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Abstract

A triple-scale computational model is implemented to simulate noise generated

by a supersonic under-expanded screeching jet corresponding to the LTRAC

(Laboratory for Turbulence Research in Aerospace and Combustion) experi-

ment at different distances from the source. The investigation is focused on the

broadband-associated noise, which is a prominent feature of the acoustic field

of the LTRAC jet. In the jet near-field, the compressible Navier-Stokes equa-

tions are solved using the high-resolution CABARET Large Eddy Simulation

(LES) method accelerated on Graphics Processing Units. The LES solution is

substituted in the Ffowcs Williams – Hawkings (FW-H) model to obtain the

noise solution in the acoustic mid field at 20 initial jet diameters from the jet

nozzle exit. The mid-field acoustic solution is used as the input for the spherical

generalised Burgers’ equation. The general form of Burgers’ equation is solved

numerically in the frequency domain for a wide range of observer distances up

to 18 million initial jet diameters, where viscous dissipation fully dominates

for most frequencies. To answer the question if the nonlinear acoustic wave
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propagation effects for the LTRAC jet are important, the nonlinear and linear

solutions of Burgers’ equation are compared.

Nomenclature

Dj = Nozzle diameter

Def = Fully expanded jet diameter

E = Acoustic energy spectrum

Mfe = Fully expanded Mach number

R0 = Ratio between the initial radius and nonlinear distance

Re = Reynolds number based on the fully expanded jet diameter

Rea = Acoustic Reynolds number

p0 = Stagnation pressure

p∞ = Ambient pressure

r0 = Initial radius: effective radius of the source

rnl = Effective distance when nonlinear effects become important

rl = Effective distance when dissipation effects become important

T0 = Stagnation temperature

T∞ = Ambient temperature

Uj = Jet velocity at the nozzle throat

ε = Ratio between nonlinear distance and linear distance

1. Introduction

The importance of nonlinear effects for propagation of high intensity jet

noise has been a subject of active investigation since the first Concorde flight5

[1] where the flyover measurements showed an anomalous amplification of the

high-frequency part of the noise spectrum in comparison with the linear acous-

tic models. For example, the propagation of high-intensity aircraft noise was

described in detail in [2]. More recent studies, which investigate the jet engine

noise at full power show that nonlinear distortions of the acoustic spectra have10

a significant impact on the noise field [3, 4]. In addition, the nonlinear wave
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reflection effects are important in the acoustic near-field for ground-based mea-

surements [5]. In parallel to the experimental efforts, the nonlinear jet noise

propagation, which involves the nonlinear wave steepening effects and shock

coalescence, has been a subject of several investigations [6, 7, 8]. In the acous-15

tic far-field, such wave processes lead to the formation of noise spectra of the

triangular shape, which is typical of the nonlinear acoustic processes such as

wave-steepening effects [9, 10].

On the other hand, the nonlinear propagation effect is not the only pos-

sible mechanism of formation of steep acoustic wave fronts. In particular, for20

laboratory-scale jets [4, 11] the nonlinear propagation effects may only be impor-

tant in the jet near field while the nonlinearity effect on the far-field propagation

is negligible. For example, another mechanism responsible for the formation of

steep acoustic waves in the far-field includes the shock interaction with the tur-

bulent shear layers, the wave structures of which linearly transmitted to the25

far-field [12, 13, 14, 15]. The geometrical propagation law, which is spherical

further away from the jet flow, is another important factor determining the non-

linear wave steepening process. In the far-field, the nonlinear wave propagation

competes with the linear atmospheric absorption effects. The interplay between

the nonlinear and linear dissipation effects is expressed via the inverse acoustic30

Reynolds number (the Goldberg number), which is not only strongly dependent

on the flow conditions such as the jet nozzle pressure and temperature ratio but

also the effective distance from the jet [16].

In order to quantify the importance of nonlinear propagation effects on su-

personic jet noise, several studies compared the solution of the linear and non-35

linear acoustic propagation models for the same initial conditions. The existing

models in the literature can be classed into two categories. The first category

includes theoretical models, which employ semi-analytical solutions of the one-

dimensional Burgers’ equation and Navier–Stokes equations [7, 17]. Such mod-

els are computationally efficient but cannot take into account the effect of high40

Reynolds-number turbulence and the distributed nature of supersonic jet noise

sources. In comparison with these, the second category of models comprises
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the solution of the three-dimensional compressible Navier-Stokes equations in-

cluding turbulence effects and extending the simulation domain to the far-field

by combining the Navier-Stokes solution with the Euler solution away from the45

jet issuing from a low-aspect ratio nozzle [6, 18, 19]. The range of the far-field

noise propagation distances considered with such methods is limited to a few

hundred initial jet diameters, which may be insufficient to fully describe the

nonlinear-linear propagation regimes including the linear dissipation region.

The present work is devoted to the modelling of far-field noise generated by50

a cold supersonic under-expanded jet flow in accordance with the conditions of

the flow experiment conducted in the Laboratory for Turbulence Research in

Aerospace and Combustion (LTRAC) Supersonic Jet Facility at Monash Uni-

versity [20]. The particular jet conditions correspond to the fastest LTRAC jet

case, where the jet issues from a high area ratio nozzle at a Nozzle Pressure Ratio55

of 4.2 generating a Mach disk and notable shock cells in the entire jet including

the shear layers due to mismatch between the pressure at the nozzle exit and the

ambient pressure [21, 22]. The interaction of turbulence with prominent shock

cells, which form in the shear layer leads to strong Broadband Shock Associated

Noise (BBSAN) especially notable for sideline observer angles. The peaks are60

primarily associated with the regions where these shock cells interact with the

turbulent eddies in the shear layers. To model the far-field propagation of BB-

SAN of the LTRAC jet, a triple-scale model has been implemented using the

domain decomposition approach. In the nonlinear jet flow region, the Navier-

Stokes equations are solved in the framework of the Monotonically Integrated65

LES (MILES) approach starting from the nozzle exit where the conditions are

prescribed from the LTRAC Particle Image Velocimetry (PIV) dataset. At the

second step, the LES solution is combined with the penetrable formulation of

the Ffowcs Williams – Hawkings (FW-H) method [23, 24] to obtain the noise

spectra predictions in the acoustic near-field at 20 nozzle diameters from the70

nozzle exit for a few observer angles representative of the strongest BBSAN. For

these angles, the noise spectra include the characteristic BBSAN hump which

is typical of nonlinear acoustic effects. In the previous publication [25], the LES
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solution together with the far-field noise predictions at a far-field microphone

location was validated in comparison with the experiment and the results of the75

empirical sJet model [26, 27], which is based on the scaling laws calibrated over

a large database of NASA jets. In the current work, we combine the acoustic

near-field predictions of the LES-FW-H model with the solution of the gener-

alised Burgers’ equation [28]. The pressure spectrum obtained from the FW-H

solution at the peak BBSAN polar angle is converted to the velocity spectrum80

and then used as an input to generate realisations of the stochastic velocity

signal in the frequency domain. For each realisation, the generated velocity

signal is applied as a boundary condition for the Burgers’ equation under the

assumption of a spherically symmetric far-field acoustic propagation. Notably,

because of the peak BBSAN levels used in the model, the spherical symmetry85

assumption leads to some overestimation of the BBSAN source in the Burgers’

equation. The spherical generalised Burgers’ equation is then solved numeri-

cally to propagate the solution to the far-field until the linear dissipation effect

becomes dominant. The propagation modelling is performed with and without

including the nonlinear acoustic term to evaluate the effect of nonlinearity on90

the far-field noise spectra using the same mid-field acoustic spectrum as the

initial wave condition. This approach is in agreement with [29], where it was

theoretically and experimentally shown that the field spectrum at the discon-

tinuous stage has a universal structure which is determined by the probability

distribution of the initial wave frequency.95

Preliminary results of this work were reported in [30], and the current article

presents results of the extended simulation and analysis.

2. Solution of the Burgers’ model of nonlinear wave propagation in

the spherical case

Generalised Burgers’ equations describe long-range propagation of cylindri-100

cal and spherical waves emitted by the stochastic source such as the turbulence-

shock wave interaction in an imperfectly expanded supersonic jet flow. An
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important problem in this field is to find the behaviour of the wave far from the

emitting source for stochastic initial waveforms defined at some distance from

the turbulent source. The key equation for propagation of nonlinear spheri-105

cal waves in viscous media without dispersion is the general form of Burgers’

equation [28],

∂V

∂r
+
V

r
− β

c2
V
∂V

∂t
=

b

2c3ρ

∂2V

∂t2
, (1)

where V (r, t) is the group velocity in the acoustic wave, c is the sound speed at

the unperturbed far-field, ρ is the unperturbed far-field density, b is kinematic

molecular diffusion coefficient, r is the radial distance from the source, β is the110

so-called nonlinearity parameter of the media, which for air is approximately

equal to 0.5. After some re-arrangement, the governing Burgers’ equation re-

duces to the canonical one-dimensional form,

∂U

∂R
− U ∂U

∂τ
= εg(R)

∂2U

∂τ2
, (2)

where several new dimensionless variables are introduced:

U =
r

r0

V

V0
,

τ = ω0t, x =
r − r0
rnl

, R0 =
r0
rnl

, R = R0 ln

(
R0 + x

R0

)
,

rnl =
c2

βω0V0
, rl =

2c3ρ

bω0
,

g(R) = exp

(
R

R0

)
.

(3)

Two important dimensionless parameters, which come in the definition of the115

inverse acoustic Reynolds number, Re−1a = ε = rnl/rlin are the characteristic

distance over which the viscous dissipation effect becomes important, rl and the

characteristic distance over which nonlinear steepening of a planar wave develops

leading to nonlinear wave interaction, rnl. Furthermore, the physical meaning of

R0 parameter is to characterise how far the starting location of the acoustic wave120

emission (the effective source) is from the nonlinear wave interaction region.
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εg(R) plays the role of the effective viscosity coefficient, which in addition to the

ratio of dissipation to inertia effects also contains the wave spreading factor g(R)

[31]. The latter factor appears because, in comparison with one-dimensional

piston-like propagation of nonlinear waves, the energy of 3D waves is distributed125

over a spherical surface.

In the inviscid limit ε → 0, the energy spectrum of random waves at very

large distance has a universal behaviour at small frequencies [28, 31], and the

steepness D = D(R) of the spectrum increases due to parametric generation of

the low frequency components. In this case, the energy spectrum is given by

E (ω,R) = D (R)ω2, (4)

where

D (R) = R
1
2 ln−

5
4

(
R

2π

)
' R 1

2 . (5)

Here, the standard definition for the energy spectrum is used

V (ω,R) = F [V (t, R)] ≡ 1

2π

∫ ∞
−∞

V (t, R) exp (−iωt) dt. (6)

For stationary noise

< V (ω,R)V ∗(ω′, R) >= E(ω,R)δ(ω − ω′) (7)

where the triangular brackets denote statistical averaging, the asterisk is com-

plex conjugation, and δ(x) is the delta function.

At very large distances from the source, when the acoustic energy generation

at low frequencies is ”arrested” by dissipation, the steepness D = D∞ (ε,R0)130

no longer depends on the distance. The steepness value is determined by the

processes of energy transfer to the low-frequency part of the spectrum during the

nonlinear stage of the wave evolution. For the spherical wave, the asymptotic

behavior of the steepness factor is D∞ ≈ (R0 ln (1/ε))
1/2

[31].

For finite distances from the emission location, no analytical solution is135

available, and the nonlinear wave propagation problem needs to be solved nu-

merically. To illustrate the solution method and following [32], the governing
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Burgers’ equation (2) and (3) is solved for parameters R0 = 1 and ε = 0.01.

The initial energy spectrum at the source location, x=0 is approximated by the

Gaussian function,140

E (ω) =
2√
π
ω2 exp

(
−ω

2

2

)
, (8)

for which 100 realisations of the initial velocity signal are generated

V0 (ω) = (A+ iB)
√
E (ω), (9)

where A and B are random Gaussian processes with zero mean and unit disper-

sion. Eq. 2 is solved in the spectral domain using the forward Euler integration

scheme,

V (ω,R+ ∆R) = V (ω,R) +
1

2
iωF

[(
F−1 [V (ω,R)]

)2]
∆R

−ε · exp

(
R

R0

)
ω2V (ω,R) ∆R,

(10)

where F and F−1 stand for the direct and inverse Fourier transforms, and the

integration step, ∆R is selected to be sufficiently small for numerical accuracy.

Two propagation regimes are considered: (i) solution of the original nonlin-

ear sound propagation problem and (ii) solution of the linear problem, which145

corresponds to artificially removing the quadratic velocity term from the right-

hand-side of Eq. 10 in order to assess the nonlinearity effect on propagation.

The frequency domain solution is converted to the time domain, and Fig.1 com-

pares instantaneous realisations of the nonlinear and linear wave propagation

solution at different distances from the source. For the nonlinear model, steep150

wave fronts develop in the solution at x = 1.7. The coalescence of nonlinear

waves leads to a notably faster decay of the wave-form amplitudes in comparison

with the linear wave propagation.
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(a) (b)

Fig. 1: Time domain solutions for the test problem of spherical wave propagation at acoustic

Reynolds number Rea = 100 and different distances, x/R0 from the source: linear propagation

model (a) and nonlinear model (b).

For each distance from the source, the energy spectra are computed by en-

semble averaging over the computed realisations. Results are presented in Fig.2,155

which shows the spectra evolution of the nonlinear and linear propagation mod-

els as the distance from the source increases. For relatively small distances from

the source, x < 1, which are within r − r0 < rnl, apart from high frequen-

cies, the spectra are barely affected by the nonlinearity (Fig.2a and Fig.2b). At

larger distances, which correspond to 1 < x < 100, or rnl < r − r0 < rl, the160

nonlinear wave interaction leads to a faster dissipation of the peak energy in

comparison with the linear wave propagation regime. The transfer of energy to

the high-frequency part of the spectra is also notable for the nonlinear propa-

gation regime (Fig.2c). For large distances, x > 100, or r − r0 > rl, when the

dissipation mechanism becomes dominant for the most part of noise spectrum,165

the linear and nonlinear models converge to a similar solution (Fig.2d).
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(a) (b)

(c) (d)

Fig. 2: Energy spectra for the test problem of spherical wave propagation at acoustic Reynolds

number Rea = 100 and different distances x/R0 from the source with and without including

the nonlinearity effect: initial propagation, where the nonlinear wave interaction is not very

important for the peak frequencies (a) and (b), strongly nonlinear wave interaction region (c),

and the linear propagation stage dominated by viscous dissipation (d).

3. LTRAC jet case: summary of the text case, flow and acoustic

near-field modelling

Following [25], the key details of the LTRAC jet flow simulation, corre-

sponding conditions of the experiment conducted in the LTRAC Supersonic Jet170

Facility are summarised here. Compressed air is supplied to the plenum cham-

ber at approximately T0 = 288K , where high-resolution PIV measurements

were taken. The nozzle is purely convergent with an inlet to exit area ratio of

93.44. It is axisymmetric with the diameter at the exit Dj = 15mm and the

nozzle lip thickness of 5 mm. The fully expanded flow conditions correspond175

to Mfe = 1.59, NPR=4.2, Def = 16.73mm, Re = 1.06 · 106. The flow at the
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nozzle exit is sonic with a velocity of Uj = 310m/s. A complete description of

the facility and the PIV system can be found in [20].

For the LTRAC jet flow modelling, MILES are performed using the high-

resolution CABARET method [33, 34, 35]. The CABARET properties include180

low dispersion and dissipation error as well as a compact computational stencil

enabling an efficient implementation of the explicit asynchronous time stepping

[36]. The computational domain starts downstream of the nozzle exit where

characteristic boundary conditions are specified assuming the sonic condition,

the same stagnation pressure as in the upstream chamber, and using the PIV185

data to impose the axial and radial velocity components. Downstream of the

nozzle exit, three regions of local grid refinement are introduced, which includes

the following zones: the jet plume, the region outside of the jet core, and the

acoustic control surface region. An almost isotropic grid is generated using the

OpenFOAM utility snappyHexMesh (sHM) in the jet shear layers and in the190

shock cell region. The total grid cell count is 70 million cells, and the grid

size in the early shear layers is about 2% the nozzle exit diameter. The grid

resolution in the acoustic surface region of the early shear layers corresponds to

the maximum resolved Strouhal number (8 grid points per acoustic wavelength)

of 2.6, and the same downstream of the end of the jet potential core is 1.7.195

Thanks to the GPU implementation of the CABARET solver, a considerable

reduction of the flow solution time is achieved in comparison with conventional

LES approaches similar to the pervious jet flow simulations [37, 38, 39]. The

simulations are performed on a single computer workstation equipped with two

GPU cards (NVidia Titan RTX 24GB). The solution spin-out time is 300 con-200

vective time units (TUs), and a further 1000 TUs are simulated for statistical

averaging. Here, 1 TU of the simulation corresponds to the time taken by a tur-

bulent eddy travelling at a speed equal to the jet velocity to cover the distance

equal to one diameter of the nozzle exit. The total time to solution is 39 hours.

Fig.3 compares the distributions of the time-averaged axial and radial ve-205

locity components of the LES solution in the jet symmetry plane with the PIV

data. And Fig.4 shows similar comparisons for the root-means-square (r.m.s)
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of axial and radial velocity fluctuations. In all cases the normalisation of veloc-

ities and distances is performed based on Dj and Uj . Notably, the meanflow

velocity distributions are in good agreement with the PIV data over the first210

3-4 shock cells including the Mach disk, which are most important for BBSAN

generation. Further downstream the phase error in the shock cell locations ac-

cumulates which suggests LES grid resolution being insufficient in this region.

Fig.5 compares the centreline and lipline distributions of the time-averaged

axial velocity from the LES solution with the PIV data. To illustrate the sen-215

sitivity of the LES solution to the grid, the results for the two LES resolutions

70 million and 24 million are shown. The 24 million grid is approximately twice

coarser in terms of the grid density in the shear layer region in comparison with

the 70 million mesh. Notably, both the LES solutions are in a good agreement

with the experiment.220

For turbulent velocity fluctuations, the LES solution shows some underpre-

diction of turbulence in the initial shear layers and overprediction of turbulence

intensity in the region of well-developed shear layers especially for the radial

velocity fluctuations (Fig.4). These discrepancies are believed to be related to

the laminar inflow conditions at the nozzle exit and the LES grid that is of225

insufficient resolution to capture well both the time-averaged velocity and the

turbulence. Notably, the LES solution captures reasonably well other salient fea-

tures of the supersonic jet such as the multiple Prandtl-Meyer waves reflected

from the jet shear layers and the centreline over 5-6 jet diameters downstream

of the nozzle exit.230
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(a)

(b)

Fig. 3: Comparison of the LES solution (bottom half) with the PIV data (top half) for the

axial (a) and radial (b) time-averaged velocity.

(a)

(b)

Fig. 4: Comparison of the LES solution (bottom half) with the PIV data (top half) for the

axial (a) and radial (b) root-mean-square velocity fluctuations.
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(a) (b)

Fig. 5: Comparison of the axial time-averaged velocity profiles of the LES solutions on 70 and

24 million cells with the PIV data: (a) along the jet centreline and (b) along the jet lipline.

For acoustic near field noise calculations, the time-domain FW-H method

is used with permeable acoustic integration surfaces including multiple closing

discs [24]. In the method, the LES solution is recorded on a set of acoustic

integration surfaces, which confine the turbulence, shock cells, and main vor-

ticity regions in the jet shear layers (Fig.6). The acoustic integration surfaces235

play the role of boundary conditions for the free-space Green’s function method.

The surfaces are of a funnel shape following the conically expanding jet shear

layers. The funnel surface is terminated with a sufficient number of closing discs

(16) at the outlet. By averaging the noise spectra predictions produced by each

individual disc the pseudo-sound effects over a broad range of noise frequencies240

is avoided. The acoustic time signal is computed at the observer distance of

R/Dj = 20 from the nozzle exit, which corresponds to the acoustic mid-field.

The signal is converted to the power spectral density (PSD) based on the com-

mon definition and using Welch’s averaging, such as used in [40]. In the previous

work [25], it was shown that for all relevant frequencies the noise predictions245

of the LES- FW-H method are in 2-3dB agreement with the LTRAC acoustic

measurements and the results of the NASA sJet model, which justifies the use

of the FW-H method for the mid-range acoustic propagation modelling.
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Fig. 6: LES solution for the LTRAC jet: instantaneous acoustic pressure field (p− p∞) /p∞

from -0.003 to 0.003 and contours of vorticity magnitude from 10000 to 500000 s−1.

In the next section, the mid-field acoustic predictions of the LES-FW-H

method will be used as a boundary condition (which equates to an initial condi-250

tion for the space integration of the frequency domain problem) for long-range

noise propagation governed by the spherical generalised Burgers’ equation. The

question to answer is whether the nonlinear wave-front steeping, which develops

over long distances, plays a role for this LTRAC jet. The long-range propaga-

tion is defined by the distance when the noise frequencies around the peak of255

the noise spectra are completely attenuated by dissipation.

4. Far-field propagation of the supersonic jet noise

To specify the initial conditions for the Burgers’ model in the frequency do-

main, the pressure spectra solution obtained from the FW-H method is con-

verted to the acoustic velocity fluctuation with assuming a linear relation-260

ship between the amplitudes of pressure and velocity fluctuations, u′(f) =

p′(f)/ (ρ∞c∞) in accordance with the linear acoustic wave model at r/Dj = 20.

Two initial conditions of the spherical wave propagation are considered: the

acoustic velocity spectra obtained from the LES-FW-H solution at 90◦ and

120◦ observer angle. These angles correspond to the region of peak directivity265

of BBSAN.

For both the conditions, the relevant sound wave propagation frequency is

estimated from the peak BBSAN frequency, St = 0.4, which for the LTRAC jet
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is 13.12 kHz. The corresponding dimensionless parameters the Burgers’ model

Eq. 3 are summarised in Table.1.270

Table 1: Parameters of the Burgers’ model of the LTRAC jet.

rl rnl ε R0

38841.34 7470 0.1923 4 · 10−5

Notably, the parameters correspond to the wave propagation regime,R0 �

rnl � rl, where the nonlinear effects are expected to start at much greater

distances in comparison with the initial source radius. From this estimate, it275

may be expected that at a certain large distance from the source the solution

of the Burgers’ equation may reveal an interplay between the nonlinear wave

steepening and viscous dissipation effects.

Having defined the initial spectrum of turbulent velocity fluctuations, 100

random realisations are generated using Eq. 9, and the discretised spherical280

Burgers’ Eq. 10 is solved for each initial condition. The ensemble averaged

spectra solutions are obtained for a range of propagation distances up to x/R0 =

106, where the jet noise spectra are completely dissipated by viscosity for most

frequencies. In jet units, this furthest distance corresponds to 1.8 ·107 initial jet

diameters, which equates to 300 km from the nozzle exit. Fig.7 shows the spectra285

solutions for the initial condition corresponding to 90◦and 120◦ observer angles

for several distances. For both the angles, the evolution of the acoustic spectra

shows a similar behavior: the high-frequency part of the spectra is gradually

dissipated by viscosity while the low frequencies remain virtually unaffected.

The local features of the original spectra including the narrow-band peak at St =290

0.3 in the acoustic spectrum at 120◦ angle are well-preserved in the attenuated

spectra shapes until very large distance, suggesting no apparent energy transfer

between the low and high frequencies.
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(a) (b)

Fig. 7: Generalised Burgers’ solutions for the noise spectra of the LTRAC jet at different

distances from the specified initial conditions corresponding to the LES-FW-H solution at (a)

90◦ and (b) 120◦ observer angles.

In order to quantify the effects of nonlinearity on far-field propagation of

the LTRAC jet noise, the solutions of the generalised Burgers’ equation for the295

same initial conditions are recomputed without the quadratic velocity term in

Eq. 10. The comparison of the nonlinear and linear solutions of the Burgers’

model for two typical distances from the source corresponding to the LES-FW-

H noise spectra at 90◦ observer angle are shown in Fig.8. The comparison for

the initial condition corresponding to the other important BBSAN angle, 120◦300

observer angle is very similar, hence, not included. The linear and nonlinear

solutions perfectly coincide, which confirms that the effect of nonlinearity on

the far-field noise propagation of the LTRAC jet is negligible.
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(a) (b)

Fig. 8: Comparison of the nonlinear and linear wave solutions of the generalised Burgers’

equation for the noise spectra of the LTRAC jet using the LES-FW-H solution at 90◦ observer

angle as initial condition for different distances from the source: (a) x/R0 = 105 and (b)

x/R0 = 3 · 105.

Finally, Fig.9 shows the instantaneous velocity fluctuations (individual re-

alisations of the stochastic solution) of the Burgers’ model for the same initial305

condition as in Fig.8. Again, the linear and nonlinear solutions are compared

for several distances from the source. The nonlinear Burgers’ solution virtually

coincides with the linear one: the acoustic wave fronts do not exhibit any signif-

icant steepening at all times. Hence, for the considered LTRAC jet, the effects

of the spherical pressure wave spreading dominates over the nonlinearity until310

the wave is attenuated by dissipation, thereby making the role of nonlinear wave

propagation in shaping of the far-field noise spectra insignificant.
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(a) (b)

Fig. 9: Comparison of the nonlinear and linear wave solutions of the generalised Burgers’

equation for the noise spectra of the LTRAC jet using the LES-FW-H solution at 90◦ observer

angle as initial condition for different distances from the source: (a) x/R0 = 105 and (b)

x/R0 = 3 · 105.

Finally, to further analyse the far-field propagation effects, we have per-

formed an additional series of calculations of the cylindrical generalised Burg-

ers’ equation based on the same input from the LTRAC jet as for the spherical315

case.The cylindrical wave solution corresponds to a slower dissipation of high

frequencies compared to the spherical waves. However, again, there is no appre-

ciable difference between the linear and non-linear cylindrical wave propagation

solutions. Hence, it is the low intensity of the considered laboratory jet case,

which must be the reason for the relatively weak nonlinearity effect observed.320

5. Conclusion

Noise generated by a supersonic under-expanded screeching jet, which has

a strong Broad-Band-Associated-Noise (BBSAN) component and corresponds

to a recent experiment in LTRAC (Laboratory for Turbulence Research in

Aerospace and Combustion), is investigated using a triple-scale computational325

model. In the jet near-field, the Navier-Stokes equations are solved using the

high-resolution CABARET method in the framework of the Monotonically In-

tegrated Large Eddy Simulation approach, where the jet inflow condition at the

nozzle exit is specified from the LTRAC Particle Image Velocimetry (PIV) data.
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The implementation of Graphics Processing Units (GPUs) with asynchronous330

time stepping allows solving the Navier-Stokes calculations on a locally refined

grid of 70 Million cells on a single workstation computer equipped with several

‘gaming’ GPU cards within less than 2 days. The LES flow solution captures the

shock cell structure and the Mach disk of the LTRAC jet in good agreement with

the PIV data, and the agreement is reasonably insensitive to the grid resolution.335

The turbulent velocity fluctuations are less well resolved in the LES solution,

however, important features of the supersonic jet such as multiple reflections

of the Prandtl-Meyer waves in the jet core are well predicted by the LES, in

agreement with the LTRAC experiment. The acoustic mid-field solution at the

distance of 20 initial jet diameters from the nozzle exit is obtained by combining340

the LES solution with the Ffowcs Williams – Hawkings (FW-H) method based

on the permeable control surface formulation. The mid-field solution is then

used as a boundary condition for the spherical generalised Burgers’ equation

for long-range propagation using a numerical scheme in the frequency domain.

The nonlinear and linear solutions of the Burgers’ equation are compared for345

the same LES-FW-H dataset over a wide range of distances from the source,

up to 18 million initial jet diameters. The results of the comparison show that

the nonlinear wave propagation does not play any significant role in forming the

characteristic hump in noise spectra typical of the nonlinear acoustic waves in

this case. Hence, it is concluded that the case of the considered LTRAC jet falls350

under the category of small-scale supersonic jets. For such laboratory jets, in

contrast to full-scale military or rocket jets, the nonlinear wave effects impor-

tant in the jet near-field become completely negligible for the far-field acoustic

wave propagation.
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