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Abstract—This paper concerns ultimately bounded output-
feedback control problems for networked systems with unknown
nonlinear dynamics. Sensor-to-observer signal transmission is
facilitated over networks that has communication constraints.
These transmissions are carried out over an unreliable com-
munication channel. In order to enhance the utilization rate of
measurement data, a buffer-aided strategy is novelly employed
to store historical measurements when communication networks
are inaccessible. Using the neural network technique, a novel
observer-based controller is introduced to address effects of
signal transmission behaviors and unknown nonlinear dynamics.
Through the application of stochastic analysis and Lyapunov
stability, a joint framework is constructed for analyzing resultant
system performance under the introduced controller. Subsequent-
ly, existence conditions for the desired output-feedback controller
are delineated. The required parameters for the observer-based
controller are then determined by resolving some specific ma-
trix inequalities. Finally, a simulation example is showcased to
confirm method efficacy.

Index Terms—Output-feedback control, nonlinear control,
neural networks, unreliable communication channel, buffer-aided
strategy.

Abbreviations and Notations

HJB Hamilton-Jacobi-Bellman
ADP adaptive dynamic programming
NN Neural network
NCSs Networked control systems
NNW Neural network weight
LMI Linear matrix inequality
R

n Then-dimensional Euclidean space
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R
n×m The set of alln×m real matrices

N The set of nonnegative integers
U ≥ F U − F is positive semi-definite
U > F U − F is positive definite
ST The transpose of the matrixS
tr{S} The trace of the matrixS
‖S‖ The Frobenius norm of the matrixS
λmin(S) The minimum eigenvalue ofS
b−1(·) The inverse function ofb(·)
Prob{·} The occurrence probability of the random

event “·”
E{x} The expectation of the stochastic variablex

E{x|y} The expectation ofx conditional ony
0 Zero matrix of compatible dimension
I Identity matrix of compatible dimension
diag{· · · } The block-diagonal matrix
“ ∗ ” The symmetric parts in the symmetric block

matrix

I. I NTRODUCTION

Over the past few decades, a wide interest has been shown
in optimal control problems due to their significance in fields
of finance, ecology, power systems, and aerospace [16], [17],
[34]. The optimal control is to minimize (or maximize) certain
performance index function for a given system while adhering
to certain physical constraints. It is widely recognized that
gains of optimal controllers are typically derived from solving
Hamilton-Jacobi-Bellman (HJBs) equations. In linear cases,
HJB equation simplify to Riccati equations, allowing the
controller’s gain matrix to be parameterized upon solving this
equation. However, for nonlinear systems, solving HJB equa-
tions becomes notably challenging because of the complexities
introduced by inherent nonlinearities [43].

In recent years, adaptive dynamic programming (ADP)
has gradually gained much research attention. Leveraging
actor/critic neural networks (NNs) known for their superior ap-
proximation capabilities, ADP has been extensively employed
to tackle optimal control problems with both known and
unknown nonlinear dynamics [19], [35], [38], [39]. The ADP-
based algorithms have garnered significant research attention,
and numerous notable results can be found in the literature
[12], [18], [23]. Although much of the research on ADP-based
control has centered on state feedback, practical engineering
often limits access to full state information of systems. This

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to 
final publication. Citation information: DOI 10.1109/JAS.2024.124314, 

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/ 



IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. X, NO. X, X X 2

limitation, caused either by budget constraints or complex
external environments, has steered engineers towards favoring
ADP-based output-feedback control strategies [8].

Networked control systems (NCSs) denote dynamical sys-
tems in which distinct system components communicate
through a network characterized by limited bandwidth [5],
[21], [32], [47]. Over the past two decades, rapid advance-
ments in network-based communication technology have sig-
nificantly expanded the potential of NCSs [3], [6], [45].
Enhanced data transmission rates, improved error correction
methods, and the rise of machine learning techniques for net-
work optimization have all combined to elevate the capabilities
of these systems. As a result, NCSs have permeated a myriad
of practical engineering fields including spacecrafts, smart
grids, mobile robots, and unmanned underwater vehicles [11],
[22], [42], [45], [46]. Each of these applications underscores
the versatility and transformative potential of NCSs in modern
engineering landscapes.

In the deployment of NCSs, the reliability of signal trans-
missions is significantly impacted by pervasive communication
constraints. Such constraints are often manifested as limited
bandwidth or finite bit rates [10], [14], [24], [28], [37]. Issues
such as congestion or packet dropping can be caused by
constraints like limited communication capacity. As a result,
the reliability of signal transmissions can be substantially
compromised, leading to diminished or even devastated es-
timation/control performance [25]. Due to these challenges,
attention has now been drawn to control problems associated
with NCSs operating over unreliable communication channels
from both control and signal processing communities. Conse-
quently, numerous research outcomes have been documented
[1], [36].

In response to the challenges posed by unreliable com-
munication channels, thebuffer-aided strategy, which has
gained widespread acceptance in practical applications. This
strategy aims to enhance the transmission of measurement
signals during specific transmission instants. Initially, newly
generated signals are stored in the buffer and, following
this, all the signals stored (i.e., both current and historical
instant signals) are transmitted to the receiver (e.g. observer)
simultaneously at the designated transmission instant (often,
the present moment). Once the transmission is completed,
the buffer is cleared to create space for measurement signals
generated in the ensuing instants [40]. Leveraging this method,
a greater number of measurement signals can be harnessed by
the observer for the estimation procedure. The buffer-aided
strategy not only ensures a more judicious use of resources
but also facilitates the attainment of the desired estimation
outcomes [39].Unfortunately, even with its profound engineer-
ing ramifications and broad application prospects, the control
problems of NCSs using a buffer-aided strategy over unreliable
communication channels have yet to receive the research
attention they deserve.

Motivated by the aforementioned considerations, our ob-
jective is to delve into ultimately bounded output-feedback
control problems, which holds both theoretical and practical
significance, for nonlinear NCSs that employ a buffer-aided
strategy over unreliable communication channels. The output-

feedback control problem under investigation presents three
anticipated yet foundational challenges: 1) how to quantify
transmission unreliability and buffer-aided strategy effects? 2)
how to design the tuning laws for the neural-network-weights
(NNWs) for networked nonlinear systems that use a buffer-
aided strategy over unreliable communication channels? and
3) how to analyze bounded stability of considered networked
nonlinear systems with a buffer-aided strategy to counteract
the limited communication capacity? The primary drive of this
research is, therefore, to address these challenges through a
comprehensive examination.

The primary contributions are enumerated as follows.
1) The ultimately bounded output-feedback control problem

is first concerned for networked nonlinear systems under
a buffer-aided strategy over unreliable communication
channels.

2) An intricately devised ADP-based output-feedback con-
trol scheme is introduced to address system dynamics
constrained by limited communication capacity and the
buffer-aided strategy.

3) An adaptive tuning law is designed for the controller.
4) The ultimate boundedness affected by unreliable com-

munication channels and the buffer-aided strategy are
rigorously analyzed.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, a nonlinear NCS is examined in which sensor-
to-controller transmission is facilitated through an unreliable
communication network. A buffer-aided strategy is integrated
with aim to optimize efficiency of measurement data utilization
by archiving historical measurements during instances when
the communication channel becomes inaccessible. This sec-
tion is dedicated to providing an in-depth delineation of the
nonlinear NCS, the peculiarities of transmission behaviors and
the control methodology employed.

A. System Model and Signal Transmissions

Consider the following nonlinear system:
{

xk+1 = Axk + f(xk) +Buk + Eωk

yk = Cxk +Dωk

(1)

where xk ∈ R
nx , yk ∈ R

ny and uk ∈ R
nu represent,

respectively, the system state, the measurement signal and
the control input.f(·) is an unknown but bounded smooth
nonlinear function on a compact setΩ ∈ R

n. ω(k) ∈ R
nω

denotes the bounded stochastic noise with zero-mean and
known varianceQ̄ = Q̃Q̃T . MatricesA, B, C, D and E
are known.

The communication network is now introduced. Commu-
nication between sensors and controllers transpires via an
unreliable network channel, which is prone to intermittent
packet dropouts during signal transmissions. Traditionally, if
the communication channel is inaccessible, the measurement
signals, which the sensors produce, would be lost. This spo-
radic packet dropout, in contrast to continuous transmission,
inevitably impairs the estimation/control performance, attribut-
ed mainly to the “low utilization efficiency” of measurement
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data. The estimation/control challenges arising from unreliable
or lossy networks have been the subject of extensive research.
For instance, in [7], the non-fragile estimation challenge was
explored for a complex networks subset with a dynamic
event-based transmission mechanism. Similarly, [33] tackled
the NN-based control problem for a nonlinear system faced
with intermittent packet dropouts caused by denial-of-service
attacks.

To mitigate unreliable transmission, a buffer-aided mecha-
nism is proposed to boost utilization efficiency of measure-
ment signals. Specifically, this mechanism operates in two
distinct modes: the storage mode and the delivery mode.
In the storage mode, when the communication network is
inaccessible, measurement signals are retained in the buffer,
which has a designatedmaximum buffer capacitydenoted as
Q. If the buffer is filled to its capacity, the “oldest” mea-
surement signal stored therein will be displaced by the most
recently generated signal. Conversely, in the delivery mode,
when the communication network becomes accessible, all the
measurement signals retained in the buffer are concurrently
dispatched over the communication channel. Subsequent to
this transmission, the buffer undergoes a clearing process to re-
move all the signals it previously held. This approach ensures
that a larger volume of measurement signals are employed for
control as compared to traditional methods where generated
measurements are instantly discarded if the communication
channel is out of service.

In this paper, the characteristics of unreliable signal trans-
missions are described in the following assumptions.

Assumption 1:(Transmission interval) [40] Leth(i) be the
transmission interval betweent(i) and t(i − 1), i.e., h(i) ,

t(i)− t(i− 1) (h(i) ∈ N
+). For i ∈ N

+, h(i) satisfies

h(i) ∈ H , {1, 2, · · · , H}

where constantH is known and positive representing a max-
imum transmission interval.

Assumption 2:The transmission intervals{h(i)}i≥0 is a se-
quence of random variables which are independently and iden-
tically distributed. The disturbance noiseωk and transmission
intervals h(i) are mutually uncorrelated stochastic vectors.
The occurrence probability ofh(i) = χ (∀χ ∈ {1, ..., H})
is partially unknown, i.e.,

{

Prob{h(i) = ι} = pι, if ι ∈ Ha

Prob{h(i) = τ} =?, if τ ∈ Hb

(2)

where0 ≤ pι ≤ 1 and ”?”, respectively, are the known and
unknown probabilities with

∑H

h(i)= 1 ph(i) = 1. Ha , {ι |
pι is known} andHb , {τ | pτ is unknown}. Obviously, it
is easy to observe thatHa ∪Hb = H andHa ∩Hb = ∅.

Remark 1:Assumptions 1 and 2 are quite reasonable in
real-world applications. Assumptions 1 is proposed based
on the intermittent characteristic of the signal transmissions
under the impact of the unreliable communication channels. In
engineering practice, it obvious that the transmission intervals
of networked systems are upper bounded. Assumption 2 shows
the typical characteristics of the buffer (i.e., limited capacity),
which is preferred in practical applications in order to save

economic costs. In these cases, it is of practical significance
to assume that the number of signals transmitted is bounded.

Let us now consider the measurement data received by
the controller. It is clear that data can only be received by
the controller at transmission instants. Specifically, at each
transmission instantt(i), the number of measurement signals
received by the controller is dictated by the amount of data
retained in the buffer. By designatingq(i) as the count of
signals preserved in the buffer att(i), it can be deduced that:

q(i) = min{Q, h(i)}, i ∈ N
+.

Accordingly, the received measurement data for the controller
at timek (defined asYk) is

Yk =

{

{yk−j}j=0,1,··· ,q(i)−1, if {i|k = t(i), i ≥ 0} 6= ∅

∅, if {i|k = t(i), i ≥ 0} = ∅
.

B. Observer-Based Controller

In this study, an observer-based control strategy is employed
to control the plant as defined in (1), considering the influ-
ences of both the buffer-aided strategy and unreliable signal
transmissions. To address the unknown nonlinearityf(·), an
NN-based observer is initially introduced to produce estimates,
followed by presentation of the observer-based controller
policy.

According to [12], an NN is utilized to approximatef(·) via
Wfϕf (xk) + ζf,k, whereϕf (·) , Wf ∈ R

nx×nx and ζf,k ∈
R

nx denote the activation function, the ideal weight matrix
and the approximation error of the NN, respectively. Thus, we
have

{

xk+1 =Axk +Wfϕf (xk) +Buk + Eωk + ζf,k

yk =Cxk +Dωk

(3)

Here, it is reasonable to assume that

‖W∗‖ ≤ W̄∗, ‖ϕ∗(·)‖ ≤ ϕ̄∗, ‖ζ∗,k‖ ≤ ζ̄∗

where W̄∗, ϕ̄∗, and ζ̄∗ are known positive constants, and∗
representsf or other symbols.

According to the received measurement dataYk, the fol-
lowing observer is utilized to acquire desired estimates:











































Case 1:if {i|k = t(i), i ≥ 0} = ∅

x̂k+1 = Ax̂k + Ŵf,kϕf (x̂k) +Buk

Case 2:if {i|k = t(i), i ≥ 0} 6= ∅

~xj+1 = A~xj + ~Wf,jϕf (~xj) +Buj + Lh(i)(yj

− C~xj), t(i)− q(i) + 1 ≤ j ≤ t(i),

x̂k+1 = ~xk+1

(4)

where {~xj+1}t(i)−q(i)+1≤j≤t(i) are the so-called “reorga-
nized” state estimates with~xt(i)−q(i)+1 = x̂t(i)−q(i)+1, x̂k and
Ŵf,k are the estimates ofxk andWf , respectively.~Wf,j is the
reorganized estimate value ofWf . Here,Lh(i) is the observer
gain.
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The adaptive tuning law is










































Case 1:if {i|k = t(i), i ≥ 0} = ∅

Ŵf,k+1 = Ŵf,k − α1α2Ŵf,k

Case 2:if {i|k = t(i), i ≥ 0} 6= ∅

~Wf,j+1 = ~Wf,j + α1

(

CT (yj+1 − C~xj+1)ϕ̃
T
f (~xj)

− α2
~Wf,j

)

, t(i)− q(i) + 1 ≤ j ≤ t(i),

Ŵk+1 = ~Wk+1

(5)

where ~Wt(i)−q(i)+1 = Ŵt(i)−q(i)+1, α1 and α2 are t-
wo positive tuning scalars, and̃ϕf (~xk) , ϕf (~xk)/(‖1 +
ϕT
f (~xk)ϕf (~xk)‖‖CTC‖).
Now, we are ready to consider the observer-based control

strategy based on̂xk. The desired control input is calculated
by minimizingJ(xk) (i.e. uk = argmin{J(xk)}), where

J(xk) ,

∞
∑

j=k

l(xj , uj), (6)

with the utility function l(xk, uk) , xT
kMxk + uT

kRuk,
l(0, 0) = 0, and l(xk, uk) ≥ 0 for any xk anduk. This paper
aims to design a suboptimal control strategy to optimize (6).
Unfortunately, such a minimization problem is quite difficult
to solve since the value ofxk is unknown. An alternative
method is to generate the desired control input by minimizing
an approximated cost function̂J(x̂k).

According to the universal approximation property of the
NN, it is easy to see thatJ(xk) can be approximated by an
NN (namely, the critic NN):

J(xk) = WT
J ϕJ(xk) + ζJ,k (7)

whereWJ is the ideal weight,ϕJ (xk) is the corresponding
active function, andζJ,k is the bounded approximation error.
Similarly, the ideal control input (i.e.uk = argmin{J(xk)})
can also be approximated by an NN (namely, the actor NN):

u(xk) = WT
u ϕu(xk) + ζu,k (8)

whereWu is the ideal weight matrix for the actor NN,ϕu(xk)
is the corresponding active function, andζu,k is the bounded
approximation error.

Since the plant state is inaccessible, the developed control
strategy is based on state estimatesx̂k. Accordingly, the
approximated cost function̂J(x̂k) and control input are

Ĵ(x̂k) = ŴT
J,kϕJ (x̂k) (9)

and

û(x̂k) = ŴT
u,kϕu(x̂k) (10)

whereŴJ,k andŴu,k denote the estimate ofWJ andWu, re-
spectively. The detailed design procedure about the parameters
ŴJ,k andŴu,k will be introduced in Section III-B.

Remark 2:In linear cases, HJB equations can be reduced to
Riccati equations, which is straightforward to solve. However,
for nonlinear systems, finding a solution to the HJB equation
often proves challenging due to the presence of intricate non-
linearities within the system. In response, the ADP algorithm,
leveraging the actor/critic NNs, has been introduced as an

optimal control solution to for these nonlinear systems. A
detailed description regarding control strategy design will be
provided subsequently.

Before proceeding further, we shall introduce some perfor-
mance requirements about exponential ultimate boundedness
in mean square.

Definition 1: [48] The discrete nonlinear system (1) is said
to be exponentially ultimately bounded (EUB) in mean square
if there exist positive constantsϑ > 0, 0 ≤ ̺ < 1 and ς > 0
such that, for any solutionxk with the initial conditionx0, the
following is true:

E[‖xk‖2] ≤ ϑ‖x0‖2̺k + ς, k ≥ 0

whereς is an asymptotic upper bound in mean square of (1).
The objectives are twofold.

1) Design the observer parameterLh(i) such that the esti-
mation error (i.e.xk − x̂k) is EUB in mean square.

2) Design the weight update laws and analyze ultimate
boundedness.

III. M AIN RESULTS

A. Observer Design

Utilizing a buffer-aided strategy, an NN-based observer
will be constructed to address unreliable signal transmission
scenarios. Since the suboptimal control strategyuk is derived
based on̂xk, the error dynamics proves crucial for achieving
precise control. Subsequently, a joint analysis on the EUB of
estimation errors for both state and NNW will be undertaken.

Defining W̃f,k , Wf − Ŵf,k and W̌f,k , Wf − ~Wf,k

as the estimation error and the reorganized estimated error of
nonlinear NNW, respectively, the error dynamics is






































































Case 1:if {i|k = t(i), i ≥ 0} = ∅

W̃f,k+1 = (1 − α1α2)W̃f,k + α1α2Wf

Case 2:if {i|k = t(i), i ≥ 0} 6= ∅

W̌f,j+1 = (1 − α1α2)W̌f,j − α1C
TCW̌f,jϕf (~xj)ϕ̃

T
f (~xj)

− α1C
TDωj+1ϕ̃

T
f (~xj)− α1C

TCζ̌jϕ̃
T
f (~xj)

+ α1α2Wf − α1C
TCĒh(i)ωjϕ̃

T
f (~xj)

− α1C
TCĀh(i)x̃jϕ̃

T
f (~xj),

t(i)− q(i) + 1 ≤ j ≤ t(i),

W̃f,k+1 = W̌f,k+1

(11)

with W̃t(i)−q(i)+1 = W̌t(i)−q(i)+1, Āh(i) , A − Lh(i)C,
Ēh(i) , E−Lh(i)D and ζ̌f,k , W

(

ϕf (xk)−ϕf(~xk)
)

+ ζf,k.
Let the estimation error and reorganized estimated error be

x̃k , xk − x̂k and x̌k , xk − ~xk. The error dynamics is
governed by






































Case 1:if {i|k = t(i), i ≥ 0} = ∅

x̃k+1 =Ax̃k + W̃f,kϕf (x̂k) + Eωk + ζ̌f,k

Case 2:if {i|k = t(i), i ≥ 0} 6= ∅

x̌j+1 = Āh(i)x̌j + W̌f,jϕf (~xj) + Ēh(i)ωj + ζ̌f,j ,

t(i)− q(i) + 1 ≤ j ≤ t(i),

x̃k+1 = x̌k+1

(12)
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with x̌t(i)−q(i)+1 = x̃t(i)−q(i)+1.
Theorem 1:Let gainLh(i) be given. Assume that there exist

scalarsδ > 0, µ1 > 0, 0 < µ2 < 1, 0 < αi < 1 (i = 1, 2),
σs > 0 (s = 1, 2, 3, 4, 5), and positive definite matricesP ,
Φl (l = 1, 2, · · · , 7) such that the following conditions hold:



















Π1 < 0 (13)

Π2 < 0 (14)

Ξ1 < 0 (15)

Ξ2 < 0 (16)

CTCPCTC − σ3‖CTC‖2P ≤ 0 (17)

H
∑

s=M+1

p̄s(1 + µ1)
s−M (1− µ2)

M +

M
∑

s=1

p̄s(1− µ2)
s < 1

(18)

p̄s ,







ps, if s ∈ Ha

1−
∑

ι∈Ha

p̄ι, if s ∈ Hb
(19)

where

Π1 ,

[

Π11
1 Π12

1

∗ Π22
1

]

,

Π2 ,





Π11
2 0 0
∗ Π22

2 0
∗ ∗ Π33

2



 ,

Ξ1 ,









Ξ11
1 Ξ12

1 0 Ξ14
1

∗ Ξ22
1 0 Ξ24

1

∗ ∗ Ξ33
1 0

∗ ∗ ∗ Ξ44
1









,

Ξ2 ,









Ξ11
2 Ξ12

2 0 Ξ14
2

∗ Ξ22
2 0 Ξ24

2

∗ ∗ Ξ33
2 0

∗ ∗ ∗ Ξ44
2









,

ε1 ,δα̃ε̄, ε̄ , 1− α1α2 + 4α1 + α1σ4 + α1α2σ5,

ε4 ,1/‖CTC‖2, ᾱ , 1− α1α2 + 4α1, ε5 = 1 + α2
1

ε6 ,δα1σ3σ
−1
4 ᾱ+ 2σ3α

2
1, ε2 , ε3 , δα1σ3ε̄,

ε7 ,δα1α2σ
−1
5 ᾱ+ 2α2

1α
2
2,

Π11
1 ,δ

(

α̃2 − (1 + µ1)
)

P + σ1ϕ̄
2
fI,

Π12
1 ,δα̃α1α2P,Ξ

24
1 , P,Ξ12

1 , ATP,

Π22
1 ,δα2

1α
2
2P − Φ3,Ξ

11
1 , ATPA− (1 + µ1)P,

Ξ22
1 ,P − σ1I,Ξ

33
1 , ETPE − Φ1,Ξ

44
1 , P − Φ2,

Ξ14
1 ,ATP, Π22

2 , ε4D
TCPCTD − Φ6,

Π11
2 ,ε1 + ε2ϕ̄

2
f − δ(1− µ1)

)

P + σ2ϕ̄
2
fI,

Ξ11
2 ,(1 + ε3)Ā

T
h(i)PĀh(i) − (1− µ2)P,

Ξ24
2 ,P,Ξ12

2 , Ξ14
2 , ĀT

h(i)P,Π
33
2 , ε7P − Φ7,

Ξ44
2 ,(1 + ε6)P − Φ5,Ξ

22
2 , P − σ2I,

Ξ33
2 ,ε5Ē

T
h(i)PĒh(i) − Φ4.

Then, both the error dynamics (11) and (12) are EUB in mean
square subject toωk.

Proof: To begin with, we construct the following
Lyapunov-like function:

Vk , V1,k + V2,k (20)

where

V1,k , x̃T
k P x̃k, V2,k , δtr{W̃T

f,kPW̃f,k}.
Since the observer has no measurement signal to utilize

when k 6= t(i), the error dynamics (11) and (12) would
undergo an increment. Fortunately, att(i), the buffer signal
packet would be transmitted to the observer. With the aid
of the signal packet, the estimation value of system state
and nonlinear NNW fromt(i) − q(i) + 2 to t(i) would be
regenerated, and then those regenerated estimates would be
utilized to generate the state estimate oft(i) + 1 (as seen in
(4) and (5)). In this way, the increment would be compensated
by the decrement, and the overall error dynamics (for both
state and NNW estimation) would be EUB in mean square.
Therefore, the following analysis of the error dynamics of state
and NNW estimation is implemented based on (11) and (12).
Considertwo cases.

Case 1:{i|k = t(i), i ≥ 0} = ∅

In this case, there exists a positive scalari satisfying t(i) <
k ≤ t(i + 1) − q(i). Denote∆Vk as the difference between
Vk+1 andVk, i.e.,

∆Vk =

2
∑

r=1

∆Vr,k =

2
∑

r=1

(Vr,k+1 − Vr,k). (21)

According to the estimation error dynamics (12), by calcu-
lating the mathematical expectation ofE{∆Vk − µ1Vk}, we
can easily obtain that

E{∆Vk − µ1Vk}
=E{V1,k+1 − (1 + µ1)V1,k + V2,k+1 − (1 + µ1)V2,k} (22)

where

E{V1,k+1 − (1 + µ1)V1,k}
=E

{

2x̃T
kA

TPW̃f,kϕf (x̂k) + 2x̃T
kA

TP ζ̌f,k + x̃T
k A

TPAx̃k

+ 2ϕT
f (x̂k)W̃

T
f,kP ζ̌f,k + ϕT

f (x̂k)W̃
T
f,kPW̃f,kϕf (x̂k)

+ ωT
k Φ1ωk + ωT

k (E
TPE − Φ1)ωk + ζ̌Tf,kΦ2ζ̌f,k

+ ζ̌Tf,k(P − Φ2)ζ̌f,k − (1 + µ1)x̃
T
k P x̃k

}

(23)

and

E{V2,k+1 − (1 + µ1)V2,k}

=δtr

{

E

{

(1− α1α2)
2W̃T

f,kPW̃f,k + 2(1− α1α2)

× α1α2W̃
T
f,kPWf − (1 + µ1)W̃

T
k PW̃f,k

+WT
f (α2

1α
2
2P − Φ3)Wf +WT

f Φ3Wf

}

}

. (24)

Subsequently, by means of

σ1ϕ
T
f (x̂k)W̃

T
f,kW̃f,kϕf (x̂k)− σ1ϕ̄

2
f tr{W̃T

f,kW̃f,k} ≤ 0 (25)

and considering (22) to (25), we have

E{∆Vk − µ1Vk}
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≤E

{

2x̃T
k A

TPW̃f,kϕf (x̂k) + 2x̃T
kA

TP ζ̌f,k

+ 2ϕT
f (x̂k)W̃

T
f,kP ζ̌f,k + x̃T

k A
TPAx̃k

+ ϕT
f (x̂k)W̃

T
f,kPW̃f,kϕf (x̂k) + ζ̌Tf,kΦ2ζ̌f,k

+ ωT
k Φ1ωk + ωT

k (E
TPE − Φ1)ωk

+ ζ̌Tf,k(P − Φ2)ζ̌f,k − (1 + µ1)x̃
T
k P x̃k

+ σ1ϕ̄
2
f tr{W̃T

f,kW̃f,k}+ δtr
{

α̃2W̃T
f,kPW̃f,k

+ 2α̃α1α2W̃
T
f,kPWf − (1 + µ1)W̃

T
f,kPW̃f,k

+WT
f (δα2

1α
2
2P − Φ3)Wf +WT

f Φ3Wf

}

}

≤E{γT
k Π1γk + ηTk Ξ1ηk}+ d1 (26)

where

γk ,

[

W̃T
f,k WT

f

]T

,

ηk ,

[

x̃T
k ϕT (x̂k)W̃

T
f,k ωk

T ζ̌Tk

]T

,

d1 ,tr{Q̃TΦ1Q̃+ Φ2ζ̃
2 +Φ3W̄

2
f },

ζ̃ ,2W̄f ϕ̄f + ζ̄f , α̃ , 1− α1α2.

Taking (13), (15) and (26) into account, we arrive at

E{∆Vk − µ1Vk} ≤ γT
k Π1γk + ηTk Ξ1ηk + d1 ≤ d1. (27)

Therefore, for anyt(i) + 1 ≤ k < t(i+ 1)− q(i+ 1)+ 1 and
positive scalarπ1, we have

πk+1
1 Vk+1 − πk

1Vk = πk+1
1 (Vk+1 − Vk) + πk

1 (π1 − 1)Vk

≤πk
1 (π1 + µ1π1 − 1)Vk + πk+1

1 d1. (28)

Defining π̄1 , 1/(1 + µ1) and calculating the sum of both
sides of (28) fromt(i) + 1 to t(i + 1) − q(i + 1) + 1 with
respect tok, we have

π̄
t(i+1)−q(i+1)+1
1 Vt(i+1)−q(i+1)+1 − π̄

t(i)+1
1 Vt(i)+1

≤d1

t(i+1)−q(i+1)+1
∑

φ=t(i)+2

π̄φ
1 = d1

π̄
t(i)+2
1 − π̄

t(i+1)−q(i+1)+2
1

1− π̄1
,

which implies

Vt(i+1)−q(i+1)+1 ≤ π̄
q(i+1)−h(i+1)
1 Vt(i)+1 + d̄1 (29)

whered̄1 , d1
π̄
q(i+1)−h(i+1)+1
1 −π̄1

1−π̄1
.

Case 2:{i|k = t(i), i ≥ 0} 6= ∅

In this case, there exists a positive scalari such that
k = t(i + 1). Furthermore, under the effects of buffer-aided
strategy, the available measurement signals (i.e.,Yt(i+1) =
{yt(i+1), yt(i+1)−1, · · · , yt(i+1)−q(i+1)+1}) are utilized to fa-
cilitate the state estimation process, where the reorganized
estimated states and NNWs are acquired (as shown in (4) and
(5)). Then, the desired state estimatex̂t(i+1)+1 is generated
based on the reorganized estimated states.

For t(i + 1) − q(i + 1) + 1 ≤ j < t(i + 1) + 1, letting
V̌j , V̌1,j+ V̌2,j , x̌T

j P x̌j+δtr{W̌T
f,jPW̌f,j} and calculating

the mathematical expectation ofE{V̌j+1 − V̌j}, we have

E{∆V̌j} = E{V̌1,j+1 + V̌2,j+1 − V̌1,j − V̌2,j} (30)

where

E{V̌1,j+1 − V̌1,j}
=E

{

2x̌T
j Ā

T
h(i)PW̌f,jϕf (~xj) + 2x̌T

j Ā
T
h(i)P ζ̌f,j + x̌T

j Ā
T
h(i)

× PAh(i)x̌j + 2ϕT
f (~xj)W̌

T
f,jP ζ̌f,j + ϕT

f (~xj)W̌
T
f,jPW̌f,j

× ϕf (~xj) + 2ωT
j Ē

T
h(i)P ζ̌f,j + ωT

j (Ē
T
h(i)PĒh(i) − Φ4)ωj

+ ζ̌Tf,j(P − Φ5)ζ̌f,j + ωT
j Φ4ωj + ζ̌Tf,jΦ5ζ̌f,j

− (1− µ2)x̌
T
j P x̌j − µ2x̌

T
j P x̌j

}

(31)

and

E{V̌2,j+1 − V̌2,j}

=δtr

{

E

{

(

α̃W̌f,j − α1C
TCW̌f,jϕf (~xj)ϕ̃

T
f (~xj)

− α1C
TCĀh(i)x̌jϕ̃

T
f (~xj)− α1C

TDωj+1ϕ̃
T
f (~xj)

− α1C
TCĒh(i)ωjϕ̃

T
f (~xj)− α1C

TCζ̌j ϕ̃
T
f (~xj)

+ α1α2Wf

)

P
(

α̃W̌f,j − α1C
TCW̌f,jϕf (~xj)ϕ̃

T
f (~xj)

− α1C
TCĀh(i)x̌jϕ̃

T
f (~xj)− α1C

TDωj+1ϕ̃
T
f (~xj)

− α1C
TCĒh(i)ωjϕ̃

T
f (~xj)− α1C

TCζ̌j ϕ̃
T
f (~xj)

+ α1α2Wf

)

− (1− µ2 + µ2)W̌
T
j PW̌j

}

}

. (32)

Furthermore, by means ofCTCPCTC ≤ σ3‖CTC‖2P , (32)
can be calculated as

E{V̌2,j+1 − V̌2,j}

≤δtr

{

E

{

ε1W̌
T
f,jPW̌f,j + ε2ϕ̄

2
fW̌

T
f,jPW̌f,j + ε3x̌

T
j

× ĀT
h(i)PĀh(i)x̌j + ε4ω

T
j+1D

TCPCTDωj+1

+ ε5ω
T
j Ē

T
h(i)PĒh(i)ωj + ε6ζ̌j

T
P ζ̌j + ε7W

T
f P

×Wf − (1 − µ2)W̌
T
f,jPW̌f,j − µ2W̌

T
f,jPW̌f,j

}

}

. (33)

Afterwards, with the help of the inequity

σ2ϕ
T
f (~xj)W̌

T
f,jW̌f,jϕf (~xj)− σ2ϕ̄

2
f tr{W̌T

f,jW̌f,j} ≤ 0, (34)

we substitute (33) and (31) into (30) to obtain

E{∆V̌j}
≤E

{

2x̌T
j Ā

T
h(i)PW̌f,jϕf (~xj) + 2x̌T

j Ā
T
h(i)P ζ̌f,j

+ (1 + ε3)x̌
T
j Ā

T
h(i)PĀh(i)x̌j + 2ϕT

f (~xj)

× W̌T
f,jP ζ̌f,j + ϕT

f (~xj)W̌
T
f,jPW̌f,jϕf (~xj)

− (1− µ2)x̌
T
j P x̌j − µ2x̌

T
j P x̌j − σ2ϕ

T
f (~xj)

× W̌T
f,jW̌f,jϕf (~xj) + ωT

j

(

(1 + ε5)Ē
T
h(i)

× PĒh(i) − Φ4

)

ωj + ωT
j Φ4ωj + ζ̌Tf,jΦ5ζ̌f,j

+ ζ̌Tf,j
(

(1 + ε6)P − Φ5

)

ζ̌f,j + δtr
{

ε1W̌
T
f,jP

× W̌f,j + δ−1σ2ϕ̄
2
fW̌

T
f,jW̌f,j + ε2ϕ̄

2
fW̌

T
f,jP

× W̌f,j + ε4ω
T
j+1D

TCPCTDωj+1 + ε7W
T
f P

×Wf − (1− µ2)W̌
T
f,jPW̌f,j − µ2W̌

T
f,jPW̌f,j

}

}

≤E{γ̄T
j Π2γ̄j + ηTj Ξ2ηj − µ2V̌j}+ d2 (35)
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whereγ̄j ,
[

W̌T
f,j ωT

j+1 WT
f

]T
, d2 , tr{Q̃T (Φ4+Φ6)Q̃+

Φ5ζ̃
2 +Φ7W̄

2
f }.

It can be observed from (14), (16) and (35) that

E{∆V̌j} ≤γ̄T
j Π2γ̄j + ηTj Ξ2ηj − µ2E{V̌j}+ d2

≤− µ2E{V̌j}+ d2.

Obviously, for anyt(i + 1)− q(i + 1) + 1 ≤ k < t(i + 1)
and positive scalarµ2, one has

µ̄j+1
2 V̌j+1 − µ̄j

2V̌j

=µ̄j+1
2 (V̌j+1 − V̌j) + µ̄j

2(µ̄2 − 1)V̌j

≤µ̄j
2(µ̄2 − µ̄2µ2 − 1)V̌j + µ̄j+1

2 d2. (36)

Denotingµ̄2 , 1/(1 − µ2) and calculating the summation
in (36) from t(i+ 1)− q(i+ 1)+ 1 to t(i+ 1)+ 1 in respect
to k, one has

µ̄
t(i+1)+1
2 V̌t(i+1)+1 − µ̄

t(i+1)−q(i+1)+1
2 V̌t(i+1)−q(i+1)+1

≤d2

t(i+1)+1
∑

φ=t(i+1)−q(i+1)+2

µ̄φ
2 = d2

µ̄
t(i+1)−q(i+1)+2
2 − µ̄

t(i+1)+2
2

1− µ̄2
.

Furthermore, it is obvious thatVt(i+1)+1 = V̌t(i+1)+1 and
Vt(i+1)−q(i+1)+1 = V̌t(i+1)−q(i+1)+1. Then, we have

Vt(i+1)+1 ≤ µ̄
−q(i+1)
2 Vt(i+1)−q(i+1)+1 + d̄2 (37)

whered̄2 , d2
µ̄
−q(i+1)+1
2 −µ̄2

1−µ̄2
.

Aggregation of Case 1 and Case 2
We now aggregate the results obtained in the analysis of

Case 1and Case 2. In the following part of this subsection,
we will show that the EUB of the error dynamics (11) and
(12) can be simultaneously guaranteed. To this end, it is easily
obtained from (29) and (37) that

Vt(i+1)+1 ≤ µ̃Vt(i)+1 + µ̄
−q(i+1)
2 d̄1 + d̄2 (38)

whereµ̃ , µ̄
q(i+1)−h(i+1)
1 µ̄

−q(i+1)
2 .

Considering (19), we have from0 ≤ pn ≤ 1 − ∑

ι∈Ha
pι

that

E{µ̄q(i+1)−h(i+1)
1 µ̄

−q(i+1)
2 }

=

M
∑

s=1

psµ̄
s−s
1 µ̄−s

2 +

H
∑

s=M+1

psµ̄
M−s
1 µ̄−M

2

≤
H
∑

s=M+1

p̄s(1 + µ1)
s−M (1− µ2)

M +

M
∑

s=1

p̄s(1− µ2)
s , µ̂,

(39)

and

E{µ̄−q(i+1)
2 d̄1 + d̄2}

=E

{

µ̄
−q(i+1)
2 d1

µ̄
q(i+1)−h(i+1)+1
1 − µ̄1

1− µ̄1
+ d2

µ̄
−q(i+1)+1
2 − µ̄2

1− µ̄2

}

≤
H
∑

s=M+1

p̄s

(

µ̄−M
2 d1

µ̄M−s+1
1 − µ̄1

1− µ̄1
+ d2

µ̄−M+1
2 − µ̄2

1− µ̄2

)

+
M
∑

s=1

p̄s

(

µ̄−s
2 d1d2

µ̄−s+1
2 − µ̄2

1− µ̄2

)

, d̂. (40)

Then, calculate the conditional expectation of (38), and from
(39) and (40), we have

E{Vt(i+1)+1|t(i), x̃t(i)} ≤ µ̂E{Vt(i)+1|t(i), x̃t(i)}+ d̂. (41)

Take the mathematical expectation of (41).

E{Vt(i+1)+1} ≤ µ̂E{Vt(i)+1}+ d̂. (42)

Next, for any positive scalar̄µ, one has

µ̄m+1
E{Vt(i+1)+1} − µ̄m

E{Vt(i)+1}
≤µ̄m(µ̄− µ̄(1− µ̂)− 1)E{Vt(i)+1}+ µ̄m+1d̂. (43)

Subsequently, denotinḡµ = 1/µ̂ and summing up (43) from
t(0) + 1 to t(z) + 1 in respect toz, one has

µ̄z
E{Vt(0)} − E{Vt(0)+1} ≤ d̂

µ̄− µ̄z+1

1− µ̄

which results in

E{Vt(z)+1} ≤ µ̂z
E{Vt(0)+1}+ d̂

1− µ̂z

1− µ̂

≤µ̂z(1 − µ2)E{Vt(0)}+ µ̂zd2 −
µ̂zd̂

1− µ̂
+

d̂

1− µ̂
.

Therefore,E{Vt(z)+1} is ultimately bounded, i.e.,

lim
z→+∞

E{Vt(z)+1} =
d̂

1− µ̂
< +∞.

Then, for anyt(z) + 1 ≤ k < t(z +1)+ 1, one hasE{Vk} ≤
E{Vt(z)+H}, and

E{Vk} ≤E{Vt(z)+H}

≤µ̂zµ̄1−H
1 (1− µ2)V0 + d̃+ µ̂zµ̄1−H

1

(

d2 −
d̂

1− µ̂

)

(44)

whered̃ ,
d̂µ̄

1−H
1

1−µ̂
+

d1(µ̄1−µ̄
2−H
1 )

µ̄1−1 . Finally,

lim
k→+∞

E{‖x̃k‖2} ≤ d̃

λmin(P )

which ends the proof.
Theorem 2:For the error dynamics (11) and (12), assume

that there exist scalarsδ > 0, µ1 > 0, 0 < µ2 < 1,
0 < αi < 1 (i = 1, 2), σs > 0 (s = 1, 2, 3, 4, 5), positive
definite matricesP , Φl (l = 1, 2, · · · , 7), and observer gain
matrix Lh(i) satisfying (13), (14), (15), (17), (18), (19) and
the following matrix inequality

Ξ̃2 < 0 (45)

where

Ξ̃2 ,

















Ξ̃11
2 0 0 0 Ξ̃15

2 Ξ̃16
2

∗ Ξ̃22
2 0 0 Ξ̃25

2 0

∗ ∗ Ξ̃33
2 0 0 Ξ̃36

2

∗ ∗ ∗ Ξ̃44
2 0 0

∗ ∗ ∗ ∗ Ξ̃55
2 0

∗ ∗ ∗ ∗ ∗ Ξ̃66
2

















,

Ξ̃11
2 ,− (1− µ2)P, Ξ̃15

2 , AT − CTLT
h(i),

Ξ̃16
2 ,

[√
1 + ε3(A

T − CTLT
h(i)) 0

]

, Ξ̃33
2 , −Φ4,
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Ξ̃25
2 ,I, Ξ̃36

2 ,

[

0
√
1 + ε5(E

T −DTLT
h(i))

]

,

Ξ̃44
2 ,(1 + ε6)P − Φ5, Ξ̃

55
2 , P − 2I,

Ξ̃22
2 ,− σ2I, Ξ̃

66
2 , diag{P − 2I, P − 2I},

whereεs(s = 3, 5, 6) are defined in Theorem 1. Then, (11)
and (12) are EUB in mean square subject toωk.

Proof: The proof follows from Theorem 1 and Schur
Complement Lemma.

Remark 3:Becauseµ1 > 0 and0 < µ2 < 1, error dynamics
undergoes an increment since the observer has no measure-
ment signal to utilize when implementing the observation task.
Fortunately, duringt(i) − q(i) + 1 ≤ k < t(i + 1) + 1, a
decrement would be utilized to compensate the increment. In
this way, the EUB of the error dynamics (11) and (12) can be
jointly guaranteed.

B. Controller design

In this subsection, we design controller parameters. Further-
more, the error dynamics EUB about actor/critic-NNWs will
be simultaneously analyzed.

With the help of the Bellman’s principle of optimality,
J(xk) can be rewritten as

J(xk) =l(xk, uk) +

∞
∑

j=k+1

l(xj , uj)

=l(xk, uk) + J(xk+1). (46)

Considering the approximation ofJ(xk) shown in (7), let
ZJ(WJ ) , J(x̂k) − J(xk) be the residual error produced
during the approximation process of critic NN. Then, we have

ZJ(WJ ) = l
(

x̂k, û(x̂k)
)

+ J(x̂k+1)− J(xk)

≈ l
(

x̂k, û(x̂k)
)

+WT
J ∆ϕJ (x̂k)

where ∆ϕJ (xk) , ϕJ (x̂k+1) − ϕJ (xk). By minimizing
1
2Z

T
J (WJ )ZJ(WJ ), we obtain the update law of̂WJ,k for

critic NNs based on gradient descent.

ŴJ,k+1 =ŴJ,k − β1∆ϕJ (x̂k)rJ (x̂k)Z
T
J (ŴJ,k) (47)

whereβ1 is the tuning scalar of the update law andrJ (x̂k) is
the step length used to adjust the updated amplitude,rJ (x̂k) =
1/

(

1 + ‖∆ϕJ(x̂k)
T∆ϕJ(x̂k)‖

)

.
Next, we are in a position to design the weight update law.

Based on (10) and the Bellman’s principle of optimality, one
desired “optimal” control policy is governed by

∂l
(

x̂k, û(x̂k)
)

∂û(x̂k)
= −∂J(x̂k+1)

∂û(x̂k)
.

Defineg
(

û(x̂k)
)

as the derivative function ofl
(

x̂k, û(x̂k)
)

which is invertible, i.e.,g
(

û(x̂k)
)

, ∂l
(

x̂k, û(x̂k)
)

/∂û(x̂k).
As shown in [8], the approximated value ofu(x̂k) (i.e.U(x̂k))
is calculated based on an inverse function ofg

(

û(x̂k)
)

:

U(x̂k) =g−1
(∂l

(

x̂k, û(x̂k)
)

∂û(x̂k)

)

=− 1

2
R−1BT∇ϕT

J (x̂k+1)ŴJ,k

where ∇ϕT
J (x̂k+1) represents the gradient operation of

ϕT
J (x̂k+1). Let Zu(x̂k) be the control input error represented

by

Zu(x̂k) =û(x̂k)− U(x̂k)

=ŴT
u,kϕu(x̂k) +

1

2
R−1BT∇ϕT

J (x̂k+1)ŴJ,k.

Similarly, using gradient descent, we obtain a weight update
law by minimizing 1

2Z
T
u (x̂k)Zu(x̂k), i.e.,

Ŵu,k+1 = Ŵu,k − β2ϕu(x̂k)Z
T
u (x̂k). (48)

DefineW̃J,k = ŴJ,k−WJ as the estimation error of critic-
NNW.

W̃J,k+1 =ŴJ,k+1 −WJ

=W̃J,k − β1∆ϕJ (x̂k)rJ (x̂k)Z
T
J (x̂k)

=W̃J,k − β1∆ϕJ (x̂k)rJ (x̂k)

×
(

∆ϕT
J (x̂k)W̃J,k +ΥJ

)

(49)

whereΥJ , lT
(

x̂k, û(x̂k)
)

+∆ϕT
J (x̂k)WJ .

Letting W̃u,k = Ŵu,k −Wu be the estimation error of the
actor-NNW, (48) indicates

W̃u,k+1 =Ŵu,k+1 −Wu

=W̃u,k − β2ϕu(x̂k)Z
T
u (x̂k)

=W̃u,k − β2ϕu(x̂k)ϕ
T
u (x̂k)W̃u,k − β2Υu

− 1

2
β2ϕu(x̂k)W̃

T
J,k∇ϕJ (x̂k+1)B(R−1)T (50)

whereΥu , 1
2ϕu(x̂k)

(

WT
J ∇ϕJ (x̂k+1)B(R−1)T + ϕT

u (x̂k)
×Wu).

The following theorem presents the selection scheme on
the tuning scalarsβ1 and β2, which ensures that the error
dynamics (49) and (50) are EUB in mean square.

Theorem 3:Let the initial control input (i.e.û0(x̂k) ,

ŴT
u,0ϕu(x̂k)) be admissible and the initial actor- and critic-

NNW (i.e. ŴJ,0 and Ŵu,0) be selected from a compact set
which includes the ideal weights. Assume that there exist
scalarsβ1 > 0, β2 > 0, 0 < µj < 1 (j = 3, 4),
σs > 0 (s = 6, 7, 8, 9) and positive matricesΓl (l = 1, 2, 3)
such that

{

Ξ3 < 0 (51)

Ξ4 < 0 (52)

where

Ξ3 ,

[

Ξ11
3 0
∗ Ξ22

3

]

,Ξ4 ,

[

Ξ11
4 Ξ12

4

∗ Ξ22
4

]

,

Ξ11
3 ,−

(

β1(2− σ6 − 4β1σ6ϕ̄
2
J − 4β1ϕ̄

2
J )− µ3

)

+ β2ϕ̄
2
uϕ̄

2
J (β2 + σ−1

7 + σ−1
8 + σ−1

9 )‖R−1BT ‖2,
Ξ22
3 ,β1(σ

−1
6 + 4β1σ

−1
6 ϕ̄2

J + 4β1ϕ̄
2
J )− Γ1,

Ξ11
4 ,(−2β2ϕ̄

2
u + β2

2ϕ̄
4
u + β2σ7 + β2ϕ̄

2
uσ8 + µ4),

Ξ12
4 ,− β2 + β2

2 ϕ̄
2
u,Ξ

22
4 , β2

2 + β2
2σ9 − Γ2.

Then, both estimation errors for critic/actor-NNWs are EUB
in mean square.
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Proof: For the critic NN with update law (47) and
the actor NN with update law (48), we construct Lyapunov
functions

V3,k , tr{W̃T
J,kW̃J,k}, V4,k , tr{W̃T

u,kW̃u,k}.
Taking the mathematical expectation along the trajectory of

(49) and (50) leads to

E

{

∆V3,k|x̂k, Ŵu,k, ŴJ,k

}

=E

{

V3,k+1|x̂k, Ŵu,k, ŴJ,k

}

− V3,k

≤tr

{

E

{

−
(

β1(2 − σ6 − 4β1σ6ϕ̄
2
J − 4β1ϕ̄

2
J )− µ3

)

× W̃T
J,kW̃J,k − µ3W̃

T
J,kW̃J,k +

(

W̃T
J,k∆ϕJ (x̂k) + ΥT

J

)

×
(

β1(σ
−1
6 + 4β1σ

−1
6 ϕ̄2

J + 4β1ϕ̄
2
J)− Γ1

)

×
(

∆ϕT
J (x̂k)W̃J,k +ΥJ

)

+
(

W̃T
J,k∆ϕJ (x̂k) + ΥT

J

)

× Γ1

(

∆ϕT
J (x̂k)W̃J,k +ΥJ

)

}

}

(53)

and

E

{

∆V4,k|x̂k, Ŵu,k, ŴJ,k

}

=E

{

V4,k+1|x̂k, Ŵu,k, ŴJ,k

}

− V4,k

≤tr

{

E

{

(−2β2ϕ̄
2
u + β2

2 ϕ̄
4
u + β2σ7 + β2ϕ̄

2
uσ8 + µ4)W̃

T
u,k

× W̃u,k + 2(−β2 + β2
2 ϕ̄

2
u)W̃

T
u,kΥu +ΥT

u (β
2
2 + β2

2σ9

− Γ2)Υu +ΥT
uΓ2Υu +

1

4
β2ϕ̄

2
u(β2 + σ−1

7 + σ−1
8 + σ−1

9 )

×R−1BT∇ϕT
J (x̂k+1)W̃J,kW̃

T
J,k∇ϕJ (x̂k+1)B(R−1)T

− µ4W̃
T
u,kW̃u,k

}

}

. (54)

(53) and (54) indicate

tr

{

E

{

∆V3,k +∆V4,k|x̂k, W̃u,k, W̃J,k

}

}

≤ tr

{

E

{

ξTk Ξ3ξk − µ3W̃
T
J,kW̃J,k + d3 + ξ̄Tk Ξ4ξ̄k

− µ4W̃
T
u,kW̃u,k + d4

}

}

where

ξk ,

[

W̃T
J,k ̺Tk

]T

, ξ̄k ,

[

W̃T
u,k ΥT

u

]T

,

̺k ,lT
(

x̂k, û(x̂k)
)

+∆ϕT
J (x̂k)WJ , d3 , tr{3W̄J ϕ̄JΓ1},

d4 ,tr{(‖R−1BT ‖2ϕ̄2
uϕ̄

2
JW̄

2
J + ϕ̄4

uW̄
2
u )Γ2}.

(51) and (52) indicate

tr

{

E

{

∆V3,k +∆V4,k|x̂k, W̃u,k, W̃J,k

}

}

≤ tr
{

− µ3V3,k + d3 − µ4Ṽ4,k + d4
}

, (55)

and the proof is complete.
Remark 4:Utilizing the universal approximation property,

(9) and (10) are used to suitably approximate (7) and (8),
respectively. By this approach, the NN-based control algorithm
can be realized. Furthermore, based on Lyapunov stability, the
boundedness of both critic-NNW and actor-NNW is assured.

C. Boundedness Analysis for the Nonlinear NCSs

In this subsection, stability analysis will be conducted.
Theorem 4:Let the initial control input (i.e.û0(x̂k) ,

ŴT
u,0ϕu(x̂k)) be admissible and the initial actor- and critic-

NN weights (i.e.ŴJ,0 andŴu,0) be selected from a compact
set which includes the ideal weights. Suppose that there exist
scalars0 < ℵ < 1, σ10 > 0, 0 < µ5 < 1 and positive matrices
Γl (l = 4, 5) such that

Π5 < 0 (56)

where

Π5 ,





Π11
5 0 0
∗ Π22

5 0
∗ ∗ Π33

5



 ,

Π11
5 ,ℵ(1 + 2σ10)− 1 + µ5,Π

22
5 , (2 + σ−1

10 )BTB − Γ3,

Π33
5 ,(2 + σ−1

10 )B
TB − Γ4.

Then, system (1) with control policy (10) is EUB in mean
square.

Proof: In light of the optimal control theory, (8) will
stabilize (in the sense of input-to-state stability) the following
system on a compact set [8]:

xk+1 =Axk + f(xk) +Buk + Eωk = Λ(xk) + Eωk

In other words, there exists a positive constantℵ < 1 such
that

E{‖Λ(xk)‖2} ≤ ℵE{‖xk‖2}+ ‖Eωk‖. (57)

Considering the observer-based control framework, in view
of (10), we have the followingactual closed-loop system:

xk+1 =Λ(xk)−BWT
u ϕu(xk)−Bζu,k +BŴT

u,kϕu(x̂k)

=Λ(xk)−Bζu,k −BWT
u ϕ̀u(xk) +BW̃T

u,kϕu(x̂k)
(58)

whereϕ̀u(xk) , ϕu(xk)− ϕu(x̂k). Let us construct

V5,k , tr{xT
k xk}.

Seeking for the mathematical expectation implies

E

{

∆V5,k

}

=E

{

V5,k+1|x̂k, Ŵu,k, ŴJ,k

}

− V5,k

≤tr

{

E

{

ξTk Π5ξk +
(

ζu,k +WT
u ϕ̀u(xk)

)T
Γ3

×
(

ζu,k +WT
u ϕ̀u(xk)

)T
+ ϕT

u (x̂k)W̃u,k

× Γ4W̃
T
u,kϕu(x̂k)− µ5x

T
k xk + Q̃T Q̃

}

}

≤tr

{

E

{

ξ̃Tk Π5ξ̃k − µ5x
T
k xk + d5

}

}

(59)

wherẽξk ,

[

xT
k ζTu,k + ϕ̀T

u (xk)Wu W̃T
u,k

]T

,d5 , tr{(ζ̄u +

2W̄uϕ̄u)
TΓ3(ζ̄u + 2W̄uϕ̄u) + ϕ̄2

uΓ4(d3 + d4) + Q̃T Q̃}.
Taking (56) into consideration, it follows from (59) that

E{∆V5,k} ≤ −µ5E{V5,k}+ d5. (60)
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Now, let us consider (55) and (60). It is obvious that
5

∑

r=3

E{Vr,k} ≤
5

∑

r=3

(µ̄rVr,k−1 + dr)

≤
5

∑

r=3

(

µ̄k
rVr,0 + dr

1− µ̄k
r

1− µ̄r

)

(61)

whereµ̄r , 1− µr.
By constructing the following Lyapunov-like function

Vk ,

5
∑

r=1

Vr,k

and considering (44) and (61), we have

lim
k→+∞

E{Vk} <d̃+ d3
1

1− µ̄3
+ d4

1

1− µ̄4
+ d5

1

1− µ̄5

<+∞.

Remark 5: In Theorems 1-4, we have explored the ulti-
mately bounded output-feedback control for nonlinear NCSs
by a buffer-aided strategy amidst inconsistent communication
channels. Specifically, we have quantitatively modeled the
unreliable signal transmissions and evaluated the impact of
the buffer-aided approach, designed the tuning laws for the
NNWs, and also ensured the bounded stability.

Remark 6:Compared with existing results, the salient fea-
tures of can be summarized as follows. 1) This work pioneers
the exploration into the NN-based output-feedback control for
networked nonlinear systems utilizing a buffer-aided strategy
amidst unreliable signal transmissions. 2) Given the nature
of unreliable signal transmissions and the incorporation of the
buffer-aided strategy, this paper introduces innovative adaptive
tuning laws of the nonlinear/critic/actor-NNWs. Furthermore,
NN tuning scalars have been tailored to ensure a commendable
approximation of unknown nonlinearities and the critic/actor
NNs. 3) In the face of unreliable signal transmissions, the
EUB of the system states, along with error dynamics of system
states, nonlinear/critic/actor-NNWs, have been collectively as-
sured.

Remark 7: It should be mentioned that the signal trans-
missions of a typical network system are implemented via a
digital communication channel, where an encoding-decoding
mechanism is utilized to encode signals. By now, various
encoding-decoding schemes have been reported in the liter-
ature (e.g. the quantization-based encoding-decoding schemes
and symbolic-based encoding-decoding schemes) [37]. Dif-
ferent encoding-decoding mechanisms would lead to different
“decoding errors”, which will affect the resultant accuracy of
the control system. One of our future research topics is to
study the design of optimal buffer-aided control strategy for
networked systems with unreliable communication channels
and encoding-decoding mechanisms.

IV. I LLUSTRATIVE EXAMPLE

Consider a networked nonlinear system (1) where

A =





0.5 0 −0.6
0 1.01 0
0 0.5 0.2



 , B =





1
−1
1



 , E =





0.1
−0.1
0.05



 ,

C =

[

0.8 −0.8 0
−0.7 0 −0.7

]

, D =

[

0.1
0

]

.

The variance of ωk is set as 0.2, and fk =

8
[

sin(x1,k) sin(x2,k) sin(x2,k) cos(x3,k)
]T

.
Let the maximum capacity of the buffer beQ = 2. The

transmission intervalh(i) is selected from the setH =
{1, 2, 3, 4}, whose known occurrence probabilities is taken as
p1 = 0.2 andp2 = 0.4.

Set δ = 0.1, µ1 = 1.2, µ2 = 0.75, α1 = 5, α2 = 1.2,
σ1 = 9, σ2 = 1.2, σ3 = 1.3, σ4 = 0.2 andσ5 = 0.5. Using
MATLAB LMI Toolbox, the desired solution to the matrix
inequalities (13)-(15), (17)-(19) and (45) is

P =





24.1891 −1.3302 −1.4385
−1.3302 24.1972 −0.0034
−1.6385 −0.0034 24.1876



 ,

L1 =





0.3017 0.1487
−0.2577 −0.0482
−0.1327 −0.0617



 , L2 =





0.5680 0.3322
−1.2492 −0.4145
−0.5034 −0.4423



 ,

L3 =





0.19070 0.2279
−0.2764 −0.4392
−0.2997 −0.1672



 , L4 =





0.3740 0.3322
−0.6433 −0.4392
−0.3007 −0.1742



 .

Set ξ = 0.6, µ3 = 0.01, µ4 = 0.01, µ5 = 0.01, β1 = 0.99,
β2 = 0.99, σ6 = 0.8, σ7 = 0.2, σ8 = 0.2, σ9 = 0.2 and
σ10 = 0.2. Therefore, the matrix inequalities (51), (52), and
(56) hold. In what follows, let us validate this ADP-based
control strategy. The utility function is selected asl(xk, uk) =
xT
k Mxk + uT

kRuk where M = 1.6I and R = 1.2I. The
activation functions are selected as

ϕf (x̂k) =0.01
[

tanh(x̂1,k) tanh(x̂2,k) tanh(x̂3,k)
]T

,

ϕv(x̂k) =0.4
[

tanh(x̂2
1,k) tanh(x̂2,kx̂3,k) tanh(x̂3,k)

]T
,

ϕu(x̂k) =0.4
[

tanh(x̂1,k) tanh(0.2x̂2,k) tanh(0.2x̂3,k)
]T

.

The initial values are

x0 =
[

0.9 −0.6 0.6
]T

, x̂0 =
[

−0.24 0.12 −0.36
]T

,

Ŵf,0 =
[

0.1 0.1 0.1
]T

, ŴJ,0 =
[

−1 −1 1.8
]T

,

Ŵu,0 =
[

−1.52 −4.24 7.6
]

.
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Fig. 1: Norm of the state vector of the open-loop system.
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Fig. 2: States and their estimates of the closed-loop system.
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Fig. 3: The weight estimate of critic NN.
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Fig. 4: The weight estimate of actor NN.

The validity and efficacy of our proposed approach are
visually substantiated through results explained as follows.

1) To begin, Fig. 1 showcases the norm of state trajectories
for the open-loop system. It becomes evident that the
open-loop system is inherently unstable, which motivates
the need for an effective control strategy even more
apparent.

2) Transitioning to the closed-loop system, we have dis-
played both the state trajectories and estimates in Fig. 2,
which provides a clear testament to the feasibility of

0 10 20 30 40 50 60 70 80 90
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-2

0

2

4

6

8

Fig. 5: The control input.

the NN-based output-feedback control strategy developed
in our study. The trajectories closely align with their
estimates, underscoring the controller’s ability to maintain
system stability and accurately track the desired states.

3) Delving into the neural network details, Fig. 3 and
Fig. 4 depict the estimates of the actor/critic NNWs,
respectively, and this provides insight into the dynamic
adaptation and learning process that the networks undergo
as they interact with the system. The control input, crucial
for achieving the desired system behavior, is represented
in Fig. 5, from which one can verify the controller’s
responsiveness and precision in action.

4) Collectively, these simulation outcomes show that the
proposed NN-based control strategy achieves satisfacto-
ry performance, and our developed approach not only
addresses the inherent instability of the system but also
provides commendable precision and adaptability.

V. CONCLUSIONS

In this study, we have examined the ultimately bounded
output-feedback control for networked nonlinear systems em-
ploying a buffer-aided strategy over unreliable communication
channels was explored. Given the unreliable nature of signal
transmission, we have used a buffer-aided strategy to relay
a greater number of measurements. To obtain the coveted
control strategy, an NN-based observer has been devised for
state estimation. In addition, an observer-based ADP algorithm
has been introduced to approximate the ideal solution for the
suboptimal control issue. Utilizing the Lyapunov stability, suf-
ficient conditions have been identified that jointly ensure that
the close-loop system, state estimates and critic/actor-NNW
estimates are all the EUB in mean square. Numerical examples
have been presented to reinforce the efficacy of the outlined
control strategy. Potential avenues for future investigations
include the extension of the proposed control strategy to
systems with buffer-aided strategy and other phenomena such
as complex networks [2], [9], [31], wireless sensor networks
[13], multiagent systems [20], and others [4], [15], [27], [29],
[30], [41], [44].
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