-
mately influences the performance of the model. Typically,
these parameters are determined based on heuristic rules and
aremanually adjusted,which can be time-consuming.Hyper-
parameter optimization is the process through which the best
set of hyperparameters is identified to maximize the perfor-
mance of a model [6]. This problem can be framed as the
optimization of a loss function over a constrained configura-
tion space. Various approaches have been used in the past for
hyperparameter optimization, including grid search, random
search, Bayesian optimization, and evolutionary algorithms.

Among various optimization techniques, the genetic algo-
rithm (GA), a subset of evolutionary algorithms, is regarded
as a powerful and flexible tool. GA is a nature-inspired
algorithm based on the principles of natural selection and
Darwinian evolution. Being gradient-free, it is well suited
for high-dimensional and complex systems. GA has been uti-
lized for hyperparameter optimization and has demonstrated

significant improvements compared to grid search and
Bayesian optimization [1]. Its population-based approach
allows for parallelism and diversity in exploration. Due to
these technical merits, GA has been widely applied to the
hyperparameter optimization of ANNs [8, 40], convolutional
neural networks [30], and long short-term memory networks
[58].

The approach of ANN predictivemodeling for identifying
MPEAs has been utilized in the literature, but careful hyper-
parameter selection has not yet been explored. This may be
due to the fact that the application of machine learning to
MPEAs is a relatively recent interest within the scientific
community, leaving ample room for improvement. Hyper-
parameter optimization has the potential to significantly
enhance the predictive capabilities of ANNs, particularly
when dealing with complex and noisy data containing out-
liers [44]. Due to the nature of experimental errors [11],
MPEA data obtained from the literature is often affected
by poor-quality data, including imbalanced class distribu-
tions, sparsity, and noise in the form of outliers. Anymachine
learning approach applied toMPEApredictionmust be capa-
ble of addressing these issues. In our study, one of the key
objectives is to incorporate outlier detection into the training
process, rather than handling it solely during pre-processing,
by integrating it within hyperparameter optimization. This
approach will help clean the data during the training process
and improve the predictive modeling of MPEAs.

Motivated by the above discussions, the objective of this
paper is to develop a framework for supervised classifica-
tion through hyperparameter optimization, with the inclusion
of novel hyperparameters that will aid in handling outliers
and feature selection. Specifically, a boxplot-based outlier
detection and removal method, along with an optimal fea-
ture subset selection, is proposed. This strategy is employed
to enhance the classification ability of ANNs when dealing
with poor-quality data. The proposedmethodology is applied
to the phase classification of MPEAs.

The main contributions of this paper can be summarized
in the following aspects:

1. A novel hyperparameter optimization algorithm is intro-
duced, which incorporates two innovative parameters:
outlier detection and feature subset selection. The out-
lier detection method is designed to identify and remove
noisy or erroneous data points that could otherwise distort
the model’s performance, while feature subset selection
ensures that only the most relevant features are consid-
ered during model training, which helps in improving
both the accuracy and efficiency of the model. The com-
bination of these two parameters allows the algorithm
to better manage complex and noisy datasets, which are
frequently encountered in MPEA studies.
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2. The proposed hyperparameter optimization algorithm
is applied to the phase classification of MPEAs. The
experimental results clearly demonstrate the effective-
ness of this method. It is shown that, by including the
novel hyperparameters, significant improvements in clas-
sification performance can be achieved compared to
traditional methods. These results confirm that the algo-
rithm enhances the predictive capabilities of ANNs in
handling poor-quality data, making it a valuable tool for
more precise phase prediction in MPEA research.

The remaining parts of this study are organized as fol-
lows: In “Background” section, the background of MPEA
phase classification is discussed, along with a description of
the datasets used. “Methodology” section introduces the pro-
posed hyperparameter optimization strategy, which utilizes
both static and dynamic length chromosome genetic algo-
rithms. In “Experimental Results” section, the experimental
results for the phase classification of MPEAs are presented.
Finally, the conclusion is provided in “Conclusion” section,
along with suggestions for suitable future work.

Background

Multi-Principal Element Alloys

Multi-principal element alloys (MPEAs), also referred to as
multi-component alloys or high-entropy alloys, are materials
composed of three or more principal elements in signifi-
cant proportions, typically with each element contributing
between 5 and 35% by atomic composition. These alloys are
distinguished by their complex and diverse compositions,
in contrast to conventional binary or ternary alloys. Unique
properties arise from their high configurational entropy,
which results from the multi-element composition. MPEAs
have been shown to exist in stable, disordered solid solu-
tion phases [15]. Due to their nature, MPEAs are capable of
exhibiting excellent physical properties, such as high strength
and hardness, exceptional wear resistance, remarkable high-
temperature strength, good structural stability, as well as
resistance to corrosion and oxidation [42, 50].

Determining the stable phases present in MPEAs has
been an important focus of their study, as the resulting
phases influence the mechanical properties of the alloys,
thereby affecting their potential applications. One funda-
mental question regarding MPEAs is which atomic phase
will form when a large number of different elements are
mixed together. Surprisingly, the resulting phases tend to
be simple structures [5]. Classic Hume-Rothery rules define
the factors that influence the formation of solid solutions in
binary systems, where only two element types are present.
These factors include atomic sizemismatch, valence electron

concentration, electronegativity, enthalpy of mixing, and
configurational entropy, among others [3]. Studies on the
phase formation of MPEAs have drawn conclusions similar
to those of Hume-Rothery rules for binary systems [45, 65].

Unlike parametric approaches used in the past [65],
machine learning-based phase prediction is regarded as a
robust tool that can extract insights from given data with
relatively low bias and high efficiency. Accurate and fast
algorithms have been developed in recent years for the
purpose of material discovery [55]. These approaches are
employed to guide experimental analysis of complex multi-
dimensional systems, such asMPEAs, and have become vital
tools for material discovery in recent years.

Description of Data Set

Sources of MPEA Phase Data

The data used in this study is obtained from various sources
in the literature [28, 36, 49, 67]. After the removal of dupli-
cates and alloys containing radioactive elements, the merged
dataset consists of 2218 compositions, ranging from binary
tomulti-component alloys. In the compiled dataset, each data
point represents an individual alloy composition, along with
its respective chemical features and atomic phase.

Characteristics of Features

Ten features are considered in this study, and their numer-
ical values are obtained using the following equations [9,
65, 68]: 1) Z̄ = ∑n

i=1 ci Zi , 2) r̄ = ∑n
i=1 ciri , 3)

m̄a = ∑n
i=1 cima,i , 4) VEC = ∑n

i=1 ciVECi , 5) �χ =√∑n
i=1 ci (χi − χ̄ )2, 6) δ = 100

√∑n
i=1 ci (1 − ri/r̄)2, 7)

Tmelt = ∑n
i=1 ci Ti , 8) �S = −R

∑n
i=1 ci lnci , 9) �Hmix =∑n

i=1,i< j 4Hi j ci c j .
Here, n is number of elements in an alloy, ci is atomic con-

centration of i th element, Z̄ is mean atomic number, Zi is
atomic number of i th component, r̄ is mean atomic radius, ri
is atomic radius of i th element, m̄a is mean atomicmass,ma,i

is atomic mass of i th element, VEC is mean valence electron
concentration, VECi is valence electron concentration of i th

element, �χ is Pauling electronegativity difference, χi is
electronegativity of i th element, δ is atomic size mismatch,
Tmelt is mean melting temperature, Ti is melting temperature
of i th element, �S is configurational entropy, R is ideal gas
constant, �Hmix is enthalpy of mixing, and Hi j is enthalpy
of binary alloy i, j . Values of binary mixing enthalpy are
obtained from the Miedema model [47], and required ele-
mental data for calculation of features is obtained from [45].
Number of elements in an alloy is considered as a separate
feature.
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Characteristics of Classes

The phases are categorized as follows: face-centered cubic
(FCC), body-centered cubic (BCC), hexagonal closed pack
(HCP), mixed phases (MP), amorphous (AM), intermetallic
(IM), and BCC+FCC. A distinct imbalance is observed in
the class distribution, which is attributed to the fact that cer-
tain alloy phases have been studied more extensively than
others due to their potential applications and relevance [36].
For MPEAs, single-phase solid solutions (FCC, BCC, HCP)
are of primary interest because their presence is associated
with excellent mechanical properties, while the presence of
intermetallics is considered undesirable due to their negative
impact on mechanical behavior [4, 16]. The details of the
data pre-processing are presented in “Experimental Results”
section.

Problems of Dataset

As previously discussed in “Introduction” section, the com-
piled alloy dataset contains class imbalance and outliers. The
class imbalance is depicted in Fig. 1, which illustrates the
distribution of phases. The MP class contains the majority
of alloy samples, while the IM class contains the fewest. It
is also worth noting that the BCC and FCC classes, which
are single-phase solid solutions, include a significant number
of alloys. Due to the nature of metallurgic experiments and
the presence of systematic and random errors in experimental
analysis,MPEAdata tends to be noisy and unsuitable for pre-
dictive modeling. Rather thanmodifying the noise, this study
focuses on identifying and removing outliers. The physical
nature of alloys makes it difficult to modify experimental
data using statistical methods, as altering values of physi-
cal parameters could result in an unphysical representation
of alloy systems. For this reason, the approach in this study

Fig. 1 Distribution of classes in alloy dataset depicting imbalance

is centered on outlier detection, which involves the removal
of data points rather than their modification. This strategy
will help ensure that the phase prediction model is reliable
and can be effectively used by metallurgists in the search for
MPEAs with desirable properties.

Methodology

ANN-Based Classification

To establish a framework for phase prediction, a supervised
classification approach is formulated, where each alloy com-
position is characterized by ten distinct features as inputs
and the phase as the output class. The ANN architecture
can be described with consecutive input, hidden, and out-
put layers. An initial network is proposed, consisting of two
hidden layers and dropout regularization. Dropout is a reg-
ularization method used to prevent overfitting and can be
easily implemented without significant computational over-
head [18]. Each hidden layer employs the ReLU activation
function [39]. Cross-entropy is chosen as the loss function
for the network, and it is defined as

loss = − 1

N

N∑

n=1

K∑

i=1

Tni lnYni (1)

where N is number of observations, K is number of classes,
Tni is target value, and Yni is predicted value of the network.

The training process of an ANN is an iterative procedure
in which a series of linear operations between consecutive
layers is used to enhance the performance of the network
by tuning its parameters, specifically the weights and biases.
The operation process can be defined as

x (l)
j = f

(
∑

i

w
(l)
i, j x

(l−1)
i + b(l)

j

)

(2)

where x (l)
j is the output of j th neuron in lth layer, x (l−1)

i is

input of i th neuron in previous layer, whereas w
(l)
i, j and b(l)

j

are weights and biases of j th node in lth layer. f represents a
non-linear activation function. In this study, the architecture
of ANN consists of an input layer for alloy features, two
hidden layers with equal number of nodes in each layer, and
an output layer for alloy phase.

A key point to note is that our network is not fully con-
nected due to the presence of dropout regularization, which
randomly removes connections between nodes based on a
fixed probability pdropout . This process is essential in over-
coming overfitting, a phenomenon that occurs when a model
fits too closely to its training data, thereby reducing its ability

123



Cognitive Computation            (2025) 17:50 Page 5 of 14    50 

to generalize and predict testing data. An added benefit of
using dropout is that it makes the ANNmore lightweight and
significantly reduces computational complexity by removing
certain node connections.

Genetic Algorithm

The GA is a type of optimization algorithm inspired by the
processes of natural selection and evolution. It is used to solve
optimization and search problems by mimicking the process
of natural selection, allowing a population of solutions to
evolve over successive generations. GA is particularly use-
ful for problems involving large and complex search spaces,
making it an ideal candidate for use in this study.

Before the implementation of GA, the data must be
encoded so that each individual solution is represented as
a chromosome, with each gene within a chromosome signi-
fying decision variables.

The improvement of solutions in GA depends on two
key operators: crossover and mutation. Crossover generates
new solutions by combining solutions from the previous
generation, while mutation randomly alters a decision vari-
able within a particular solution. The process of GA can be
depicted as follows:

1) Initialization of population to represent search space;
2) Evaluation of fitness through an objective function;
3) Selection of suitable individuals for reproduction;
4) Crossover through combination of individuals;
5) Mutation by randomly altering an offspring’s genetic

code.

This above process is iterative, with each iteration referred
to as a generation. In every generation, evaluation, selection,
crossover, and mutation take place. The process continues
until a termination criterion is met, which could be based
on the number of generations or a minimum tolerance in the
fitness value. The GA process is illustrated in Fig. 2 as a
flowchart. The performance of GA can be sensitive to the
choice of parameters such as population size, crossover rate,
mutation rate, and selection criteria. In this study, GAwill be
employed for hyperparameter optimization, incorporating a
novel strategy for handling variable-sized chromosomes.

Encoding data within the framework of genes is crucial
for the operation of GA. The vast majority of GA studies
employ binary encoding, where data is represented as 0 s
and 1s. However, in this case, due to the presence of both
real-numbered and categorical data, it is more appropriate to
utilize real encoding. Each chromosome is composed of N
genes, where N represents the number of hyperparameters
in the problem.

Fig. 2 Flowchart of genetic algorithm. pmut is mutation probability,
and r is a uniformly distributed random number between 0 and 1

In this study, single-point crossover and single-pointmuta-
tion are employed, with a fixed mutation probability of
pmut = 0.1. Selection is based on the fitness of each indi-
vidual, and instead of replacing all members of the previous
generation, a few of the best individuals from the current gen-
eration are retained and passed on to the next. This method,
known as elitism, ensures that the best solutions found so far
are preserved across generations, preventing the loss of valu-
able genetic information due to random variation. Elitism
helps maintain stability and ensures that promising solutions
are not lost prematurely. It is particularly useful when the
fitness landscape is dynamic or when the algorithm is prone
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to premature convergence, a situation where the population
converges to suboptimal solutions too early. By preserving
the best individuals, elitism helps guide GA toward better
solutions over time. A comprehensive depiction of the GA
employed in the current study is presented as pseudocode in
Algorithm 1.

Algorithm 1 The procedure of genetic algorithm.
1: Initialize population of hyperparameters with population size P .
2: Calculate fitness of each individual.
3: Arrange population in increasing order of fitness
4: Select two individuals. Select a random point of intersection and

apply crossover at that point to generate new offspring.
5: If r < pmut , select a random decision variable and initialize it with

a different value within its respective range.
6: Select the best 10% of current population and keep them for the next

generation
7: Terminate the algorithm if maximum number of generations is

reached. If not, repeat Steps 2-6.

Dynamic Length Chromosome Operators

CanonicalGAand its respective operators are designed based
on a fixed number of decision variables, with each vari-
able representing a gene in a fixed-length chromosome and
multiple chromosomes forming a population. A significant
limitation of this approach is that GA is not inherently suited
to handle variable-length data, whether it involves a variable
number of genes or a variable length of a particular gene. To
address this deficiency, several studies have been conducted
to develop approaches for variable-length chromosome GA
by modifying the crossover and mutation operators to suit
the specific problem. These approaches have been applied
to various domains, such as topology design [23, 24] and
hyperparameter optimization [58].

GA strategies exist for both fixed and variable-length
chromosomes. However, a gap in the current research lies
in the ability to handle variable-length genes, meaning the
capability to manage chromosomes containing both single
and multiple values within individual genes. An illustration
of this phenomenon is shown in Fig. 3, where a standard
chromosome is contrasted with a chromosome containing
variable-length genes.

Fig. 3 Depiction of chromosomes where a shows normal chromosome
with fixed-length genes; b shows chromosome having a single variable-
length gene which consists of values b71, b72 . . . b7n , where n is an
integer which can vary between a lower and upper bound

By examining Fig. 3, it can be discerned that there is a
need for modified crossover and mutation operators capable
of handling chromosomes containing both single-valued and
multi-valued genes, where the length of multi-valued genes
can vary. To address this, a robust framework of genetic oper-
ators has been developed, enabling effective crossover and
mutation operations for the specific problem at hand.

To simplify the problem, two different crossover and
mutation operators are defined: one for single-length genes
and another for variable-length genes. The genetic operators
for single-length genes function as standard crossover and
mutation, where parents are segmented and joined together,
with random mutations occurring at a single point. For
the variable-length operators, only the gene with variable
array length is handled. Consequently, both single-length and
variable-length operators function simultaneously for each
individual in the population.

The variable-length crossover operates by selecting the
variable-length gene from two parents, ensuring that the
length of parent 1 is less than the length of parent 2, i.e.,
len(P1) < len(P2). Next, the length of the offspring is
defined within the range [len(P1), len(P2)], ensuring that
the offspring’s length always lies between the lengths of both
parents. The crossover point c is then selected within the
range [1, len(P1)] such that the point lies within bounds of
P1. The first half of offspring O1 is initialized by select-
ing values within P1 until point of crossover c, such that
O1 = P1(1, ...c). The second half of O1 is defined by check-
ing each member of P2. If the member is not present in O1, it
is added to O1; otherwise, it is rejected. This process avoids
repetitions and ensures that the characteristics of both parents
are represented in the resulting offspring. The pseudocode for
this process is shown in Algorithm 2.

Algorithm 2 The procedure of variable length crossover.
1: Select parents P1 and P2 such that len(P1) < len(P2).
2: Define length of offspring O1 within [len(P1), len(P2)] range.
3: Select point of crossover c within range [1, len(P1)].
4: Initialize first half of O1 with P1(1, ...c).
5: Initialize second half of O1 by looping over P2 and selecting mem-

bers not present in O1.

For the variable-length mutation, the same strategy is
applied as used for the traveling salesmanproblem.A random
permutation of length l is generated, where l is a randomly
selected length within the bounds of the decision variable.
Thus, themutationprocess involves sampling fromadistribu-
tion of random permutations of the variable-length decision
variable.
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Hyperparameter Optimization

In an ANN, numerous tunable parameters, referred to as
hyperparameters, influence its performance and control var-
ious aspects of the learning process. These parameters are
often selected on an ad hoc basis, which is an ineffective
practice that limits the capabilities of the ANN. To address
this, hyperparameter optimization is employed to select the
optimal parameters using an optimization technique that
aims to maximize the network’s performance, specifically
by improving testing accuracy.

In this study, hyperparameter optimization is formulated
as a minimization problem, where the goal is to identify the
set of hyperparameters for a given model that returns the best
performance when measured on a test set. This process can
be mathematically represented as

x∗ = arg min
x∈�

f (x) (3)

where f (x) is the objective function to be minimized; x∗
is the set of hyperparameters that yield the lowest value of
the objective function. Here, x can take any value within the
domain �, which consists of all possible combinations of
hyperparameters. In this study, the objective function is the
root mean squared error (RMSE), evaluated on the test set.

Canonical hyperparameters for ANN considered in this
study are

• Learning rate
• Batch size
• Number of epochs
• Number of nodes in each hidden layer
• Rate of dropout

The above parameters have been widely utilized in the litera-
ture across various types of optimization techniques, datasets,
and problems involving both classification and regression [2,
12, 35].

In this study, two new concepts are incorporated as
hyperparameters within the optimization framework: outlier
detection and feature subset selection. These topics are dis-
cussed in more detail in the following subsection.

Outlier Detection

Outlier detection is the process of identifying data points or
observations that deviate significantly from the majority of
the data in a dataset. These outliers are typically observations
that are unusual compared to the rest of the data andmay indi-
cate anomalies or errors. A well-known statistical approach
for identifying outliers in a distribution is the boxplot method
[13]. A boxplot provides a visual summary of key statistics

for a sample dataset, including the 25th and 75th percentiles,
maximum and minimum values, as well as the median of the
distribution. Outliers, in the context of boxplots, are defined
as data points that fall outside the interquartile range (IQR)
multiplied by a constant, kiqr . The interquartile range is
the difference between the 25th and 75th percentiles, with
outliers identified as those data points beyond the range of
25thpercentile ≥ outlier ≥ 75thpercentile. The constant
value essentially determines the range beyondwhich any data
point is considered an outlier. A larger value for the constant
will result in fewer data points being classified as outliers,
and vice versa. Therefore, the choice of kiqr is crucial, as it
allows for the elimination of the maximum number of out-
liers without negatively affecting the information contained
within each distribution.

The trade-off associated with kiqr and number of observa-
tions considered by the model is illustrated in Fig. 4, where
the value of kiqr influences the number of outliers identified
by the boxplot method. It is evident that a low kiqr value
is undesirable, as it identifies large portions of the data as
outliers and eliminates them from the dataset. A reasonably
moderate to high kiqr value is needed for efficient identifi-
cation and removal of outliers. Therefore, kiqr is treated as
a hyperparameter for our model, and its value will be deter-
mined through hyperparameter optimization.

Feature Subset Selection

Feature subset selection is the process of choosing a subset
of relevant features (variables, predictors) from a larger set
to build a model. The objective is to enhance the model’s
performance by reducing overfitting, simplifying the model,
and potentially improving interpretability. In many real-
world datasets, numerous features may be present, but not all

Fig. 4 Variation of number of outliers with kiqr
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Table 1 List of hyperparameters and their respective ranges

Hyperparameter Range

Learning rate [10−4, 10−1]

Batch size [5, 200]

Number of epochs [10, 1000]

Number of nodes [5, 50]

Dropout rate [0, 1]

kiqr [1.16, 3]

Feature subset [5, 10]

contribute equally to the predictive capability of the model.
Some features may be redundant or irrelevant, adding noise
to the model or leading to overfitting. Feature subset selec-
tion methods aim to identify and select the most informative
and relevant features, while discarding the less useful ones.
This process is crucial for building efficient and effective
machine learning models, particularly when dealing with
high-dimensional data.

Many feature subset selection methods have been uti-
lized in the past, such as correlation-based filtration [63],
wrapper methods [48], and embedded methods like LASSO
[38]. Each method has its own merits and demerits. How-
ever, feature subset selection has not yet been incorporated
within the framework of hyperparameter optimization. Inte-
grating feature selection with hyperparameter optimization
allows for the simultaneous selection of optimum features
and suitable network hyperparameters, removing extra com-
putational overhead and optimizing the process to maximize
testing accuracy.

A comprehensive list of hyperparameters considered in
this study, along with their respective ranges, is shown in
Table 1. The range of the feature subset indicates the lowest
and highest number of possible features that can be consid-
ered by the algorithm, which in this case is 5 and 10.

Experimental Results

Data Statistics

Descriptive statistics are a valuable tool for summarizing and
describing the main features of a dataset, providing a concise
overview that facilitates easy interpretation and understand-
ing. The descriptive statistics for the features considered in
this study are listed in Table 2, where the statistical parame-
ters include mean, median, mode, range, variance, standard
deviation, skewness, and kurtosis. Mean, median, and mode
are used to describe central tendency, providing information
about the center and average of a feature. Range, variance,
and standard deviation describe the variability of features,
helping to understand howmuch the data points deviate from
the center. Skewness and kurtosis describe the distribution
of data, offering insights into the symmetry and shape of the
distribution.

From Table 2, it is evident that �Hmix and r̄ have high
positive skewness, which can be observed by the fact that the
majority of binary Hmix values lie within range [−50, 50],
but the long positive tail of the distribution indicates the pres-
ence of alloys with large positive �Hmix . The long positive
tail of r̄ can be explained by the presence of alloys contain-
ing elements with large metallic radii, such as potassium,
rubidium, and cesium. Features with low skewness, like �S,
indicate a more centralized distribution with low asymmetry.
This can be attributed to the presence of both low-entropy
conventional alloys and high-entropy MPEAs, which bal-
ance the distribution on either side of the median.

Features with high positive kurtosis, such as �Hmix ,
are likely to generate a large number of outliers, whereas
platykurtic features with low negative kurtosis are less likely
to contain outliers, as their distribution is closer to a thin-
tailed normal distribution, as seen with n and �S.

Table 2 Descriptive statistics values of features in our dataset

Feature Mean Median Mode Range Variance Standard
deviation

Skewness Kurtosis

n 3.71 4 2 8 3.13 1.77 0.37 −1.19

Z̄ 97.31 32.48 27 78.25 236.55 15.38 0.92 0.06

m̄a 8.7 × 101 7.39 × 101 3.22 × 101 2.17 × 102 1.65 × 103 4.06 × 101 9.88 × 10−1 1.58 × 10−1

r̄ 1.41 1.36 1.29 1.45 2.86 × 10−2 1.69 × 10−1 2.18 6.79

VEC 6.65 7.0 8 13 4.31 2.08 −1.67 × 10−1 −2.35 × 10−1

�χ 1.74 1.76 2.2 1.7 7.83 × 10−2 2.8 × 10−1 −1.81 × 10−1 4.91 × 10−1

δ 6.27 × 10−2 5.16 × 10−2 4.34 × 10−3 3.36 × 10−1 2.70 × 10−3 5.19 × 10−2 1.62 3.32

Tmelt 1.88 × 103 1.82 × 103 1.12 × 103 3.37 × 103 3.54 × 105 5.95 × 102 1.57 × 10−1 4.63 × 10−1

�S 9.05 9.13 5.76 1.83 × 101 1.83 × 101 4.27 5.8 × 10−2 −1.49

�Hmix −6.33 −5.89 0 2.07 × 102 3.33 × 102 1.82 × 101 2.51 1.6 × 101
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As depicted in Fig. 1, the imbalance present in the dataset
could severely affect the distribution and sampling of data
in the training and testing sets. To address this and prevent
skewed sampling, stratified sampling is utilized when sep-
arating the data into training and testing sets. This ensures
that the proportions of each class are preserved in both sets
and that every minor class is represented in the testing set—
something that might not occur with normal splitting, as the
minority class is less likely to appear in both sets. A sample
distribution illustrating the stratified sampling of the training
and testing sets is shown in Fig. 5. It can be observed that
the class distribution is identical in both sets, demonstrating
the effectiveness of stratified sampling for an imbalanced
dataset. In this case, the training–testing split is 70:30.

Data Pre-Processing

As mentioned previously in “Background” section, there are
ten features associatedwith each alloy in the dataset. To avoid
unnecessary influence among different features, it is neces-
sary to normalize each instance across all features so that
they can be treated equally during the training process. For
this reason, Min-Max normalization is applied as part of the
pre-processing step. Min-Max normalization is defined as

XNi = Xi − Xmin

Xmax − Xmin
(4)

where XNi denotes i
th normalized data point of variable X ;

Xmin and Xmax represent minimum and maximum value of
X , respectively.

Fig. 5 Distribution of classes within training and testing sets when
using stratified sampling

Fig. 6 Training process of ANN, depicting evolution of loss function
with number of epochs

Hyperparameter Optimization

The CPU used in these experiments is Intel Core i7 - 11700
with 16GB RAM. The programming platform used here
is Python 3.12.2 with Jupyter Notebook as IDE, for easy
execution of algorithm and visualization of results. Pytorch
framework is utilized for generating ANNs.

To ensure that the ANN framework is functioning as
expected, a network is trainedwith random hyperparameters,
and its training behavior is visualized in Fig. 6. As expected,
the training loss decreases rapidly during the initial phase of
training and eventually reaches saturation, with oscillations
becoming evident. At this point, further epochs are unlikely
to improve the ANN’s performance and may even contribute
to overfitting. This is why the number of epochs is included
as a hyperparameter, with its selection aimed at maximizing
testing accuracy.

For the implementation of hyperparameter optimization
via GA, the population size is initially set to 20, and the
number of generations to 5, with elitism set to 2. The results
of fitness evolution across generations are depicted in Fig. 7.
Fitness initially decreases rapidly and then begins to oscil-
late towards the end, suggesting the presence of localminima.
Since the population size and number of generations are rel-
atively small, the algorithm does not sample a sufficiently
large search space and is more likely to become stuck in a
local minimum.

To enhance the capabilities of hyperparameter optimiza-
tion, the experiment is rerun with a population size of 40,
number of generations set to 20, and elitism set to 3. The
results of fitness evaluation across each successive genera-
tion of GA with the updated parameters are illustrated in
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Fig. 7 Fitness plot of GA with respect to number of generations. Here,
population size = 20, number of generations = 5, and elitism = 2

Fig. 8. While the fitness appears to stabilize beyond the sec-
ond generation, this is not the case, as demonstrated by the
zoomed-in view enclosed within the plot. This view shows
that fitness continues to improve, though at a slower rate
as it approaches saturation. It can also be observed that a
larger population size results in a higher initial fitness value,
reflecting themore diverse sampling of the search space. This
diversity is crucial for obtaining high-quality hyperparame-
ters and will contribute to a phase predictionmodel with high
accuracy, which is the goal of this study.

To avoid contingency and ensure fair results, 10 experiments
are run with population size = 40, number of generations =
20, and elitism = 4, where each run has a different random
seed. The best accuracy obtained from these experiments is

Fig. 8 Fitness plot of GA with respect to number of genera-
tions, with a zoomed-in view enclosed within the plot depicting
change in fitness close to saturation. Here, population size = 40,
number of generations = 20, and elitism = 3

Table 3 List of hyperparameters with the best testing accuracy

Hyperparameter Range

Learning rate 1.3036 × 10−2

Batch size 1.89 × 102

Number of epochs 6.09 × 102

Number of nodes 44

Dropout rate 9.5782 × 10−2

kiqr 2.5989

Feature subset [Z̄ , r̄ ,VEC,�χ, δ, Tmelt ,�S,�Hmix ]

a fitness value of 1.1320 which equates to testing accuracy
of 88.34% via fit = 1/Tacc. The resulting set of hyper-
parameters obtained from experiment with the best fitness
is described in Table 3. Upon examining the selected fea-
ture subset, it becomes evident that out of the ten features,
only eight are chosen by the algorithm. This indicates that
the remaining two features are either considered redundant
or their contribution to testing accuracy is minimal com-
pared to the other features in the universal set. Incorporating
feature subset selectionwithin the frameworkof hyperparam-
eter optimization ensures that the most relevant features are
selected, maximizing the performance of phase prediction
and accurately representing the search space of the MPEA
phase dataset.

Analysis of Results

To analyze the prediction quality of the network, a confusion
matrix is utilized, as illustrated in Fig. 9. This matrix shows
the correct and incorrect predictions for individuals in the
testing set. The AM and IM classes exhibit the best predic-
tion quality, with low false positives and false negatives. This

Fig. 9 Confusion matrix of testing data

123



Cognitive Computation            (2025) 17:50 Page 11 of 14    50 

Table 4 Prediction results of new alloys for validation of model

Alloy Actual Predicted

Fe4.5Co3CrVMn0.5 [61] SS SS

CoCu2Mn3Ni4 [22] SS SS

Al0.75Cu3.0833Fe3.0833Mn3.0833 [37] SS SS

Cu3.33Fe3.33Mn3.33 [37] SS SS

Co1.75Cr1.25Fe5.5NiMo0.3C0.2 [27] IM IM

is surprising, as IM is the smallest minority class, indicating
that the current network, with hyperparameters from Table 3,
is well suited for minority classes. However, the BCC+FCC
class has the worst prediction quality, with 13% false posi-
tives and 50% false negatives, where the network incorrectly
labels MP as BCC+FCC 35% of the time. This may be due
to the fact that BCC+FCC can itself be considered a mixed
phase, especially when phases other than BCC and FCC are
present in themicrostructure. However, cautionmust be exer-
cisedwhen considering the removal of a class, as the aim is to
generate an accurate depiction of the phase search space, and
oversimplification could lead to an unphysical representation
of the physical systems.

Validation of PredictionModel

To validate the phase prediction framework, the resulting
ANN is used to predict the phases of additionalMPEA alloys
reported in recent studies [22, 27, 37, 61], which were not
included in our dataset. The prediction results are listed in
Table 4. It is observed that the model successfully estimates
the phases for all five validation MPEAs, demonstrating that
the approach developed in the current study is a viable strat-
egy for phase prediction of MPEAs.

To further validate the approach chosen in this study,
the best results of our algorithm are compared with sev-
eral commonly utilized classification algorithms. Table 5
lists the outcomes of these comparisons, including the name
of the technique and the corresponding best testing accu-
racy for 10 independent runs. It is evident that our model,

Table 5 Comparison among various classification algorithms

Technique Best accuracy

ANN with HPO and additional
hyperparameters

0.84

Support vector machines 0.68

Decision tree 0.75

Random forest 0.71

XGBoost classifier 0.79

Naive Bayes 0.59

which employs an ANN with hyperparameter optimization
incorporating outlier detection and feature subset selection
as additional hyperparameters, achieves the best prediction
accuracy when compared to five widely used multi-class
classification techniques applied to MPEA phase prediction.
This comparison highlights that conventional classification
techniques are not well suited to handle the complex and
high-dimensional MPEA data, which contains outliers and
class imbalances.

Ablation Studies

In the context of machine learning, ablation studies refer to
the scientific examination of a machine learning system by
removing its components to gain insight into its performance.
These studies are useful for illustrating the importance of
key building blocks in an ANN model. For this purpose,
ablation studies are conducted to highlight the significance
of the novel additional parameters introduced in our study,
namely outlier detection and feature subset selection.

To perform ablation studies, the performance of themodel
is compared with and without these key additional hyper-
parameters, as well as between the two parameters. Each
comparison consists of 20 runs, and the results of the mean
testing accuracy are presented in Table 6. Here, O denotes
outlier detection hyperparameter, and F denotes feature sub-
set selection hyperparameter.

From Table 6, the performance of the model can be
assessed based on the comparison between the presence and
absence of O (outlier detection) and F (feature subset selec-
tion). Here, the absence of O and F indicates that all other
five hyperparameters are still present. In the first column, it
is evident that the model performs significantly better when
the O hyperparameter is added to the set of hyperparame-
ters, supporting the initial hypothesis that including outlier
detection enhances the quality of data in the MPEA dataset.

The second comparison is somewhat surprising, as it
shows only a slight improvement when adding F to the list
of hyperparameters. The third comparison, between the pres-
ence of only O and only F , indicates that the inclusion of
outlier detection is far superior in terms of testing accuracy
compared to feature subset selection. The underwhelming
performance of feature subset selection suggests the need

Table 6 Comparison results of ablation studies

Setting 1 Accuracy Setting 2 Accuracy

Without O and F 0.73 With only O 0.84

Without O and F 0.73 With only F 0.76

With only O 0.84 With only F 0.76

Without O and F 0.73 With both O and F 0.85
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for further analysis of the physical representation of all fea-
tures in the dataset. The addition of other chemical properties
as features in future studies may provide more insight into
the importance of feature selection in phase prediction of
MPEAs.

The fourth and final comparison, with and without both
O and F , further solidifies the success of our approach in
using additional hyperparameters, which lead to a signifi-
cant improvement in the mean testing accuracy. Combining
the results of the ablation studies and the validation using
new alloys in Table 4, it can be concluded that the model is
well suited for predicting the phases of alloys based on their
respective compositions and will be valuable for discovering
new MPEAs with desirable properties.

Conclusion

In this paper, a hyperparameter optimization approach for
ANNs has been proposed for phase prediction of MPEAs.
Specifically, outlier detection and feature subset selection
have been incorporated as novel additions to the hyperpa-
rameter optimization process, with GA employed as the
optimization algorithm. TomakeGA suitable for feature sub-
set selection, a new strategy has been developed to handle
variable-length chromosomes, where a single gene can have
a variable length. Experimental results have demonstrated
the viability of this approach as a phase prediction frame-
work.The analysis ofGAresults has illustrated the successful
optimization of both real-valued variables and dynamically
sized categorical arrays. To validate the current approach,
the best obtained model has been used to successfully pre-
dict the phases of new MPEAs not included in the dataset.
Ablation studies conducted on the model have indicated that
outlier detectionoutperforms feature subset selection, and the
combination of both has significantly enhanced prediction
accuracy, whichwill contribute to the high-throughput devel-
opment of MPEAs by assisting experimental design through
data science and providing a deeper understanding of their
physical characteristics.

Future work can be summarized as follows: (1) consid-
ering additional chemical and mechanical features beyond
Hume-Rothery rules for phase prediction of MPEAs [32,
59]; (2) employing different selection, crossover, and muta-
tion strategies and evolutionary computation methods for
hyperparameter optimization [7, 46, 60]; (3) designing a sim-
ilar strategy for supervised regression to predict mechanical
properties of MPEAs [20, 34, 64]; (4) creating a frame-
work for multi-objective optimization, where ANN phase
prediction is utilized as a search space to identify alloys
with desirable properties [10, 14, 51, 54]; (5) applying the
proposed hyperparameter optimization approach to other
material science and data analysis applications [52, 53, 57].
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