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Abstract
This paper analyses US nominal house prices at an annual frequency over the pe-
riod from 1927 to 2022 by means of a very general time series model. This includes 
both a (linear and non-linear) deterministic and a stochastic component, with the 
latter allowing for fractional orders of integration at both the long-run and the cycli-
cal frequencies. The results are heterogeneous depending on the model specification 
and on whether or not the series have been logged. Specifically, a linear model 
appears to be more appropriate for the logged data whilst a non-linear one appears 
to be a better fit for the original ones. Further, the order of integration at the zero 
or long-run frequency is much higher than at the cyclical one. The former is in fact 
around 1 in all specified models, which implies a high degree of persistence of this 
component. Finally, the order of integration of the cyclical structure implies that 
cycles have a periodicity of about 8 years, but it is almost insignificant in all cases.
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1 Introduction

House prices are a key variable whose fluctuations can have a significant impact on 
both the real and the financial sectors of the economy, as documented, among others, 
by Case et al. (2005), Davis and Heathcote (2005), Leamer (2007), Attanasio et al. 
(2011), Carroll et al. (2011), Funke and Paetz (2013), Chen et al. (2018). Their cru-
cial importance became even more apparent as a result of the global financial crisis 
(GFC) of 2007-08. This originated from the US housing market, where the issuance 
of sub-prime mortgages had become widespread and led to a housing bubble and 
serious financial turmoil when it eventually burst (see, e.g., Shiller, 2007). Conse-
quently, numerous empirical studies have been carried out to understand the behav-
iour of house prices.

In this paper we focus on nominal prices and use a line of reserarch base don “ let 
the data speak by themselves ” trying to extract the most important features of teh dat, 
which may be its degree of persiste4nce, its linear/non-linear nature and the poten-
tial prsecne of cycles. For this purpose we use various methodologies based all on 
the concept of fractional integration, which is quite general and flexible in the sense 
that incorpórate classical (ARMA-ARIMA) methods as particular cases of interest. 
Moreover, we do not only focus on the long run or zero frequency but investigate 
other freques related with cycles.

The results are very heterogeneous depending on the model chosen and if the data 
are original or log-transformed. However, some conclusions can be inferred from 
them. Thus, the línea structure seems to be more appropriate for the log-transformed 
data while a non-linear approach is prefered fro the original series. In addition, the 
order of integration at the long run frequency seems to be very close to 1 in all cases, 
suggeting the nonstationary nature of this component, while the cyclical structure 
seems to have a much lower degree of integration, close to 0 in the majority of cases.

The layout of the paper is the following. Section 2 presents a brief review of the 
literature while Sect. 3 outlines the modelling framework. Section 4 describes the 
data and presents the empirical results. Section 5 offers some concluding remarks.

2 Literature Review

Broadly speaking, two main approaches have been followed in the literature for this 
purpose, the first focusing on their drivers, the second on their stochastic properties. 
Among studies belonging to the first category, Capozza and Helsely (1989, 1990) 
analysed the impact of real income on real house prices, whilst Caporale and Gil-
Alana (2015) used fractional integration methods to show that the US Housing Price 
Index (HPI) and Disposable Personal Income (PDI) do not converge over time, pre-
sumably owing to the existence of a bubble.

The second type of studies carry out univariate analysis of the house price series. 
The early literature used unit root tests (see, e.g. Meen, 1999, for UK regional prices, 
and Cook & Vougas, 2009 for aggregate prices in the presence of structural breaks; 
Clark & Coggin, 2011, and Zhang et al., 2017, for the US; Arestis and Gonzales, 
2014, for 18 OECD countries; etc.). However, it is well known that this type of tests 
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has very low power against specific alternatives such as structural breaks (Campbell 
& Perron, 1991); trend-stationary models (DeJong et al., 1992), regime-switching 
(Nelson et al., 2001), or fractional integration (Diebold & Rudebusch, 1991; Hassler 
& Wolters, 1994; Lee & Schmidt, 1996; etc.). By contrast, a fractional integration 
framework (see Granger, 1980; Granger & Joyeux, 1980 and Hosking, 1981) is much 
more general, since it is not based on the dichotomy between I(0) stationary and I(1) 
non-stationary series, which is very restrictive. Instead the differencing parameter d 
is allowed to take any real value, including fractional ones. This approach encom-
passes a wide range of stochastic behaviours, including the unit root case, and pro-
vides evidence on whether or not the series of interest is mean-reverting (and thus on 
whether exogenous shocks have permanent or transitory effects) and on its degree of 
persistence. It has been used in some studies on house prices, such as Barros et al. 
(2012, 2015), Gil-Alana et al. (2013, 2014), and Gupta et al. (2014) to analyse long-
run persistence.

An important issue in this context is the possible presence of structural breaks. 
Caporale and Gil-Alana (2023) allow for them within a fractional integration frame-
work to model the monthly Federal Housing Finance Agency (FHFA) House Price 
Index for Census Divisions, and the US as a whole, over the period from January 
1991 to August 2022. Their analysis detects segmented trends, with the subsample 
estimates of the fractional differencing parameter being lower and mean reversion 
occurring in several cases.

Other recent papers argue that it is also essential to allow for both a long-run and 
a cyclical component in house prices. Such a modelling approach is followed by 
Canarella et al. (2021) to examine persistence in both US and UK house prices over 
a long time span. Their conclusion is that the long-run component dominates, and 
also that there are breaks in the series corresponding to different domestic factors. 
Compared to that study, the present one adopts an even more general specification, 
since it includes not only a stochastic component allowing for fractional integration 
at both the long-run and cyclical frequencies, but also a deterministic one which can 
be either linear or non-linear, the two being jointly modelled (see the specification 
in Sect. 2); moreover, autocorrelation of a general form as in Bloomfield (1973) is 
allowed in the error term. This framework is applied to analyse US nominal house 
prices at an annual frequency over the period from 1927 to 2022.

3 The Econometric Model

The model estimated in this study is more general than those used in the previous lit-
erature on house prices. Specifically, it includes both a deterministic and a stochastic 
component, with the latter allowing for fractional degrees of integration at both the 
long-run and cyclical frequencies.

The deterministic part of the model is specified as follows:

 y(t) = f(z(t); ψ) + x(t), t = 1, 2, . . . , (1)
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where y(t) stands for house prices (either the original or the logged series), and f is a 
function that can be linear, for instance including an intercept and a linear time trend, 
(Bhargava, 1986; Schmidt & Phillips, 1992) as in the following equation:

 f (z (t) ; ψ ) = α + b t (2)

or non-linear, for example including Chebyshev polynomials in time of the following 
form:

 f (z (t) ; ψ ) =
∑ m

i=0
θ iPiT (t) , (3)

where m denotes the number of coefficients of the Chebyshev polynomial in time 
Pi, T(t) defined as:

 P0,T (t) = 1, andPi,T (t) =
√

2cos (iπ (t − 0.5)/T ) ,

Hamming (1973); Smyth (1998a, b) provided a detailed description of these poly-
nomials, whilst Bierens (1997) and Tomasevic and Stanivuk (2009) argued that it 
is possible to approximate highly non-linear trends with rather low degree polyno-
mials. If m = 0 the model contains an intercept, and if m ≥ 1, it becomes non-linear 
- the higher m is, the less linear the approximated deterministic component becomes. 
Alternative non-linear deterministic trends can also be incorporated in a fractionally 
integrated model (see, e.g., Gil-Alana & Yaya, 2021 for the case of Fourier functions 
in time, or neural networks as in Yaya et al., 2021).

Concerning the stochastic terms, x(t) in (1) is assumed to be a process charac-
terised by two orders of integration, one for the long-run or zero frequency, which 
captures possible stochastic trends, and the other for the cyclical structure of the data. 
More precisely, x(t) is defined as follows:

 (1 − L)d1
(
1 − 2 cos w(r)L + L2)d2

x(t) = u(t)t, t = 1, 2, . . . , (4)

where L is the lag operator (i.e., Lx(t) = x(t-1); d1 and d2 are real parameters, 
w(r) = 2πr/T, r = T/j, with j indicating the number of periods per cycle, and u(t) being 
a short memory or I(0) process, defined as a covariance stationary one with a spectral 
density function that is positive and finite at all frequencies. Thus, u(t) may be a white 
noise process with zero mean and constant variance, but it may also include some 
type of weak autocorrelation as in the case of the stationary and invertible AutoRe-
gressive Moving Average (ARMA)-type of models. Here, we impose autocorrela-
tion by applying the non-parametric approach of Bloomfield (1973), which involves 
using a spectral density function of the following form:

 
f (λ ; τ ) =

[
σ 2
2π

]
exp[2

∑ n

i=0
τ icos(λ i ) ] , (5)
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where σ2 is the variance of the error term and n denotes the number of short-run 
dynamic terms. Bloomfield (1973) showed that, given a stationary and invertible 
ARMA (p, q) process of the following form:

 
u(t) =

p∑
r=1

φru(t − r) + εt +
q∑

s=1
θsε(t − s) ,

where εt is a white noise process, its spectral density function is given by:

 
f (λ ; τ ) = σ 2

2π

∣∣∣∣
1 +

∑ q
s=1θ seiλ s

1 −
∑ p

r=1ϕ reiλ r

∣∣∣∣
2

.

According to Bloomfield (1973), the log of the above expression can be well approxi-
mated by Eq. (5) when p and q are small values, and thus it does not require the 
estimation of as many parameters as in the case of ARMA models. In addition, 
Bloomfield’s (1973) model has the advantage of being stationary for all its values 
(see Gil-Alana, 2004).

Let us now consider further Eq. (4). Note that the first polynomial can be expanded 
for any real value d1 as

 

∑
∞
j=0

(
d1

j

)
(−1)j

Lj = 1 − d1L + d1 (d1 − 1)
2

L2 − . . .

In this context, d1 indicates the degree of persistence of the series in relation to the 
long- run or zero frequency. Thus, if d2 = 0 in Eq. (4), x(t) can be expressed as

 
x (t) = d1x(t − 1) − d1 (d1 − 1)

2
x(t − 2) + . . . + u (t)

and the higher the value of d1 is, the higher is the degree of dependence between the 
observations. Moreover, if d1 is positive, x(t) displays the property of long memory 
since in that case its spectral density function becomes

 
f (λ ; τ ) = σ 2

2π

∣∣∣∣
1

1 − eiλ

∣∣∣∣
d1

,

which tends to infinity as λ → 0+.

This specification allows us to consider a wide range of cases including, among 
others, the following ones:

i) anti-persistence, if d1 < 0,
ii) short memory, if d1 = 0.
iii) long memory, though covariance stationary processes, if 0 < d1 < 0.5,
iv) 1/f noise, if d1 = 0.5,
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v) nonstationary mean reverting processes, if 0.5 ≤ d1 < 1,
vi) unit roots, if d1 = 1,
vii) explosive processes, if d1 > 1.

Next we focus on the cyclical structure of x(t) which is captured by the second poly-
nomial in (4). Gray et al. (1989) showed that, by denoting µ = w(r), this polynomial 
can be expressed in terms of the orthogonal Gegenbauer terms Ci,d2 (µ ), such that 
for all real d2 ≠ 0,

 
(1 − 2µ L + L2)−d2 =

∑ ∞

i=0
Ci,d2(µ )Li,

where Ci,d2 (µ ) can be defined recursively as:

 C0,d2

(
µ j

r

)
= 1, C1,d2

(
µ j

r

)
= 2 µ d,

and.
This type of process was introduced by Andel (1986), and authors such as Gray 

et al., 1989), 1994); Giraitis and Leipus (1995); Chung, 1996a, b; Gil-Alana, (2001); 
Dalla and Hidalgo (2005), Caporale and Gil-Alana (2013) and others subsequently 
used it to analyse time series data.

As a conclusion, the specifications proposed in the present paper (based on (1) and 
(4)) are fairly general since they allow us incorporate not only linear and non-linear 
deterministic trend models also fractional degrees of differentiation with roots of any 
arbitrary order anywhere on the unit circle in the complex plane.

4 Data Description and Empirical Results

We analyse nominal house prices for the US, at an annual frequency, from 1927 to 
2022, which have been obtained from the Federal Reserve Bank of St. Louis database 
and compiled by Robert Shiller in http://www.econ.yale.edu//~shiller/data.htm.

Figure 1 displays time series plots of the original series, its logged transforma-
tion, and the first differences of both. It can be seen that the series in levels, whether 
logged or not, exhbit an upward trend throughout the sample period under examina-
tion, except for a sharp drop corresponding to the global financial crisis (GFC) of 
2007-08, after which prices recovered and returned to their growth path. The first 
differenced series are much more volatile (especially the logged one), but again one 
can observe a fall coinciding with the GFC, which is followed by a swift recovery.

Figure 2 shows the correlograms of all four series. It can be seen that the values 
for the original series and their log transformations decay very slowly, which may 
indicate the presence of unit roots, whilst the values for the first differenced data sug-
gest the presence of a cyclical pattern. The first 20 values of the periodograms are 
reported in Fig. 3. Similarly to the correlograms, these are large and positive at the 
long-run or zero frequency in the case of the series in levels (see the upper panel), 
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which might indicate the presence of long memory (i.e., d1 > 0); however, the plots 
for the differenced series (see the lower panel also suggest possible cyclical patterns.

The first estimated model focuses only on the long-run or zero frequency and is 
specified as follows:

 y (t) = α + β t + x (t) , (1 − L)d
x (t) = u (t) ,  (6)

where d is the fractional differencing parameter, α and β are jointly estimated with 
d, t stands for a linear time trend, and u(t) follows the exponential spectral model of 
Bloomfield (1973) implicitly defined by Eq. (5).

Table 1 displays the estimates of d along with the corresponding 95% confidence 
intervals, under the assumption of (i) no deterministic terms (α = β = 0 in (6)); (ii) 
an intercept only (β = 0 a priori) and (iii) an intercept and a linear time trend. The 
preferred specification is chosen on the basis of the statistical significance of the 
estimated coefficients. We report the results for both the original and log-transformed 
data in levels.

Table 2 displays the estimated parameters from the selected model for each of 
the two series. The time trend is statistically significant in both cases with a posi-
tive coefficient, and the estimates of d are 0.85 for the original data and 0.97 for the 

Fig. 1 Time series plots. Note: The displayed series are annual US nominal house prices from 1927 
to 2022
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Table 2 Estimated coefficients from the selected models in Table 1
Series d (95% conf. band) Intercept (tv) Time trend (tv)
Original data 0.85 (0.57, 1.45) 0.263 (2.05) 2.783 (9.91)
Logged data 0.97 (0.67, 1.41) 1.717 (39.37) 0.041 (10.56)
Note: The values in column 2 are the estimates of d in the model given by Equation (8). In parenthesis, 
the 95% confidence intervals. The values in columns 3 and 4 are the estimated a and β in the same 
equation with their associated t-statistics in parenthesis

Series No determinis-
tic terms

With an 
intercept

With an intercept 
and a linear trend

Original data 0.83 (0.62, 
1.66)

0.78 (0.65, 
1.47)

0.85 (0.57, 1.45)

Logged data 0.78 (0.55, 
1.28)

0.97 (0.80, 
1.41)

0.97 (0.67, 1.41)

Note: The reported values are the estimates of the differencing 
parameter d in the model given by Equation (8). The values in 
parenthesis are the 95% confidence bands, and those in bold are the 
ones corresponding to the selected models

Table 1 Estimates of d at the 
long-run frequency with a linear 
trend model

 

Fig. 2 Correlograms of the series.Note: The values in black are the 95% confidence bands for the 
autocorrelations
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log-tansformed ones. However, the confidence intervals imply that the unit root null 
hypothesis (i.e., d = 1) cannot be rejected for either series.

Next, we consider a non-linear specification with Chebyshev polynomials in time. 
Specifically, the estimated model is now the following:

 y (t) =
∑ m

i=0
θ iPiT (t) + x (t) , (1 − L)d

x (t) = u (t) ,  (7)

where PiT are the Chebyshev polynomials defined above and u(t) again follows the 
exponential spectral model of Bloomfield (1973). The results, for m = 3, are displayed 
in Table 3.

It can be seen that they now differ depending on the series analysed. More pre-
cisely, for the original data the estimate of d is about 0.52, though the confidence 
interval is extremely large and it includes both the I(0) and the I(1) hypotheses. In 
addition, the coefficients for the non-linear trends are statistically significant. How-
ever, for the logged values, these coefficients (θ2 and θ3) are insignificant and the 
estimate of d is 0.84 (0.34, 1.56), such that the unit root null hypothesis cannot be 
rejected.

Next we allow for a cyclical component. First we consider the linear case and thus 
estimate the following model:

 y (t) = α + β t + x (t) ,

 (1 − L)d1
(
1 − 2 cos w(r)L + L2)d2

x(t) = u(t), t = 1, 2, . . . , (8)

where d1 refers to the long-run or zero frequency and d2 to the order of integration 
of the cyclical component. On the basis of the plots of the periodograms displayed 
in Fig. 3, we assume that r in Eq. (8) is constrained between 4 and 20, which corre-
sponds to cycles between 5 and 24 years (Fig 4).

Table 4 reports the results based once more on the assumption of u(t) follow-
ing the exponential spectral model of Bloomfield (1973), again in the case of (i) no 
deterministic terms, (ii) a constant, and (iii) a constant and a linear time trend. The 
time trend is again statistically significant for both the original and the logged data, 
with the estimated values of r being 11 and 12 in those two cases, which corresponds 
to cycles of approximately 8 years (T = 96/11 = 8.72, and 96/12 = 8). As for the dif-
ferencing parameters, their values from the selected specifications (marked in bold 
in the table) are 0.94 and 0.91 for d1 in the case of the original data and the logged 

Table 3 Estimates of d at the long-run frequency with a non-linear trend model
Series d θ0 θ1 θ2 θ3

Original data 0.52
(-1.58, 1.44)

66.486
(14.80)

-62.863
(-19.70)

29.452
(10.41)

-12.545
(-4.89)

Logged data 0.84
(0.34, 1.56)

3.586
(19.04)

-1.271
(-11.77)

0.039
(0.61)

-0.068
(-1.47)

Note: The values in column 2 are the estimates of d in the model given by Equation (9). In parenthesis, 
the 95% confidence interval. Those in columns 3 – 6 are the Chebychev coefficients with their associated 
t-statistics
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ones respectively, with the confidence intervals including the unit root case; the cor-
responding ones for d2 are 0.07 and 0.09 respectively, with the confidence intervals 
being very wide, and thus the null of d2 = 0 not being rejected. This implies that there 
is no significant cyclical component in the series under examination.

Fig. 4 Data and estimated time trend. Note: Estimated non-linear (left) and linear (right) trends for the 
original and logged values respectively

 

Fig. 3 Periodograms of the series. Note: The displayed values are the discrete frequencies λj = 2nj/T, 
for j = 1,... 20
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Table 5 displays the corresponding results when allowing for non-linearities in the 
form of Chebyshev polynomials in time. As in the previous case, the estimates of r 
are equal to 11 and 12 for the original data and the logged ones respectively, which 
implies the presence of cycles of about 8 years. The estimates of d1 and d2 are now 
slightly higher than in the linear case. Specifically, they are equal to 1.10 and 1.06 
for d1 in the case of the original and logged data respectively, which implies once 
more that the unit root null hypothesis, i.e., d1 = 1, cannot be rejected in either case. 
As for the estimated value of d2, this is now positive but only slightly significant in 
the case of the original data (d2 = 0.29) while insignificant (d2 = 0.20) for the logged 
series. Finally, in line with the results reported in Table 3 for a model with a single 
order of integration, the non-linear coefficients are statistically significant in the case 
of the original data.

The results reported in this work are consistent with other works that also examine 
US (nominal and real) housing prices from a fractional perspective (see, e.g., Barros 
et al., 2012; Gil-Alana & Martin-Valmayor, 2024), though they do not incorporate 
nonlinearities and/or cyclical components. Canarella et la. (2012) investigated US 
house price indices from a unit root approach with structural breaks and also found 
evidence of both linear and nonlinar models in the data. In another international 

Table 4 Estimates in a model with two orders of integration. Linear case
Linear case No terms An intercept An intercept and a linear 

time trend
Original data j = 11 j = 12 j = 12

d1 = 0.95
(0.61, 1.38)

d2 = -0.26
(-0.47, 0.31)

d1 = 1.02
(0.58, 1.41)

d2 = -0.20
(-0.55, 0.41)

d1= 0.94
(0.43, 1.39)

d2= 0.07
(-0.31, 
0.66)

Intercept Time trend Intercept Time trend Intercept Time trend
--- --- 5.76 (3.81) --- 0.255 (17.89) 2.556 (4.35)

Logged data j = 12 j = 11 j = 11
d1 = 0.91
(0.62, 1.33)

d2 = -0.24
(-0.61, 0.59)

d1 = 0.91
(0.70, 1.33)

d2 = -0.05
(-0.31, 0.40)

d1= 0.91
(0.56, 1.42)

d2= 0.09
(-0.47, 
0.68)

Intercept Time trend Intercept Time trend Intercept Time trend
--- --- 1.77 (2.88) --- 1.689 (15.43) 0.035 (2.34)

Note: d1 and d2 are the orders of integration at the long-run and cyclical frequencies respectively as 
described in Equation (10). In parenthesis the 95% confidence bands. J refers to the frequency with a 
singularity in the spectrum, such that T/j indicates the number of periods (years) per cycle

Table 5 Estimates in a model with two orders of integration. Non-linear case
Non-Linear case j = 11 θ0 θ1 θ2 θ3

Original data d1 = 1.10
(0.42, 1.77)

d2 = 0.29
(0.00, 0.67)

61.332
(11.54)

-44.182
(-22.31)

34.231
(20.08)

-15.415
(-2.00)

Non-Linear case j = 11 θ0 θ1 θ2 θ3
Logged data d1 = 1.06

(0.49, 1.82)
d2 = 0.20
(-0.19, 0.51)

3.549
(19.33)

-1.199
(-9.89)

0.051
(0.13)

-0.061
(-1.03)

Note: d1 and d2 are the orders of integration at the long-run and cyclical frequencies respectively as 
described in Equation (10). In parenthesis the 95% confidence bands. The other values are the Chebychev 
coefficients with their associated t-statistics
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context, Gupta et al. (2015) examined the Euro area house prices and found orders 
of integration above 1 at the zero frequency in all the individual log-price indices. 
Canarella et al. (2021) might be closest paper to ours in the sense that they investi-
gated UK and US housing price dynamics at both long run and cyclical frequencies 
though they do not permit nonlinear deterministic trends. We can expand this part 
with other papers….

5 Conclusions

This paper proposes a very general time series model not previously used in the 
literature on house prices to analyse their behaviour in the US from 1927 to 2022. 
Specifically, the adopted fractional integration framework includes both a determin-
istic and a stochastic component (the latter modelling both long-run and cyclical 
behaviour), and also allows for non-linearities. It has the advantage of encompass-
ing a wide range of stochastic processes (including the standard unit root case) and 
provides useful information on properties such as mean reversion and persistence.

The results are heterogeneous depending on the model specification and on 
whether or not the series have been logged. Specifically, a linear model appears to 
be more appropriate for the logged data whilst a non-linear one seems to be a bet-
ter fit for the original ones. Further, the order of integration at the zero or long-run 
frequency is much higher than at the cyclical one. The former is in fact around 1 in 
all specified models, which implies a high degree of persistence of this component. 
Finally, the order of integration of the cyclical structure implies that cycles have a 
periodicity of about 8 years, but it is almost insignificant in all cases.

These results are broadly consistent with those of Canarella et al. (2021), who had 
analysed a longer sample period from 1830 to 2016 in the case of the US (from 1845 
to 2016 in the case of the UK) and found evidence of significant cyclical persistence 
only in the first sub-sample, the dominant break in their sample corresponding to 
some important post-WWII developments in US housing policy, such the National 
Housing Act of 1949 with the following 1955 Amendment, and the Housing and 
Urban Development Act of 1965. Therefore the more general framework we employ 
appears to confirm that cyclicality has more recently become a less crucial issue for 
US house prices, and that it might not be necessary to account explicitly for it when 
bulding forecasting models. In addition, our findings are important for policy makers, 
since they imply that their focus should be on long-run persistence rather than cycli-
cal one in the case of house prices.

Comparing the linear with the non-linear models, our results suggest that the non-
linear one is more appropriate for the original data since all the non-linear coefficients 
are statistically significant. However, for the log-transformed data most of this coef-
ficients are insignificant. This makes sense noting that the log transformation tends 
tosmooth the behavior of the data.

Our analysis could be extended in several ways. In particular, other data frequency 
(quarterly or monthly) can be employed in this type of analysis. However, data are 
unavailable at these frequencies for the time span examined in this work. Moreover, 
the presence of this higher frequencies can contaminate the analysis of the cyclical 
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components of the data. In that respect, the use of annual data seems relevant. Also, 
tests for structural breaks could be carried out using the approach of Bai and Perron 
(2003), or the one developed by Gil-Alana (2008) specifically in the context of frac-
tional integration, and then sub-sample estimates could be obtained. Non-linearities 
could also be modelled using other methods such as Fourier transform functions (Gil-
Alana & Yaya, 2021; Caporale et al., 2023) or neural networks (Yaya et al., 2021), all 
of them in the context of fractional integration. Finally, the robustness of the results 
could be checked using de-seasonalised data as well as estimating the models at dif-
ferent frequencies. Future work will address these issues.
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