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Abstract: Methanol is a potential carbon-neutral fuel. It has a high latent heat of vapor-
ization, making it difficult to achieve evaporation and mixing, and it is prone to forming
a liquid film, which in turn affects engine performance. To reduce the liquid film and
improve engine performance, this work investigates the influence mechanism of injection
strategies on the generation of liquid films in the intake port and cylinder of an inline
6-cylinder port fuel injection (PFI) spark-ignition (SI) methanol engine and further explores
the optimization scheme for improving engine performance. The results show that the end
of injection (EOI) influences the methanol evaporation rate and the methanol–air mixing
process, thereby determining the liquid film deposition, mixture distribution, and tempera-
ture distribution in the cylinder. As the EOI advances, the higher methanol evaporation rate
during the intake process reduces the amount of methanol droplets and the deposition of a
liquid film in the cylinder. The in-cylinder temperature is relatively high, while the mixture
inhomogeneity slightly increases. As the EOI increases from 170 ◦CA to 360 ◦CA, the higher
in-cylinder temperature and properly stratified mixture accelerate the early and middle
stages of combustion, shorten the ignition delay, advance the center of combustion, and
improve the brake thermal efficiency (BTE). However, further advancing the EOI results
in the BTE remaining basically unchanged. Optimized injection timing can enhance the
BTE by 1.4% to 2.4% under various load conditions. The increase in the EOI contributes
to the reduction of HC emissions due to the weakening of the crevice effect with lower
masses of methanol droplets and liquid film in the cylinder, while the increase in mixture
inhomogeneity leads to an increase in CO emissions. In general, controlling the EOI at
around 360 ◦CA can maintain relatively low CO emissions under various load conditions,
while significantly reducing HC emissions by 71.2–76.4% and improving the BTE.

Keywords: methanol engine; liquid film formation; methanol evaporation mixing; combustion;
emission

1. Introduction
In order to cope with the global energy and environmental pollution problems, the

proposal of the “dual-carbon” goal puts forward a new development direction for the
automobile industry, and reducing the carbon emissions of the powertrain has become an
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important technical route [1,2]. Especially for the heavy-duty engines widely used in heavy-
duty trucks and construction machinery. The rapid development of the transportation and
infrastructure industries has led to a rapid increase in the demand for heavy-duty vehicles.
Realizing fuel substitution for heavy-duty diesel engines is an important means of reducing
carbon emissions and lessen the dependence on petroleum resources [3,4].

Recently, there has been rapid development in the technology of converting CO2 into
clean methanol liquid fuel using green hydrogen, on the basis of which methanol can be
transformed from a low-carbon fuel to a carbon-neutral fuel, which is one of the most
important ways to reduce carbon emissions in the future [5–7]. As a fuel, methanol has high
economy, safety, environmental friendliness, reliability, and applicability, and is an ideal
alternative fuel for traditional internal combustion engines, for which the modification cost
will not increase significantly [8,9]. Moreover, methanol has a high octane number [10],
high latent heat of vaporization [11], and high laminar flame speed [12]. A high octane
number means good anti-knock performance, a high latent heat of vaporization can reduce
the intake temperature, and a higher laminar flame speed can reduce the cycle-by-cycle
variation. These properties allow the engine to use higher compression ratios to change the
combustion characteristics and improve the thermal efficiency [13–15]. Moreover, methanol
contains 50% oxygen and has no C-C bonds, which is favorable for reducing the CO, HC,
and PM emissions produced during combustion [16,17].

Methanol has been studied and applied to both spark ignition (SI) and compression
ignition (CI) engines. Due to the low cetane number of methanol [18], combined combustion
with another highly reactive fuel is a common method of applying methanol to CI engines,
such as diesel/methanol dual-fuel combustion, which is an effective method [19,20]. But
the application of dual fuels greatly increases the complexity of the fuel supply system,
electronic control system, and aftertreatment system [21]. On the contrary, methanol is
well suited as a fuel for SI engines due to its high octane number, high volatility, and
high latent heat of vaporization [22]. Methanol application in heavy-duty SI engines is
a mature commercial approach and can easily reduce engine emissions when using the
combustion scheme of stoichiometric combustion, exhaust gas recirculation (EGR), and
three-way catalytic converter (TWCC) [23].

Güdden et al. [24] conducted combustion experiments on a port fuel injection (PFI) SI
single-cylinder methanol engine and showed that the thermal efficiency of the methanol en-
gine was higher than that of a natural gas engine. The NOx emissions met the International
Maritime Organization (IMO) Tier III limits (<2 g/kWh), and there was no need for exhaust
aftertreatment. However, the emissions of unburnt methanol, especially formaldehyde,
were higher. Chen et al. [25] comparatively analyzed the combustion characteristics and
cycle-by-cycle variations of methanol, ethanol, and n-butanol for SI engine combustion.
They found that methanol had a higher combustion rate, lower cycle-by-cycle variation,
and better lean combustion capability than ethanol and n-butanol. Gong et al. [26] used
numerical simulation to investigate the effect of intake temperature on mixture formation,
the combustion process, and the formaldehyde and unburned methanol emissions of a
direct injection spark ignition (DISI) methanol engine. The results showed that increasing
the intake temperature could promote the evaporation of methanol and improve the dis-
tribution of the mixture in the cylinder, which accelerated combustion and reduced the
emissions of formaldehyde and unburned methanol. Duan et al. [27] conducted an experi-
mental study on the effects of the injection timing and spark timing on the combustion and
emission characteristics of a high compression ratio DISI methanol engine. They found that
by optimizing the injection timing and spark timing, the cycle-by-cycle variation could be
reduced, higher indicated mean effective pressure (IMEP) and indicated thermal efficiency
(ITE) could be achieved, and the start of injection (SOI) was in the range of 270–240 ◦CA
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BTDC for better combustion and emission performance. Li et al. [28] conducted an experi-
mental study on the effects of SOI, spray angle, injection pressure, and spark timing on the
in-cylinder flow, fuel distribution, flame propagation, and engine performance of a high
compression ratio DISI methanol engine. They found that the combustion process was very
sensitive to changes in the SOI, which was closely related to in-cylinder turbulence and
methanol-air mixing. The injection pressure affected the combustion process mainly by
influencing the in-cylinder methanol distribution. For steady combustion at low loads, a
delayed SOI, narrower spray angles, and lower injection pressures are advised. Advancing
the SOI improves the ITE and NOx emissions at medium loads. Zhu et al. [29] investigated
the effect of EGR rate and spark timing on BTE as well as the NOx, CO, and HC emissions
of a SI methanol engine. At the range of 1000–1700 rpm, the cycle-by-cycle variation was
small, and the peak BTE was 41.4%, which was 3% higher than that of the original natural
gas engine. It had lower NOx and CO emissions but higher HC emissions. Moreover, the
effects of injection pressure (8–24 MPa), injection timing (240–400 ◦CA BTDC), and excess
air coefficient (λ = 1.1, 1.2 and 1.3) on mixture formation and combustion performance were
investigated by experiments and numerical simulations, and the results showed that the
optimized injection strategy can improve the BTE by 2%, 2.7%, and 2.8% when the λ = 1.1,
1.2, and 1.3, respectively [30].

Methanol performs well in SI engines and forming a higher quality mixture is critical for
combustion and emission performance. However, after retrofitting a conventional fuel engine
to a methanol engine, the corrosive wear of methanol on the engine structure also needs to
be considered [31,32], especially in the piston ring and cylinder liner regions [33]. Related
research mainly focuses on the improvement of lubrication system materials and engine
corrosion treatment, and the corrosion wear can be mitigated by improving the methanol
evaporation and methanol–air mixing process to reduce the formation of deposits. Since the
latent heat of vaporization of methanol is significantly higher than that of gasoline, methanol
injected at low pressure into the intake port is difficult to atomize and rapidly evaporate. A
large number of methanol droplets entering the cylinder will lead to the formation of a liquid
film. This may cause corrosion wear of the engine, incomplete combustion, and emissions,
resulting in a reduction in engine performance. Therefore, it is necessary to thoroughly analyze
the methanol evaporation characteristics, liquid film formation, and mixture formation of the
methanol engine. The injection strategy plays a dominant role in the methanol–air mixing
process and its influence on the mixture formation process is complex, influenced by engine
structure, nozzle arrangement, and intake flow.

Based on the above literature review, it can be found that different injection strate-
gies can influence the performance of methanol engines, which might be caused by the
deposition of liquid films. Nevertheless, the shortcoming of current research is that the
understanding of the mechanism of liquid film deposition is still not clear. To reduce the
liquid film and improve engine performance, the paper experimentally investigates the
effect of the injection timing on combustion and emission performance under different
conditions based on a 14.8 L PFI SI methanol engine. Combined with three-dimensional
simulation, the effect of the injection timing on the generation of a liquid film, methanol–
air mixing process, and the mechanism of its influence on the combustion and emission
characteristics is revealed. The results can provide a theoretical basis and guidance for
controlling the injection parameters of PFI methanol engines.

2. Analytical Methodology
2.1. Experimental Setup

The experiments were performed in an inline 6-cylinder PFI SI methanol engine,
as shown in Figure 1. Table 1 lists the basic technical parameters of the engine. The
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methanol supply system adopted multipoint injection. An eddy current dynamometer
with a maximum power of 630 kW and a maximum speed of 4500 rpm was used, with
speed and torque accuracies of ±1 rpm and ±0.3% FS, respectively. An MT9020 methanol
consumption meter, sourced from Changsha Hanzhou in China, was employed to measure
the dynamic methanol consumption, with an accuracy of 0.12%FS. A thermal gas mass
flow meter was used to measure air flow with an accuracy of ±0.1% FS. Intake and exhaust
pressures, temperatures, oil temperature, and pressure, as well as coolant temperature,
were measured by pressure sensors and thermocouples with a temperature accuracy of
±1 K and pressure accuracy of ±0.25%. The in-cylinder pressure was measured by a Kistler
cylinder pressure sensor from Shanghai, China. The combustion analysis system utilized a
JH611 combustion analyzer developed by Hunan University, China, to continuously record
the in-cylinder pressure curves for 200 consecutive cycles. Meanwhile, the crank angle data
was collected at intervals of 0.1 ◦CA. The emissions produced in the experiments included
NOx, CO, and HC, which were measured by the Horiba MEXA-7100DEGR device from
Kyoto, Japan. The main measurements and their accuracy are listed in Table 2.
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Figure 1. Schematic diagram of the test bench.

Table 1. Basic technical parameters of the methanol engine.

Parameters Value

Engine type 6-cylinder, turbocharged, stoichiometric combustion
Bore/mm 138

Stroke/mm 165
Connecting rod/mm 244.5

Displacement/L 14.8
Compression ratio/– 13.5
Number of valves/– 4

Maximum power/(kW/rpm) 391/1700
Maximum torque/(N·m/rpm) 2600/(1000–1400)

Intake valve opening timing/◦CA BTDC 10
Intake valve closure timing/◦CA ABDC 59.5

Exhaust valve opening timing/◦CA BBDC 50
Exhaust valve closure timing/◦CA ATDC 12

2.2. Experimental Methodology

The test engine used a methanol injector with 16 holes and a nozzle diameter of 0.30 mm,
and the static flow rate could reach 850 g/min at an operating pressure of 5 bar. The injection
timing is represented by SOI and EOI, where the SOI is defined as the crank angle between the
start of injection and the intake bottom dead center, and the EOI is defined as the crank angle
between the end of injection and the intake bottom dead center. A larger EOI implies that the
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injection ends earlier with respect to the intake valve opening timing (IVO). The phases of
different injection timing and gas exchange processes are shown in Figure 2.

Table 2. Main measurements and accuracies.

Measurements Measuring Range Accuracy

Engine speed 0–4500 rpm ±1 rpm
Engine torque 0–3600 N·m ±0.3%

In-cylinder pressure 0–30 MPa ±0.5%
Air flow rate 0–2000 kg/h ±0.1%

Methanol flow rate 0–250 kg/h ±0.12%
Intake pressure 0–0.4 MPa ±0.25%

Intake temperature 0–150 ◦C ±1 K
Exhaust pressure 0–0.6 MPa ±0.25%

Exhaust temperature 0–1000 ◦C ±1 K
Crank angle 0–720 ◦CA ±0.1 ◦CA
CO emission 0–5000 ppm ±0.5%
HC emission 0–50,000 ppm ±0.5%

NOx emission 0–50,000 ppm ±0.5%
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Figure 2. The injection timing and gas exchange phases.

The experiments were carried out under three different load conditions at 1400 rpm
with IMEPs of 11.3 bar, 15.6 bar, and 19.6 bar. The injection pressures were controlled at
around 6.5 bar. The injection duration and spark timing under the same conditions were
consistent. Different injection timings were achieved by controlling the EOI, the minimum
value of the EOI under different loads was 170 ◦CA, and the maximum value of the EOI
was different, which was due to the fact that the test procedure attempted to control the
completion of injection within the intake valve closing interval as much as possible. The
experimental condition control parameters are listed in Table 3. The experimental results
were measured under steady-state conditions and the collected data were averaged to
obtain the final test data.

Table 3. Experimental condition control parameters.

Speed/
(r/min)

IMEP/
Bar

Intake Pressure
After

Intercooler/kPa
Intake Temperature
After Intercooler/◦C EGR Rate/% EOI/

◦CA
Injection

Duration/◦CA
Spark

Timing/◦CA BTDC

1400 11.3 165 35 14.0 170–550 170 −16.5
1400 15.6 200 40 17.8 170–420 230 −16.5
1400 19.6 235 45 17.5 170–360 330 −15.5

From the transient test results, the combustion phases could be determined and used
to analyze the effect of the injection timing on the combustion rate at different stages. The
combustion process was characterized using three parameters: the flame development period
CA0–10, the combustion center CA50, and the rapid combustion period CA10–80. Accord-
ing to the combustion analysis results of the previous test, there was a lag phenomenon
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in the heat release rate curve during the late combustion period, so CA10–80 was used
to characterize the rapid combustion period. CA0–10 denotes the period from ignition to
10% cumulative heat release, CA50 indicates the point at 50% cumulative heat release, and
CA10–80 signifies the phase from 10% to 80% cumulative heat release.

2.3. Numerical Study
2.3.1. Computational Mesh and Models

The three-dimensional numerical model was established using Converge v2.4 software,
as shown in Figure 3. Since the intake manifold is where the methanol injector is situated,
the computational domain needed to include the manifold to prevent injected methanol
from escaping. Additionally, due to the dynamic liquid film phenomenon in the intake
port [34], the simulation required multi-cycle calculations. The purpose was to use the
intake port state calculated in the previous cycle as the initial state of the current cycle,
typically requiring more than 4–5 cycles of running. The mass of methanol in the cylinder
must reach a stable value, which was regarded as a stable state in the simulation, as
illustrated in Figure 4. The study calculated 9 cycles to ensure the accuracy of the simulation.
The simulation calculations in this study were conducted on a simulation server equipped
with 128 cores and 256 threads. A comprehensive multi-cycle calculation was carried out
for the port fuel injection methanol engine. The computational time required for a single
cycle calculation was approximately 30 h, and it required around 11 days to compute
9 cycles for one case.
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Grid independence verification was carried out before the calculation, and the results
are shown in Figure 5a; the base mesh size of the computational model was set to 4 mm.
The meshes in the cylinder region were refined to 2 mm and 1 mm during the flow phase
and combustion phases. The meshes around the injector were 0.5 mm. The grid sizes were
0.125 mm and 0.25 mm at the sphere region around the spark plug with radii of 2 mm
and 4 mm, respectively. The meshes at the intake and exhaust valve cone angle area were
refined to 0.5 mm to predict the intake and exhaust flow more precisely. The adaptive mesh
refinement strategy based on velocity gradient (1 m/s) and temperature gradient (2.5 K)
was also used, and 3 levels of adaptive refinement were applied to the intake port and
cylinder region. The maximum number of meshes in the calculation process was about
2,500,000, and the specific mesh refinement regions and mesh size are shown in Figure 5b.

The numerical model used the Eulerian gas phase equation and the Lagrangian droplet
equation to account for the phenomena of droplet breakup, evaporation, collision, and
polymerization, as well as droplet attachment to the wall, liquid film stripping, and liquid
film evaporation. The RNG k-ε model was selected for the turbulence flow [35]. The
KH-RT model was selected for the spray simulation [36]. The Frossling model was used
to calculate the evaporation of droplets [37]. The No Time Counter (NTC) model was
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selected for droplet collision [38]. The Wall film model was selected and coupled with the
O’Rourke near-wall dynamics model to predict the spray–wall interaction process [39]. The
heat transfer process was modeled by O’Rourke and Amsden [40], and the temperatures
for each wall component are summarized in Table 4. The G-equation coupled with the
chemical reaction kinetics model was used to capture the flame propagation process, and the
methanol reaction mechanism used in this model contained 61 components and 479 reaction
steps, which has been validated against a wide range of engine combustion conditions [41].
The computational efficiency of the SAGE chemistry solver was optimized by grouping
similar computational grids with temperature differences up to 5 K and equivalence ratios
up to 0.05 using the multi-zone model and calling the chemistry solver once for each group.
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Figure 4. Methanol mass in the cylinder and cylinder pressure calculated by multi-cycle calculations.
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Table 4. Temperature values for different wall boundaries.

Wall Boundary Type Temperature Value/K

Intake manifold 330
Intake port 360

Intake valve 450
Exhaust valve 525

Spark plug 600
Spark plug electrode 800

Cylinder head 500
Piston 550
Liner 450

2.3.2. Model Validation

The three-dimensional simulation calculations were performed at 1400 rpm and IMEP
of 11.3 bar, and the in-cylinder pressures and heat release rates were investigated for five
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different injection timings, with EOIs of 170 ◦CA, 240 ◦CA, 360 ◦CA, 480 ◦CA, and 550 ◦CA,
respectively. The inlet and outlet boundaries, as well as the initial conditions of the model,
were based on the measured data from the test bench. The specific operating parameters
and boundary conditions entered into the model are shown in Table 5.

Table 5. Operational parameters and boundary conditions.

Parameters Value

EGR rate/– 14.0%
Inlet pressure/MPa 0.125

Inlet temperatures/K 325
Methanol injection mass/(mg/cycle) 345

Number of holes/– 16
Nozzle diameter/mm 0.3

Spray cone angle/◦ 20
Injection pressure/bar 6.5

Injection duration/◦CA 170
SOI/◦CA 340, 410, 530, 650, 720
EOI/◦CA 170, 240, 360, 480, 550

Spark timing/◦CA ATDC −16.5

The model validation results are shown in Figure 6. The black solid lines represent
the average in-cylinder pressure for 100 cycles of the test, and the gray lines depict the in-
cylinder pressure for each cycle. It is observed that good agreement was obtained between
experiments and simulations in terms of both pressure traces and heat release rate profile.
The maximum errors of CA10 and CA50 were within 2 ◦CA, and the maximum error of
CA80 was within 3 ◦CA. This indicated that the methanol–air mixing process and flame
propagation process of methanol in the cylinder could be precisely represented.
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3. Results and Discussion
3.1. Effect of Injection Timing on the Methanol–Air Mixing Process

Figure 7 shows the mass fractions of the methanol vapor, droplets, and liquid film
at IVO for the methanol injected at EOIs of 170 ◦CA, 240 ◦CA, 360 ◦CA, 480 ◦CA, and
550 ◦CA. As the EOI increases, the proportion of methanol vapor in the intake port gradually
increases and the proportion of methanol droplets gradually decreases. When the EOI
is 170 ◦CA, a large number of methanol droplets exist in the intake port, with a mass
fraction of 0.76. However, when the EOI is 550 ◦CA, the mass fraction of the methanol
droplets in the intake port decreases to 0.13, and the methanol with a mass fraction of 0.73 is
vaporized. This is because a larger EOI will cause methanol to premix in the intake port for
a longer time, absorb more heat from the intake airflow and wall, and thus lead to a higher
evaporation rate of methanol. Regarding the amount of methanol liquid film, as the EOI
increases, the amount of methanol liquid film at the IVO first increases and then decreases.
This is mainly because the change in the amount of liquid film within the intake port is a
dynamic process. With the increase in the amount of methanol injection, the amount of
liquid film gradually increases. From the end of injection to the time before the intake valve
opens, during the dynamic process of further deposition and evaporation of the liquid film,
the amount of liquid film gradually decreases after reaching its peak. This dynamic change
process results in the amount of liquid film within the intake port under different EOIs
presenting the abovementioned pattern.
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Figure 7. Mass fractions of methanol vapor, droplets, and liquid film in the intake port at the IVO for
different EOIs.

To investigate the effect of the injection timing on the in-cylinder mixture preparation
process, the variation in in-cylinder methanol charge and mixture homogeneity were
analyzed, and the methanol charge coefficient Cf and the standard deviation of the excess
air coefficient λsd were introduced to represent them quantitatively. Cf is defined as in
Equation (1), where mcylinder is the total mass of methanol entering the cylinder and minjection

is the methanol injection mass for the cycle. The definition of λsd is given in Equation (2),
where mcell is the mass of the mixture in each grid, λcell is the excess air coefficient in each
grid, λmean is the average excess air coefficient in the cylinder, and mtotal is the total mass of
the mixture in the cylinder. A smaller λsd indicates a more homogeneous mixture in the
cylinder [42].

C f =

√
mcylinder

minjection
(1)

λsd =

√√√√ ∑
cell

mcell(λcell − λmean)
2

mtotal
(2)
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The evaporation and mixing process of methanol in the intake port directly affects
the change in methanol charge in the cylinder after the IVO, which further influences the
mixture formation process in the cylinder. Figure 8 shows the variation process of the
intake mass flow rate, Cf, and λsd at different EOIs. The intake mass flow rates at different
EOIs are essentially the same, and the growth rate of Cf shows an overall trend of rapid
acceleration followed by deceleration. However, with the increase in EOI, the growth
rate of the methanol charge in the early and middle stages of the intake stroke gradually
accelerates, and then slows down in the later stage. At –300 ◦CA ATDC, EOIs of 170 ◦CA,
240 ◦CA, 360 ◦CA, 480 ◦CA, and 550 ◦CA correspond to Cf values of 0.56, 0.63, 0.72, 0.76,
and 0.77, respectively. The crank angles corresponding to Cf reaching 0.90 at different
EOIs are –251.4 ◦CA ATDC, –262.2 ◦CA ATDC, –276.6 ◦CA ATDC, –284.1 ◦CA ATDC, and
–285.5 ◦CA ATDC, respectively. The aforementioned phenomenon is mostly caused by the
following: in the early and middle stages of the intake stroke, the larger EOI causes more
methanol in the intake port to evaporate into the gas phase, resulting in a faster growth
rate of Cf; in the late stage of the intake stroke, the growth rate is significantly slowed
down by a small amount of methanol droplets that are still in the intake port, as well as
methanol vapor from the evaporation of the liquid film entering the cylinder. When the
EOI is 170 ◦CA, the methanol in the intake port evaporation time is shorter and it mostly
exists in the liquid phase at the IVO. Meanwhile, some of the methanol droplets in the
intake process will continue to contact the wall to form a liquid film as they move with the
air flow, and ultimately the methanol charge will be mixed while evaporating as it enters
the cylinder, resulting in a relatively flat growth rate of Cf.
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Figure 8. Variation process of intake mass flow rate, Cf, and λsd at different EOIs.

The change process of the in-cylinder methanol charge has a significant effect on the
mixture formation process, as shown by the change in λsd in Figure 8. As EOI increases,
λsd increases during the intake stroke. This is because in the early and middle stages
of the intake stroke, the rapid growth in the methanol charge in the cylinder leads to a
large amount of rich mixture entering the cylinder, resulting in an increase in mixture
inhomogeneity. In the later stage, the lean mixture gradually enters the cylinder and mixes
with the rich mixture, further increasing the inhomogeneity of the mixture. However, the
difference in λsd at various EOIs decreases significantly during the subsequent compression
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stroke, and finally the mixture inhomogeneity at the spark timing remains slightly higher
as the EOI increases.

Figure 9 shows the distribution of in-cylinder mixture equivalent ratios for different
EOIs at the spark timing. The in-cylinder mixture distributions all show a certain stratifica-
tion phenomenon, with a lean mixture near the spark plug, a relatively rich mixture in the
combustion chamber pit area, and a slightly higher mixture concentration on the exhaust
side than on the intake side. As the EOI increases from 170 ◦CA to 550 ◦CA, the difference
in mixture concentration near the spark plug is small, while the overall inhomogeneity of
the in-cylinder mixture slightly increases. The stratification of the mixture between the
intake side and the exhaust side gradually becomes more obvious, and more mixture is
distributed on the exhaust side.
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Figure 9. Equivalence ratio distributions of the mixture at the spark timing for different EOIs.

Figure 10 shows the change process of methanol droplets and liquid film mass in the
cylinder during the intake process at different EOIs. It can be observed that when the
EOI is 170 ◦CA, due to the relatively low evaporation rate of methanol in the intake port,
a large number of methanol droplets enters the cylinder along with the airflow. Among
them, a portion of droplets with a relatively larger mass forms a wall-attached liquid
film after impacting the cylinder liner and piston under the action of the centrifugal force
of the rotating airflow in the cylinder. With the increase in EOI, the masses of the in-
cylinder methanol droplets and liquid film gradually decrease, and the time of in-cylinder
methanol droplet existence is significantly shortened. Compared with an EOI of 170 ◦CA,
the corresponding peaks of the methanol droplets in the cylinder at EOIs of 240 ◦CA,
360 ◦CA, 480 ◦CA, and 550 ◦CA decrease by 32.9%, 53.7%, 64.5%, and 72.7%, respectively.
Additionally, the peak of the liquid film in the cylinder decreases by 38.3%, 53.4%, 75.2%,
and 80.6%.
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Figure 10. Variation in methanol droplet and liquid film masses in the cylinder at different EOIs.
(a) Methanol droplet and liquid film masses. (b) Peak masses of methanol droplets and liquid film.

Figures 11 and 12 show the distribution of methanol droplets in the cylinder and the
thickness of the liquid film adhered to the liner during the intake stroke at different EOIs,
respectively. There are relatively more large-diameter methanol droplets near the wall of
the intake port. This is mainly due to the high latent heat of vaporization of methanol. A
large number of methanol spray droplets adhere to the intake port to form a liquid film. In
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the process of methanol spray entering the cylinder, along with the interaction with the air
flow, the methanol droplets absorb heat from the intake air and gradually evaporate, and
the number of methanol droplets in the cylinder gradually decreases with the downward
movement of the piston. The injection timing has a significant impact on the distribution
of methanol droplets and liquid film in the cylinder. When the EOI is 170 ◦CA, there are
more methanol droplets in the cylinder and some large droplets with a radius greater than
30 µm. The thickness and distribution area of the liquid film in the cylinder are larger. At
−240 ◦CA ATDC, there are still many methanol droplets and liquid film in the cylinder. As
the EOI increases, the amount of methanol droplets, droplet radius, liquid film thickness,
and liquid film distribution area in the cylinder gradually decrease. When the EOIs are
360 ◦CA, 480 ◦CA, and 550 ◦CA at −240 ◦CA ATDC, the methanol droplets and liquid film
in the cylinder basically evaporate.
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According to the above analysis, the injection timing affects the change in methanol
charge in the cylinder after the IVO, which influences the process of mixture formation in the
cylinder. In addition, the injection timing will cause different phase states of methanol upon
entering the cylinder after the IVO, thereby affecting the temperature distribution in the
cylinder. Figure 13 shows the average in-cylinder temperatures at different EOIs obtained
from the simulations. In the process of mixture formation, the in-cylinder temperature
gradually increases with increasing EOI, especially from an EOI of 170 ◦CA to an EOI of
240 ◦CA. Ultimately, compared with an EOI of 170 ◦CA, at EOIs of 240 ◦CA, 360 ◦CA,
480 ◦CA, and 550 ◦CA, the in-cylinder temperatures at the spark timing increases by 6.5 K,
8.3 K, 10.3 K, and 10.7 K, respectively. This is due to the higher latent heat of vaporization
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of methanol, as the injected methanol droplets absorb heat from the airflow and the wall
in the intake port to evaporate. As the EOI increases, the evaporation rate of methanol
before the IVO increases, as shown in Figure 7 above, and more methanol droplets absorb
heat from the wall, causing the masses of the methanol droplets and the liquid film in the
cylinder to decrease, as shown in Figure 10 above. This weakens the cooling effect of the
evaporation of methanol droplets and the liquid film in the cylinder on the charge during
the process [43].
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Figure 13. In-cylinder temperature at different EOIs. (a) In-cylinder temperature. (b) In-cylinder
temperature at the spark timing.

Figure 14 shows the effect of the injection timing on the in-cylinder temperature
distribution at the spark timing. It can be seen that the temperature distribution in the
cylinder at different EOIs shows a certain gradient. The surrounding area has a high
temperature, the middle area has a low temperature, and the exhaust side has a higher
temperature than the intake side. When the EOI is 170 ◦CA, the overall temperature in
the cylinder is low and the distribution is relatively uniform. As the EOI increases, the
overall in-cylinder temperature increases, and the temperature increase in the combustion
chamber space on the exhaust side is more pronounced.
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Figure 14. In-cylinder temperature distribution at the spark timing for different EOIs.

The above results show that the injection timing has a significant effect on the methanol–
air mixing process. As the EOI increases from 170 ◦CA to 550 ◦CA, on the one hand, the
evaporation rate of methanol in the intake port increases. A large amount of rich mixture
enters the cylinder in the early and middle stages of the intake stroke, and a small amount of
lean mixture gradually enters the cylinder in the later stage and mixes with the rich mixture.
This leads to a slightly increased inhomogeneity of the mixture and more distribution of
the mixture on the exhaust side. On the other hand, the methanol droplets absorb more
heat from the wall of the intake port and evaporate, which obviously reduces the masses of
the methanol droplets and liquid film in the cylinder, weakened the cooling effect on the
charge during the evaporation of methanol droplets and liquid film, and the temperature
in the cylinder increases.
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3.2. Effect of Injection Timing on Combustion Performance

Figure 15 shows the effect of the injection timing on the cylinder pressure and heat
release rate for different loads at 1400 rpm. The peak cylinder pressure and the peak heat
release rate show increasing trends with increasing EOI, and the crank angle corresponding
to the peak is advanced. At the IMEP condition of 11.3 bar, when the EOI increases from
170 ◦CA to 360 ◦CA, the increases in the peak of cylinder pressure and heat release rate
are more obvious, and the phase corresponding to the peaks is significantly advanced.
However, when the EOI continues to increase, the increase in peak values decreases, and
the phase change corresponding to the peaks also decreases.
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Figure 15. In-cylinder pressure and heat release rate at different EOIs for various conditions.
(a) 1400 rpm, IMEP = 11.3 bar. (b) 1400 rpm, IMEP = 15.6 bar. (c) 1400 rpm, IMEP = 19.6 bar.

Based on the results of the cylinder pressure and heat release rate, the cumulative heat
release rate was calculated by combustion analysis, and the combustion phase correspond-
ing to each condition was obtained by combining with the spark timing. Figure 16 shows
the effect of the injection timing on the combustion phase at 1400 rpm and an IMEP of
11.3 bar. It can be observed that when the EOI increases from 170 ◦CA to 360 ◦CA, compared
with an EOI of 170 ◦CA, CA0–10 is shortened by 1.5 ◦CA and 3.2 ◦CA, respectively. When
the EOI continues to increase to 480 ◦CA and 550 ◦CA, CA0–10 is slightly shortened. For
CA50, as the EOI increases, CA50 is advanced and combustion is closer to the top dead
center. CA50 is advanced by 2.3 ◦CA to 5.5 ◦CA. Meanwhile, it can be seen that after the
EOI is 360 ◦CA, further increasing the EOI leads to a significant weakening of the trend
of CA50 advancement. CA10–80 at different EOIs is generally closer and longer when the
EOI is increased to 480 ◦CA and 550 ◦CA.

To further investigate the influence mechanism of the injection timing on combustion
performance, the in-cylinder combustion process was analyzed in conjunction with the
simulation results. Figure 17 shows the effect of the injection timing on the flame propaga-
tion in the cylinder during the combustion process at 1400 rpm and an IMEP of 11.3 bar,
from which it can be seen that the flame propagation process and velocity change with the
crank angle. At different EOIs, the flame propagation process in the cylinder is relatively
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similar, and the development of the flame structure is asymmetric. The development speed
along the exhaust side is much greater than that toward the intake side, which is mainly
determined by the mixture distribution, temperature distribution, and turbulent kinetic
energy distribution in the cylinder. The in-cylinder mixture distribution and tempera-
ture distribution are shown in Figures 9 and 14 above, and the turbulent kinetic energy
distribution is shown in Figure 18.
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Figure 16. Combustion phases at 1400 rpm and IMEP of 11.3 bar with different EOIs.
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Figure 18. Turbulent kinetic energy distribution in the cylinder at the spark timing.

It can be observed that the area with a relatively high in-cylinder equivalence ratio
and temperature is mainly on the exhaust side. Moreover, the area with a relatively high
turbulent kinetic energy distribution is also mainly located at the center of the combustion
chamber, biased towards the exhaust side. The above reasons jointly determine the devel-
opment of the in-cylinder flame structure and indicate that combustion is mainly directed
toward the exhaust side in the early and middle stages. After the combustion of the mixture
on the exhaust side is complete, under the effect of the in-cylinder swirl flow, the mixture
on the intake side of the combustion chamber is gradually exhausted in the middle and late
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stages. Since the injection timing has little effect on the intake flow process, it has little effect
on the turbulent kinetic energy in the cylinder. Therefore, the effect of the injection timing
on the combustion process mainly depends on the equivalence ratio and temperature
distribution in the cylinder. According to the simulation results, different injection timings
have a relatively small effect on the equivalence ratio near the spark plug. As the EOI
increases, the in-cylinder temperature is higher, which is conducive to improving the initial
flame propagation speed and shortening CA0–10. As the EOI increases, the concentration
of the mixture on the exhaust side increases, and the equivalence ratio of the mixture is
mainly distributed around 1.1. The laminar flame speed of a moderately rich mixture is
higher [20,44,45]. At the same time, accompanied by a higher in-cylinder temperature, it
accelerates the early and middle stages of combustion and advances CA50. However, when
the EOI continues to increase, the mixture concentration on the intake side becomes leaner,
which has a negative impact on the middle and late stages of combustion. This leads to a
reduced combustion rate, resulting in a small or even prolonged difference between CA10
and CA80.

Figure 19 shows the effect of the injection timing on brake-specific fuel consumption
(BSFC) and BTE for different loads at 1400 rpm. It can be seen that as the load increases,
the BSFC decreases and the BTE increases. As the EOI increases, the BSFCs under different
loads all show the trend of first decreasing significantly and then remaining basically
unchanged, and the trend in the BTE is opposite to that in the BSFC. At an IMEP of 11.3 bar,
when the EOI increases from 170 ◦CA to 360 ◦CA, the BSFC is reduced by 16.2 g/kW·h,
and the BTE is improved by 1.3%, and the BSFC and the BTE are basically unchanged by
further increasing the EOI. According to the above analysis of the in-cylinder combustion
process, this is due to the increase in EOI from 170 ◦CA to 360 ◦CA, the increase in
cylinder temperature, and the appropriate increase in mixture concentration on the exhaust
side. These factors significantly shorten CA0–10, advance CA50, bring combustion closer
to the top dead center, and shorten the combustion duration, which contributes to the
improvement of the BTE. Combined with the exhaust temperatures at different EOIs shown
in Figure 20, as the EOI increases, the exhaust temperature gradually decreases and the
heat carried by the exhaust is reduced, which is conducive to the piston work. However,
when the EOI is further increased, although the exhaust temperature is still lower and
the exhaust loss is smaller, the inhomogeneity of the mixture in the cylinder increases
significantly. The change in CA50 is not obvious. The lean mixture on the intake side slows
down the combustion rate in the middle and late stages, resulting in an extension of the
overall combustion duration. At the same time, the higher in-cylinder temperature leads to
increases in combustion and heat transfer losses, which hinders a further improvement in
the BTE.
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Figure 19. BSFC and BTE at different EOIs for various loads at 1400 rpm.
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Figure 20. Exhaust temperature at different EOIs for various loads at 1400 rpm.

3.3. Effect of Injection Timing on Emission Characteristics
3.3.1. CO Emissions

Figure 21 shows the effect of the injection timing on CO emissions at different loads
of 1400 rpm. At an IMEP of 11.3 bar, the CO emissions basically show an increasing trend
with the increase in EOI. The CO emissions mainly depend on the equivalence ratio of the
mixture. When the fuel and air are not evenly mixed, the local mixture concentration is
high, and the oxidation is incomplete due to insufficient combustion time, it will lead to
higher CO emissions [27,46]. From the simulation results, it can be seen that an increase in
the EOI increases the mixture inhomogeneity in the cylinder, raises CO generation, and
simultaneously hinders CO post-oxidation due to lower exhaust temperatures [15], leading
to an upward trend in CO emissions. When the EOI is 360 ◦CA, a further increase in the
EOI leads to a significant increase in CO emissions. For IMEPs of 15.6 bar and 19.6 bar,
with the gradual increase in EOI from 170 ◦CA, the CO emissions first decrease slightly and
then increase significantly. This might be due to the increase in load, which greatly extends
the injection duration of methanol. When the EOI increases from 170 ◦CA to 200 ◦CA,
the range of change is small. It has a relatively minor impact on the in-cylinder mixture
formation process. Eventually, the influence on CO emissions is not obvious. However, as
the EOI increases, the overall trend in CO emissions is still gradually increasing.
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Figure 21. CO emissions at different EOIs for various loads at 1400 rpm.

To further investigate the influence mechanism of the injection timing on emission
performance, the in-cylinder CO formation process was analyzed according to the simula-
tion results. Figures 22 and 23 show the in-cylinder CO mass fraction and CO distribution
at different injection timings. It can be seen that the CO generation region is mainly dis-
tributed in the region of the high mixture equivalence ratio. The CO mass fraction peaks
around 15 ◦CA ATDC and then gradually decreases under the effect of combustion and
oxidation. As the EOI increases, the peak value of CO mass fraction is higher. Moreover, it
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remains relatively high during the subsequent oxidation process, leading to an increase in
the final CO emissions.
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Figure 22. CO mass fraction in the cylinder during combustion at different EOIs.
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Figure 23. CO distribution in the cylinder during combustion at different EOIs.

3.3.2. HC Emissions

Figure 24 shows the effect of the injection timing on HC emissions for different loads
at 1400 rpm. Incomplete combustion, quenching of the flame by the cold walls, and the
crevice effect are the main reasons for HC emissions in SI engines [46,47]. It can be observed
that as the load increases, the HC emissions increase. This is because under high-load
conditions there is a greater injection mass and a longer injection duration. The evaporation
rate of methanol in the intake port is lower, and more methanol droplets enter the cylinder.
Under the centrifugal force of the airflow, the mass of methanol entering the piston crevices
increases, thus leading to more HC emissions.

As the EOI increases, the HC emissions at different loads show a tendency to first de-
crease significantly and then level off. When the EOI is 360 ◦CA, the maximum reductions
in HC emissions under various loads are 75.4%, 76.4%, and 71.2% respectively. Figure 25
shows the methanol mass distribution in the cylinder before the spark timing and during
combustion with EOIs of 170 ◦CA, 360 ◦CA, and 480 ◦CA for an IMEP of 11.3 bar. As the
EOI increases, the high methanol evaporation rate in the intake port leads to reductions in
methanol droplets and liquid film in the cylinder. This reduces the mixture in the piston
crevices and consequently results in a significant reduction in HC emissions. However,
when the EOI is too large, as shown in Figures 10–12, the reductions in the masses of
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methanol droplets and liquid film in the cylinder are significantly decreased, which weak-
ens the reduction effect on HC emissions. Moreover, the concentration stratification in the
cylinder becomes more obvious. The mixture concentration on the intake side near the
edge of the combustion chamber is too lean, and the exhaust temperature is relatively low.
This is not conducive to the HC oxidation process in the late stage of combustion. The
combined effect of these two reasons makes the HC emissions show a basically flat trend.
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4. Conclusions
In this work, the effect of the injection timing on combustion and emission performance

has been explored experimentally in a PFI SI methanol engine. The methanol evaporation
characteristics, liquid film formation, and methanol–air mixing process under different
injection timings, as well as their influence mechanisms on combustion and emission
performance, were investigated through simulation. Innovatively, a comprehensive and
detailed study of a PFI methanol engine was carried out via the multi-cycle simulation
calculation method. The simulation model was fully verified based on the experimental
data, and the mixture formation process was accurately visualized using CFD. The research
findings can offer excellent theoretical guidance for the design of the injection system
and the control of injection parameters in PFI methanol engines, aiming to reduce liquid
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film deposition, improve the evaporation and mixing processes, boost thermal efficiency,
and cut emissions, thereby enhancing the overall performance of the engine. The main
conclusions are as follows:

(1) The simulation results indicate that the injection timing directly influences the
methanol–air mixing process and determines the in-cylinder liquid film deposition
amount, mixture distribution, and temperature distribution. As the EOI increases, the
evaporation rate of methanol in the intake port is enhanced, leading to reductions in
the amounts of methanol droplets and liquid film in the cylinder. This weakens the
cooling effect of methanol evaporation on the intake charge, resulting in a relatively
high in-cylinder temperature.

(2) The experimental results indicate that when the EOI is appropriately increased, the
higher in-cylinder temperature and the properly stratified mixture accelerate the com-
bustion rate in the early and middle stages, CA0–10 is shortened, CA50 is significantly
advanced, and BTE is improved. When the EOI is further increased, the thinner
mixture on the intake side slows down the middle and late stage combustion rates,
which limits further improvement of the BTE.

(3) Regarding emission performance, as the EOI increases, the amount of methanol in
the piston crevices decreases. The weakening of the crevice effect leads to a reduction
in HC emissions. However, the inhomogeneity of the in-cylinder mixture slightly
increases, and the relatively low exhaust temperature weakens the post-oxidation
process of CO, resulting in an increase in CO emissions.

(4) A proper injection interval has better comprehensive performance. Controlling the
EOI at approximately 360 ◦CA can maintain relatively low CO emissions under
various load conditions. At the same time, it can significantly reduce HC emissions
by 71.2–76.4% and increase the BTE by 1.3–2.4%.

Furthermore, the improvement of the overall performance of methanol engines de-
mands a more favorable evaporation and mixing process. A large amount of methanol
liquid film deposition can also lead to severe corrosion and wear, thus reducing reliability.
The position, injection direction, and injection pressure of the methanol injector in the
intake port all require further optimization research. Moreover, well-designed intake port
and combustion chamber structures can also directionally transport methanol into the
cylinder, so as to improve the mixture preparation process.
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SOI Start of injection
EOI End of injection
BTE Brake thermal efficiency
CI Compression ignition
TWCC Three-way catalytic converter
EGR Exhaust gas recirculation
DISI Direct injection spark ignition
IMEP Indicated mean effective pressure
ITE Indicated thermal efficiency
IVO Intake valve opening
BSFC Brake-specific fuel consumption
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