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Abstract
In this paper, we analyze conic minimax convex polynomial optimization problems. Under
a suitable regularity condition, an exact conic programming relaxation is established based
on a positivity characterization of a max function over a conic convex system. Further,
we consider a general conic minimax ρ-convex polynomial optimization problem, which is
defined by appropriately extending the notion of conic convexity of a vector-valuedmapping.
For this problem, it is shown that a Karush-Kuhn-Tucker condition at a global minimizer
is necessary and sufficient for ensuring an exact relaxation with attainment of the conic
programming relaxation. The exact conic programming relaxations are applied to SOS-
convex polynomial programs, where appropriate choices of the data allow the associated
conic programming relaxation to be reformulated as a semidefinite programming problem.
In this way, we can further elaborate the obtained results for other special settings including
conic robust SOS-convex polynomial problems and difference of SOS-convex polynomial
programs.

Keywords Conic programming · Polynomial optimization · Minimax programs ·
Relaxations · Duality

1 Introduction

In this paper, we propose a parametric conic minimax polynomial problem (PCMP) that is
defined as follows. Let U ⊂ R

s be an index set that is a nonempty compact convex set, and
f : Rn × U → R be a bifunction that is given by

f (x, u) := f0(x) +
s∑

i=1

ui fi (x), x ∈ R
n, u := (u1, . . . , us) ∈ U,
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where f0, f1, . . . , fs are given polynomials onRn such that f (·, u) is a convex polynomial for
each u ∈ U . For each f (regarded as a parameter), we consider a conic minimax polynomial
problem of the form:

inf
x∈Rn

{max
u∈U f (x, u) : G(x) ∈ −K }, (P f )

where K ⊂ R
m is a closed convex cone and G : Rn → R

m is a K -convex polynomial
mapping (see its definition in Sect. 2). The problem of type (P f ) covers a broad spectrum of
optimization models including common conic polynomial problems and robust polynomial
optimization programs. For instance, if f0 := 0, K := R

m+, G := (g1, . . . , gm) and U is
a polytope given by U := conv{e1, . . . , es}, where ek (k ∈ {1, . . . , s}) is a unit vector in
R
s whose k-th component is one and the others are zero, the problem (P f ) reduces to the

following (classical) minimax polynomial problem

inf
x∈Rn

{ max
j=1,...,s

f j (x) : gi (x) ≤ 0, i = 1, . . . ,m}, (SOP f )

which was studied in [22]. When f j := 0, j = 1, . . . , s or U := {0}, the problem (P f )
becomes a cone convex polynomial program studied in [11, 19]. The problem (P f ) also
encompasses a class of difference of SOS-convex polynomial problems in [26] and other
important conic robust SOS-convex polynomial programs examined in the last section by
specifying the given data of f , U , K or G. It should be noted here that the problem (P f ) does
not include the robust difference-of-convex-max optimization model in [17] as the latter is
not necessarily a convex program.

Following the robust optimization approach (see, e.g., [5–8]), the problem (P f ) can be
regarded as the robust counterpart of the following problem

inf
x∈Rn

{ f (x, u) : G(x) ∈ −K },

where u ∈ U is an uncertain parameter and U ⊂ R
s is a nonempty compact uncertainty set.

This model captures the uncertainty in the objective function of the problem inf
x∈Rn

{ f0(x) :
G(x) ∈ −K } assuming affine parameterization.

It is worthmentioning that our newly-defined parametric conicminimax polynomial prob-
lem (PCMP) handles flexibly dynamic decision-making processes with data perturbations f
by allowing decision variables to evolve with respect to other ambiguity parameters in U .
This is often seen in practice, for instance, the cost of producing a product is just an estimation
within a prescribed range of unknown parameters until the product is actually made [23],
and so a parametric optimization model enables the production decision maker the ability
to update and possibly adjust the investment strategy according to the actual parameter of
production cost. Furthermore, bearing the conic and parametric features, the generalized
model of type (P f ) enhances the applicability of the obtained results to real-world scenarios.
For instance, the weighted Steiner problem [7], which states that in a number of villages you
want to place a telephone station for which the total cost of cables linking the station and the
villages is as small as possible. This problem minimizes the weighted sum of its Euclidean
distances to all villages and it is formulated as a conic quadratic program. If we consider
additional constraints such as mountain blocks and river disruptions among the villages or
replace the cables by different radio systems or by other means of telephone transmission,
the Euclidean distance would be extended to a more general distance and in this case, the
corresponding problem could be cast into our general framework.
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The main aim of this work is to show that a broad class of conic minimax polynomial pro-
gramming problems of type (P f ) exhibits new exact conic programming relaxations under
suitable conditions. More precisely, we first establish an exact conic programming relaxation
by using a positivity characterization of a max function over a conic convex system. This is
done by employing some techniques from convex analysis, which have been used in the liter-
ature [13] including, for instance, a strict separation theorem (see, e.g., [32, Theorem 1.1.5])
and the classical minimax theorem (cf. [31, Theorem 4.2]) or the epigraph of the conjugate
of an indicator function related to a system of infinite convex functions [15, Lemma 3.1].

We then consider a general conic minimax ρ-convex polynomial optimization problem
and show that a Karush-Kuhn-Tucker condition at a global minimizer is necessary and suf-
ficient for ensuring an exact relaxation with attainment of the conic programming problem.
In addition, the exact conic programming relaxations are applied to the class of SOS-convex
polynomial problems, where the associated conic programming relaxations can be reformu-
lated and solved as a semidefinite programming problem. We further elaborate the obtained
results for other special settings such as conic robust SOS-convex polynomial programs
and difference of SOS-convex polynomial problems. We obtain these conic programming
relaxations for the special frameworks by exploiting sum of squares characterizations of
SOS-convex polynomials from [2, 14] or [22, Corollary 2.1]. In this way, the elaborations
allow us to recover or develop some existing results in [12, 20, 22] or [26].

The outline of the paper is as follows. Section2 introduces the definitions, notation and
basic results needed ahead.We provide here the corresponding extension of generalized conic
convexity to a vector-valued mapping, and prove dual characterizations of positivity and
non-negativity of a max function over a conic convex system. Section3 presents exact conic
programming relaxation results for conic minimax convex polynomial programs. Section4
provides further exact conic programming relaxation results for conic minimax generalized
convex polynomial programs and shows applications of the obtained results with a numerical
example. Finally, Sect. 5 is devoted to providing concluding remarks.

2 Preliminaries and positivity conic representations

We begin this section by providing notation and definitions of convex sets, functions and
polynomials. Throughout this paper, Rn denotes the Euclidean space with dimension n ∈
N := {1, 2, . . .}. The inner product in Rn is defined by 〈x, y〉 := x�y for all x, y ∈ R

n . The
nonnegative orthant of Rn is denoted by Rn+ := {(x1, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, . . . , n}.
We denote by �n := {x ∈ R

n+ : ∑n
i=1 xi = 1} the simplex in R

n . Moreover, the Euclidean
norm on Rn is denoted by ‖ · ‖. The positive semidefiniteness of an n × n matrix B, denoted
by B � 0, is defined by 〈x, Bx〉 ≥ 0 for all x ∈ R

n . If 〈x, Bx〉 > 0 for all x ∈ R
n\{0},

then B is called positive definite, denoted by B � 0. Let Sn+ ⊂ Sn denote the cone of
n × n positive semidefinite matrices, where Sn stands for the space of symmetric n × n
matrices. For A, B ∈ Sn, the inner product in Sn is given by 〈A, B〉 := Tr(AB), where Tr(·)
refers to the trace operation. In particular, Tr(λG)(x) := Tr(λG(x)) for x ∈ R

n , λ ∈ Sm

and G : Rn → Sm . As usual, cl� and conv� denote the closure and the convex hull of a
nonempty set �, respectively.

For a closed convex subset � ⊂ R
n , its indicator function ι� : Rn → R := R ∪ {±∞}

is defined as ι�(x) := 0 if x ∈ � and ι�(x) := +∞ if x /∈ �. For an extended real-valued
function ϕ : Rn → R, we set its effective domain and its epigraph as

dom ϕ := {x ∈ R
n : ϕ(x) < +∞}, epi ϕ := {(x, μ) ∈ R

n × R : ϕ(x) ≤ μ}.
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The conjugate function of ϕ, ϕ∗ : Rn → R, is defined by

ϕ∗(w) := sup{〈w, x〉 − ϕ(x) : x ∈ dom ϕ}, w ∈ R
n .

An extended real-valued function is proper if it does not take the value −∞ and its domain
is nonempty. Let g, h and gi , i ∈ I (where I is an arbitrary index set) be proper lower
semicontinuous convex functions. It is well known (see, e.g., [15, 32]) that, if dom g ∩
dom h �= ∅, supi∈I gi is proper, and λ > 0, then

epi(λg)∗ = λ epi g∗, (1)

epi(g + h)∗ = cl
(
epi g∗ + epi h∗) , (2)

epi

(
sup
i∈I

gi

)∗
= cl conv

(
⋃

i∈I
epi g∗

i

)
. (3)

The closure in (2) is superfluous if one of g and h is continuous at some x0 ∈ dom g∩dom h.
The space of all real polynomials on R

n is denoted by R[x] and the set of all n × r
matrix polynomials is denoted by R[x]n×r . We say that f ∈ R[x] is sum-of-squares (see,
e.g., [3, 24, 25]) if there exist f j ∈ R[x], j = 1, . . . , r , such that f = ∑r

j=1 f 2j . The

set consisting of all sum-of-squares polynomials is denoted by �2, which is a subset of P ,
the set of all nonnegative polynomials. Moreover, the set consisting of all sum-of-squares
(respectively, nonnegative) polynomials with degree at most d is denoted by�2

d (respectively,
Pd ). We say that F ∈ R[x]n×n is an SOS matrix polynomial if F(x) = H(x)H(x)�, where
H(x) ∈ R[x]n×r is a matrix polynomial for some r ∈ N. A real polynomial f onRn is called
SOS-convex if the Hessian matrix function F : x �→ ∇2 f (x) is an SOS matrix polynomial
[14]. Clearly, an SOS-convex polynomial is convex, but the converse is not true in general [1].
It is well-known that any convex quadratic function and any convex separable polynomial is
SOS-convex (see, e.g., [22]).

For a differentiable mapping G : Rn → R
m , we use DG(x) to denote the derivative of G

at x ∈ R
n , and DG(x)∗ : Rm → R

n to denote the adjoint of DG(x), which is characterized
by the following property: 〈DG(x)v,w〉 = 〈v, DG(x)∗w〉 for every v ∈ R

n , w ∈ R
m . For a

differentiable function f : Rn → R, we often use ∇ f (x) to denote the transpose of Df (x).
Let K ⊂ R

m be a closed convex cone. We denote by K⊕ the dual cone of K , that is,
K⊕ := {y ∈ R

m : 〈y, x〉 ≥ 0,∀x ∈ K }. A polynomial vector-valued mapping G : Rn →
R
m , that is, G(x) = (g1(x), . . . , gm(x)) where each gi is a polynomial on R

n , is said to be
K-convex if for all x, y ∈ R

n and for all γ ∈ [0, 1],
(1 − γ )G(x) + γG(y) − G((1 − γ )x + γ y) ∈ K .

Equivalently, G is a K -convex polynomial if and only if for any γ ∈ [0, 1] and for any
λ ∈ K⊕, 〈λ,G〉 is a convex polynomial on R

n . Analogously, G : Rn → R
m is said to be a

K-SOS-convex polynomial [19] if, for any α ∈ [0, 1] and for any λ ∈ K⊕,

h(x, y) = 〈λ, αG(x) + (1 − α)G(y) − G(αx + (1 − α)y)〉
is a sum-of-squares polynomial on Rn ×R

n . Equivalently, in virtue of [19, Lemma 2.2] and
[2, Theorem 3.1], G is a K -SOS-convex polynomial if and only if, for any λ ∈ K⊕, 〈λ,G〉
is an SOS-convex polynomial onRn . The degree of the polynomial mapping G is defined by
degG = max{deg g j , j = 1, . . . ,m}.

A function f : Rn → R is said to be ρ-convex [34, 35] if there exists some real number
ρ such that for all λ ∈ [0, 1] and all x, y ∈ R

n ,

(1 − λ) f (x) + λ f (y) − f ((1 − λ)x + λy) − ρλ(1 − λ)‖x − y‖2 ≥ 0. (4)
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If ρ = 0 then f is convex, if ρ > 0 then f is called strong convex, and if ρ < 0 then f is
said to be weak convex. It is well-known that f is ρ-convex if and only if f (x) − ρ‖x‖2 is
convex.

A numerically tractable relaxation of the ρ-convexity for real polynomials is given as
follows. Given ρ ∈ R, a real polynomial f on R

n is said to be ρ-SOS-convex [16] if for
all x, y ∈ R

n and for all λ ∈ [0, 1], the expression of the left-hand side in (4) is a sum-of-
squares polynomial in R[x; y]. If ρ > 0, then f is called a strong SOS-convex polynomial
with modulus ρ. If ρ = 0, then f is an SOS-convex polynomial. If ρ < 0, then f is called a
weak SOS-convex polynomialwithmodulusρ. Clearly, it follows by definition that the strong
SOS-convexity implies the SOS-convexity which, in turn, implies the weak SOS-convexity.
Moreover, a ρ-SOS-convex polynomial is SOS-convex if and only if ρ ≥ 0. According
to [16, Theorem 2.2], a given polynomial f is a ρ-SOS-convex polynomial if and only if
f (x) − ρ‖x‖2 is an SOS-convex polynomial.
We now extend the notion of ρ-convexity to a vector-valued mapping.

Definition 2.1 (Conic �-convexity) Let K be a closed and convex cone inRm . LetG : Rn →
R
m be a vector-valuedmapping and � ∈ R

m .We say thatG is �-K-convex if for all x, y ∈ R
n

and for all α ∈ [0, 1],
(1 − α)G(x) + αG(y) − G((1 − α)x + αy) − �α(1 − α)‖x − y‖2 ∈ K .

Asa straightforward consequence of this definition, it follows thatG is�-K-convex if and only
if, for everyλ ∈ K⊕, 〈λ,G〉 is 〈λ, �〉-convex.Analogously, we say thatG is�-K-SOS-convex
if, for any α ∈ [0, 1] and for any λ ∈ K⊕,

h(x, y) = 〈λ, αG(x) + (1 − α)G(y) − G(αx + (1 − α)y) − �α(1 − α)‖x − y‖2〉
is a sum-of-squares polynomial on R

n × R
n . Thus, G is �-K-SOS-convex if and only if for

every λ ∈ K⊕, 〈λ,G〉 is 〈λ, �〉-SOS-convex.
Throughout this paper, we assume that the feasible set of problem (P f ) is nonempty (i.e.,

F := {x ∈ R
n : G(x) ∈ −K } �= ∅), and denote by d the smallest even number satisfying

d ≥ max{deg fi , i = 0, 1, . . . , s, degG}. We also put

F(x) := max{ f (x, u) : u ∈ U}, x ∈ R
n . (5)

Let us first provide a characterization of positivity of a max function in the form of F over
a conic polynomial convex system under the condition that the convex set

� := {(y, z) ∈ R × R
m : ∃ x ∈ R

n s.t. F(x) ≤ y, z ∈ G(x) + K } (6)

is closed, where F is given by (5) and G and K are given as in the definition of problem (P f ).
The set � in (6) is closed if F is coercive on R

n ; i.e., lim||x ||→∞ F(x) = +∞. Besides, the
closedness of � automatically holds whenever U is a polytope and K is a polyhedral cone
as we will see in Sect. 3.

Proposition 2.1 (Positivity conic characterization) Consider the problem (P f ) and assume
that the set � in (6) is closed. Then, the following statements are equivalent:

(i) [x ∈ R
n,G(x) ∈ −K ] ⇒ F(x) > 0.

(ii) ∃ u ∈ U , λ ∈ K⊕, δ > 0 such that f (·, u) + 〈λ,G〉 − δ ∈ Pd .

Proof ((i) ⇒ (i i)) Let (i) hold, and consider � in (6). Then, we see that 0 /∈ �. A strict
separation theorem (see, e.g., [32, Theorem 1.1.5]) shows that there exist (μ, λ) ∈ (R ×
R
m)\{0}, α ∈ R and δ > 0 such that

0 ≤ α < α + δ ≤ μy + 〈λ, z〉 ∀(y, z) ∈ �. (7)
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As�+(R+×K ) ⊂ �, we derive by (7) that (μ, λ) ∈ R+×K⊕. Observe that
(
F(x),G(x)

) ∈
� for every x ∈ R

n , and so it follows by (7) that

δ ≤ μF(x) + 〈λ,G(x)〉 ∀x ∈ R
n .

As F �= ∅, we claim that μ �= 0. Otherwise, if μ = 0, then we get 〈λ,G(x)〉 > 0 for any
x ∈ F . However, G(x) ∈ −K and λ ∈ K⊕, then 〈λ,G(x)〉 ≤ 0, which is a contradiction.
Thus, μ > 0, and we obtain that

0 ≤ F(x) + 〈λ,G(x)〉 − δ ∀x ∈ R
n,

where δ := μ−1δ and λ := μ−1λ. Then, it entails that

inf
x∈Rn

{
max
u∈U { f (x, u) + 〈λ,G(x)〉 − δ}} ≥ 0 (8)

by (5). Let H : Rn ×R
s → R be defined by H(x, u) := f (x, u)+〈λ,G(x)〉− δ for x ∈ R

n

and u ∈ R
s . Then, H is an affine function in variable u and a convex function in variable

x and so, we invoke the classical minimax theorem (see, e.g., [31, Theorem 4.2]) and (8) to
claim that

max
u∈U inf

x∈Rn
H(x, u) = inf

x∈Rn
max
u∈U H(x, u) ≥ 0.

Therefore, we can find u ∈ U such that inf
x∈Rn

H(x, u) ≥ 0, which means that

f (x, u) + 〈λ,G(x)〉 − δ ≥ 0 ∀x ∈ R
n,

and so
f (·, u) + 〈λ,G〉 − δ ∈ Pd .

[(i i) ⇒ (i)] Let (i i) hold. This means there exist p0 ∈ Pd , u ∈ U , λ ∈ K⊕ and δ > 0
such that f (·, u) + 〈λ,G〉 − δ = p0. Then, for x ∈ R

n with G(x) ∈ −K one has

F(x) ≥ f (x, u) = p0(x) − 〈λ,G(x)〉 + δ ≥ δ > 0.

The proof of the proposition is complete. ��
The following result stems from the above positivity conic charaterization that can

alternatively be used to derive exact conic relaxations in the sequel.

Corollary 2.2 (Nonnegativity conic characterization) Consider the problem (P f ) and assume
that the set � in (6) is closed. Then, the following statements are equivalent:

(i) [x ∈ R
n,G(x) ∈ −K ] ⇒ F(x) ≥ 0.

(ii) ∀ε > 0, ∃ u ∈ U , λ ∈ K⊕ such that f (·, u) + 〈λ,G〉 + ε ∈ Pd .

Proof ((i) ⇒ (i i)) Assume that (i) holds. Then, for any ε > 0, F + ε > 0 is positive on F .
So, Proposition 2.1 implies that there exist p0 ∈ Pd , u ∈ U , λ ∈ K⊕ and δ > 0 such that,
for all x ∈ R

n , f (x, u) + 〈λ,G(x)〉 + ε = p0(x) + δ. So f (·, u) + 〈λ,G〉 + ε ∈ Pd .
[(i i) ⇒ (i)] Suppose that for each ε > 0 there exist p0 ∈ Pd , u ∈ U and λ ∈ K⊕ such

that f (·, u) + ε = p0 − 〈λ,G〉. Then, for each x ∈ R
n with G(x) ∈ −K one has

F(x) + ε ≥ f (x, u) + ε = p0(x) − 〈λ,G(x)〉 ≥ 0.

Letting ε → 0, we see that F(x) ≥ 0 for all x ∈ R
n withG(x) ∈ −K . Hence, the conclusion

follows. ��
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3 Exact conic relaxations for conic minimax convex polynomial
programs

In this section, we employ the certificates of conic positivity/nonnegativity to provide (exact)
conic relaxations for the conic minimax convex polynomial program defined by (P f ). The
conic programming relaxation of (P f ) is given by

sup
(u,λ,μ)

{μ : f0 +
s∑

i=1

ui fi + 〈λ,G〉 − μ ∈ Pd , (R f )

u = (u1, . . . , us) ∈ U, λ ∈ K⊕, μ ∈ R}.

The first result in this section is an exact conic programming relaxation that is expressed
in the form of a zero duality gap (i.e., the solution attainment of the conic programming
relaxation is not guaranteed).

Theorem 3.1 (Exact conic relaxation) Consider the problem (P f ) and assume that the set
� in (6) is closed. Then, we have

inf (P f ) = sup (R f )

Proof Recall that F := {x ∈ R
n : G(x) ∈ −K }. Clearly, for any x ∈ F , u ∈ U , λ ∈ K⊕

and μ ∈ R, with f0 +∑s
i=1 ui fi + 〈λ,G〉 − μ ∈ Pd ,

F(x) − μ ≥ f (x, u) − μ ≥ f (x, u) + 〈λ,G(x)〉 − μ ≥ 0.

Hence, inf (P f ) ≥ sup (R f ). To see the reverse inequality, we assume without loss of gen-
erality that inf (P f ) > −∞; otherwise, the conclusion trivially holds. As F �= ∅, we have
r := inf (P f ) ∈ R. Then, for any ε > 0, F − r + ε is positive on F . So, our Proposition 2.1
implies that there exist p0 ∈ Pd , u ∈ U , λ ∈ K⊕ and δ > 0 such that

f (·, u) + 〈λ,G〉 − (r − ε) = p0 + δ ∈ Pd .

This shows that, for any ε > 0, sup (R f ) ≥ r − ε. Letting ε → 0, we see that sup (R f ) ≥ r ,
and so the conclusion follows. ��

In the following corollary, we show that the closedness of the set � in Theorem 3.1
automatically holds for the setting, where the index set U is a polytope and the cone K is a
polyhedral cone. So we obtain an exact conic relaxation for the corresponding conic minimax
convex polynomial program.

Corollary 3.2 (Qualification-free exact conic relaxation) Consider the problem (P f ), where
U = conv{u1, . . . , ur } with u� ∈ R

s, � = 1, . . . , r , K = {x ∈ R
m : 〈a j , x〉 ≥ 0, j =

1, . . . , q} with a j ∈ R
m, j = 1, . . . , q, and G := (g1, . . . , gm). Then, we have

inf (P f ) = sup
(δ,β,μ)

{μ : f0 +
s∑

i=1

r∑

�=1

δ�u
�
i fi +

m∑

i=1

q∑

j=1

β j a
j
i gi − μ ∈ Pd ,

δ = (δ1, . . . , δr ) ∈ �r , β := (β1, . . . , βq) ∈ R
q
+, μ ∈ R}.
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Proof Firstly, we show that the set � in (6) is closed under the given assumptions. In this
setting, the set � in (6) reduces to the following simpler form:

� = { (y, z) ∈ R × R
m : ∃ x ∈ R

n s.t. f0(x) +
s∑

i=1

u�
i fi (x) ≤ y, � = 1, . . . , r ,

m∑

i=1

a j
i (gi (x) − zi ) ≤ 0, j = 1, . . . , q }.

Let {(yk, zk)}k∈N ⊂ � be such that (yk, zk) → (y, z) as k → ∞. Then, for each
k ∈ N, there exists xk ∈ R

n such that f0(xk) + ∑s
i=1 u

�
i fi (x

k) ≤ yk , � = 1, . . . , r ,

and
∑m

i=1 a
j
i (gi (xk) − zki ) ≤ 0, j = 1, . . . , q . Now, consider the optimization problem

inf
(x,γ,ζ )∈Rn×R×Rm

(γ − y)2 +
m∑
i=1

(ζi − zi )2

s.t. f0(x) +
s∑

i=1
u�
i fi (x) ≤ γ, � = 1, . . . , r ,

m∑
i=1

a j
i (gi (x) − ζi ) ≤ 0, j = 1, . . . , q.

(AP)

It is easy to see that (AP) is a convex polynomial optimization problem. Furthermore, one
has

0 ≤ inf (AP) ≤ (yk − y)2 +
m∑

i=1

(zki − zi )
2 → 0.

Then, by virtue of [4, Theorem 3], inf (AP) is attained, and so there exists x ∈ R
n such that

f0(x) +
s∑

i=1
u�
i fi (x) ≤ y, � = 1, . . . , r , and

m∑
i=1

a j
i (gi (x) − zi ) ≤ 0, j = 1, . . . , q , which

shows that (y, z) ∈ �. Therefore, � is closed.
As U = conv{u1, . . . , ur } is a polytope and K = {x ∈ R

m : 〈a j , x〉 ≥ 0, j = 1, . . . , q}
is a polyhedral cone, it holds that

U =
⎧
⎨

⎩

r∑

�=1

δ�u
� : δ := (δ1, . . . , δr ) ∈ �r

⎫
⎬

⎭ and K⊕ =
⎧
⎨

⎩

q∑

j=1

β j a
j : β := (β1, . . . , βq ) ∈ R

q
+

⎫
⎬

⎭ .

Hence, the existence of (u, λ, μ) ∈ U ×K⊕ ×Rwith f0 +∑s
i=1 ui fi +〈λ,G〉−μ ∈ Pd

is equivalent to the existence of (δ, β, μ) ∈ �r × R
q
+ × R with

f0 +
s∑

i=1

r∑

�=1

δ�u
�
i fi +

m∑

i=1

q∑

j=1

β j a
j
i gi − μ ∈ Pd .

Consequently,

sup (R f ) = sup
δ∈�r ,β∈Rq

+,μ∈R
{μ : f0 +

s∑

i=1

r∑

�=1

δ�u
�
i fi +

m∑

i=1

q∑

j=1

β j a
j
i gi − μ ∈ Pd },

and the conclusion follows by Theorem 3.1. ��
Under a strict feasibility (Slater) condition, the following theorem establishes an exact

conic relaxation that is expressed in the form of a strong duality relation (i.e., there is the
solution attainment of the conic relaxation problem).
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Theorem 3.3 (Exact conic relaxation with attainment) Consider the problem (P f ), where K
is a closed convex conewith nonempty interior, and let x0 ∈ R

n be such that G(x0) ∈ − int K.
Assume that inf(P f )> −∞. Then, we have

inf(P f ) = max(R f ).

Proof In this setting, it holds that r := inf(P f ) ∈ R. Observe first as in the proof of Theorem
3.1 that sup(R f ) ≤ inf(P f ) (weak duality).

Now, let

D := {(y, z) ∈ R × R
m : ∃ x ∈ R

n s.t. F(x) − r < y, z ∈ G(x) + K }. (9)

We see that D is a convex set and 0 /∈ D. Using a separation theorem (see, e.g., [28,
Theorem 2.5]), we find (ν, λ) ∈ (R × R

m)\{0} such that

0 ≤ νy + 〈λ, z〉 ∀(y, z) ∈ D. (10)

Arguing as in the proof of Proposition 2.1, we get by (10) that (ν, λ) ∈ R+ × K⊕. Since(
F(x) − r + ε,G(x)

) ∈ D for every x ∈ R
n and ε > 0, we conclude by (10) that

ν
(
F(x) − r + ε

)+ 〈λ,G(x)〉 ≥ 0 ∀x ∈ R
n .

Letting ε → 0, we obtain

ν
(
F(x) − r

)+ 〈λ,G(x)〉 ≥ 0 ∀x ∈ R
n .

If ν = 0, then λ �= 0 and 〈λ,G(x)〉 ≥ 0 for all x ∈ R
n , which is a contradiction with the

hypothesis that G (x0) ∈ − int K for some x0 ∈ R
n , and then 〈λ,G(x0)〉 < 0.Hence, ν > 0,

and so we arrive at
F(x) − r + 〈λ,G(x)〉 ≥ 0 ∀x ∈ R

n, (11)

where λ := ν−1λ. Following a similar argument as in the proof of Proposition 2.1, we can
find u := (u1, . . . , us) ∈ U such that

f (x, u) − r + 〈λ,G(x)〉 ≥ 0 ∀x ∈ R
n,

and so

f0 +
s∑

i=1

ui fi + 〈λ,G〉 − r ∈ Pd .

It shows that (u, λ, r) is a feasible point of problem (R f ), and so sup(R f ) ≥ r = inf(P f ).
This, together with the above weak duality, entails that sup (R f ) = inf (P f ) and the program
(R f ) attains its optimal value as r . Consequently, inf (P f ) = max (R f ). ��

The next theorem establishes a characterization for stable exact conic relaxations of
the parametric conic minimax convex polynomial problem (PCMP) under the following
constraint qualification:

H :=
⋃

λ∈K⊕
epi〈λ,G〉∗ is closed. (CQ)

It is worth observing here that H is a convex cone [21, Lemma 6.1] and the constraint
qualification (CQ) is guaranteed by the Slater condition [21, Proposition 6.1]. In our setting,
stablemeans that the exact conic relaxation continues to hold when the objective function of
the primal problem is perturbed with any affine function.
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Theorem 3.4 (Stable exact conic relaxation) Consider the parametric problem (PCMP).
Then, the following statements are equivalent:

(i) (CQ) holds.
(ii) For any function f in the form of (PCMP) with inf (P f ) > −∞, one has inf (P f ) =

max (R f ).

Proof ((i) ⇒ (i i)) Consider a given function f in the form of (PCMP) and let α :=
inf (P f ) > −∞. Since F �= ∅, α < +∞, and so α is finite. Observe first as in the proof
of Theorem 3.1 that sup (R f ) ≤ inf (P f ) (weak duality). Since α := inf{F(x) | x ∈ F}, it
holds that

F(x) + ιF (x) ≥ α for all x ∈ R
n .

This, by the notion of conjugate function of F + ιF , means that

(0,−α) ∈ epi(F + ιF )∗. (12)

Since F is a continuous function, one has

epi(F + ιF )∗ = epi F∗ + epi ι∗F = epi F∗ + clH = epi F∗ + H, (13)

where the first equality holds by (2), the second equality holds by virtue of [15, Lemma 3.1]
and the last one holds under the assumption (i).

We now show that the set E := ⋃
u∈U

epi f (·, u)∗ is convex and closed. To see this, let

(x, w) ∈ conv(E). Then, there exist {u j } ⊂ U , {(x j , w j )} ⊂ E and {γ j } ⊂ R+ for j =
1, . . . , k, such that (x, w) = ∑k

j=1 γ j (x j , w j ),
∑k

j=1 γ j = 1 and (x j , w j ) ∈ epi f (·, u j )
∗

for j = 1, . . . , k. Without loss of generality, we can assume that γ j > 0 for all j = 1, . . . , k,
and by the Carathéodory theorem that k ≤ n + 2. Then

(x, w) ∈
k∑

j=1

γ j epi f (·, u j )
∗ (1)=

k∑

j=1

epi(γ j f (·, u j ))
∗

(2)= epi

⎛

⎝
k∑

j=1

γ j f (·, u j )

⎞

⎠
∗

= epi f (·, u)∗ ⊂ E,

where u :=∑k
j=1 γ j u j ∈ U . Thus conv(E) ⊂ E , which entails that E is convex.

To show that E is closed, we pick (y, v) ∈ cl E . Then, there exists {(yk, vk)}k∈N ⊂ E
such that (yk, vk) → (y, v) as k → ∞. Consequently, there exists {uk}k∈N ⊂ U such that
(yk, vk) ∈ epi f (·, uk)∗, and so

〈yk, x〉 − f (x, uk) ≤ vk ∀x ∈ R
n, k ∈ N. (14)

Since U is a compact set, we may assume that u := limk→∞ uk ∈ U . Note further that
f (x, ·) is a continuous function. By letting k → ∞ in (14) we get 〈y, x〉 − f (x, u) ≤ v

for all x ∈ R
n . This shows that f (·, u)∗(y) = sup{〈y, x〉 − f (x, u) : x ∈ R

n} ≤ v and so
(y, v) ∈ epi f (·, u)∗ ⊂ E . Thus cl E ⊂ E , which shows that E is closed.

Now, taking the above assertion, the definition of F and the properties of the conjugate,
we obtain that

epi F∗ (3)= cl conv
( ⋃

u∈U
epi f (·, u)∗

)
= E .
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This together with (12) and (13) entails that (0,−α) ∈ E + H. Then, there exists u ∈ U ,
(a, b) ∈ epi f (·, u)∗, λ ∈ K⊕ and (c, d) ∈ epi〈λ,G〉∗, such that a+c = 0 and b+d+α = 0.
Now, by the definition of conjugate function, one has 〈a, x〉 − f (x, u) ≤ b for all x ∈ R

n

and 〈c, x〉 − 〈λ,G(x)〉 ≤ d for all x ∈ R
n . Therefore, we have

f (x, u) + 〈λ,G(x)〉 − α ≥ 〈a + c, x〉 − (b + d + α) = 0 ∀x ∈ R
n,

and so

f0 +
s∑

i=1

ui fi + 〈λ,G〉 − α ∈ Pd .

Thismeans that (u, λ, α) is a feasible point of problem (R f ), and so sup (R f ) ≥ α = inf (P f ).
This, together with the above weak duality, entails that sup (R f ) = inf (P f ) and the program
(R f ) attains its optimal value as α, and so inf (P f ) = max (R f ). Thus, (i i) holds.

[(i i) ⇒ (i)] Suppose that (i i) holds. Let (v, r) ∈ clH. Then, there exist {λk}k∈N ⊂ K⊕
and {(vk, rk)}k∈N ⊂ R

n × R such that (vk, rk) ∈ epi〈λk,G〉∗ and (vk, rk) → (v, r) as
k → ∞. Hence, for x ∈ R

n such that G(x) ∈ −K one has

〈vk, x〉 ≤ 〈vk, x〉 − 〈λk,G(x)〉 ≤ rk .

Letting k → ∞, we obtain 〈v, x〉 ≤ r for all x ∈ F , and so α := inf{−〈v, x〉 : G(x) ∈
−K } ≥ −r . Putting f̃ := f̃0 +∑s

i=1 ui f̃i for f̃0 := −〈v, ·〉, f̃i := 0, i = 1, . . . , s and
u ∈ U , we see that f̃ is in the form of (PCMP) with inf (P f̃ ) = α > −∞. Then, it follows

from (i i) that there exist u ∈ U and λ ∈ K⊕ such that

f̃0(x) +
s∑

i=1

ui f̃i (x) + 〈λ,G(x)〉 − α ≥ 0 ∀x ∈ R
n .

Thus, −〈v, x〉 + 〈λ,G(x)〉 ≥ −r for all x ∈ R
n , which shows that

〈λ,G〉∗(v) = sup{〈v, x〉 − 〈λ,G(x)〉 : x ∈ R
n} ≤ r .

Hence, (v, r) ∈ epi〈λ,G〉∗ ⊂ H. Consequently, H is closed, and (i) holds. ��

4 Extensions and applications of exact conic relaxations

This section is devoted to considering how to generalize our exact conic relaxations to a
more general conic minimax ρ-convex polynomial optimization problem and derive exact
semidefinite programming (SDP) relaxations for some tractable classes of parametric conic
mathematical models such as the class of conic robust SOS-convex polynomial problems,
the class of second-order conic robust SOS-convex polynomial problems and the class of
difference of SOS-convex polynomial programs.

4.1 Exact conic relaxations for conic minimax�-Convex polynomial programs

In this subsection, we consider a (parametric) conic minimax ρ-convex polynomial problem
of the form

inf
x∈Rn

{max
u∈U f (x, u) : G(x) ∈ −K }, (GP f )
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where U ⊂ R
s is a nonempty compact convex set, f : Rn × U → R is given by

f (x, u) := f0(x) +
s∑

i=1

ui fi (x), x ∈ R
n, u := (u1, . . . , us) ∈ U

for certain polynomials f0, f1, . . . , fs on R
n such that for each u ∈ U , f (·, u) is a ρ(u)-

convex polynomial for some ρ(u) ∈ R, K ⊂ R
m is a closed convex cone and G : Rn → R

m

is a �-K -convex polynomial mapping for some � ∈ R
m . We recall that F := {x ∈ R

n :
G(x) ∈ −K } �= ∅, F is defined as in (5) and the conic relaxation for the problem (GP f ) is
given as in (R f ). Observe that the problem (P f ) is a particular case of problem (GP f ).

The forthcoming theorem provides necessary and sufficient conditions in terms of the
Karush-Kuhn-Tucker optimality condition for exact conic relaxations of problem (GP f ).

Definition 4.1 We say that the Karush-Kuhn-Tucker (KKT) condition holds at x ∈ F
whenever there exist u ∈ U and λ ∈ K⊕ such that

∇x f (x, u) + DG(x)∗λ = 0,

〈λ,G(x)〉 = 0,

f (x, u) − F(x) = 0, (15)

where λ is called a Lagrange multiplier at (x, u).

It is worth mentioning here that when U is a singleton (equivalently, there is no index set
U), the condition of f (x, u)−F(x) = 0 is superfluous, and so above-defined KKT condition
collapses to the classical KKT one given, for example, in [9].

Theorem 4.1 (Exact conic relaxations via KKT) Consider the problem (GP f ) and its conic
relaxation (R f ). Then, the following statements hold:

(i) If the KKT condition holds for (GP f ) at x ∈ F with a Lagrange multiplier λ at (x, u)

satisfying ρ(u) + 〈λ, �〉 ≥ 0, then x̄ is a global minimizer and min (GP f ) = max (R f ).
(ii) If min (GP f ) = max (R f ), then the KKT condition holds at each global minimizer of

(GP f ).

Proof (i) Observe first as in the proof of Theorem 3.1 that sup (R f ) ≤ inf (GP f ) (weak
duality). Assume that theKKT condition holds for (GP f ) at x ∈ F with a Lagrangemultiplier
λ at (x, u) satisfying ρ(u) + 〈λ, �〉 ≥ 0. We note from the definition of ρ-convexity that
f (·, u) + 〈λ,G〉 is (ρ(u) + 〈λ, �〉)-convex. Then, f (·, u) + 〈λ,G〉 is convex if and only
if ρ(u) + 〈λ, �〉 ≥ 0. So, the condition of ρ(u) + 〈λ, �〉 ≥ 0 (hence, the convexity of
f (·, u) + 〈λ,G〉) follows that

f (x, u) + 〈λ,G(x)〉 − f (x, u) − 〈λ,G(x)〉 − 〈∇x f (x, u) + DG(x)∗λ, x − x〉 ≥ 0

for all x ∈ R
n . Then, we get by the KKT condition at x in (15) that

f (·, u) + 〈λ,G〉 − F(x) ∈ Pd .

If x ∈ R
n is such that G(x) ∈ −K , since 0 ≥ 〈λ,G(x)〉, then F(x) ≥ f (x, u) ≥ F(x),

which shows that x is a global minimizer of (GP f ) and min (GP f ) = F(x). Furthermore, we
see that (u, λ, F(x)) is a feasible point of (R f ), and so sup (R f ) ≥ F(x). This, together with
the above weak duality, entails that sup (R f ) = min (GP f ) and the program (R f ) attains its
optimal value; i.e., min (GP f ) = max (R f ).
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(i i) Assume that min (GP f ) = max (R f ), and let x ∈ F be an arbitrary global minimizer
of (GP f ). Then, F(x) = max (R f ) and so, there exist u ∈ U and λ ∈ K⊕ such that

h(·) := f (·, u) + 〈λ,G〉 − F(x) ∈ Pd

and (u, λ, F(x)) is an optimal solution to (R f ). Now, we observe that F(x) =
maxu∈U f (x, u) = f (x, u). Otherwise, if F(x) > f (x, u), since G(x) ∈ −K implies
〈λ,G(x)〉 ≤ 0, then h(x) < 0, a contradiction with h ∈ Pd . Hence, F(x) = f (x, u) and so,
h(x) = 〈λ,G(x)〉 ≥ 0. Consequently, we get that 〈λ,G(x)〉 = 0. We thus get that h(x) = 0,
which means that x is a minimizer of h on R

n since for each x ∈ R
n , h(x) ≥ 0 = h(x).

Then, by the necessary condition for a minimizer of h, we obtain that ∇h(x) = 0, that is,
∇x f (x, u)+DG(x)∗λ = 0.Consequently, theKKTcondition holds at each globalminimizer
of (GP f ). ��

Since the problem (P f ) is a particular case of problem (GP f ) and moreover, it is a con-
vex program, we get by Theorem 4.1 a characterization for exact conic relaxations at each
minimizer of problem (P f ) as follows:

Corollary 4.2 Let x ∈ F be a minimizer of problem (P f ). Then, the KKT condition holds for
(P f ) at x ∈ F if and only if min (P f ) = max (R f ).

4.2 Applications to conic robust SOS-convex and difference of SOS-convex
polynomial programs

In this subsection, we apply the exact conic relaxations obtained in the previous sections to
derive stable exact semidefinite programming (SDP) relaxations for some tractable classes
of parametric conic mathematical models including the class of conic robust SOS-convex
polynomial problems, the class of second-order conic robust SOS-convex polynomial prob-
lems and the class of difference of SOS-convex polynomial programs. When restricting our
problems into particular settings, the obtained results develop and recover some correspond-
ing ones existing the literature such as those in [20, 22] and [26], and more importantly, all
exact conic relaxations are numerically tractable in the sense that they can be reformulated
and solved as SDP problems [33].
Parametric conic robust SOS-convex polynomial problems. Let us first consider a para-
metric conic robust SOS-convex polynomial problem (PCRP) that is defined as follows: Let
U ⊂ R

s be a nonempty uncertainty set that is a spectrahedron (cf. [30, 36]) defined by

U := {u := (u1, . . . , us) ∈ R
s : A0 +

s∑

i=1

ui Ai � 0} (16)

for some given symmetric matrices Ai , i = 0, 1, . . . , s, and f : Rn ×U → R be a bifunction
that is given by

f (x, u) := f0(x) +
s∑

i=1

ui fi (x), x ∈ R
n, u := (u1, . . . , us) ∈ U (17)

for certain polynomials f0, f1, . . . , fs on Rn such that f (·, u) is an SOS-convex polynomial
for each u ∈ U , where u is an uncertain vector. For each f (regarded as a parameter), one
considers a conic robust SOS-convex polynomial problem of the form:

inf
x∈Rn

{max
u∈U f (x, u) : G(x) ∈ −S p

+}, (RP f )
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where G : Rn → S p is an S p
+-SOS-convex polynomial mapping. As previously, we assume

that the uncertainty set U in (16) is bounded and the feasible set of (RP f ) is non-empty, and
denote by d the smallest even number satisfying d ≥ max{deg fi , i = 0, 1, . . . , s, degG}.

The following theorem provides a characterization of exact conic relaxations for the
parametric conic robust SOS-convex polynomial problem when f varies in the class of
SOS-convex polynomials of the form (17).

Theorem 4.3 (Stable exact SDP relaxation of PCRP) Consider the parametric conic robust
SOS-convex polynomial problem (PCRP). Then, the following statements are equivalent:

(i)
⋃

λ∈S p
+
epiTr(λG)∗ is closed.

(ii) For any function f in the form of (PCRP) with inf (RP f ) > −∞, one has

inf (RP f ) = max
(μ,λ,w)

{μ : f0 +
s∑

i=1

wi fi + Tr(λG) − μ ∈ �2
d , A0 +

s∑

i=1

wi Ai � 0,

μ ∈ R, λ ∈ S p+, w = (w1, . . . , ws) ∈ R
s}. (18)

Proof Letm := p(p+1)
2 . Then, it holds that the dimension of S p is the same as the dimension

of Rm , and so there exists an invertible linear map T : S p → R
m such that

T (A)�T (B) = Tr(AB) for all A, B ∈ S p.

Thus, one can identify S p equipped with the trace inner product as Rm and the Euclidean
inner product by associating each symmetric matrix A ∈ S p to T (A) ∈ R

m . Now, for any
function f in the form of (PCRP) with inf (RP f ) > −∞, we see that the problem (RP f )
can be viewed as a particular case of problem (P f ) with K := S p

+ and U given by (16).
Invoking Theorem 3.4, we conclude that the closedness of

⋃
λ∈K⊕

epi〈λ,G〉∗ is equivalent to

the assertion that for any function f in the form of (PCRP) with inf (RP f ) > −∞, one has

inf (RP f ) = max
(u,λ,μ)

{μ : f0 +
s∑

i=1

ui fi + 〈λ,G〉 − μ ∈ Pd ,

u = (u1, . . . , us) ∈ U, λ ∈ K⊕, μ ∈ R}. (19)

In this setting, for u := (u1, . . . , us) ∈ U, λ ∈ K⊕ andμ ∈ R, the function f0+∑s
i=1 ui fi +〈λ,G〉 − μ is an SOS-convex polynomial and so f0 +∑s

i=1 ui fi + 〈λ,G〉 − μ ∈ Pd is
equivalent to f0 +∑s

i=1 ui fi + 〈λ,G〉 − μ ∈ �2
d (see e.g., [22, Corollary 2.1]). Moreover,

since K⊕ = S p
+, (18) is nothing else but (19). So the proof is complete. ��

Parametric robust SOS-convex polynomial problems. We now consider a parametric
robust SOS-convex polynomial problem (PRP) that is defined as follows: Let U ⊂ R

s be
a nonempty uncertainty set given as in (16), and f : Rn ×U → R be a bifunction given as in
(17). For each f (regarded as a parameter), one considers a robust SOS-convex polynomial
problem of the form

inf
x∈Rn

{max
u∈U f (x, u) : gi (x) ≤ 0, i = 1, . . . ,m}, (SP f )

where gi : R
n → R, i = 1, . . . ,m are SOS-convex polynomials. As previously, we

assume that the uncertainty set U in (16) is bounded and the feasible set of (SP f ) is
non-empty, and denote by d the smallest even number satisfying d ≥ max{deg f j , j =
0, 1, . . . , s, deg gi , i = 1, . . . ,m}.
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Corollary 4.4 (Stable exact SDP relaxation of PRP) Consider the parametric robust SOS-
convex polynomial problem (PRP). Then, the following statements are equivalent:

(i)
⋃

λ1≥0,...,λm≥0
epi
( m∑
i=1

λi gi
)∗

is closed.

(ii) For any function f in the form of (PRP) with inf (SP f ) > −∞, one has

inf (SP f ) = max
(μ,λ,w)

{μ : f0 +
s∑

i=1

wi fi +
m∑

i=1

λi gi − μ ∈ �2
d , A0 +

s∑

i=1

wi Ai � 0,

μ ∈ R, λ := (λ1, . . . , λm) ∈ R
m+, w := (w1, . . . , ws) ∈ R

s}.
Proof Letting K := R

m+ and G := (g1, . . . , gm), the problem (SP f ) is in the form of

problem (P f ). In this setting, it holds K⊕ = R
m+, and then 〈λ,G〉 =

m∑
i=1

λi gi is an SOS-

convex polynomial on R
n for any λ := (λ1, . . . , λm) ∈ K⊕. This ensures that G is a

K -SOS-convex polynomial. So the desired result is now followed by invoking Theorem 3.4.
��

Remark 4.1 By considering f0 := 0 and U := conv{e1, . . . , es}, the problem (SP f )
collapses to the form of (SOP f ), and then we apply Corollary 4.4 to assert that if

⋃
λ1≥0,...,λm≥0

epi
( m∑
i=1

λi gi
)∗

is closed and inf (SOP f ) > −∞, then one has

inf (SOP f ) = max
(μ,λ,w)

{μ :
s∑

i=1

wi fi +
m∑

i=1

λi gi − μ ∈ �2
d , μ ∈ R,

λ = (λ1, . . . , λm) ∈ R
m+, w = (w1, . . . , ws) ∈ �s}.

This result was established in [22, Theorem 3.2] under the validation of the Slater condition,
that is, there exists x0 ∈ R

n such that gi (x0) < 0 for all i = 1, . . . ,m.
The interested reader is also referred to [12, Theorem 2.2] for a characterization of stable

exact SDP relaxations via the characteristic cone for another class of robust SOS-convex
polynomial problems that involve uncertainty data in their constraints.

Parametric second-order conic robust SOS-convex polynomial problems.We now con-
sider a parametric second-order conic robust SOS-convex polynomial problem (PSOC) that
is defined as follows: Let U ⊂ R

s be a nonempty uncertainty set that is an ellipsoid given by

U := {u := (u1, . . . , us) ∈ R
s : 〈u, Eu〉 ≤ 1

}
(20)

for a given symmetric s × s matrix E � 0, and f : Rn × U → R be a bifunction given
as in (17). For each f (regarded as a parameter), one considers a second-order conic robust
SOS-convex polynomial problem of the form:

inf
x∈Rn

{max
u∈U f (x, u) : G(x) ∈ −Lm, }, (SOC f )

where Lm :=
{
(y1, . . . , ym) ∈ R

m : y1 ≥
√

m∑
i=2

(yi )2
}
is the second-order cone or Lorentz

cone in R
m , and G : R

n → R
m is an Lm-SOS-convex polynomial mapping. We assume

that the feasible set of (SOC f )) is non-empty, and denote by d the smallest even number
satisfying d ≥ max{deg fi , i = 0, 1, . . . , s, degG}. We also use the notation L to denote a
decomposition factor of E , i.e., E = L�L .
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Theorem 4.5 (Stable exact SDP relaxation of PSOC) Consider the parametric second-order
conic robust SOS-convex polynomial problem (PSOC). Then, the following statements are
equivalent:

(i)
⋃

λ∈Lm

epi〈λ,G〉∗ is closed.

(ii) For any function f in the form of (PSOC) with inf (SOC f ) > −∞, one has

inf (SOC f ) = max
(μ,λ,w)

{μ : f0 +
s∑

i=1

wi fi + 〈λ,G〉 − μ ∈ �2
d , w = (w1, . . . , ws) ∈ R

s,

||Lw|| ≤ 1, μ ∈ R, λ1 ≥
√√√√

m∑

i=2

(λi )2, λ = (λ1, . . . , λm) ∈ R
m}.

(21)

Proof Letting K := Lm , the problem (SOC f ) is in the form of problem (P f ). Arguing as
in the proof of Theorem 4.3, we invoke Theorem 3.4 to conclude that the closedness of⋃
λ∈K⊕

epi〈λ,G〉∗ is equivalent to the assertion that for any function f in the form of (PSOC)

with inf (SOC f )) > −∞, one has

inf (SOC f ) = max
(u,λ,μ)

{μ : f0 +
s∑

i=1

ui fi + 〈λ,G〉 − μ ∈ �2
d ,

u = (u1, . . . , us) ∈ U, λ ∈ K⊕, μ ∈ R}. (22)

In this setting, it holds that K⊕ = Lm . Moreover, for u ∈ U, we have

〈u, Eu〉 ≤ 1 ⇔ ||Lu|| ≤ 1

as E = L�L. So (22) coincides with (21), which completes the proof. ��
Parametric conic difference of SOS-convex polynomial problems. Let us now consider
a parametric conic difference of SOS-convex polynomial problem (PCDC) that is defined as
follows: Let f0 : Rm → R be an SOS-convex polynomial and h : Rn → R be a support
function that is given by

h(x) := max
{〈u, x〉 : u ∈ conv{u1, . . . , ur }}, x ∈ R

n

for given u1, . . . , ur in Rn . For each pair of ( f0, h) (regarded as a parameter), one considers
a conic difference of SOS-convex polynomial problem (cf. [26]):

inf
x∈Rn

{ f0(x) − h(x) : G(x) ∈ −S p
+}, (DC f0,h)

where G : Rn → S p is an S p
+-SOS-convex polynomial mapping. As previously, we assume

that the feasible set of (DC f0,h) is non-empty, and denote by d the smallest even number
satisfying d ≥ max{deg f0, 1, degG}.

The next theorem presents a characterization of exact conic relaxations for the parametric
conic difference of SOS-convex polynomial problem when the pair of ( f0, h) varies in the
above class of difference of SOS-convex polynomials.

Theorem 4.6 (Stable exact SDP relaxation of PCDC) Consider the parametric conic dif-
ference of SOS-convex polynomial problem (PCDC). Then, the following statements are
equivalent:
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(i)
⋃

λ∈S p
+
epi〈λ,G〉∗ is closed.

(ii) For any pair of ( f0, h) in the form of (PCDC) with inf (DC f0,h) > −∞, one has

inf (DC f0,h) = max
(μ,λ,δ)

{μ : f0 −
r∑

j=1

δ j 〈u j , ·〉 + Tr(λG) − μ ∈ �2
d ,

δ = (δ1, . . . , δr ) ∈ �r , μ ∈ R, λ ∈ S p
+}. (23)

Proof For any pair of ( f0, h) in the form of (PCDC) with inf (DC f0,h) > −∞, the
problem (DC f0,h) can be rewritten as

inf
x∈Rn

{
max

u∈conv{u1,...,ur }
{ f0(x) − 〈u, x〉} : G(x) ∈ −S p

+
}
. (24)

Let U := conv{u1, . . . , ur } and fi (x) := −xi , i = 1, . . . , n for x := (x1, . . . , xn) ∈ R
n . We

see that the problem in (24) can be expressed further as the following one:

inf
x∈Rn

{
max
u∈U { f0(x) +

n∑

i=1

ui fi (x)} : G(x) ∈ −S p
+
}
, (25)

which is in the form of problem (P f ) with K := S p
+ and f (·, u) := f0 +∑n

i=1 ui fi , u :=
(u1, . . . , un) ∈ U . Note that, in this setting, f (·, u) is an SOS-convex polynomial for all
u ∈ U .Arguing similarly as in the proof of Theorem 4.3, we invoke Theorem 3.4 to conclude
that the closedness of

⋃

λ∈S p
+
epi〈λ,G〉∗ is equivalent to the assertion that for any pair of ( f0, h)

in the form of (PCDC) with inf (DC f0,h) > −∞ one has

inf (DC f0,h) = max
(u,λ,μ)

{μ : f0 +
n∑

i=1

ui fi + Tr(λG) − μ ∈ �2
d ,

u = (u1, . . . , un) ∈ U, λ ∈ S p
+, μ ∈ R}. (26)

Note further that U = {∑r
j=1 δ j u j : δ = (δ1, . . . , δr ) ∈ �r }. Then, (26) is equivalent to

inf (DC f0,h) = max
(δ,λ,μ)

{μ : f0 +
n∑

i=1

r∑

j=1

δ j u
j
i fi + Tr(λG) − μ ∈ �2

d ,

δ = (δ1, . . . , δr ) ∈ �r , λ ∈ S p
+, μ ∈ R},

which amounts to (23), and so the proof is complete. ��
The following corollary provides an exact SDP relaxation for a conic difference of SOS-

convex polynomial problem under the Slater condition. This result was obtained in [26,
Theorem 3] by using a different dual approach.

Corollary 4.7 (Exact SDP relaxation under the Slater condition) Consider a conic difference
of SOS-convex polynomial problem of the form (DC f0,h). Let x0 ∈ R

n be such that

G(x0) ∈ − int S p
+. (27)

Assume that inf (DC f0,h) > −∞. Then, we have

inf (DC f0,h) = max
(μ,λ,δ)

{μ : f0 −
r∑

j=1

δ j 〈u j , ·〉 + Tr(λG) − μ ∈ �2
d ,
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δ = (δ1, . . . , δr ) ∈ �r , μ ∈ R, λ ∈ S p
+}.

Proof The Slater condition in (27) entails that
⋃

λ∈S p
+
epi〈λ,G〉∗ is closed (see, e.g., [21,

Proposition 6.1]). The desired conclusion follows by Theorem 4.6. ��
We close this section with an example which shows how we can employ the obtained

exact SDP relaxations to find the robust optimal value of an uncertain optimization problem
by solving its corresponding SDP relaxation problem.

Example 4.1 Consider an uncertain optimization problem of the form

inf
x :=(x1,x2)∈R2

{
x41 + 2x42 + (u1 + 3)x22 + (u2 + 1)x21 + 1 : 1 − x41 − 3x22 ≥

√
x81 + 9x42

}
,

(EUP)

where u := (u1, u2) ∈ U is an uncertain vector and U is an uncertainty set given by

U := {u = (u1, u2) ∈ R
2 : u21

9 + u22 ≤ 1}. To treat the problem (EUP), one considers its
robust counterpart as follows:

inf
x :=(x1,x2)∈R2

{
max
u∈U

{x41 + 2x42 + (u1 + 3)x22 + (u2 + 1)x21 + 1} : 1 − x41 − 3x22 ≥
√
x81 + 9x42

}
.

(ERP)

Let f0(x) := x41 + 2x42 + 3x22 + x21 + 1, f1(x) := x22 , f2(x) := x21 , and G := (g1, g2, g3),
where g1(x) := x41 +3x22 −1, g2(x) := x41 , g3(x) := 3x22 for x := (x1, x2) ∈ R

2. The prob-
lem (ERP) can be rewritten as the following second-order conic robust convex polynomial
problem:

inf
x∈R2

{max
u∈U { f0(x) +

2∑

i=1

ui fi (x)} : G(x) ∈ −L3}, (SOCE)

where L3 := {y := (y1, y2, y3) ∈ R
3 | y1 ≥

√
y22 + y23 }, which is a second-oder cone in R3

depicted in Fig. 1.

Taking any λ := (λ1, λ2, λ3) ∈ L3, we see that λ1 ≥
√

λ22 + λ23 ≥ max {|λ2|, |λ3|}, and
then gλ := 〈λ,G〉 is a convex function by the fact that gλ(x) = (λ1+λ2)x41+3(λ1+λ3)x22−λ1
for x ∈ R

2. Since gλ is a separable polynomial, then 〈λ,G〉 is an SOS-convex polynomial.
This in turn entails that G is an L3-SOS-convex polynomial mapping.

So the problem (SOCE) lands in the form of problem (SOC f )) with f := f0+∑2
i=1 ui fi

with u := (u1, u2) ∈ U . It is easy to see that inf(SOCE) > −∞. Moreover, since the Slater
condition holds for this problem, the set

⋃
λ∈L3

epi〈λ,G〉∗ is closed.We invoke the stable exact

SDP relaxation in Theorem 4.5 to assert that

inf(SOCE) = max(SDPE), (28)

where (SDPE) is the following SDP relaxation problem

max
(μ,λ,w)

{μ : f0 +
2∑

i=1

wi fi + 〈λ,G〉 − μ ∈ �2
d , w := (w1, w2) ∈ R

2, (SDPE)

||Lw|| ≤ 1, μ ∈ R, λ1 ≥
√

λ22 + λ23, λ := (λ1, λ2, λ3) ∈ R
3}
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Fig. 1 The shaded set is the cone
L3 in R

3

with L :=
( 1

3 0
0 1

)
and d := 4. Using the Matlab toolbox YALMIP [27], we solve the

problem (SDPE) and the solver returns its optimal value as 1.000 (i.e., max(SDPE) = 1).
This together with (28) concludes that the optimal value of problem (SOCE) (thus the optimal
value of our robust problem (ERP)) is 1 (i.e., inf (ERP) = inf(SOCE) = 1).

Note that in this setting one can verify directly that x̄ := (0, 0) is an optimal solution of
problem (SOCE) with the corresponding optimal value min(SOCE) = f (x̄) = 1.

5 Concluding remarks

In this paper, we established that conic minimax convex polynomial programs exhibit exact
conic programming relaxations under suitable regularity assumptions.Weextended thenotion
of ρ-convexity of a real-valued polynomial to a more general notion of conic convexity
for polynomial mappings. Then, we further proved that conic minimax generalized convex
polynomial programs exhibit exact conic programming relaxations under the KKT condition.
All these results can be applied to the framework of SOS-convexity related to f andG and so,
the conic programming relaxations, for appropriate instances ofU and K , can be reformulated
as a semidefinite programming problem.

Consequently, the conic relaxation problems can be solved by using commonly used
numerical methods such as interior point algorithms. Moreover, as conic programming
models can be found in many applications of various disciplines [10], our results become
significant to study classes of conic minimax generalized convex programs and their related
applications. It would be of great interest to see how we can develop associated numerical
methods/schemes to verify the exact conic relaxations for some specific convex polyno-
mial problems and deploy applications to practical scenarios such as a generalization of the
weighted Steiner problem in [7].
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