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Abstract

This paper develops new tests against structural breaks in panel data mod-

els with common factors when T is fixed, where T denotes the number of

observations over time. For this class of models, the available tests against a

structural break are valid only under the assumption that T is ‘large’. How-

ever, this may be a stringent requirement; more commonly so in datasets with

annual time frequency, in which case the sample may cover a relatively long

period even if T is not large. The proposed approach builds upon the existing
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GMM methodology and develops distance-type and LM-type tests for detect-

ing a structural break, both when the breakpoint is known as well as when

it is unknown. The proposed methodology permits weak exogeneity and/or

endogeneity of the regressors. In a simulation study, the method performed

well, both in terms of size and power, as well as in terms of successfully locat-

ing the time of a structural break. The method is illustrated by testing the

so-called ‘Gibrat’s Law’, using a dataset from 4,128 financial institutions, each

one observed for the period 2002-2014.

Key words: Method of moments, unobserved heterogeneity, break-point de-

tection, fixed T asymptotics.

JEL Classification: C12, C23, C26.

1 Introduction

Methods of testing for the presence of structural breaks are important in econometrics

and statistics. Failure to incorporate such breaks in the model, if they exist, may lead

to unreliable inferences and forecasts; on the other hand, incorporating a break when

it does not exist, would unnecessarily complicate econometric analyses and/or lead to

loss of efficiency. There is a vast time-series literature on testing for structural breaks

in the mean (e.g. Harchaoui and Lévy-Leduc 2010), in the variance (e.g. Chen and

Gupta 1997), in the covariance structure (e.g. Aue et al. 2009), and in regression

models (Andrews 1993, Bai and Perron 1998, Perron and Qu 2006, and Qu and

Perron 2007). More recently, there has been a growing literature on structural-break

tests for panel data models.

A family of models for panel data that has been a topic of much recent research

is the common factor approach. This paper develops a new test to detect a single

structural break in panels with common factors when the number of cross-sectional

units (N) is large and the number of observations over time (T ) is small; in the

asymptotic results, this is represented by N → ∞ and T is fixed. This is an em-

pirically relevant scenario in panel data analysis, especially when the time frequency
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of the data is annual, in which case the sample may cover a relatively long period

even if T is much smaller than N . As an example, the application considered in

Section 4 studies the relationship between the size of a firm and its growth rate, and

investigates the well-known ‘Law of Proportionate Effect’. The data set consists of

over 4,000 banks, each one observed annually over the 13 years, 2002 to 2014. As

such, T is relatively small. Testing for a structural break is important, particularly

because the sample of the study spans the GFC. Indeed, the results of our analysis

indicate the existence of a structural break in the model, following the establishment

of the ‘Basel III’ capital regulatory framework in 2011.

Currently a suitable method is not available for testing against a structural break

in the general context studied in this paper. That is, existing literature on structural

break testing in panels with common factors is designed specifically for models with

T → ∞. Some notable contributions include Chan et al. (2008), which extends

the time series test statistic of Andrews (2003) to heterogeneous panel data models;

Baltagi et al. (2016), which studies estimation of static heterogenous panels with

a common break using the common correlated effects estimator of Pesaran (2006);

Qian and Su (2016) and Li et al. (2016), which consider estimation and inference of

possibly multiple common breaks in panel data models, allowing for common factors

and cross-sectional dependence. Therefore, the present paper makes a significant

methodological contribution to this currently active area of research.

The proposed methodology builds upon and extends the GMM approach in

Robertson and Sarafidis (2015) by developing distance-type and LM-type tests for

detecting a structural break. In particular, Robertson and Sarafidis (2015) con-

sidered point estimation of an unknown parameter; by contrast, the present paper

focuses on testing. Thus, these two papers study different topics in inference, and the

main results in our paper cannot be deduced from those in Robertson and Sarafidis

(2015). We consider both the case where the breakpoint is known as well as when it

is unknown. For the case when the breakpoint is unknown, we apply the Union In-

tersection Principle to develop suitable tests. The proposed approach remains valid

under weak exogeneity and/or endogeneity of regressors. An extensive simulation
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study demonstrates that the method performs well, both in terms of size and power,

as well as in terms of successfully locating the break point.

The rest of the paper is organized as follows. Section 2 describes the model

and develops the theory for the test against a structural break. Section 3 examines

the performance of the method in finite samples using simulated data. Section 4

presents the aforementioned empirical illustration. Section 5 provides a discussion of

the results and Section 6 concludes. Proofs of the main results are provided in the

Appendix, and the remaining ones are available in Supplementary Materials to this

paper.

2 A New Structural Break Test

We start with a description of the model and a discussion of the required assumptions.

The next subsection describes the moment conditions employed, and provides an

illustrative example. The final part provides the asymptotic results of the paper.

2.1 Model Specification

We study a linear panel data model with regressors and a multi-factor error structure.

Our aim is to detect a possible break in the structural parameters of the model, i.e.

the slope coefficients. Consider the model,

yit =





x′
itβ

0
1 + λ′

if
0
t + εit, t = 1, . . . , τ − 1;

x′
itβ

0
τ + λ′

if
0
t + εit, t = τ, . . . , T,

(1)

where xit is a K × 1 vector of regressors, λi and f 0
t denote r × 1 vectors of factor

loadings and factors, respectively, and εit is a purely idiosyncratic error term (t =

1, . . . , T ). Notice that β0
τ replaces β0

1 starting from the break at time τ (τ ≥ 2). The

foregoing model for structural break assumes that the break may be in any component

of β. The derivations presented in this paper need only minor modifications if the

possible break is limited to a subvector of β.
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Our stochastic framework (1) is robust under a structural break in the unobserved

factor loadings. To illustrate this, consider a single-factor model with a common

break point in λi at period τ , expressed as uit = (λift + εit)I(1 ≤ t < τ) + (λi,τft +

εit)I(τ ≤ t ≤ T ), where I(·) is the indicator function. Empirically, this structure

can be captured by the following two-factor model: uit = λ1if1t + λ2if2t + εit, for

t = 1, ..., T with λ1i = λi, λ2i = λi,τ , f1t = dt,τft and f2t = (1 − dt,τ )ft, where dt,τ

is a dummy variable that takes the value of unity when t = 1, ..., τ − 1, and zero

otherwise. Therefore, the foregoing model with a structural break in factor loadings

is of the form (1).

The model (1) can be expressed in vector form as

yi = X
(1)
i β0

1 +X
(τ)
i β0

τ + (IT ⊗ λ′
i)f

0 + εi, (2)

where yi = (yi1, yi2, . . . , yiT )
′
T×1, X

(1)
i = (xi1,xi2, . . . ,xi,τ−1, 0K×1, . . . , 0K×1)

′
T×K ,

X
(τ)
i = (0k×1, . . . , 0K×1, xiτ , . . . ,xiT )

′
T×K , f

0 =vec
[
(F 0)

′]
, F 0 = (f 0

1 , f
0
2 , . . . , f

0
T )

′
T×r

and εi = (εi1, εi2, . . . , εiT )
′
T×1; the superscripts ‘(1)’ and ‘(τ)’ indicate that the vectors

correspond to the periods before τ and from τ onwards respectively, irrespective of

whether or not a break has occurred. Next, let us introduce the following three

hypotheses:

H0 : There are no structural breaks;

H(τ) : There is a structural break at time τ , where τ is known;

H1 : There is a structural break at time τ , where τ is unknown.

If H1 is true then we denote the true point in time where the break occurs, by τ0. In

the rest of this section, we develop a Distance-type test and an LM-type test, based

on the Method of Moments, for H0 against H1 as well as for H0 against Hτ .

2.2 Moment Conditions

We assume that there exists a d×1 vector of potential instruments, wi; these instru-

ments may correspond to the variables of the model or be extraneous variables. In
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each period t, ζt instruments are available, expressed in vector form as zit = Stwi,

where St is a ζt×d selector matrix of 0’s and 1’s that picks up from wi the variables

at period t that are uncorrelated with εit, i.e. for which E(zitεit) = 0 holds true.

The total number of moment conditions is ζ ≡ ∑T
t=1 ζt. The following assumption is

employed throughout the paper.

Assumption 1: (i) (xit,wi,λi, εit) are independently and identically distributed

[i.i.d.] for i = 1, . . . , N , with each component having finite fourth moment. (ii) f 0 is

non-stochastic and there exists c < ∞ such that ‖f 0‖ ≤ c. (iii) E (εit|λi,xi1, . . . ,xih) =

0, for t = 1, . . . , T , i = 1, . . . , N , and some positive integer h.

Assumption 1 is often employed in the literature of fixed-T panels with endoge-

nous regressors; for example, see Assumptions BA.1-BA.4 in Ahn et al. (2013), and

Assumption 2 in Robertson and Sarafidis (2015).

The independence assumption over i = 1, . . . , N, in the first part of Assumption 1,

can be weakened so long as additional boundedness restrictions on higher moments of

the data generating process are imposed. The requirement that the observations are

identically distributed can also be relaxed. For instance, εit could be heterogeneously

distributed across both i and t. As with a large body of the fixed-T panel data

literature, we do not consider such generalizations to avoid unnecessary notational

complexity.

Assumption 1(ii) treats f 0 as fixed constants in asymptotic analysis, which is

typical in the literature. Alternatively, all probabilistic statements can be formulated

conditionally on F without qualitatively changing the main results of this paper; see

Kuersteiner and Prucha (2013).

The value of h in Assumption 1 (iii) characterises the exogeneity properties of the

covariates. In particular, for h = T (respectively, h = t) the covariates are strictly

(respectively, weakly) exogenous; otherwise they would be endogenous (see Arellano

2003, Section 8.1). Our methodology is valid irrespective of the value of h mutatis

mutandis. Consequently, our framework allows for lagged values of the dependent

variable to be part of the covariates.
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We also note that Assumption 1 (iii) implies that the idiosyncratic errors are

conditionally serially uncorrelated. In practice, it is entirely straightforward to allow

for serial correlation of (a) a moving average form by carefully selecting the moment

conditions, or (b) an autoregressive form by including further lags of y and x into the

model; see e.g. Bond (2002). Finally, Assumption 1 (iii) implies that the idiosyncratic

error is conditionally uncorrelated with the factor loadings. This is standard in

the panel data literature, and allows for lagged values of y in levels to be used as

instruments.

Let S = diag (S1; . . . ;ST ) and Z ′
i ≡ S (IT ⊗wi). Define G ≡ E (wiλ

′
i), a d× r

matrix that contains the unrestricted covariances between the instruments and the

factor loadings, and let

µτ,i (θτ ) ≡ Z ′
i{yi −X

(1)
i β1 −X

(τ)
i βτ} − S (IT ⊗G) f , (3)

where θτ ≡ (g′, f ′,β′
1,β

′
τ )

′ with g = vec (G). Under Assumption 1, taking expecta-

tions of (3) yields the following vector-valued moment function:

µτ (θτ ) ≡ E [µτ,i (θτ )] = m−M (1)β1 −M (τ)βτ − S (IT ⊗G) f , (4)

where m = E[Z ′
iyi]ζ×1 and M (j) = E[Z ′

iX
(j)
i ]ζ×K , (j = 1, τ). It follows that at the

true parameter value θ0
τ , we have µτ (θ

0
τ ) = 0.

It is worth providing some motivation for the choice of the moment function de-

fined in (3) and (4). In order to develop a method of moments estimator of the

parameter in model (1), one approach would be to start with residuals of the form

ei(θτ ) = yi − [X
(1)
i β1 +X

(τ)
i βτ + (IT ⊗ λ′

i)f ], (θτ ∈ Θ). Then define the moment

function as µτ (θτ ) = E[Z ′
iei(θτ )], where Zi are instruments such that E[Z ′

iei(θτ )]

is zero at the true parameter value θ0
τ . Our next step would be to construct a

suitable sample counterpart of E[Z ′
iei(θτ )], which we denote by µ̂τ (θτ ), and finally

introduce a GMM-type objective function of the form µ̂′
τ (θτ ) Ŵ µ̂τ (θτ ), where Ŵ

is a suitably chosen weight matrix. At first glance, a suitable choice for µ̂τ (θτ )

appears to be the sample average N−1
∑N

i=1Z
′
iei(θτ ). If we were to do so and es-

timate (θτ ,λ1, . . . ,λN), treating them as unknown parameters, then the number of
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parameters would increase with the sample size and we would encounter an inciden-

tal parameter problem. However, our approach is different. We treat λi appearing

in ei(θτ ) through the term (IT ⊗λ′
i)f , as an unobserved random variable. Therefore,

we work with the form µτ (θτ ) = E
[
Z ′

i

(
yi −X

(1)
i β1 −X

(τ)
i βτ

)]
− S (IT ⊗G) f ,

and define µ̂τ (θτ ) = N−1
∑N

i=1Z
′
i

(
yi −X

(1)
i β1 −X

(τ)
i βτ

)
− S (IT ⊗G) f ; note

that the sample averaging applies only to the part E
[
Z ′

i

(
yi −X

(1)
i β1 −X

(τ)
i βτ

)]

in µτ (θτ ). This leads to µ̂τ (θτ ) = N−1
∑N

i=1µτ,i (θτ ) with µτ,i as in (3). The individ-

ual effects {λ1, . . . ,λN} enter the GMM objective function, µ̂′
τ (θτ ) Ŵ µ̂τ (θτ ), only

through the expected values E[wiλi], which we parameterize using the parameter

g of fixed dimension. Consequently, the GMM objective function involves only the

parameter θτ and the observed data, but not the collection {λ1, . . . ,λN}. Therefore,
the dimension of the parameters estimated does not change with N and hence the

usual incidental parameter problem does not arise.

The requirement that {λi, i = 1, . . . , N} be identically distributed can be re-

laxed to some extent. For example, conditional moments of λi may depend on i.

To illustrate this, consider the case K = 1 and r = 1. In this case, one may set

E (λi|xi,1, . . . , xi,T ) = π1x̄i and var (λi|xi,1, . . . , xi,T ) = π2x̄i
2. In this case, condition-

ally upon x, the variance-covariance matrix of the moment conditions involves terms

of the form π2E [zi,txi,tx̄i
2], which can be estimated consistently using suitable simple

sample averages.1

In contrast to the setting of this paper, a recent alternative literature treats the

factor loadings as fixed (incidental) parameters; for example, see Bai (2013). The

advantage of this approach is that it relaxes the i.i.d. assumption on λi. On the other

hand, the method imposes the nontrivial initial condition yi,0 = 0, (i = 1, . . . , N).2

Moreover, for T fixed the method assumes conditional homoskedasticity in εit, as

well as exogenous covariates.

1As our simulations indicate, our estimator appears to be robust even under unconditional

heteroskedasticity in λi.
2Hsiao (2014), page 88, provides an analysis of the limitations of treating yi,0 as fixed when T

is small.
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Observe that the last term S (IT ⊗G)f in (4) can be written as S (F ⊗ Id) g =

Svec(GF ′). But since Svec(GF ′) = Svec(GUU−1F ′) for any r × r invertible

matrix U , the parameters G and F are not identified without further restrictions.

Therefore, we assume that a set of normalizing restrictions is available to ensure

identification. The actual choice is not important; for example, for r = 1, one may

normalise fT = 1, or g0 = 1. Therefore, in what follows θ0
τ corresponds to the true

parameter vector containing the normalized values of f 0 and g0. �

Suppose that the null hypothesis H0 is true. In this case, (1), (2), and (4) reduce

to

yit = x′
itβ

0
1 + λ′

if
0
t + εit, (t = 1, . . . , T ) (5)

yi = Xiβ
0
1 + (IT ⊗ λ′

i)f
0 + εi, (6)

µ1(θ1) = m−Mβ1 − S (IT ⊗G)f , (7)

respectively, where Xi = X
(1)
i + X

(τ)
i , M = M (1) + M (τ) and θ1 = (g′, f ′,β′

1)
′.

This setting under the null hypothesis of no structural break, is the one studied by

Robertson and Sarafidis (2015).

To avoid possible ambiguities in regards to notation, we introduce the following

notation for the model under the null hypothesis: θR = (g′, f ′,β′
1,β

′
1)

′. Thus, θR

is the complete parameter θτ = (g′, f ′,β′
1,β

′
1, )

′ under H0, which requires β1 = βτ ;

θ1 = (g′, f ′,β′
1)

′ is a sub-vector of θR and is also the parameter that defines the model

under H0. Note that {θτ ,µτ(θτ )} are well defined for τ ≥ 1, but their definitions are

different for τ = 1 and for τ ≥ 2. It is instructive to illustrate the moment functions

for a simple example.

Example 1. Suppose that T = 3, r = 1, and xit is the one-period lagged scalar value

yi,t−1, such that yi,t = β1yi,t−1 + λift + εi,t. Thus, there are T = 3 observations over

time and one unobserved factor. In this example, we denote the values of the factor

over the three time points by {f1, f2, f3} instead of {f11, f12, f13}. Let zi1 = (yi0),
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zi2 = (yi0, yi1)
′, and zi3 = (yi0, yi1, yi2)

′. Then, under the null hypothesis,

E(µ1,i(θ1)) =




E(zi1εi1)

E(zi2εi2)

E(zi3εi3)


 =




E(yi0εi1)

E(yi0εi2)

E(yi1εi2)

E(yi0εi3)

E(yi1εi3)

E(yi2εi3)




=




m01

m02

m12

m03

m13

m23




− β1




m00

m01

m11

m02

m12

m22




−




g0f1

g0f2

g1f2

g0f3

g1f3

g2f3




≡ m− β1m−1 − Svec(GF ′) (8)

where θ1 = (g0, g1, g2, f1, f2, f3, β1)
′, mst = E (yisyit), m−1 = E[Ziyi,−1] and yi,−1 =

(yi,t−1)T×1. Observe that the moment conditions are ordered by the time-index t

of the equations from which they are derived and then by the time-index s of the

instruments.

On the other hand, under H(τ) with τ = 3, the moment conditions E(µ3,i(θ3)) are




E(zi1εi1)

E(zi2εi2)

E(zi3εi3)


 =




E(yi0εi1)

E(yi0εi2)

E(yi1εi2)

E(yi0εi3)

E(yi1εi3)

E(yi2εi3)




=




m01

m02

m12

m03

m13

m23




− β1




m00

m01

m11

0

0

0




− β3




0

0

0

m02

m12

m22




−




g0f1

g0f2

g1f2

g0f3

g1f3

g2f3




≡ m− β1m
(1)
−1 − β3m

(3)
−1 − Svec(GF ′), (9)

where θ3 = (g0, g1, g2, f1, f2, f3, β1, β3)
′. �

The vector-valued moment function can be simplified when ft = 1 for all t. In

this case, the factor component degenerates to a single individual-specific effect, and

the last term in µτ (θτ ) reduces to S(ιT ⊗ Id)g, where ιT is a T × 1 vector of ones.

Therefore, the proposed framework model incorporates the standard fixed effects

panel data model as a special case. �
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2.3 Main Results

Our test statistic builds upon the moment conditions introduced in the previous

section. Therefore, our approach retains the traditional attractive feature of Method

of Moments estimators in that it exploits only the orthogonality conditions implied

by the model and does not require subsidiary assumptions such as normality of the

error process.

Recall from the basic model equation (1) that the number of factors, r0, is as-

sumed known. While this may appear to be restrictive at first glance, in practice

the asymptotic results for the test statistic obtained under the assumption that

the number of factors r0 is known, remain unchanged when r0 is replaced by an

estimate r̂, so long as r̂ is consistent. As an example, let r̂ denote the value of

r that minimises the following Bayesian Information Criterion [BIC]: BIC(r) =

N × Q̂τ (r)− ln(N)/T ξ × φ× df(r), where Q̂τ (r) denotes the minimum value of the

objective function with r factors, ξ ∈ (0, 1), φ is a finite positive constant, and df(r)

denotes the number of degrees of freedom of the model, i.e. the number of moment

conditions minus the number of estimable parameters. Then it is straightforward to

show that P (r̂ = r0) → 1 (see Robertson and Sarafidis 2015). Therefore, it suffices

to present asymptotic results for the case when r0 is known. The small-sample per-

formance of the test statistic when r0 is estimated by r̂ is evaluated in the simulation

study of the paper.

The remainder of this section lists the other assumptions and establishes the

main asymptotic results. To begin with, let Θ denote the parameter space that is

obtained by a particular set of normalizing restrictions on (G,F ). Let Φτ (θτ ) =

Eθ0
τ
[µτ,i(θτ )µ

′
τ,i(θτ )] and Γτ (θτ ) = Eθ0

τ
[(∂/∂θ′

τ )µτ,i(θτ )], (τ ≥ 1). Let Φτ and Γτ

denote Φτ (θ
0
τ ) and Γτ (θ

0
τ ) respectively; note that Γ1 has fewer columns than Γτ ,

(τ ≥ 2).

Assumption 2. The parameter space Θ is compact, contains the true value θ0
τ in

its interior, and the population moment function µτ(θτ ) is equal to 0 if and only if

θτ = θ0
τ (τ ≥ 2).
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Assumption 3. The variance-covariance matrix Φτ ≡ Φτ (θ
0
τ ) of the moment func-

tions evaluated at θ0
τ , and Γτ ≡ Γτ (θ

0
τ ), the matrix of derivatives of the moment

functions, both exist and have full rank (τ ≥ 1).

The aforementioned assumptions provide the main conditions to ensure consis-

tency and asymptotic normality of the estimator proposed in this paper. Let W

be a given positive definite weighting matrix and Qτ (θτ ) = µ′
τ (θτ )Wµτ(θτ ). Let

Ŵ be a given consistent estimator of W under the null hypothesis, µ̂τ (θτ ) =

N−1
∑N

i=1µτ,i(θτ ), Φ̂τ (θτ ) = N−1
∑N

i=1µτ,i(θτ )µ
′
τ,i(θτ ), and Q̂τ (θτ ) = µ̂′

τ (θτ )Ŵ µ̂τ (θτ ).

Define the GMM estimator θ̂τ of θ0
τ by (τ ≥ 1)

θ̂τ = argmin
θτ∈Θ

Q̂τ (θτ ). (10)

The consistency and asymptotic normality of θ̂τ are established later in the paper.

The optimal choice of the weighting matrix is obtained by setting Ŵ = Φ̂−1
τ (θ̂τ ) for

the Q̂τ in (10) (see Hansen 1982). Since this requires an initial consistent estimate

of θ0
τ , efficient estimation can be implemented in two stages: in the first stage one

sets Ŵ = Iζ , which provides an initial consistent estimate θ̂
(1)
τ of θ0

τ . This can be

used in the second stage to obtain a consistent estimate of the inverse of the variance-

covariance matrix of the moment conditions. Subsequently, one may rely on (10) with

Ŵ = Φ̂−1
τ (θ̂

(1)
τ ) if Φ̂−1

τ (θ̂
(1)
τ ) is non-singular, otherwise Ŵ = [Φ̂τ (θ̂

(1)
τ ) + N−1I]−1.

Next, we state a lemma, the proof of which is given in the Supplementary Material.

Lemma 1. Suppose that Assumptions 1-3 are satisfied. Then, as N → ∞, we

have (i) θ̂τ
p→ θ0

τ , (ii)
√
N(θ̂τ −θ0

τ ) = −(Γ′
τΦ

−1
τ Γτ )

−1Γ′
τΦ

−1
τ

√
Nµ̂τ (θ

0
τ ) + op(1), (iii)√

N µ̂τ(θ
0
τ )

d−→ N (0,Φτ), and (iv)
√
N(θ̂τ − θ0

τ )
d−→ N (0, (Γ′

τΦ
−1
τ Γτ )

−1).

In what follows we develop a distance-based test that resembles a ‘likelihood ratio’

type test, and an LM based test for a single structural break.

(A) Distance based test

In studies involving structural breaks, the case where the break point τ is known,

and the case where it is unknown are both of interest. Hence, we will study both.

12



Recall that θ̂1 and θ̂τ are estimators of the true value of the parameter under the

null H0 and under the alternative H(τ) respectively, obtained by minimizing the same

quadratic distance function. Therefore, a suitable distance based statistic for testing

H0 vs H(τ) is the following reduction in the quadratic distance function:

Dτ = N [Q̂1(θ̂1)− Q̂τ (θ̂τ )]. (11)

This type of test statistics are also sometimes referred to as likelihood ratio type

[D-type] statistics, because of their resemblance to likelihood ratio statistic.

To provide an asymptotic representation of the test statistic Dτ and deduce its

asymptotic distribution, under the null hypothesis, let us introduce the following

notation: For a full column rank matrix, B, let MB and PB be two projection

matrices defined by PB ≡ B(B′B)−1B′ and MB ≡ I − PB respectively. For a

positive definite symmetric matrix A, let A−1/2 denote the symmetric square root

of A, so that A = A−1/2A−1/2. Let Vτ(θ
0
τ ) = M

Φ
−1/2
1

Γ1

−M
Φ

−1/2
τ Γτ

, where all the

quantities are evaluated at the true value of θτ under the null hypothesis. Let zN =√
NΦ

−1/2
1 µ̂1(θ

0
1). Then, it follows from Lemma 1 that, under the null hypothesis,

zn
d→ z, where z ∼ N (0, Iζ). The distance-type and LM-type test statistics proposed

in this paper turn out to be continuous functions of zN , except for an additive op(1)

term. Consequently, the asymptotic null distributions of these test statistics can be

deduced by the continuous function theorem. The proof of the following theorem is

given in the Appendix.

Theorem 1. Suppose that Assumptions 1-3 hold, τ ≥ 2, and that the null hypothesis

H0 is satisfied. Then Dτ = z′
NVτzN + op(1), where Vτ is a projection matrix of rank

dim(βτ ), and hence Dτ is asymptotically distributed as chi-squared with degrees of

freedom equal to dim(βτ ).

Next, we use this to develop a test of H0 against the more general alternative

H1 wherein the breakpoint τ0 is unknown, but is known to lie in {τ1, . . . , τL} ⊆
{2, . . . , T}. To this end, we consider the foregoing test for each possible value of

τ in {τ1, . . . , τL}, and then combine them. Let D = [Dτ1 , . . . , DτL ]
′, where Dτℓ =

13



N [Q̂1(θ̂1) − Q̂τℓ(θ̂τℓ)] is the statistic proposed in (11) for testing H0 against H(τℓ).

Clearly, if H0 is true then Q̂
1
(θ̂1) and {Q̂τℓ(θ̂τℓ), ℓ = 1, . . . , L} are all estimators of

the same quantity and hence max{Dτ1 , . . . , DτL} is expected to be small. On the

other hand, if H1 is true, then Q̂τ0(θ̂τ0) is expected to be smaller than Q̂1(θ̂1) and

hence max{Dτ1 , . . . , DτL} is expected to be large, assuming that τ0 ∈ {τ1, . . . , τL}.
Therefore, in order to test H0 vs H1 we propose to use the statistic

Dmax := max
ℓ=1,...,L

{Dτℓ}, (12)

and reject the null for large values of Dmax; this is essentially the test based on

the Union-Intersection Principle (for example, see Section 5.2 in Silvapulle and Sen

2011). Further, we propose to estimate the unknown break point τ0 by τ̂ , where

Dτ̂ = Dmax; The next theorem provides the essential result for applying Dmax for

testing H0 against H1.

Theorem 2. Suppose that Assumptions 1-3 and the null hypothesis H0 are satisfied.

Let z ∼ N (0, Iζ) where ζ is the number of moment conditions, and let Vτ1, . . . ,VτL

be evaluated at the true value of the parameter specified by the null hypothesis. Then,

(Dτ1 , . . . , DτL) =
(
z′
NVτ1zN , . . . , z

′
NVτLzN

)
+ op(1)

d→
(
z′Vτ1z, . . . , z

′VτLz
)
. Conse-

quently, Dmax = max{z′
NVτ1zN , . . . , z

′
NVτLzN}+ op(1), and hence Dmax is asymptot-

ically distributed as max{z′Vτ1z, . . . , z
′VτLz}.

The asymptotic null distribution of Dmax depends on the nuisance parameter θ0
1

through Vτℓ(θ
0
1). We propose to estimate the distribution of the test statistic Dmax

by that of max{z′Vτ1(θ1)z, . . . , z
′VτL(θ1)z} at θ1 = θ̂1. Therefore, critical values

can be obtained by simulation, using the following steps:

(a) Generate one observation of z from N (0, Iζ), where z is ζ × 1;

(b) Compute ĉ = max{z′V̂τ1(θ̂1)z, . . . , z
′V̂τL(θ̂1)z}, where θ̂1 is the estimator of θ0

τ ,

under the null hypothesis;

(c) Repeat steps (a)-(b) n times, say n = 10, 000, and generate n values of ĉ, which

we denote as ĉ1, . . . , ĉn.

(d) Let ĉ(0.95) be the 95th percentile of {ĉ1, . . . , ĉn}.

14



Note that Vτℓ(θτ ) is continuously differentiable and θ̂1 is consistent for θ0
τ under

H0 for τ = 1. Therefore, the distribution of z′Vτℓ(θ
0
τ )z, where z ∼ N (0, Iζ), can be

approximated by that of z′V̂τℓ(θ̂τ )z, where θ̂τ is a consistent estimator of θ0
τ under

H0. This in turn provides the justification for the method employed in our numerical

study to estimate the critical value of the test statistic at the estimated null value.

(B) Lagrange Multiplier (LM) Test

In this subsection, we use the building blocks of the distance based test in the

previous subsection to develop a Lagrange Multiplier (LM) test. The LM test has

advantages and disadvantages compared to the foregoing distance based tests. A

feature of LM and score type tests is that their implementation requires estimation

only of the restricted model under the null hypothesis, but not the unrestricted

full model. If it is desired to avoid estimation of the full model, then this feature

is important. On the other hand, as it is well-known, LM test statistics are not

invariant under change of parametrization.

Let τ ≥ 2 be given, Γ̂τ (θτ ) = N−1
∑N

i=1(∂/∂θ
′
τ )µτ,i(θτ ),

Âτ = [Γ̂τ (θ̂R)]
′[Φ̂τ (θ̂R)]

−1µ̂τ (θ̂R); Û τ = [Γ̂τ (θ̂R)]
′[Φ̂τ (θ̂R)]

−1[Γ̂τ (θ̂R)], (13)

where θ̂R is the estimator of θ0
τ under H0. Then the LM-statistic, LMτ , for testing

H0 against H(τ) is
3

LMτ = NÂ
′

τÛ
−1

τ Âτ . (14)

Theorem 3 stated below shows that the asymptotic null distribution of LMτ is

the same as that of Dτ .

Theorem 3. Let the setting be as in Theorem 1 and τ ≥ 2. Then LMτ = z′
NVτzN +

op(1) = Dτ + op(1), and hence LMτ is asymptotically distributed as chi-squared with

degrees of freedom equal to dim(βτ ).

Next, as in the setting of Theorem 2, let us consider testing H0 againstH1 wherein

the breakpoint τ0 is unknown, but is known to lie in {τ1, . . . , τL} ⊆ {2, . . . , T}.
3For example, see section 4.5.3 in Silvapulle and Sen (2011); (2.9) in Newey and West (1987).
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By motivations similar to those for Dmax, we propose the test statistic LMmax =

maxℓ=1,...,L{LMτℓ}, and reject the null for large enough values of LMmax.

Theorem 4. Let the setting be as in Theorem 2. Then, LMmax = Dmax + op(1)
d→

max{z′Vτ1z, . . . , z
′VτLz} as N → ∞.

The test based on LMmax can be implemented by the simulation method forDmax

outlined earlier.

3 Monte Carlo Simulations

3.1 Simulation Design

This section investigates the finite sample properties of the tests introduced previ-

ously. Our focus is on the impact of sample size, and the location and magnitude of

the break on the performance of our tests. We study the pure panel AR(1) with one-

factor; the choice of this model was motivated mainly by the application presented

in Section 4. The DGP is

yit =





β0
1yi,t−1 + λif

0
t + εit; t = 1, . . . , τ − 1;

β0
τyi,t−1 + λif

0
t + εit; t = τ, . . . , T,

(15)

for i = 1, . . . , N , where εit ∼ N (0, σ2
it), σ

2
it ∼ U [0, 2], λi ∼ N (0, σ2

i ), σ
2
i = σ2

λsi,

si ∼ U [0, 2], f 0
t ∼ N (0, σ2

f), and σ2
λ = σ2

f = 1. We consider the case when the true

number of factors, r0, is known and also the case when it is unknown.

The initial observation is generated as yi0 = λi/(1 − β0
1) + N (0, 1). The vec-

tor of possible instruments is wi = (yi0, . . . , yi,T−1)
′. For each t, we choose zit =

(yi0, . . . , yi,t−1)
′. We set N ∈ {100, 300, 600}, T ∈ {6, 9}, τ0 ∈ {4, 6}, and ω0 ≡

β0
τ − β0

1 ∈ {0, 0.10, 0.15}. We fix β0
1 = 0.50. All simulations are conducted using

5, 000 replications.
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3.2 Simulation Results

Number of factors is known

Table 1 provides the percentage of times that the null hypothesis was rejected when

the breakpoint location τ0 and the number of factors r0 are known. Recall that

ω0 = β0
τ −β0

1 . Therefore, the entries under ω
0 = 0 are the empirical sizes of the tests;

the other entries are estimated powers. Nominal level is fixed at 5% throughout.

Table 1 shows that the performance of the Dτ−test is quite satisfactory. For

example, the Type I error rate is close to the nominal level of 5% for every case;

further, the power of test increases close to 100% as the number of observations

and/or the size of the break ω0 increases. These observations are consistent with the

general result that the Dτ−test is valid and consistent.

While the large sample behavior of the LMτ−test is similar to that of theDτ−test,

there is one departure that is worthy of note. For T = 6 and N = 100 (i.e. small

N), the LMτ−test is substantially oversized, with the Type I error rate being ap-

proximately 16% while the nominal level is only 5%. However, as N increases to 300

and 600 with T fixed at 6, the Type I error rate moves very close to the nominal

level 5%. We note that similar size distortions associated with large values of T are

well-known in the dynamic panel data literature (c.f. Bun and Sarafidis 2015); the

main reason is that as T increases, the total number of moment conditions available

becomes larger, which may distort inference unless N is large. An obvious way to

alleviate such size distortions may appear to be to reduce the number of moment

conditions used when N is relatively ”small”; exactly, what is meant by ”small” is

difficult to quantify and we did not explore this approach. Based on the simulation

results in Table 1, the indications are that Dτ -test is better than the LMτ -test.

For T = 6, the power of both Dτ - and LMτ -tests are substantially smaller when

τ0 is also equal to 6, compared to the case when τ0 = 4. This is to be expected since

in the former case the break takes place at the very end of the sample period, and

therefore the only moment conditions available to detect the break are those in the

last sample period; there are only six of them in this case. By contrast, when T = 9,
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the break point τ0 = 6 no longer corresponds to the final period of the sample, and

hence the difference between τ0 = 6 and τ0 = 4 in terms of power is smaller, as

expected.

Table 1: Frequencies (%) that the null hypothesis was rejected when the

breakpoint τ0 and the number of factors r0 are known.

τ0 = 4 τ0 = 6

ω0 = 0.00 ω0 = 0.10 ω0 = 0.15 ω0 = 0.00 ω0 = 0.10 ω0 = 0.15

T N Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ

6 100 6.3 6.7 10.8 11.4 19.2 19.5 6.2 6.9 6.7 6.0 7.5 8.0

300 5.0 4.8 29.7 29.0 55.8 55.1 5.9 5.7 9.4 8.9 14.9 14.2

600 5.0 4.9 53.0 52.7 81.8 80.4 5.2 5.3 14.8 13.7 26.3 24.8

9 100 7.2 16.4 12.8 12.7 23.1 23.7 6.7 15.9 15.6 14.2 29.8 28.4

300 5.3 5.2 43.0 43.7 75.0 75.5 5.5 5.8 47.9 47.2 80.0 77.9

600 6.1 6.3 70.8 71.2 94.5 94.5 5.90 6.0 79.0 78.2 96.0 95.0

Notes: The value of β0
1 was fixed at 0.5, and the value of ω0 := βτ0 − β1 was varied. Therefore, the

estimates under ω0 = 0.00 correspond to size, and the other ones correspond to power.

Next, we consider the case when the breakpoint τ0 is unknown. For this case, we

present the results only for T = 6 and τ0 = 4. The results for the other values of

T and τ0 do not add much; they are available upon request 4. The performance of

the tests in terms Type I error rate, power, and accuracy of τ̂ as an estimator of τ0

is summarised in Table 2. The Type I error rates are similar to the corresponding

estimates in Table 1 and hence are quite satisfactory, and the power is slightly lower,

which is expected since the breakpoint is unknown. The performance of the Distance

4Vasilis: It would be better to present them in the Supplementary Materials.
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test relative to the LM test, in terms of size and power, appears to be similar that

for the case when the break point is known. The frequency of detecting the correct

break point τ0 increases with N and ω0, as expected. 5

Table 2: Rejection Frequencies, unknown breakpoint, r0 known, T = 6, τ0 = 4.

D LM

When null rejected, When null rejected,

breakpoint detected at (%) breakpoint detected at (%)

ω0 N τ = 3 τ = 4 τ = 5 τ = 6 τ = 3 τ = 4 τ = 5 τ = 6

0.00 100 7.10 - - - - 6.74 - - - -

300 5.72 - - - - 5.22 - - - -

600 5.00 - - - - 5.04 - - - -

0.10 100 7.94 15 33 16 36 8.30 21 35 21 23

300 21.52 12 59 14 16 22.78 13 54 15 17

600 42.5 11 67 12 11 42.28 9 66 13 12

0.15 100 14.76 14 42 14 30 15.10 17 46 16 21

300 44.46 9 68 12 11 44.52 9 68 12 11

600 75.82 7 78 9 7 73.78 6 78 8 8

For power (ω0 6= 0.00) the entries under different values of τ in each row sum up to 100%. As an example,

consider the 4th row of results, corresponding to N = 100 and ω0 = 0.10, in which empirical power is 5.78

%. The interpretation of this row of results is that among the 5.78% of the 5000 samples that rejected the

null hypothesis of no structural break, 29%, 19%, 20%, and 31% of the samples estimated the breakpoint to

be at τ = 4, 3, 5, 6 respectively.

Number of factors is unknown

In practice, the number of factors is likely to be unknown. This section reports

simulation results for both D and LM tests when the number of factors is estimated
5Vasilis: Please see the suggested format, Table 8 for Table 2, at the end. Note that, tables are

required to be as self-contained as possible.
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r̂, the value of r that minimizes BIC over r = 0, 1, 2, with ξ = 0.3 and φ = 0.75 (see

Section 3.2). 6 Thus, the differences between Tables 1 and 3 (or between Tables 2

and 4), highlights the impact of estimating r0.

A major difference between the D and LM tests is that the former uses the r̂

obtained by minimizing the BIC value corresponding to the model under H1, while

in the latter case r̂ is obtained by minimizing the BIC value corresponding to the

model under H0. This ensures that the LM test does not use any sample estimates

computed for the model H1.

Table 3 presents results on rejection (i.e. rejection of the null hypothesis) fre-

quencies (%) when the breakpoint is known. The performance of the D-test is very

similar to that reported in Table 1; therefore, the effect of estimating the number

factors is small. The same applies to the performance of LM with respect to size.

However, power of the LMtest appears to be substantially lower than that of the

D-test. Moreover, for T = 9 and ω0 = 0.15, power fails to increase as N increases

from N = 300 to N = 600.

We investigated the underlying reason for this undesirable bahaviour of the LM-

test. We observed that when r̂ is obtained by minimizing the BIC value corresponding

to the model under H0, there is an identification problem in that when H0 is violated,

the structural break tends to be absorbed by an additional factor. To illustrate,

consider the example provided in Section 2.2. Suppose that there is a structural break

and hence H0 is not true. In this case, imposing the null under the assumption that

the number of factors is unknown, leads to the following alternative representation

of the model:

E(µ3,i(θ3)) = m− β1m−1 − Svec(GF ′)− (β3 − β1)m
(3)
−1, (16)

where GF ′ takes exactly the same form as in (9), whereas the last term on the right-

hand side can be captured by an additional factor component f̃t;
7 this is achieved

6The finite sample properties of the BIC with these parameter values were investigated by

Robertson and Sarafidis (2015).
7Vasilis: This is a really nice insight of yours! Well-done. Please check my changes, because the
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by f̃1 = f̃2 = 0, f̃3 = (β3 − β1), g̃0 = m02, g̃1 = m12 and g̃2 = m22. Therefore, in

this example, when the true model violates H0 and r0 is estimated under H0, the

structural break can be absorbed by an additional factor. In consequence, BIC may

select r̂ = 2, in which case H0 is not likely to be rejected. As a result, the LM-test is

likely to under-reject the null hypothesis. In our simulations, we observed that the

problem was more pronounced when the deviation of ω0 from zero becomes larger.

Intuitively, this is because when β3 − β1 = 0, 8 the last term in (16) is eliminated.

An implication of the above result is that in order to ensure consistency of the

LM-test in the case where r0 is unknown, r̂ needs to be obtained based on the BIC

value corresponding to the model under H1. However, if we were to do so, the appeal

of the LM-test relative to D-test diminishes.9

Table 3: Rejection Frequencies (%), known breakpoint, r0 unknown.

τ0 = 4, β0
1 = 0.5 τ0 = 6, β0

1 = 0.5

ω0 = 0.00 ω0 = 0.10 ω0 = 0.15 ω0 = 0.00 ω0 = 0.10 ω0 = 0.15

T N D LM D LM D LM D LM D LM D LM

6 100 6.2 5.7 13.2 11.2 21.4 16.8 8.9 6.3 10.3 6.9 11.3 7.6

300 4.9 4.5 28.5 24.2 54.5 39.5 5.8 5.4 11.2 9.4 17.3 13.5

600 4.9 4.8 52.8 44.0 80.6 48.2 5.1 5.1 15.5 14.3 28.0 23.6

9 100 6.9 14.3 14.9 21.9 25.3 30.5 7.0 14.6 16.7 22.2 29.2 31.7

300 5.3 4.7 43.2 38.3 73.7 58.1 5.6 5.4 49.4 42.3 81.3 56.3

600 6.2 6.1 72.2 63.3 95.1 58.8 5.9 5.8 80.1 65.5 96.4 46.1

Note: ω0 = 0.00 corresponds to size, otherwise power.

details need to be bit more precise.
8Vasilis: Please check. This is unclear. Do you mean β3 − β1 6= 0?
9We have conducted further simulations confirming that the power properties of LM are similar

to those of D when they use the same r̂ based on the model under H1. The results are available

upon request.
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Table 4 reports results on rejection frequencies when the breakpoint and the

number of factors are both unknown. The conclusions are qualitatively similar in

that the performance of the D test remains similar to that when r0 is known (see

Table 2 for comparison). On the other hand, the power of the LM test is much

lower than that of the D-test; the reason for this is likely to be the aforementioned

identification problem.

Table 4: Rejection Frequencies, unknown breakpoint, r0 unknown, T = 6,

τ0 = 4.

D LM

When null rejected, When null rejected,

breakpoint detected at (%) breakpoint detected at (%)

ω0 N τ̂ = 3 τ̂ = 4 τ̂ = 5 τ̂ = 6 τ̂ = 3 τ̂ = 4 τ̂ = 5 τ̂ = 6

0.00 100 7.46 - - - - 5.16 - - - -

300 5.68 - - - - 4.38 - - - -

600 5.12 - - - - 4.64 - - - -

0.10 100 9.98 17 35 14 34 5.80 21 30 24 24

300 20.98 14 55 16 15 18.80 12 55 15 17

600 42.46 10 68 13 9 34.52 10 63 12 15

0.15 100 15.24 15 43 17 26 9.06 13 41 21 25

300 44.22 9 67 11 13 31.38 9 61 14 16

600 74.28 6 78 9 7 45.40 7 67 13 13

For power (ω0 6= 0.00) the entries under different values of τ̂ in each row sum up to 100%. As an example,

consider the 4th row of results, corresponding to N = 100 and ω0 = 0.10, in which empirical power is 9.98

%. The interpretation of this row of results is that among the 5.78% of the 5000 samples that rejected the

null hypothesis of no structural break, 17%, 35%, 14%, and 34% of the samples estimated the breakpoint to

be at τ = 3, 4, 5, 6 respectively.
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4 Empirical Illustration

In this section we apply our method to investigate the empirical validity of the well-

known “Law of Proportionate Effect”, also known as Gibrat’s ‘Law’, for the US

finance industry. Gibrat’s law postulates that the size of a firm and its growth rate

are independent.

Consider the model yit = β0yi,t−1 + uit, where yit denotes some measure of size

(expressed in natural logarithms) for firm i at time t (i = 1, . . . , N ; t = 1, . . . , T ).

Subtracting yi,t−1 from both sides yields ∆yit = δ0yi,t−1+uit, where δ
0 = β0−1. The

growth rate of firm i at time t is ∆yit. Gibrat’s ‘Law’ implies the restriction β0 = 1,

or equivalently δ0 = 0. To see this more closely, notice that for β0 = 1 firm size is a

random walk and so it can be expressed as yit = yi0 +
∑t

s=1 uis. Since the first term

therein, yi0, does not depend on t, it is clear that the growth rate of firm i, ∆yit, is

white noise.

Gibrat’s ‘Law’ has attracted considerable attention in economics (see e.g. Santarelli

et al. 2006), mainly because it is consistent with an empirical regularity observed

across several industries, namely that the distribution of firm size is often highly

skewed to the right. This is due to the fact that many industries consist of a small

(respectively, large) number of big (respectively, small or medium-sized) firms. In

addition, as pointed out by Simon and Bonini (1958), there is also a connection

between Gibrat’s ‘Law’ and the returns to scale in a given industry. In particular,

under constant returns to scale, the probability of a given firm increasing in size

relative to its existing size is expected to be constant across all firms in the industry

that lie above a critical minimum size.

Our data set spans 13 years (2002 − 2014) and contains observations on 4, 128

banking institutions. The error term in our model is assumed to obey the multi-factor

structure,

uit = λ′
if

0
t + εit. (17)

Allowing for a common factor component is important in the present case for several
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reasons. For instance, a subset of the factors may be adequate to capture the effect

of the age of the banking institution since ‘age’ is not observed in our sample. For

example, let xit denote the variable age and βi denote the bank-specific age effect.

Since age increases at the same rate for all companies every year, one may set

βixit = βi(xi0 + t) = γi + βit, (18)

where xi0 denotes the age of the bank at the beginning of the sample period, and

γi ≡ βixi0. Thus, the effect of the unobserved variable age can be captured using

two factors, one of which is constant over time and resembles a fixed effect, while

the other one is a deterministic time trend. Since we do not know a priori whether

age has a linear effect or not, it is prudent not to impose specific restrictions on how

the factors vary over time. 10

The common factor approach may capture the presence of common shocks, such

as the GFC, that have hit all individual banks, albeit with different intensities. In-

deed, due to the pervasiveness of the recent GFC, it is important to be able to

investigate whether the parameter β0 appears to be constant over time. Therefore,

the application of our methodology to this research question is particularly relevant.

We consider the monetary value of assets expressed in constant prices as a measure

of bank size. The results are reported in Table 5.11 The null hypothesis for the Wald-

test is β0
1 = 1. Let r denote the number of factors fitted in the model, while β0

1 and

β0
τ denote the value of the autoregressive parameters prior to and after the break,

respectively. Hence the magnitude of the break is β0
τ − β0

1 . Let PW , PJ , and PDmax

denote the p-values for the Wald-test, overidentifying restrictions test (Hansen’s test),

and the structural break test proposed in this paper, respectively. The number of

10In practice, it is impossible to distinguish between the effect of age and the presence of a

separate deterministic linear trend. Our aim is not to identify these factors per se, but rather to

identify whether the parameter δ0 is subject to a break or not, controlling for a flexible form of

unobserved heterogeneity. Failing to do so may result in invalid inferences.
11To avoid possible confusion, we only report results for D. The results for LM are similar,

subject to the caveat discussed in the simulations. These results are available upon request.
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factors was selected using the BIC model information criterion. 12 In this case, there

are 78 moment conditions in total.

Table 5: Evaluation of the Gibrat’s ‘Law’ for Banks in the USA

Est. S.E. W Pt [95% C. I.] PJ PDmax
Break Date BIC

r = 1 β0
1 0.60 0.02 25 0.00 [0.55, 0.65]

0.00 0.00 2010 -56
β0
τ 0.72 0.03 24 0.00 [0.66, 0.78]

r = 2 β0
1 0.48 0.08 5.9 0.00 [0.32, 0.63]

0.68 0.00 2012 -81
β0
τ 0.99 0.08 12 0.00 [0.82, 1.15]

r = 3 β0
1 0.41 0.13 3.1 0.00 [0.15, 0.67]

0.99 0.00 2011 -50
β0
τ 0.94 0.28 4.4 0.00 [0.39, 1.49]

a. The sample contains data for 4,128 US bank institutions, spanning the period

2002-2014.
b. Est: Estimate of the relevant β parameter; S.E.: The Standard Error of the

estimate; Pt: p-value for the t-statistic; C.I.: Confidence Interval; PJ : the p-value

for the Hansen’s test’; PDmax
: the p-value of the structural break test; ‘Break

Date’: the estimated year of the structural break; BIC: Bayesian Information

Criterion for choosing the number of factors.
c. W denotes the Wald statistic.

Based on the results of Table 5, the optimal number of factors is two (i.e. r̂ = 2),

which is the value corresponding to the smallest BIC value based on the unrestricted

model. Notice that in the two-factor model, the null hypothesis for the validity of

the instruments is not rejected by the overidentifying restrictions test and therefore

the model appears to be correctly specified. The null hypothesis of no structural

break is rejected 13 at the 1% level of significance and the break is estimated to have

occurred in 2012, which may be regarded as the end of the GFC. In particular, the

12Vasislis: Better to mention that number of factors was selected using the BIC under H1, as-

suming that is true; otherwise we may have an inconsistent r̂.
13rejected by which test ?
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null hypothesis β0
1 = 1 is rejected prior to the GFC (against the alternative β0

1 < 1)

but it is not rejected afterwards 14 This suggests that during the period 2002-2011,

the growth rate of financial institutions was negatively correlated with their size, and

small banks grew at a higher rate than large banks. On the other hand, the break in

2012 is such that the new value of the autoregressive parameter provides empirical

support towards Gibrat’s ‘Law’.

One reason for such a development might be the establishment of the so-called

‘Basel III’ (or the Third Basel Accord) capital regulatory framework in 2010-2011.

This is a global, voluntary regulatory framework on bank capital adequacy, stress

testing and market liquidity risk, which was agreed upon by the members of the Basel

Committee on Banking Supervision in 2010-–11. In particular, in order to prevent a

further collapse of the financial sector during a potential future GFC, governments

around the world decided to introduce more stringent capital requirements. It can

be expected that higher capital requirements may make banks better able to absorb

losses on their own resources. In response, banks did appear to change their behaviour

by raising equity, cutting down lending, and reducing asset risk; as it has been argued

in the relevant literature, well-capitalized banks managed to perform better during

and after the GFC (e.g. Demirguc-Kunt et al. 2013). Overall, our results provide

support for the claim that following the establishment of the 2011 capital regulatory

framework, the growth of financial institutions depends more on capitalized structure

than on size.

5 Discussion

Our proposed estimation and testing procedures remain valid in a pure AR(1) model,

even when the autoregressive coefficient is equal to one, provided that the matrix of

14Vasilis: Is the claim ’not rejected’ based on a proper test, if so, we need to make that clear.

The table shows that the p-value Pt is zero for every case; something is not clear to me. When

r = 2 the estimate of β0
τ is 0.99 (se=0.08). How was W = 12 obtained? Earlier, it was mentioned

that the null for the Wald test is β0
1 = 1. Is this related to the column of W in the table?
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derivatives of the moment functions has full rank (Assumption 3 in this paper). The

full-rank assumption on the Jacobian matrix essentially implies that identification

of a unit root process requires that T is fixed and, in addition, some factors are

‘genuine’, in the sense that not all factors reduce to ft = 1 for all t, which is the

one-way error components model.15

As an anonymous referee pointed out, at first glance, the foregoing framework

might appear to be a special case of the general framework of Andrews (1993), al-

though this is not the case. The setting in Andrews (1993) is for time series data with

one observation at each time point (i.e. N = 1) and T → ∞, whilst in our setting

T is fixed and N → ∞. Consequently, the two settings are based on different model

assumptions and different structures. For example, in the former case, moment func-

tions are estimated by averaging over time using terms of the form T−1
∑T

t=1(·) and
then letting T → ∞. By contrast, in our setting the moment functions are estimated

by averaging over i using terms of the form N−1
∑N

i=1(·) and letting N → ∞. As a

result, some differences are worth noting: (i) in the present paper no restrictions are

placed on the inter-temporal variation of the data, other than those in Assumption

1. For example, the data may exhibit deterministic or stochastic trends, for example,

ft = t is allowed. By contrast, in Andrews (1993) it is assumed that the data do

not exhibit deterministic or stochastic trends (see top of page 822 therein); (ii) in

Andrews (1993) the structural break date is assumed to be bounded away from the

end of the sample in order to ensure that there is an adequate number of observations

to estimate the parameters appearing after the structural break. By contrast, in our

theoretical setting, since T is fixed and N → ∞, estimation of the parameters of

interest is feasible even if the structural break takes place at the end of the sample

period.

The results obtained in Section 2 can also be extended in other directions. An

anonymous referee suggested that it would be of interest to compare and contrast

the present setting with the more flexible model yit = x′
itβt + λ′

if t + εit, which

15Robertson et al. (2018) extend Robertson and Sarafidis (2015) and develop a unit root test for

T fixed.
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has time-specific βt (t = 1, . . . , T ), and test H0 : {β1, . . . ,βT} are all equal vs

H∗
1 : {β1, . . . ,βT} are not all equal. Such a test would be suitable as a general

diagnostic test of model adequacy (see Andrews 1993, pg. 825 for such a global test

when T → ∞).

The methodology proposed in the previous sections under a known breakpoint

generalizes in a straightforward way to the case of testing against H∗
1 . To this end, let

us define µi(θ) = Z ′
i

(
yi −

∑T
t=1 X

(t)
i βt

)
−S(IT⊗G)f and µ̂i(θ) = N−1

∑N
i=1µi(θ)

and consider (say) a ‘global’ LM-type test, which we denote by LMG, of H0 against

H∗
1 . Note that the H1 in the previous sections is a special case of H∗

1 . Therefore, one

would conjecture that a test against H1 is also likely to have power when the true

model is not in H1 but in H∗
1 .

We extended the simulation study reported earlier to include the foregoing test

against H∗
1 as well. In particular, we considered the model (15) modified to yit =

βtyi,t−1 + λif
0
t + εit, (t = 1, . . . , T ), where βt = 0.5 + (t/2)ω0, for t = 2, . . . , 6. 16

As expected, when the true model has only one structural break, as is the case in

model (1), LMG-test against H∗
1 exhibits lower power than the Dτ - and LMτ -tests

introduced in this paper. For example, for N = 300, ω0 = 0.15, τ0 = 4, the powers of

Dτ , LMτ and LMG are 56%, 55% and 35%, respectively. On the other hand, for the

case where βt depends on t, we observed that LMG tends to have moderately higher

power compared to Dτ and LMτ . For example, for N = 300, ω0 = 0.15, τ0 = 4, the

powers for Dτ , LMτ and LMG tests are 77%, 76% and 84%, respectively.
17 18

The results in Theorems 1 and 3 can be extended to obtain the efficiency of the

test under a sequence of local hypotheses. To illustrate this, let us consider the

sequence of local hypotheses H1N : βτ = β1 + N−1/2δ, for a given break point τ ,

16We assumed that β1 = β2, to ensure that all parameters are identified.
17Mervyn: please see discussion above if you are happy. Should we mentioned we

also developed theory for this case? Should we mention about supplement?
18Vasilis: I think, we do not need to mention about these proofs, because it should be clear that

we have these proofs from the fact that we chose β1 = β2 to overcome identifiability. If the referee

or editor needs them, they will ask.
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where δ 6= 0. Then, under H1N , the limiting distribution of the test statistic in

Theorem 1, for the case of known break point, is a noncentral chi-square. A similar

result holds for the LM-test in Theorem 3. Hence, the proposed tests have nontrivial

power against local hypotheses converging at the rate N−1/2.

6 Conclusion

This paper developed a structural break detection test for panel data models with

multi-factor error structure. The stochastic framework considered in the paper is

very general because it allows for (i) multiple sources of unobserved heterogeneity,

which are represented by common factors, and (ii) endogenous regressors. This

is important because often the covariates receive some form of ‘feedback’ from the

dependent variable. The proposed structural break tests are based on a distance type

statistic and an LM-type statistic, both derived within the GMM framework. The

asymptotic properties of the statistic are established for both known and unknown

breakpoints, and when the number of factors is known and when it is unknown. The

simulation study demonstrates that the proposed method performs well in terms of

size and power, as well as in terms of locating the breakpoint correctly.
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Appendix

For an m× n real matrix A, let A′ denote its transpose, ‖A‖ denote its Frobenius norm

[tr(A′A)]1/2, vec(A) denote the vectorization of A, PA = A(A′A)−1A′, and MA = Im −
PA where Im is the m×m identity matrix. Finally, let

p→ and
d→ denote convergence in

probability and in distribution respectively.
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We assume that Assumptions 1–3 are satisfied throughout this Appendix. To simplify

the notation and details, the proof Theorems 1–2 are provided here for the special case

K = 1 and r = 1. This does not sacrifice the intricacies of the ideas, but simplifies the

details. For this special case, the regressor xit, the factor f0
t , and the factor loading λi

are scalars. Thus, our model under the alternative hypothesis H1, reduces to the following

form for some unknown τ in {2, 3, . . . , T}:

yit =





xitβ
0
1 + λif

0
t + εit; t = 1, . . . , τ − 1;

xitβ
0
τ + λif

0
t + εit; t = τ, . . . , T.

(19)

Lemma A.1. Suppose that H0 holds and τ ≥ 2. Let Aζ×(s+K) = Φ
−1/2
1 Γ1, Bζ×(s+2K) =

Φ
−1/2
τ Γτ , L1 = {Ax : x ∈ R

s+K}, and L2 = {By : y ∈ R
s+2K}. Then

(a) PA := A(A′A)−1A′ is the projection matrix onto L1, PB := B(B′B)−1B′ is the

projection matrix onto L2, L1 is a linear subspace of L2, and PBPA = PAPB = PA.

(b) Vτ = M
Φ

−1/2
1

Γ1

−M
Φ

−1/2
τ Γτ

= PB −PA is the projection matrix onto L⊥
1 ∩ L2 where

L⊥
1 is the orthogonal complement of L1 in L2, and the rank of Vτ is dim(βτ ).

Proof. It follows from the theory of least squares estimation, that PA := A(A′A)−1A′

is the projection matrix onto L1, and PB := B(B′B)−1B′ is the projection matrix onto

L2. Let s denote the dimension of (g′,f ′). Recall that θ′
1 = (g′,f ′,β′

1)1×(s+K) and θ′
τ =

(g′,f ′,β′
1,β

′
τ )1×(s+2K). Recall the definition of {M ,M (τ),M (1)} in (4). Differentiating

µ1,i(θ1) with respect to θ1 and taking expectation, we may write Γ1 = −[Hζ×s | M ζ×K ],

for some H(θ1). Similarly Γτ = Γτ (θτ ) = −[Hζ×s | M (1)
ζ×K | M (τ)

ζ×K ]. Since M = M (τ) +

M (1), we have Γ1 = ΓτR, where R is the 3 × 2 partitioned matrix [Is, 0;0, IK ;0, IK ].

Since A = BR, it follows that L1 is a linear subspace of the linear space L2. Therefore,

projecting a vector z onto L2 and then onto L1 provides the same result as projecting z

onto L1. Hence, we have PAPBz = PBPAz = PAz for any z; this may also be verified

directly as PAPB = A(A′A)−1A′B(B′B)−1B′ = A(A′A)−1R′B′B(B′B)−1B′ = PA.

Similarly, PBPA = PA. Now, it is easily seen that M
Φ

−1/2
1

Γ1

−M
Φ

−1/2
τ Γτ

= PB −PA, is

a projection matrix; it projects onto L⊥
1 ∩ L2, where L⊥

1 is the orthogonal complement of

L1 in L2. The rank of M
Φ

−1/2
1

Γ1

−M
Φ

−1/2
τ Γτ

is trace[PB]− trace[PA] = K, the number

of equality constraints in the null hypothesis.

Proof of Theorem 1. LetCτ = Γ′
τ (θ

0
τ )Φ

−1
τ (θ0

τ )Γτ (θ
0
τ ) andDτ = Γ′

τ (θ
0
τ )Φ

−1
τ (θ0

τ ). Since
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the null hypothesis is assumed to hold, we also have, βτ = β1, µ1(θ
0
1) = µτ (θ

0
τ ), µ̂1(θ

0
1) =

µ̂τ (θ
0
τ ), and Φ1(θ

0
1) = Φτ (θ

0
τ ).

By part (ii) of Lemma 1 and the Mean Value Theorem applied to
√
Nµ̂τ (θ̂τ ), we have,

for τ ≥ 2

√
N µ̂τ (θ̂τ ) =

√
N µ̂τ (θ

0
τ ) + Γ̂τ (θ̄τ )

√
N(θ̂τ − θ0

τ )

=
√
N µ̂τ (θ

0
τ )− Γτ (θ

0
τ )C

−1
τ Dτ

√
N µ̂τ (θ

0
τ ) + op(1)

=
[
Iζ − Γτ (θ

0
τ )C

−1
τ Dτ

]√
N µ̂τ (θ

0
τ ) + op(1).

Hence, with Γτ = Γτ (θ
0
τ ) and Φτ = Φτ (θ

0
τ ) for simplicity,

√
NΦ−1/2

τ µ̂τ (θ̂τ ) = [Iζ −Φ−1/2
τ Γτ (Γ

′
τΦ

−1
τ Γτ )

−1Γ′
τΦ

−1/2
τ ]

√
NΦ−1/2

τ µ̂τ (θ
0
τ ) + op(1)

= M
Φ

−1/2
τ Γτ

(√
NΦ−1/2

τ µ̂τ (θ
0
τ )
)
+ op(1)

= M
Φ

−1/2
τ Γτ

(√
NΦ

−1/2
1 µ̂1(θ

0
1)
)
+ op(1)

= M
Φ

−1/2
τ Γτ

zN + op(1). (20)

Then

N{µ̂τ (θ̂τ )}′Φ−1
τ µ̂τ (θ̂τ ) = z′

NM
Φ

−1/2
τ Γτ

zN + op(1). (21)

By similar arguments, we have the following for τ = 1:

√
NΦ

−1/2
1 µ̂1(θ̂1) = [Iζ −Φ

−1/2
1 Γ1(Γ

′
1Φ

−1
1 Γ1)

−1Γ′
1Φ

−1/2
1 ]

√
NΦ

−1/2
1 µ̂1(θ

0
1) + op(1)

= M
Φ

−1/2
1

Γ1

(√
NΦ

−1/2
1 µ̂1(θ

0
1)
)
+ op(1)

= M
Φ

−1/2
1

Γ1

zN + op(1), (22)

where Γ1 = Γ1(θ
0
1), Φ1 = Φ1(θ

0
1). Then

N{µ̂1(θ̂1)}′Φ−1
1 µ̂1(θ̂1) = z′

NM
Φ

−1/2
1

Γ1

zN + op(1). (23)

Since Φ̂−1
τ (θ̂

(1)
τ )

p→ Φ−1
τ (τ ≥ 1), the statistic for testing H0 against H(τ) is

Dτ = N
[
Q̂1(θ̂1)− Q̂τ (θ̂τ )

]
= N

[
µ̂′
1(θ̂1)Φ̂

−1
1 (θ̂

(1)
1 )µ̂1(θ̂1)− µ̂′

τ (θ̂τ )Φ̂
−1
τ (θ̂(1)

τ )µ̂τ (θ̂τ )
]

= N
[
µ̂′
1(θ̂1)Φ

−1
1 µ̂1(θ̂1)− µ̂′

τ (θ̂τ )Φ
−1
τ µ̂τ (θ̂τ )

]
+ op(1),

= z′
N [M

Φ
−1/2
τ Γτ

−M
Φ

−1/2
1

Γ1

]zN + op(1), by (21) and (23)

= z′
NVτzN + op(1). (24)
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Since zN converges in distribution to z ∼ N (0, Iζ), we have Dτ
d→ z′Vτz. Since Vτ is

a projection matrix by Lemma A.1, it follows that Dτ
d→ χ2

K where K is the rank of Vτ ,

which in turn is dim(βτ ).

Proof of Theorem 2. Let τℓ ∈ {τ1, . . . , τL}. By Theorem 1, we have

Dτℓ =
√
N µ̂′

1(θ
0
1)Φ

−1/2
1 Vτℓ

√
NΦ

−1/2
1 µ̂1(θ

0
1) + op(1).

Let D = (Dτ1 , . . . ,DτL)
′.

Then, since zN =
√
N [Φ

−1/2
1 µ̂1(θ

0
1)], we have

D = (z′
NVτ1zN , . . . ,z′

NVτLzN ) + op(1)
d→ (z′Vτ1z, . . . ,z

′VτLz). (25)

The Distance type test statistic, max
l=1,...,L

{Dτℓ}, is a continuous function of [Dτ1 , . . . ,DτL ]
′.

Therefore, by the continuous mapping theorem, the asymptotic distribution of max
l=1,...,L

{Dτℓ}
is the distribution of the maximum of the components in {z′Vτ1z, . . . ,z

′VτLz}.

Proof of Theorem 3.

It follows form (3), (4), and (7) that µτ (θ) = µ1(θ) and Φτ (θ) = Φ1(θ) when θ

satisfies H0. Also, since θ̂R is in H0, we have µ̂τ (θ̂R) = µ̂1(θ̂1) and Φ̂τ (θ̂R) = Φ̂1(θ̂1). Let

Êτ = [Φ̂τ (θ̂R)]
−1/2[Γ̂τ (θ̂R)] and Eτ = [Φτ (θ

0)]−1/2[Γτ (θ
0)]. Then Êτ = Eτ +op(1), Û τ =

Ê
′

τ Êτ and Û
−1
τ = [E′

τEτ ]
−1 + op(1). By (22), we have (see (13) for definitions of Âτ and

Û τ )

√
NÂτ =

√
N [Γ̂τ (θ̂R)]

′[Φ̂τ (θ̂R)]
−1µ̂τ (θ̂R) =

√
N [Γ̂τ (θ̂R)]

′[Φ̂τ (θ̂R)]
−1/2[Φ̂1(θ̂1)]

−1/2µ̂τ (θ̂R)

= Ê
′

τ [Φ1(θ
0)]−1/2µ̂1(θ̂1) + op(1) = E′

τMΦ
−1/2
1

Γ1

zN + op(1).

Using the foregoing representation of
√
NÂτ , we obtain

LMτ = NÂ
′

τ Û
−1
τ Âτ

= [E′
τMΦ

−1/2
1

Γ1

zN + op(1)]
′{[E′

τEτ ]
−1 + op(1)}{E ′

τMΦ
−1/2
1

Γ1

zN + op(1)}
= z′

NM
Φ

−1/2
1

Γ1

Eτ [E
′
τEτ ]

−1E′
τMΦ

−1/2
1

Γ1

zN + op(1)

= z′
NM

Φ
−1/2
1

Γ1

(I −M
Φ

−1/2
τ Γτ

)M
Φ

−1/2
1

Γ1

zN + op(1)

= z′
N (M

Φ
−1/2
1

Γ1

−M
Φ

−1/2
τ Γτ

)zN + op(1) = z′
NVτzN + op(1);
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the second last step follows since, M2

Φ
−1/2
1

Γ1

= M
Φ

−1/2
1

Γ1

= M
Φ

−1/2
1

Γ1

M
Φ

−1/2
τ Γτ

= M
Φ

−1/2
τ Γτ

M
Φ

−1/2
1

Γ1

,

by Lemma 1.

The proof of Theorem 4 is similar to that of Theorem 2, hence omitted.
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Table 6: Percent of times that the null hypothesis was rejected when the

breakpoint τ0 and the number of factors r0 are known.

τ0 = 4(a) τ0 = 6

ω0 = 0.00 ω0 = 0.10 ω0 = 0.15 ω0 = 0.00 ω0 = 0.10 ω0 = 0.15

T N Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ

6 100 6.3 6.7 10.8 11.4 19.2 19.5 6.2 6.9 6.7 6.0 7.5 8.0

300 5.0 4.8 29.7 29.0 55.8 55.1 5.9 5.7 9.4 8.9 14.9 14.2

600 5.0 4.9 53.0 52.7 81.8 80.4 5.2 5.3 14.8 13.7 26.3 24.8

9 100 7.2 16.4 12.8 12.7 23.1 23.7 6.7 15.9 15.6 14.2 29.8 28.4

300 5.3 5.2 43.0 43.7 75.0 75.5 5.5 5.8 47.9 47.2 80.0 77.9

600 6.1 6.3 70.8 71.2 94.5 94.5 5.9 6.0 79.0 78.2 96.0 95.0

(a) The parameter β0
1 is fixed at 0.5. By definition, ω0 = βτ0 − β1; therefore, the estimates under

ω0 = 0.00 are the type I error rates in %; each entry under ω0 = 0.10 and ω0 = 0.15 is the

estimated power.

The next page provides the same table with two significant digits; I prefer table 7, but

OK with Table 6.
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Table 7: Percent of times that the null hypothesis was rejected when the

breakpoint τ0 and the number of factors r0 are known.

τ0 = 4(a) τ0 = 6

ω0 = 0.00 ω0 = 0.10 ω0 = 0.15 ω0 = 0.00 ω0 = 0.10 ω0 = 0.15

T N Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ Dτ LMτ

6 100 6.3 6.7 11 11 19 20 6.2 6.9 6.7 6.0 7.5 8.0

300 5.0 4.8 30 29 56 55 5.9 5.7 9.4 8.9 15 14

600 5.0 4.9 53 53 82 80 5.2 5.3 15 14 26 25

9 100 7.2 16 13 13 23 24 6.7 16 16 14 30 28

300 5.3 5.2 43 44 75 76 5.5 5.8 48 47 80 78

600 6.1 6.3 71 71 95 95 5.9 6.0 79 78 96 95

(a) The parameter β0
1 is fixed at 0.5. By definition, ω0 = βτ0 −β1; therefore, the estimates under

ω0 = 0.00 are the type I error rates in %; each entry under ω0 = 0.10 and ω0 = 0.15 is the

estimated power.

37



Table 8: Performance of the tests when the break point τ0 is unknown and the

number of factors r0 is known; T = 6 and τ0 = 4.

Dmax LMmax

Distribution of τ̂ (b) Distribution of τ̂ (b)

ω0 N P (a) τ̂ = 3 τ̂ = 4(c) τ̂ = 5 τ̂ = 6 P (a) τ̂ = 3 τ̂ = 4(c) τ̂ = 5 τ̂ = 6

0.00 100 7.1 - - - - 6.7 - - - -

300 5.7 - - - - 5.2 - - - -

600 5.0 - - - - 5.0 - - - -

0.10 100 7.9 15 33 16 36 8.3 21 35 21 23

300 21.5 12 59 14 16 22.8 13 54 15 17

600 42.5 11 67 12 11 42.3 9 66 13 12

0.15 100 14.8 14 42 14 30 15.1 17 46 16 21

300 44.5 9 68 12 11 44.5 9 68 12 11

600 75.2 7 78 9 7 73.8 6 78 8 8

(a) The variable P denotes the percent of times that the null hypothesis was rejected by the relevant test. For

example, when ω0 = 0 and N = 100, the null hypothesis was rejected by the Dmax-test 7.1% times in the 5000

iid samples. The values of P in the three rows corresponding to ω0 = 0.00 are Type I error rates; the other

values of P are estimated powers.
(b) The ’Distribution of τ̂ ’ provides the observed distribution (in %) of τ̂ among the samples for which the null

hypothesis was rejected by the test. As an example, for ω0 = 0.10 and N = 100, the empirical power of

the Dmax-test is 7.9%. Further, among the 7.9% of the 5000 samples that rejected the null hypothesis of

no structural break, 15%, 33%, 16%, and 36% of the samples estimated the breakpoint to be τ̂ = 3, 4, 5, 6

respectively; therefore, the sum of these four percentages is 100%.
(c) Since the true breakpoint is τ0 = 4, the column under τ̂ = 4 provides the percent of times the break point

was corrected estimated, conditional on the null hypothesis being rejected.

38



The results obtained in Section 2 can also be extended in other directions. An anony-

mous referee suggested that it would be of interest to compare and contrast the present

setting with the more flexible model yit = x′
itβt + λ′

if t + εit, which has time-specific βt

(t = 1, . . . , T ), and test H0 : {β1, . . . ,βT } are all equal vs H∗
1 : {β1, . . . ,βT } are not all

equal. Such a test would be suitable as a general diagnostic test of model adequacy (see

Andrews 1993, pg. 825 for such a global test when T → ∞).

The methodology proposed in the previous sections under a known breakpoint gener-

alizes to the case of testing against H∗
1 . Let LMG and DG denote the LM and distance

statistics for testing H0 against H∗
1 . Then the asymptotic null distribution of these two

test statistics is χ2
k where k is the number of parameter equality constraints. Since H1 in

the previous sections is a special case of H∗
1 , one would conjecture that a test against H1

is also likely to have power when the true model is not in H1 but in H∗
1 . We would expect

that if the true model has only break, then the tests introduced in this paper are likely to

be more powerful than the aforementioned more global tests, DG and LMG. Similarly, if

the true model has several breaks, then the tests introduced in the previous sections of this

paper are likely to be less powerful than DG and LMG. Our simulation results, reported

below, corroborate these conjectures.

We extended the simulation study in Table 1 with the corresponding model (15) mod-

ified to yit = βtyi,t−1 + λif
0
t + εit, (t = 1, . . . , T ), where βt = 0.5 + (t/2)ω0, for t = 2, . . . , 6;

we assumed that β1 = β2, to ensure that the parameters are identified. As expected, when

the true DGP is as in Table 1 with exactly one break and (N,ω0, τ0) = (300, 0.15, 4), the

powers of Dτ0 , LMτ0 and LMG are 56%, 55% and 35%, respectively. On the other hand,

when the true DGP is modified to have the aforementioned time-specific βt, the powers

the powers of Dτ0 , LMτ0 and LMG are 77%, 76% and 84%, respectively.
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