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Abstract. Identifying structural change is a crucial step in analysis of time se-
ries and panel data. The longer the time span, the higher the likelihood that
the model parameters have changed as a result of major disruptive events, such
as the 2007–2008 financial crisis and the 2020 COVID–19 outbreak. Detecting
the existence of breaks, and dating them is therefore necessary, not only for es-
timation purposes but also for understanding drivers of change and their effect
on relationships. This article introduces a new community contributed command
called xtbreak, which provides researchers with a complete toolbox for analysing
multiple structural breaks in time series and panel data. xtbreak can detect the
existence of breaks, determine their number and location, and provide break date
confidence intervals. The new command is used to explore changes in the relation-
ship between COVID–19 cases and deaths in the US, using both aggregate and
state level data, and in the relationship between approval ratings and consumer
confidence, using a panel of eight countries.

Keywords: Structural breaks; Change points; Time series data; Panel data; Inter-
active Fixed Effects; Cross-section Dependence; xtbreak.

1 Introduction
In economics and elsewhere linear relationships between dependent and explanatory
variables are at the core of interest. To investigate such relationships, observations over
time for one or more cross-sectional units such as firms, individuals, or countries are
collected and are subsequently used in estimating the coefficients of regression models. A
key assumption here is that the coefficients do not change over time. This assumption
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2 Structural Breaks in Stata

is unlikely to hold, especially for longer periods of time, because of major disruptive
events, such as financial crises. Parameter instability can have a detrimental impact on
estimation and inference, and can lead to costly errors in decision-making. The times
in which the parameters change are called “change points” in the statistics literature
and “structural breaks” in economics. As both terms are synonymous to each other, in
the following we will use the latter term or just “breaks”.

The aim of this paper is to propose a new community contributed Stata package
called xtbreak.1 The package implements the methods developed by Bai and Perron
(1998) for the case of pure time series, and Ditzen et al. (2024) in the case of panel
data.2

xtbreak provides researchers with a complete toolbox for analysing multiple struc-
tural breaks in time series and panel data. It can detect and date an unknown number of
breaks at unknown break dates. The toolbox is based on asymptotically valid tests for
the presence of breaks, a consistent break date estimator, and a break date confidence
interval with correct asymptotic coverage. In fact, xtbreak includes no less than three
tests; (i) a test of no structural breaks against the alternative of a specific number of
breaks, (ii) a test the null hypothesis of no structural breaks against the alternative of
an unknown number of structural breaks, and (iii) a test of the null of s breaks against
the alternative of s+1 breaks. The package also includes an algorithm that employs the
last test consecutively in order to estimate the true number of breaks. The tested break
dates can be unknown or user-defined, as when researchers have additional information
and wish to examine whether there was a break in a specific point in time. Once the
presence of breaks has been tested and confirmed, xtbreak estimates the locations of
the breaks and provides the associated confidence intervals.

A large number of breaks does not translate into heavy computational burden, as
xtbreak implements an efficient dynamic programming method described in Bai and
Perron (2003), which ensures that there are O(T 2) computations even with more than
two breaks, where T is the number of time series observations.

xtbreak can deal with models of “pure” or “partial” structural breaks. A pure
structural breaks model is one in which the coefficients of all explanatory variables
change, while in a partial structural breaks model only a subset of the coefficients
change.

xtbreak is applicable under very general error conditions. For time series data the
only requirement is that there are no unit roots in the errors. In case of panel data, units
can be independent, or cross-sectionally dependent where cross-sectional dependence
takes an “interactive fixed effects”, or “common factor”, structure. Regressors can
load on the same set of factors as the errors, which means that regressors may be
endogenous - although no instrumental variables are necessary. The errors can also be
serially correlated and heteroskedastic, but not non-stationary.

1. Updates will be continuously provided on our GitHub page: GitHub.
2. The Ditzen et al. (2024) study develops the methods and asymptotic theory for the analysis of

panel data with multiple structural breaks and interactive fixed effects. For one break, the results
coincide with the earlier work by Karavias et al. (2023).

https://janditzen.github.io/xtbreak/
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The works of Bai and Perron (1998), and Ditzen et al. (2024) draw on the economics
literature. However, structural breaks are not confined to economics but happen also in
other fields of research, including engineering, epidemiology, climatology, and medicine.
xtbreak is therefore widely applicable. To showcase this width, we consider two exam-
ples drawn from the areas of epidemiology and political economy. First, we consider the
epidemiological relationship between COVID–19 cases and deaths. Using both aggre-
gate country and disaggregated state level US data, we find evidence of multiple breaks.
In particular, we find that an increase in the number of COVID–19 cases lead to more
deaths in the beginning of the pandemic than in later waves. Secondly, we examine
if there are breaks in the relationship between consumer confidence and the approval
ratings of country leaders. Using a panel of eight countries observed over a long period
of time we find that there is great cross-country heterogeneity in terms of the number
and locations of breaks.

The remainder of the paper is organized as follows: Section 2 presents the model
that we will be considering. We focus on the panel case, which in most regards includes
the pure time series setup as a special case. Important differences are brought up and
discussed. Sections 3, 4 and 5 present the hypothesis tests, the break date estimation
procedure, and the xtbreak command, respectively. Sections 6 and 7 contain the empir-
ical analyses of the COVID–19 and leader approval ratings data, respectively. Section 8
concludes the paper. Section 9 presents instructions on installing xtbreak, and Sections
10 and 11 contain acknowledgements and references, respectively.

2 Model discussion
We consider the following model with N units, T periods and s structural breaks:

yi,t = x′
i,tβ + w′

i,tδj + ei,t, (1)

where t = Tj−1, ..., Tj and j = 1, ..., s + 1 with T0 = 0 and Ts+1 = T . Hence, there are
s breaks, or s + 1 regimes with regime j covering the observations Tj−1, ..., Tj . In order
emphasise the break structure, we can write (1) regime-wise;

yi,t = x′
i,tβ + w′

i,tδ1 + ei,t for t = T0, ..., T1,

yi,t = x′
i,tβ + w′

i,tδ2 + ei,t for t = T1, ..., T2,

...
yi,t = x′

i,tβ + w′
i,tδs+1 + ei,t for t = Ts, ..., Ts+1.

For N = 1, this is a time series model, while for N > 1, it is a panel data model. The
dependent variable yi,t and the regression error ei,t are scalars, while xi,t and wi,t are
p × 1 and q × 1 vectors, respectively, of regressors. The coefficients of the regressors in
xi,t are unaffected by the breaks, while those of wi,t are affected by the breaks. It is
possible that all independent variables break, in which case x′

i,tβ is defined to be zero.
In the panel case, the break dates are common for all units. This is a very common
assumption that is reasonable in settings where the frequency of the data is not high.
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Let Ts = {T1, ..., Ts} be a collection of s break dates such that Tj = ⌊λjT ⌋, where
λ0 = 0 < λ1 < ... < λs < λs+1 = 1. By specifying the breaks in this way we ensure that
they are distinct from one another and that they are bounded away from the beginning
and end of the sample. This is important because we need to be able to estimate the
model within each regime.

In case the data has a panel structure (N > 1), we allow for unobserved heterogeneity
in the form of interactive fixed effects:

ei,t = f ′
tγi + εi,t, (2)

where ft is an m × 1 vector of factors and γi is a conformable vector of factor loadings.3
The fact that ft is common to all cross-sectional units i means that the regression errors
can be strongly cross-sectionally correlated. This specification is very general and nests
the usual one-way and two-way fixed effects models as special cases. Both ft and εi,t

may be weakly serially correlated, but they cannot be nonstationary. They can also not
be correlated with each other, and εi,t cannot be cross-sectionally correlated.4 This last
condition ensures that any cross-section dependence in ei,t originates with ft.

Typically there is a lot of cross-sectional co-movement not only in the regression
errors but also in the regressors. To account for this, we assume that xi,t and wi,t are
generated in the following way:

xit = Γ′
x,ift + ux,i,t, (3)

wit = Γ′
w,ift + uw,i,t, (4)

where Γx,i and Γw,i are p×m and q ×m matrices, respectively, of factor loadings, while
ux,i,t and uw,i,t are p × 1 and q × 1 vectors, respectively, of idiosyncratic errors that are
independent of all the other random elements of the model. The model described by
(1)–(4) above is the same as the one considered by Ditzen et al. (2024).5

The fact that xi,t and wi,t are allowed to load on the same set of factors as ei,t means
that they can be endogenous. This type of endogeneity through unobserved heterogene-
ity is standard in panel data. Here we are considering interactive fixed effects, but the
idea is the same in the fixed effects case; the effects sitting in errors might also be in
the regressors, which means that they have to be removed prior to estimation. In the

3. We use the term “unobserved heterogeneity”, although ft might be known. Later on we elaborate
on this.

4. Bai and Perron (1998) clarify that in the presence of nonstationary regressors the break date
consistency and rate of convergence remains, but not the limiting distributions. Ditzen et al. (2024)
conjecture that the factors can be non-stationary, without any differences to the methodology.

5. The factor-in-regressors condition rules out lags of the dependent variable as regressors in the panel
case. However, this is not really a restriction on the data generating process, as general forms of
serial correlation are still permitted through both factors and idiosyncratic errors. Therefore, one
can estimate a static model without the lagged dependent variable, which is left as serial correlation
in the errors. The main limitations of doing this are: (i) inefficiency since we do not account for
the serial correlation in the estimation, and (ii) loss of interpretation in some models where the
coefficient of the lagged dependent variable is the parameter of interest. Limitation (i) may not be
important in moderate or large panels. Lagged dependent variables are not ruled out in the time
series case (see Bai and Perron 1998).
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fixed effects case, one augments (1) by dummy variables, which is tantamount to trans-
forming the variables into deviations from means. Here a more elaborate augmentation
approach is needed, as to be expected since interactive effects are more general than
fixed effects. Had the factors been known, which would be the case if the unobserved
heterogeneity is made up of known deterministic terms for example, we would have
estimated

yi,t = x′
i,tβ + w′

i,tδj + f ′
tγi + εi,t (5)

by ordinary least squares (OLS). This is possible because with ft as a regressor the
regression error is no longer given by ei,t but by εi,t, which is independent of the re-
gressors. If, on the other hand, ft is not known, then we need a good proxy to use in
its stead.6 Ditzen et al. (2024) use x̄t = N−1 ∑N

i=1 xi,t and w̄t = N−1 ∑N
i=1 wi,t, and

therefore so do we.7 The appropriately augmented version of (1) is therefore given by

yi,t = x′
i,tβ + w′

i,tδj + x̄′
tai + w̄′

tbi,j + error. (6)

Because asymptotically observing the cross-sectional averages is just as good as observ-
ing the true factors, the regressors in (6) are asymptotically exogenous. This means that
the estimation can be carried out using OLS. This is the same idea as in the “common
correlated effects” (CCE) estimator of (Pesaran 2006), with the difference that here we
do not include the cross-sectional average of yi,t as a regressor in (6) (see Karavias et al.
2023, for a discussion). If ft is neither completely known, nor completely unknown, as
is usually the case in practice, then the cross-sectional averages will take care of the
unknown factors and the known factors can be added to (6) as additional regressors.8

If N = 1, such that (1) is a time series model, then by definition there is no cross-
sectional variation that we can exploit to estimate unknown factors. Hence, in this case
ft must be known, and hence the model to be estimated is given by (5), which is then
the same as in Bai and Perron (1998).

6. Take the so-called “wage curve” model, which relates worker’s wages to the rate of unemployment,
and is the most common motivating example in the literature (see, for example, Bai, 2009). Here
the factor loadings may represent workers’ unobservable skills, such as innate ability, perseverance,
and motivation, and the factors would represent the price of these skills, which are not necessarily
constant over time.

7. The intuition for why argumentation by x̄t is needed is simple. We begin by noting that by
(3), x̄t = Γ̄′

xft + ūx,t, where Γ̄x and ūx,t are the cross-sectional averages of Γx,i and ux,i,t,
respectively. Hence, provided that ux,i,t is mean zero and independent across i, by a central limit
law, x̄t →p Γ̄′

xft as N → ∞, where “→p” signify convergence in probability. We say that x̄t is
“rotationally consistent” for ft, which is enough if the purpose is to control for ft. The intuition
for why w̄t is need is analogous.

8. The cross-sectional averages can in principle capture all factors, regardless of whether they are
observed (known) or not. An important condition for this to work is, however, that the number of
cross-section averages is not fewer than the number of factors they replace. Because of this it is a
good idea to treat known factors as additional regressors in (6), as it makes it possible to estimate
more unknown factors.
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3 The toolbox
3.1 Hypotheses testing

This section presents the first set of tools, which are necessary for establishing that
one or more structural breaks have happened and for determining their number, s. In
particular, we consider tests of three hypotheses, labelled “(1)”–“(3)”, and a sequential
test to determine s. We begin by stating the hypotheses of interest.

(1) H0: no breaks versus H1: s breaks, where the number of breaks under H1, s, is
specified by the researcher.

(2) H0: no breaks versus H1: 1 ≤ s ≤ smax breaks, where the maximum number of
breaks under H1, smax, is specified by the researcher.

(3) H0: s breaks versus H1: s + 1 breaks, where s is specified by the researcher.

To test hypotheses (1)–(3) we employ a number of test statistics. The time series
versions of these tests have appeared in Bai and Perron (1998), while the panel versions
have appeared in Ditzen et al. (2024).

Hypothesis (1)

If the dates of the breaks are known, the test that we are going to consider for hypothesis
(1) is simply a Chow test. Let us therefore denote by F (Ts) the F -statistic for testing
the null of no breaks versus the alternative of s known breaks at dates Ts, which in the
time series case is based on (5), while in the panel case it is based on (6). Appropriate
critical values can be taken from the F distribution with s numerator degrees of freedom
and N(T − p − (s + 1)q) − p − (s + 1)q denominator degrees of freedom.

If Ts is unknown, which is most likely the case in practice, then the following supre-
mum statistic can be used:

supF (s) = sup
Ts∈Ts,ϵ

F (Ts). (7)

Here
Ts,ϵ = {(T1, ..., Ts) : Tj+1 − Tj ≥ ϵT, T1 ≥ ϵT, Ts ≤ (1 − ϵ)T}, (8)

is the set of permissible break dates with ϵ being a user-defined trimming parameter.
By setting ϵ ∈ (0, 1) we ensure that the breaks considered in the test are distinct and
bounded away from the sample endpoints, as assumed.

Hypothesis (2)

Hypothesis (2) can be tested using the following double maximum statistic:

WDmaxF (smax) = max
1≤s≤smax

cα,1

cα,s
supF (s), (9)
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where cα,s is the critical value of supF (s) at significance level α and s breaks. The
weighting by cα,1/cα,s here ensures that the marginal p-values of the weighted supremum
statistics are all equal. This counterweights the decrease in the marginal p-value of
supF (s) that comes from increasing s, and the resulting loss of power when s is large.
The test statistic with weights cα,1/cα,s = 1 for all s is called UDmaxF (smax).

Hypothesis (3)

In Section 4, we describe a procedure for how to estimate the break dates. Let T̂s =
{T̂1, ..., T̂s} be the set of estimated breaks obtained based on that procedure. For the
test of hypothesis (3) we use the following statistic:

F (s + 1|s) = sup
1≤j≤s+1

sup
τ∈T̂j,ϵ

F (τ |T̂s). (10)

where T̂s contains estimates of the s break stipulated under the hull hypothesis, τ is the
additional (s + 1)-th break under the alternative, and

T̂j,ϵ = {τ : T̂j−1 + (T̂j − T̂j−1)ϵ ≤ τ ≤ T̂j − (T̂j − T̂j−1)ϵ, T̂0 = 0, T̂s+1 = 1} (11)

is the set of permissible breaks in between the estimated (j − 1)-th and j-th breaks.
Hence, F (s + 1|s) is testing the null of s breaks versus the alternative that there is
an additional break somewhere within the regimes stipulated under the null. Finally,
F (τ |T̂s) is the F -statistic based on taking the estimated break dates in T̂s as given and
testing for one additional break at τ .

The F (s + 1|s) test can be applied sequentially to estimate the number of breaks.
In this case, we start by testing the null of no breaks against the alternative of a single
break using F (1|0). If the null is accepted, we set ŝ = 0 and terminate the procedure.
If, however, the null is rejected, we estimate the breakpoint, denoted T̂1, and split the
sample in two at T̂1. We then test for the presence of a break in each of the two
subsamples using F (2|1). If no breaks are found, we set ŝ = 1 and stop, whereas if
breaks are detected, we estimate their location and split the sample again. This process
continues until the test fails to reject.

The asymptotic distributions of the above tests in the pure time series and panel
cases can be found in Bai and Perron (1998), and Ditzen et al. (2024), respectively.
Because the distributions are the same, so are the critical values. xtbreak therefore
uses the critical values of Bai and Perron (1998), and Bai and Perron (2003), which are
applicable for ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. In theory, the validity of the critical values
requires T → ∞ in the time series case and N, T → ∞ with T/N → 0 in the panel case,
which in practice means that T should be “large” in both cases, and that N should be
even larger in the panel case. For some Monte Carlo evidence on the accuracy of these
predictions, we make reference to Bai and Perron (2003), and Ditzen et al. (2024).
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4 Break date estimation
The previous section was focused on testing for the existence of breaks, and on de-
termining their number. As soon as the number of breaks is detected, interest turns
to their location, as it is the dates of the breaks that researchers use to identify the
underlying cause of breaks.

The standard approach in the literature is to estimate breaks by minimizing the sum
of squared residuals. Bai and Perron (1998), and Ditzen et al. (2024) do the same. The
break date estimator included in xtbreak is therefore given by

T̂s = arg min
Ts∈Ts,ε

SSR(Ts), (12)

where SSR(Ts) is the sum of squared residuals based on s breaks. In the time series
case the residuals are taken from (5), whereas in the panel case they are taken from (6).
If s is “small”, the minimization can be done by grid search. If, however, s is “large”,
then grid search, which requires O(T s) OLS operations, becomes computationally very
costly and possibly even infeasible. In such cases, the efficient dynamic programming
algorithms of Bai and Perron (1998, 2003), and Ditzen et al. (2024), which limit the
number of operations to O(T 2) for any s, can be used.

Once T̂s has been obtained, confidence intervals for each estimated break date can
be constructed using the formulas given in Bai and Perron (1998), and Ditzen et al.
(2024).

5 The xtbreak command
5.1 Syntax

Automatic estimation of number of breaks and breakdates

xtbreak depvar
[

indepvars
] [

if
] [

, options1 options2 options3 options5

options6
]

tests for breaks via hypothesis (2) and estimates the number of breaks and breakdates
with no prior knowledge on number and location of breaks. Estimation of the number
of breaks is based on the sequential test of hypothesis (3).

Testing for known structural breaks

xtbreak test depvar
[

indepvars
] [

if
]

, breakpoints(numlist|datelist[
,index|fmt(string)

]
)

[
options1 options5

]
implements hypothesis (1): testing for breaks if the break dates are known.
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Testing for unknown structural breaks

xtbreak test depvar
[

indepvars
] [

if
] [

, hypothesis(1|2|3) breaks(real)

options1 options2 options3 options4 options5
]

implements hypotheses (1)-(3): testing for breaks if the break dates are unknown.

The default is hypothesis (3) and option sequential.

Estimation of breakdates

xtbreak estimate depvar
[

indepvars
] [

if
] [

, breaks(real) showindex

options1 options2 options5
]

estimates breakdates for a given number of breaks.

Updating xtbreak

xtbreak, update

obtains the latest version from GitHub.

Specific Options

options1 are general options and apply to xtbreak in general:

breakconstant noconstant nobreakvariables(varlist1) vce(type)

inverter(speed|precision|chol|p|lu) python

options2 are specific for unknown break dates:

trimming(real)

options3 are specific for unknown breakdates and hypothesis (2):

wdmax level(#)

options4 are specific for unknown breakdates and hypothesis (3):

sequential

options5 are panel data specific:

breakfixedeffects nofixedeffects csd csa(varlist) csanobreak(varlist)
kfactors(varlist) nbkfactors(varlist) noreweigh

options6 apply to the automatic estimation of the number and location of breaks:
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skiph2 cvalue(level) strict max(#)

Data must be [TS] tsset or [XT] xtset before using xtbreak. Time series data must
not include gaps. Panel data can be unbalanced. In this case, observations with missing
data will not be included in the regressions. depvar, indepvars and varlist may contain
time-series operators, see [TS] tsvarlist.

5.2 Description of options

xtbreak detects automatically if N = 1 or N > 1. The user therefore does not have to
specify if the data have a time series or a panel structure.

breakpoints(numlist|datelist [,index|fmt(format)]) specifies the known break-
points. Known breakpoints can be set by either the number of the corresponding
observations or by the values of the time identifier. If a numlist is used, option in-
dex is required. For example, breakpoints(10,index) specifies that the one break
occurs at the 10-th observation as ordered by time. datelist takes a list of dates.
For example, breakpoints(2010Q1, fmt(tq)) specifies a break in the first quarter
of 2010. The option fmt() specifies the format and is required if a datelist is used.
The format set in breakpoints() and the time identifier needs to be the same.

breaks(#) specifies the number of unknown breaks under the alternative. For hypoth-
esis (2), breaks() can include two values. For example, breaks(4 6) amounts to
testing the null of no breaks against the alternative of 4–6 breaks. If only one value
specified, then the lower bound of the number of breaks under the alternative is set
to 1. If hypothesis (3) is tested, then breaks() defines the number of breaks under
the alternative. If hypothesis (3) is tested and breaks() not defined, then option
sequential is invoked.

showindex show confidence intervals as index.

hypothesis(1|2|3) specifies which hypothesis to test. Specify h(1) for hypothesis
(1), h(2) for hypothesis (2) and h(3) for hypothesis (3). The default is h(3) in
combination with the option sequential.

breakconstant break in constant. Default is no breaks in the constant term.

noconstant suppresses constant.

breakfixedeffects break in individual fixed effects. Default is no breaks in fixed
effects.

nofixedeffects suppresses individual fixed effects.

nobreakvariables(varlist) defines variables with no structural breaks. varlist can
contain time series operators.

vce(type) specifies the covariance matrix estimator. The options are: ssr (homoskedas-
tic errors, the default), hac (heteroskedastic and autocorrelation robust), hc (het-
eroskedastic robust), wpn (the fixed-T standard errors of Westerlund et al. 2019)
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and np (the non-parametric estimator of Pesaran 2006).

trimming(string) specifies the trimming parameter in percent. The trimming affects
the minimal time periods between two breaks. The default is 15% (0.15). Critical
values are available for 5%, 10%, 15%, 20% and 25%.

wdmax weights the double maximum test statistic used for testing hypothesis (2). The
default is not to use any weights.

level(#) sets the significance level for critical values for the double maximum test. If
a value is chosen for which no critical values exits, xtbreak test will choose the
closest level.

sequential Sequential F -test to obtain number of breaks when using hypothesis (3).

csa(varlist) specifies the variables with breaks which are added as cross-sectional
averages. xtbreak calculates automatically the cross-sectional averages.

csanobreak() is the same as csa() but for variables without a break.

csd implements csa(w ) csanobreak(x ) automatically. For example, the variables in w
would enter with breaks, while those in x, specified with the nobreakvariables(varlist1),
enter without breaks.

kfactors(varlist) Variables in varlist are known factors, variables in the data which
are constant across the cross-sectional dimension. Examples are seasonal dummies
or other observed common factors such as asset returns and oil prices. The factors
in this list are affected by structural breaks in that their loadings change.

nbkfactors(varlist) Same as above, but the factors in this list are not affected by
structural breaks.

skiph2 Skips hypothesis (2) (H0: no break vs H1: 0 < s < smax breaks) when running
xtbreak without the estimate or test option.

cvalue(level) specifies the significance level to be used to estimate the number of
breaks using the sequential test. For example cvalue(0.99) uses the 1% significance
level critical values to determine the number of breaks using the sequential test. See
level(#) for further details.

strict enforces strict behaviour of the sequential test to determine number of breaks.
Sequential test will stop once F (s+1|s) is not rejected given a rejection of F (s|s−1).

maxbreaks(#) limits maximum number of breaks when using the sequential test.

inverter(speed|precision|qr|chol|p|lu) sets the inverter. speed uses mata invsym,
precision, qr (equivalent to precision; uses mata qrinv), chol uses mata cholinv,
p uses mata pinv, or lu uses mata luinv. Choice of inverter has implications on
speed and precision. For an overview see [M-4] Solvers.

python uses Python to calculate segment specific SSRs to improve speed. Requires
Stata 16 or later, and Python packages, scipy, numpy, xarray and pandas. Numer-
ical differences in the calculations may occur due to different matrix inverters and
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precision in Stata and Python. This option can only be used with balanced panels.

noreweigh can only be applied to unbalanced panels. As a default, xtbreak reweighs
the time-unit specific errors used in the SSR by weights equal to total number of
units in the sample divided by the number of unit observations in that period. Thus,
it increases the SSR in segments with missing data. noreweigh avoids reweighting
missing data.

5.3 Stored values

xtbreak estimate stores the following in e():

Matrices
e(breaks) Matrix with break dates e(CI) Confidence intervals with dimen-

sion 4 × number_breaks
e(SSRvec) Vector with SSRs for selection

of break dates. Only available
when breaks(1) used.

e(SSRvmat) Matrix with segment-specific
SSR. Row indicates start, col-
umn indicates end of segment.

Scalars
e(num_breaks) Number of breaks. If automatic

detection used, then estimated
number of breaks.

xtbreak test stores the following in r() for known breakpoints:

Scalars
r(Wtau) Value of test statistic r(p) p-value from F distribution

For unknown breakpoints the following is stored:

Scalars
r(supWtau) Value of the supF (s) statistic

(hypothesis (1))
r(Dmax) Value of unweighted double max-

imum test statistic (hypothesis
(2))

r(WDmax) Value of weighted double max-
imum test statistic (hypothesis
(2))

r(f) Value of the F (s + 1|s) statistic
(hypothesis (3))

r(c90) Critival value at the 90% level r(c95) Critival value at the 95% level
r(c99) Critival value at the 99% level

5.4 Postestimation

The following postestimation commands can be used after xtbreak estimate:

estat indicator [newvar]

creates an indicator variable (1, ..., 1, 2, ..., 2, ..., s + 1, ..., s + 1)′ that specifies all break
regimes.

To split a varlist according to the estimated breakpoints:

estat split varlist
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and to draw a scatter plot of the variable with break on the x-axis and the dependent
variable in the y-axis:

estat scatter varname

estat indicator creates a new variable of the form (1, ..., 1, 2, ..., 2, ..., s+1, ..., s+1)′

and where the value changes for each break regime. estat split splits the variables
defined in varlist according to the breakdates. estat split saves the names of the
created variables in r(varlist). estat scatter draws a scatter plot with the dependent
variable on the y-axis and a variable with breaks defined in varname on the x-axis.

xtbreak estimate stores information about segement-specific SSRs and the SSRs
for different breakdates in e(). This information can be used to draw a time series plot
of SSRs across potential breakdates with:

estat ssr , [tsline-options ]

estat ssr is only available after xtbreak est y x , breaks(1). tsline-options
are any options permitted when using tsline, see [TS] tsline or [G-2] graph twoway
tsline.

5.5 On the choice of factors in the panel case

xtbreak is versatile in dealing with common factors, whether known (observed) or
unknown (unobserved) through the options csd, csa(), csanobreak(), kfactors()
and nbkfactors(). Unknown factors are estimated by the cross-sectional averages
specified in csa() and csanobreak(), or alternatively in csd. Known factors can be
dummy variables, or other observed variables which do not vary across units, and are
defined by kfactors() and nbkfactors(). Whenever available, known factors should
be included as they make it possible to estimate more unknown factors. These factors
can be free of breaks or they can be allowed to break.

Fixed effects are known factors but are not treated through the kfactors() and
nbkfactors() commands, in order for xtbreak’s command structure to be similar to
the rest of the Stata commands in the way that it deals with fixed effects. In particular,
one has to specify whether xtbreak should estimate a model with or without overall
constant/individual fixed effects, separately from the factor structure specification. In
total, xtbreak supports five different models which are presented in Table 1. The default
is a model with fixed effects that are not breaking.

The choice of deterministic model has implications for the analysis of structural
breaks. In the overall constant model, the constant is treated as a regular regressor and
we can test and detect breaks in it. In fact, the constant may be the only regressor.
In the presence of fixed effects, xtbreak cannot be used without breaking regressors
(wi,t), as it cannot detect or estimate breaks that affect only fixed effects and not the
regressors. Once breaking regressors are included, then one has the choice to allow for
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Specification Model Options
Individual fixed effects αi + ei,t noconstant*
Fixed effects with breaks αj,i + ei,t breakfixedeffects noconstant
Overall constant α + ei,t nofixedeffects
Constant with breaks αj + ei,t breakconstant nofixedeffects
Nothing ei,t noconstant nofixedeffects

Notes: * is the default. Option noconstant not necessary. j = 1, ...s + 1. The remaining
observed and unobserved factors are in ei,t and require use of csd, csa(), csanobreak(),
kfactors() and nbkfactors() as appropriate.

Table 1: Constant/fixed effects model specifications.

breaking or non-breaking fixed effects.

5.6 Unbalanced Panels

xtbreak can be used with unbalanced panel data. Pure time series data (N = 1)
with gaps is not allowed. In the case of unbalanced panels, there is an appropriate
adjustment in the degrees of freedom in the test statistics. It is assumed that missing
data are missing completely at random and that all time periods have at least one
observation.

In terms of break date estimation, xtbreak identifies breaks by minimising the SSR,
see Equation (12). If a value is missing, Stata removes the whole unit-time observation,
and as such the number of summands in the SSR drop, which can lead to estimating
break dates away from the true break. To avoid this behaviour, xtbreak reweighs the
individual time specific residuals ϵi,t and the SSR is calculated as:

SSRτS
=

∑
t∈τS

∑
i∈Nt

(
N

Nt
ϵi,t

)2
(13)

where N are the number of total units and Nt are the number of units for which data
is non missing in time period t. N

Nt
scales the residuals up when data is missing. The

option noreweigh avoids the reweighing by setting Nt = N independently from the
number of non-missing observations.

6 COVID–19 deaths and cases
6.1 Time series evidence for the whole US

Main results

In this section, we explain the use and options of xtbreak. We want to test if we can
identify structural breaks in the relationship between the number of COVID–19 deaths
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and cases in the US in 2020 and 2021. This is an interesting topic because COVID–19’s
case fatality rate, which is the number of deaths from COVID–19 over the number of
COVD–19 cases, was a key variable of medical and policy interest and consequently,
the focus of many studies, see for example Mathieu et al. (2020).9 The fatality rate
can be time-varying due to, for example, country-wide changes in the capability of
detecting the virus, lockdowns, population-wide vaccination programs, improvements
in treatment and hospital capacity, and the emergence of new strains. All these events
are massive in scale and can cause structural breaks. We use aggregate US weekly time
series data on the number of deaths and new cases from the Centers for Disease Control
and Prevention (CDC). The dataset is also available on our GitHub page.

We want to estimate the following model:

∆DEATHSt = β0 + δ1∆CASESt−1 + δ2∆CASESt−2 + δ3∆CASESt−3 + et, (14)

where DEATHSt and CASESt are the reported deaths due to COVID–19 in week t, and
the number of new cases for the entire US in the same week, respectively. We assume
that on average a week lies between a positive test and a possible death.10 The data
ranges from 27 January 2020 (beginning of week 4) to 29 August 2021 (end of week
34). ∆ denotes first differencing, which is taken to ensure stationarity.11 The model is
a simplification, although it has been used elsewhere in the literature, for example in
Silverio et al. (2020) and Fritz (2022).

We want to test if the coefficients δ1, δ2 and δ3 are subject to structural breaks.
There are several reasons for believing that the relationship between the number of
new cases and deaths might have changed. At the beginning of the pandemic the
understanding and best way to treat the disease was not developed. The numbers
were also under-reported due to limits in testing capacity and reporting routines. With
better testing capacity, reporting routines and treatments, the relationship is expected
to change, especially after the first two waves, because of the knowledge gained. Starting
in mid-December 2020, vaccines were introduced, and hence the relationship between
the number of cases and deaths might be expected to have changed again. It therefore
seems reasonable to expect at least two breaks.

Figure 1 plots the number of deaths and cases over time. The first thing to note is
the striking difference between the number of deaths and cases in the first wave with the
number of deaths being many times larger than the number of new cases. This difference
is markedly smaller in the second wave but still the number of deaths is highest. The
third wave was the worst in terms of numbers by far, but the number of deaths per
new case was much lower than before. From about week 29 in 2020 the number of cases
started to pick up again, and so did the number of deaths.

We can use xtbreak without any prior knowledge of the number of breaks or their
exact dates. We use the following command line:

9. Case fatality rate statistics can be found here: https://ourworldindata.org/mortality-risk-covid
10. Note that since we use weekly data, there can be up to 13 days between a positive test and a death.

Monday is taken as the first day of a given week.
11. The regression (14) can be seen as the static ∆DEATHSt = β0 + δ1∆CASESt + et model where

we use lags of ∆CASESt to account for reverse causality concerns.

https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36
https://janditzen.github.io/xtbreak/
https://ourworldindata.org/mortality-risk-covid
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Figure 1: Plotting COVID–19 deaths and cases over time.
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. xtbreak d.deaths d.L(1/3).cases
Test for multiple breaks at unknown breakdates
(Bai & Perron. 1998. Econometrica)
H0: no break(s) vs. H1: 1 <= s <= 5 break(s)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

UDmax 28.91 6.09 4.74 4.13

Sequential test for multiple breaks at unknown breakpoints
(Ditzen, Karavias & Westerlund. 2024)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

F(1|0) 28.51 6.09 4.66 4.03
F(2|1) 5.47 6.59 5.24 4.64
F(3|2) 2.78 6.92 5.61 4.99
F(4|3) 2.70 7.33 5.87 5.23
F(5|4) 19.84 7.49 6.05 5.45

Detected number of breaks: (min) 1 2 2
(max) 5 5 5

Null hypothesis rejected more than once after non-rejection.
The detected number of breaks indicates the minimum and maximum
number of breaks for which the null hypothesis is rejected.

Estimation of break points
Number of obs = 79
SSR = 49.07
Trimming = 0.15

# Index Date [95% Conf. Interval]

1 15 2020w22 2020w21 2020w23
2 45 2020w52 2020w51 2021w1

xtbreak starts with hypothesis (2), that is, it tests the null hypothesis of no breaks
against the alternative of an unknown number of breaks between 1 and smax breaks.
This is the most powerful test and it does not need knowledge of the number of breaks.
The maximum number of breaks is set to smax = 5.12 The value of the UDmax test
statistic is 28.91, well above the 1% critical value and hence provides evidence for 1
up to 5 breaks. xtbreak then estimates the number of breaks by reporting the test
value of Hypothesis (3) (H0: s breaks vs s + 1 breaks) at each step in the sequence
and the appropriate critical values for the three basic significance levels. We see that

12. By default the maximum number of breaks is set to the maximum number of breaks permissible
by the trimming parameter. The maximum permissible number of breaks depends on the minimal
length of the subsamples considered, and hence on the trimming parameter ϵ. The maximum
number of breaks is given by the formula ⌈1/ϵ⌉ − 2, where ⌈·⌉ is the smallest greater integer
function. For ϵ = 0.15 the permissible number of breaks is 5, while for ϵ = 0.10 it is 8 and for
ϵ = 0.05 it is 18.
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0 breaks is rejected in favour of 1 break and that 1 break is rejected in favour of 2
breaks, at the 5% significance level, but then when testing 2 breaks against 3 or more
breaks the test is no longer able to reject.1314 We therefore conclude that there are 2
breaks. xtbreak then proceeds to report the estimated break dates and the associated
confidence intervals. The first break is estimated to week 22 of 2020 (fourth week of
May), while the second is estimated at the end of year 2020. The confidence intervals on
the both breaks span only a couple of weeks, suggesting that the estimates are precise.
The confidence interval width is a function of the magnitude of the break and short
confidence intervals hint at larger breaks.

xtbreak saves the values of the breakpoints in e(breaks) and the confidence inter-
vals in e(CI). The matrices contain the index number t ∈ {1, ..., T} of the both breaks
and confidence interval bounds. We use this information to draw Figure 2, in which the
estimated break dates and their 95% confidence intervals are plotted in the same graph
as the deaths and the lagged number of cases.15

Next we can use the estat function of xtbreak to generate new variables for each
break regime and run an OLS regression:

. estat split
New variables created: LD_cases1 LD_cases2 LD_cases3
> L2D_cases1 L2D_cases2 L2D_cases3
> L3D_cases1 L3D_cases2 L3D_cases3
. reg d.deaths `r(varlist)´

Source SS df MS Number of obs = 79
F(9, 69) = 25.19

Model 161.21305 9 17.9125611 Prob > F = 0.0000
Residual 49.0738642 69 .711215423 R-squared = 0.7666

Adj R-squared = 0.7362
Total 210.286914 78 2.69598608 Root MSE = .84334

D.deaths Coefficient Std. err. t P>|t| [95% conf. interval]

LD_cases1 .0625909 .009525 6.57 0.000 .043589 .0815928
LD_cases2 .0014608 .0015401 0.95 0.346 -.0016116 .0045332
LD_cases3 .0080629 .0012074 6.68 0.000 .0056542 .0104717

L2D_cases1 .0298979 .0121457 2.46 0.016 .005668 .0541279

13. xtbreak does not stop and reports results for all tests, up to the maximum numbers of breaks. This
aims to provide a broader view of the sample properties as individual tests can suffer from Type
1 errors. In this example we see that the null hypothesis of 4 breaks against the alternative of 5
breaks is strongly rejected. This can be investigated in a robustness analysis, but we do not pursue
it here. In such cases, one should keep an eye out on the magnitude of breaking coefficients as the
method may be detecting small breaks which are not economically significant, see the empirical
application in Ditzen et al. (2024). An alternative explanation could be that there are multiple
breaks with opposing magnitudes that “hide” each other, until the number of breaks is set high
enough to disentangle the opposing signs - and then the breaks become visible. This is why it is
important to test hypothesis (2) before applying the sequential tests. However, this last scenario
is unlikely in the current example because it is expected that the fatality rate only drops in time.

14. The detected minimum and maximum number of breaks correspond to the first and last F (s + 1|s)
test rejections; at the 1% confidence level the minimum detected number of breaks is 1 because
F (1|0) rejects and the maximum is 5 because F (5|4) rejects. It is possible to stop this process at
the first non-rejection at the specified level using the option strict.

15. The code for the plot is available in the accompanying do file.
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Figure 2: Plotting estimated breaks (dashed lines), 95% confidence intervals (dotted
lines), deaths and lagged cases.
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L2D_cases2 .0037864 .0018352 2.06 0.043 .0001251 .0074476
L2D_cases3 -.0005085 .0012946 -0.39 0.696 -.0030911 .0020741
L3D_cases1 -.0171167 .0096604 -1.77 0.081 -.0363887 .0021553
L3D_cases2 .0065269 .001718 3.80 0.000 .0030995 .0099543
L3D_cases3 .0030002 .0011672 2.57 0.012 .0006717 .0053288

_cons -.1963545 .1030999 -1.90 0.061 -.4020332 .0093243

. nlcom (Regime1: _b[LD_cases1] + _b[L2D_cases1] + _b[L3D_cases1]) ///
> (Regime2: _b[LD_cases2] + _b[L2D_cases2] + _b[L3D_cases2]) ///
> (Regime3: _b[LD_cases3] + _b[L2D_cases3] + _b[L3D_cases3])

Regime1: _b[LD_cases1] + _b[L2D_cases1] + _b[L3D_cases1]
Regime2: _b[LD_cases2] + _b[L2D_cases2] + _b[L3D_cases2]
Regime3: _b[LD_cases3] + _b[L2D_cases3] + _b[L3D_cases3]

D.deaths Coefficient Std. err. z P>|z| [95% conf. interval]

Regime1 .0753721 .0089054 8.46 0.000 .0579178 .0928265
Regime2 .011774 .0020155 5.84 0.000 .0078238 .0157243
Regime3 .0105547 .0014136 7.47 0.000 .007784 .0133254

The long-run multipliers within each regime are given by δLR,j := δ1,j +δ2,j +δ3,j for
j = 1, 2, 3. They are reported using the nlcom command which also provides confidence
intervals. The δLR,j capture the total effect in time that an additional 1,000 COVID–19
cases have on deaths, in regime j. The estimate for the first regime δ̂LR,1 covering the
period from week 4 of 2020 to week 22 of 2020 suggests that for each additional 1,000
cases of COVID–19, on average 75 people died. According to Figure 2, the end date
of this regime coincides with the end of the first wave. This estimate is quite high,
which can be explained by the relatively small number of tests conducted at that time.
The estimated effect of the number of cases is much lower in the second regime, which
stretches from week 23 of 2020 to week 51 of 2020. Only 12 out of an additional 1,000
infected died. The coefficient of the third regime, lasting from week 1 in 2021 to the end
of the sample, is almost the same, where 11 out of an additional 1,000 infected died.
This is probably in part due to the vaccination rollout, which began in week 51 of 2020.

Additional results and discussions

This section is divided in two; (i) additional test results and (ii) additional estimation
results. The aim is to demonstrate how the command can be used for specific tests and
estimations, as opposed to the automatic way used above. We begin by considering
additional test results, starting with a test of hypothesis (1). Specifically, we test the
null hypothesis of no breaks against the alternative of a break in week 22 in 2020 and
another break in week 52 in 2020 using the regular Chow F -test. There are the results:

. xtbreak test d.deaths d.L(1/3).cases , hypothesis(1) breakpoints(2020W22 2020w52, fmt(tw))
Test for multiple breaks at known breakdates
(Bai & Perron. 1998. Econometrica)
H0: no breaks vs. H1: 2 break(s)
F = 19.95
p-value (F) = 0.00
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The test value is 19.95, which is way out in the critical region of the F−distribution.
We can therefore comfortably reject the null of no breaks. To test the same hypothesis
but with unknown break dates, we specify breaks(2). The results look as follows:

. xtbreak test d.deaths d.L(1/3).cases , hypothesis(1) breaks(2)
Test for multiple breaks at unknown breakdates
(Bai & Perron. 1998. Econometrica)
H0: no break(s) vs. H1: 2 break(s)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

supF 19.95 4.82 4.00 3.58

Estimated break points: 2020w22 2020w52
Trimming: 0.15

The test value is identical to before, as is the conclusion to reject the null hypothesis,
which is to be expected because the given break dates were set to the estimated breaks
obtained earlier. The difference is that when the breaks are treated as unknown, the
critical values come from a non-standard distribution, because the statistic is the supre-
mum of F -tests over all possible break dates, as these are determined by the trimming
parameter. These critical values are more “honest” than those used for the Chow test,
as they account for the fact that the breaks are unknown. As a part of the test results,
xtbreak reports the estimated break dates used to construct the test, and we can see
that they coincide with those obtained earlier.

We now test the null of no breaks against the alternative of up to 5 breaks. This is
an example of a test of hypothesis (2), the results of which are presented here below.
As expected, the null hypothesis is firmly rejected.

. xtbreak test d.deaths d.L(1/3).cases , hypothesis(2) breaks(5)
Test for multiple breaks at unknown breakdates
(Bai & Perron. 1998. Econometrica)
H0: no break(s) vs. H1: 1 <= s <= 5 break(s)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

UDmax 28.91 6.09 4.74 4.13

Trimming: 0.15

Next, we test the null of 3 breaks against the alternative of 4 breaks, which is an
example of hypothesis (3). We use the options hypothesis(3) and breaks(4) to specify
that there are 4 breaks under the alternative. The results presented below suggest that
we are unable to reject the null, which is consistent with the estimated number of breaks.
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. xtbreak test d.deaths d.L(1/3).cases , hypothesis(3) breaks(4)
Test for multiple breaks at unknown breakpoints
(Bai & Perron. 1998. Econometrica)
H0: 3 vs. H1: 4 break(s)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

F(s+1|s)* 2.70 7.33 5.87 5.23

* s = 3
Trimming: 0.15

The option sequential repeats the hypothesis (3) test sequentially starting from
no breaks under the null, up to the specified number in breaks. Setting breaks(5)
returns the sequential test results reported earlier.

xtbreak test d.deaths d.L(1/3).cases , hypothesis(3) breaks(5) sequential

As a final test exercise, we consider two changes to the model. We begin by investi-
gating how the above results are affected if we allow for breaks in the constant. To do
so we use the sequential test but add the option breakconstant;

xtbreak test d.deaths d.L(1/3).cases, breakconstant

To save space we omit the output, but we briefly describe it; xtbreak finds five
breaks. Note also that the options hypothesis(3) and sequential are the defaults,
so we have omitted from the command. We further investigate if the break is only in
the constant, and not in the number of cases. We keep the option breakconstant and
move the variable L.cases to the option nobreakvar(L.cases);

xtbreak test d.deaths , breakconstant nobreakvar(d.L(1/3).cases)

Now xtbreaks detects no breaks at the 5% significance level, meaning that the
breaks are driven from changes in the slope coefficients.

We end this section with some comments on the estimation results. The break
date results reported earlier can be obtained using the option xtbreak estimate. The
appropriate command line is the following:

xtbreak estimate d.deaths d.L(1/3).cases , breaks(2)

As an illustration of the estimated regression model, we can draw a scatter plot with
different symbols for the observations within each regime. The plot can be created using
xtbreak estat:

. estat scatter d.L.cases , ytitle("Change in Deaths in 1000s") xtitle("Change in Cases in 1000s") ///
> autolegend(pos(6) cols(3)) scheme(sj) name(xtbreak_estat, replace)

The plot is displayed in Figure 3. The different markers represent the observations
within each regime, and the shape of the observations is indicative of the strength of the
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Figure 3: Scatter plotting lagged cases against deaths by regime.

estimated linear relationships and of their slopes. The first regime is described by dots,
which appear in an almost vertical line. The second and third regimes are described by
rhombi and squares respectively, which mostly lie along the 45-degree line. In particular,
we see that the slope in the first regime differs quite markedly when compared to the
other two, which confirms the findings from the OLS regression. [G-2] graph options can
be passed through. Option autolegend(legend_options ) automatically creates the
legend labels for each segment. legend_options are further options passed to legend,
as done here to control the placement and number of columns of the legend.

6.2 State level panel evidence

Main results

In this section, we use the same US data as in the previous section; however, instead
of aggregating the data up to the country level, we use data for all 50 US states, the
District of Columbia, New York City, overseas territories and three countries in free
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association with the US.16

Similarly to before, report some results based on the sequential test to estimate the
number of breaks and the break dates. We begin with the automatic xtbreak command
that tests hypothesis (3) sequentially. The default panel data case assumes no serial
correlation or cross-section dependence, has no constant but includes fixed effects. The
distributed lag model employed here captures serial corrlation and thus we employ only
heteroskedasticity robust standard errors. Additionally, we employ a smaller trimming
of 10%.17 xtbreak automatically detects if a panel data model is used, and thus the
syntax remains the same. These are the results:

. xtbreak d.deaths d.L(1/3).cases, vce(hc) trim(0.1)
Test for multiple breaks at unknown breakdates
(Ditzen, Karavias & Westerlund. 2024)
H0: no break(s) vs. H1: 1 <= s <= 9 break(s)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

UDmax 13.60 6.25 4.95 4.42

Sequential test for multiple breaks at unknown breakpoints
(Ditzen, Karavias & Westerlund. 2024)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

F(1|0) 11.90 6.24 4.87 4.26
F(2|1) 9.31 6.78 5.51 4.85
F(3|2) 8.50 7.20 5.81 5.21
F(4|3) 10.76 7.45 5.99 5.49
F(5|4) 1.14 7.65 6.20 5.65
F(6|5) 4.82 7.79 6.34 5.78
F(7|6) 1.24 7.84 6.42 5.89
F(8|7) 2.20 7.90 6.54 5.98
F(9|8) 2.44 7.93 6.65 6.12

Detected number of breaks: 4 4 4

The detected number of breaks indicates the highest number of
breaks for which the null hypothesis is rejected.

Estimation of break points
Number of obs = 4740
Number of Groups = 60

16. The overseas territories and three countries are; American Samoa, Guam, the Commonwealth of the
Northern Mariana Islands, Puerto Rico, the US Virgin Islands, the Federated States of Micronesia,
Republic of the Marshall Islands, and Republic of Palau.

17. Thicker trimming offers better small sample properties for the test statistics. The availability of
rich datasets allows the use of thinner trimming, which permits more breaks and also allows breaks
to be closer to each other. More breaks do not increase the computational burder per se, due to
the dynamic programming algorithms employed. However, more breaks can mean more sequential
tests of hypotheses F (s+1|s) which will ultimately delay the automatic version of xtbreak. Limits
on the number of h(3) tests can be introduced by i) using xtbreak test directly, and ii) by adding
options such as strict and maxbreaks.
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Obs per group = 79
SSR = 13.88
Trimming = 0.10

# Index Date [95% Conf. Interval]

1 7 2020w14 2020w13 2020w15
2 14 2020w21 2020w20 2020w22
3 46 2021w1 2020w52 2021w2
4 53 2021w8 2021w7 2021w9

At a 5% significance level we find four breaks which are estimated in weeks 14, 21
and 46 of 2020, and in week 8 of 2021. The second and third breaks are remarkably close
to the two breaks found in the single-time series analysis above.18 We will comment
on the break dates below. Given that COVID–19 waves impact multiple states at the
same time there may be dependence across states. We address this issue by augmenting
the model with the cross-section average of the lagged number of differenced cases.19

Additionally, we employ the option strict which uses the sequential test until it does
not reject the null at the required significance level. The option strict provides the
consistent number of breaks estimator of Theorem 3.2 in Ditzen et al. (2024). Another
option used is skiph2 which skips the test of no breaks against 1 < s < smax breaks to
save space, as it strongly rejects. We employ the heteroskedasticity and autocorrelation
robust variance estimator of Westerlund et al. (2019) due to its excellent small sample
properties. The results look as follows:

. xtbreak d.deaths d.L(1/3).cases, csa(d.l.cases) vce(wpn) trim(0.1) skiph2
Sequential test for multiple breaks at unknown breakpoints
(Ditzen, Karavias & Westerlund. 2024)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

F(1|0) 6.32 6.24 4.87 4.26
F(2|1) 68.68 6.78 5.51 4.85
F(3|2) 73.44 7.20 5.81 5.21
F(4|3) 9.10 7.45 5.99 5.49
F(5|4) 4.50 7.65 6.20 5.65
F(6|5) 13.82 7.79 6.34 5.78
F(7|6) 10.33 7.84 6.42 5.89
F(8|7) 10.40 7.90 6.54 5.98
F(9|8) 8.04 7.93 6.65 6.12

Detected number of breaks: (min) 4 4 4

18. The model then can be estimated by using the commands estat split to generate the breaking
variables and xtreg d.deaths ‘r(varlist)’, fe to run a fixed effects regression.

19. The CCE methodology requires that the cross-section average of each regressor is used, which in this
case translates to the cross-section averages of the three lags. This can be done by options csd or
explicitly by d.l(1/3).cases. However, we point out that the model employed is a distributed lag
model with high persistence in the regressors and thus the three cross section averages introduced
by d.l(1/3).cases are highly correlated, containing almost the same information x̄t−1 ≈ x̄t−2 ≈
x̄t−3. In this case it makes sense to use only one cross-sectional average, which we implement with
the option csa(d.l.cases).
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(max) 9 9 9

Null hypothesis rejected more than once after non-rejection.
The detected number of breaks indicates the minimum and maximum
number of breaks for which the null hypothesis is rejected.

Estimation of break points
Number of obs = 4740
Number of Groups = 60
Obs per group = 79
SSR = 10.89
Trimming = 0.10

# Index Date [95% Conf. Interval]

1 7 2020w14 2020w13 2020w15
2 14 2020w21 2020w20 2020w22
3 45 2020w52 2020w51 2021w1
4 53 2021w8 2021w7 2021w9

Cross-section averages:
with breaks: LD.cases

The option strict has a default significance level of 5%. For this significance level
the F (5|4) test does not reject and the sequential procedures stops yielding an estimate
of 4 breaks. Notably the breaks are the same as before.

Additional results and discussions

The estimated breaks take place in week 14 of 2020, in week 21 of 2020, in week 52 of
2020, and in week 8 of 2021. The confidence intervals for all five breaks are narrow.
When we compare these results to those reported earlier for the time series data set for
the whole US, we see that the second and third breaks coincide. Hence, for two of the
break dates, the panel data evidence reinforces the time series evidence reported earlier.
However, the panel data results also suggest that two breaks are not enough and that
there is a need to account for an early break in the week 14 of 2020 and for a fourth
break in week 8 of 2021. The fact that the panel toolbox detects two breaks which are
not picked up by the time series analysis could be due to the gain in accuracy obtained
by using the larger panel data set (see Ditzen et al. 2024).

The command estat split generates the breaking regressors which will be used as
independent variables. The model is estimated by CCE using xtdcce2 (Ditzen 2018,
2021), as the CCE estimator allows for interactive effects which capture cross-section
dependence. Same as above, we report the long-run multipliers for each regime. The
estimated multiplier in the first regime, which corresponds to the period of the first
wave, is the highest. This is because there was little medical knowledge about the virus
at that time, limited preparedness, and limited capacity in detecting cases. The latter
can be seen in Figure 4. The multipliers drop in the second regime as the first wave
dissipates and more testing becomes available. The third regime includes the second
and partly the third wave appearing in October 2020. The multiplier further drops here.
The fourth regime includes the peak of the third wave. Here cases and deaths are close
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to each other due to extensive tracing programs employed across states and also mass
vaccinations. The multiplier remains almost the same in the fifth and final regime. This
is an example of a break which is statistically significant but may not be economically
significant. For this reason we do not consider more breaks in the analysis.20

. qui xtdcce2 d.deaths `r(varlist)´, pooled(`r(varlist)´) cr(d.L.cases) pooledvce(wpn)

. nlcom (Regime1: _b[LD_cases1] + _b[L2D_cases1] + _b[L3D_cases1]) ///
> (Regime2: _b[LD_cases2] + _b[L2D_cases2] + _b[L3D_cases2]) ///
> (Regime3: _b[LD_cases3] + _b[L2D_cases3] + _b[L3D_cases3]) ///
> (Regime4: _b[LD_cases4] + _b[L2D_cases4] + _b[L3D_cases4]) ///
> (Regime5: _b[LD_cases5] + _b[L2D_cases5] + _b[L3D_cases5]) , post

Regime1: _b[LD_cases1] + _b[L2D_cases1] + _b[L3D_cases1]
Regime2: _b[LD_cases2] + _b[L2D_cases2] + _b[L3D_cases2]
Regime3: _b[LD_cases3] + _b[L2D_cases3] + _b[L3D_cases3]
Regime4: _b[LD_cases4] + _b[L2D_cases4] + _b[L3D_cases4]
Regime5: _b[LD_cases5] + _b[L2D_cases5] + _b[L3D_cases5]

D.deaths Coefficient Std. err. z P>|z| [95% conf. interval]

Regime1 .1331224 .0244026 5.46 0.000 .0852942 .1809506
Regime2 .0555998 .0163378 3.40 0.001 .0235783 .0876213
Regime3 .0150175 .0011888 12.63 0.000 .0126876 .0173475
Regime4 .0104796 .0015258 6.87 0.000 .007489 .0134701
Regime5 .0107557 .0010314 10.43 0.000 .0087343 .0127772

7 Consumer Confidence and Leader Approval Rating
Another relationship that can potentially suffer from structural breaks is the one be-
tween consumer confidence and the approval rating of a country’s leader. In the US,
there is now a large literature analysing the determinants of presidential ratings (see for
example Berlemann and Enkelmann (2014) for an extensive review). The determinant
of interest here is consumer confidence, a statistical measure of consumer feelings on the
state of the economy and their financial situation. Confidence in the economy should
translate into high presidential ratings, although the relationship itself may be unstable
at times with structural breaks occurring for various reasons, including political instabil-
ity and other significant events, an example being the inauguration of President Barack
Obama (Small and Eisinger (2020)). Another dimension of interest when studying such
relationships is their cross-country heterogeneity, which is the outcome of unique histor-
ical processes shaping institutions and culture. In the words of Nannestad and Paldam
(1994), “approval relationships have shown a disappointing lack of stability both over
time and across countries”.

The present study is motivated by the above discussion and will attempt to discover
breaks in a set of eight countries in which leader approval ratings were observed monthly
from January 1990 to December 2021. The data on approval ratings were obtained from

20. In large datasets an overspecified model with more breaks is preferable to an underspecified model,
because in the latter the estimators are inconsistent (see Ditzen et al. 2024).
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Figure 4: Plotting estimated breaks (dashed lines), 95% confidence intervals (dotted
lines), deaths and lagged cases. The arrows on top indicate the Regimes.
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the EAP 3.0 Database (Carlin et al. 2023), while the data on consumer confidence were
taken from the OECD.21 The two variables are denoted as approval and CCI. As the
time dimension is long, we set the trimming parameter to 5%. Additionally, we control
for breaks due to elections which can be seen as known break dates. Elections dates for
the years post 2000 come from the International Foundation for Electoral Systems (2023)
and are hand-filled for the years before 2000. To account for political environment right
before and after an election, the dummy variable ElectionQ equals one in the month
prior and for the two months after an election. We analyse first the whole panel and
later on each country separately.

In the estimations below we allow unobserved heterogeneity to account for country-
specific variation and use first differences of the variables to ensure stationarity. As the
time dimension is large, a large number of possible SSRs has to be estimated which
takes a considerable amount of time.22 In order to save time, we restrict the number
of breaks under the null hypothesis for hypothesis (2) to smax = 5 using the options
maxbreaks(5) and strict for the sequential test and invoke the option python.23 With
the last option, the sequential test will stop once the null hypothesis F (s + 1|s) is not
rejected given a rejection of F (s|s − 1) at the default 5% significance level.

. xtbreak d.approval d.CCI , trim(0.05) nobreakvar(ElectionQ) strict maxbreaks(5) python
Test for multiple breaks at unknown breakdates
(Ditzen, Karavias & Westerlund. 2024)
H0: no break(s) vs. H1: 1 <= s <= 5 break(s)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

UDmax 13.91 13.74 10.17 8.78

Sequential test for multiple breaks at unknown breakpoints
(Ditzen, Karavias & Westerlund. 2024)

Bai & Perron Critical Values
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

F(1|0) 12.63 13.58 9.63 8.02
F(2|1) 26.99 15.03 11.14 9.56
F(3|2) 5.32 15.62 12.16 10.45

Detected number of breaks: 2 2 2

The detected number of breaks indicates the highest number of
breaks for which the null hypothesis is rejected.

Estimation of break points

21. In the panel case the validity of critical values requires theoretically that N >> T . However, Monte
Carlo evidence in Ditzen (2021) show that this requirement is not critical. See also the discussion
at the end of Section 3.1.

22. The trimming of 5% and the 383 time periods imply a minimal segment length of h = 20 periods.
The number of possible segments is T (T +1)/2−(h−1)T +(h−2)(h−1)/2−h2m(m+1)/2 with m
the number of breaks (Bai and Perron 2003). For m = 1 this amounts to over 65,000 estimations.

23. We did not find more than 5 breaks for the entire panel or any individual country. Using the option
python reduces the computation time significantly.
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Number of obs = 3064
Number of Groups = 8
Obs per group = 383
SSR = 34584.14
Trimming = 0.05

# Index Date [95% Conf. Interval]

1 344 2018m9 2017m3 2020m3
2 363 2020m4 2019m2 2021m6

The UDmax test is rejected at the 10% level, suggesting at least one break in the
relationship. Such evidence is rather weak given the size of the sample, however, looking
at the sequential statistic results, there is strong evidence in favour of two breaks, at
all significance levels. The two breaks are found in September 2018 and April 2020.
The confidence intervals of the breaks span in both cases more than one year, having
width 36 and 28 months respectively. The first break could be due to Donald Trump’s
election in the US; its CI includes almost the entire first presidency. Trump’s election is
significant as leaders across the board try to side or oppose his rhetoric and policies. The
second break could be due to the COVID–19 pandemic which was a difficult multifaceted
problem for leaders and the economy.

Table 2 presents some further robustness results examining how the number and
location of breaks vary across model specifications. The parameters which vary are
trimming, the constant/fixed effects specification, the significance level, and whether
“Elections" are included as non-breaking regressor. Overall, we observe that the panel
results are robust to these choices.

Individual Fixed Effects Overall Constant
Break # (1) (2) (3) (4) (5)
1 2018m9 2018m9 2018m9 2018m9 2018m9

(2017m3, 2020m3) (2017m3, 2020m3) (2017m3, 2020m3) (2017m3, 2020m3) (2018m6, 2018m12)
2 2020m4 2020m4 2020m4 2020m4 2020m4

(2018m10, 2021m10) (2018m10, 2021m10) (2019m2,2021m6) (2019m2,2021m6) (2020m2, 2020m6)
UDmax 15.60∗∗∗ 9.73∗ 13.91∗∗∗ 13.85∗∗∗ 8.13∗∗∗

Break in constant No No No No Yes
Non-breaking V. - - Election Election Election
Trimming 5% 5% 5% 5% 5%
Critical V. 1% 5% 1% 1% 1 %

Table 2: 95% Confidence intervals in parenthesis. UDmax is the test statistic of Hypothesis
2 with no breaks against 1 < s < smax = 19. Stars indicate significant level at ∗∗∗1%, ∗∗5%,
∗10%. Level Critical Values indicates the critical values at which the break dates are selected.
Non-breaking V. indicates non breaking variable.

We now explore cross-country heterogeneity by analysing the disaggregated data
for each of the 8 countries in the sample. Individual country analysis allows for het-
erogeneous intercept and slope regression coefficients, although it can be less efficient.
The results are depicted in Figure 5, which includes the estimated break dates marked
by vertical lines as they have been estimated in each time series. For comparison, the
estimated breaks of the full panel are indicated by a dotted line. The number of esti-
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Figure 5: Leader Confidence. Dashed lines indicate break point estimates on country
level, dotted on panel level and dots indicate elections.

mated breaks ranges from none (Australia) to three (Germany). The April 2020 break
estimated in the panel appears in five of the eight countries: France, Germany, Spain,
the UK and the US. The break in 2018 appears only in Spain and the UK. Overall, the
figure shows that the heterogeneity across countries is significant.

As a final exercise, we return to the panel case and assume that there is a single
break. We now plot the SSRs estat ssr after using xtbreak estimate. The estat
ssr function is only available after the estimation of a single break and displays the
SSR for each possible break date.24

. xtbreak est d.approval d.CCI , trim(0.05) nobreakvar(ElectionQ) breaks(1) python
Estimation of break points

Number of obs = 3064
Number of Groups = 8
Obs per group = 383
SSR = 34907.31
Trimming = 0.05

24. The SSR function is different for different number of breaks. If there are two breaks, the SSR
function becomes a surface.
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# Index Date [95% Conf. Interval]

1 360 2020m1 2015m3 2024m11

. estat ssr , scheme(sj) name(ssr, replace)

Figure 6: SSRs over time.

The estimated break point is indicated by a dashed line. The break is estimated
to be in January 2020 and the SSR of 34907.31 represents the sum of the SSR of an
estimation ranging from January 1990 until January 2020 and the SSR of an estimation
from February 2020 to December 2021. This break is almost identical to the second
break in the panel data model above, and coincides with the second break appearing in
5 out of the 8 countries of the sample. In an underspecified model in which the assumed
number of breaks is less than the true number of breaks, the break date estimators are
still consistent for the true break dates (see Bai and Perron (1998)). Therefore, the
estimator of the one break here is meaningful and converges to one of the true break
points; which of the true breaks it will converge to depends on the magnitudes of the
breaks and the duration of the regimes.
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8 Conclusion
This paper presents a new community contributed command, called xtbreak, which
enables researchers to detect breaks, and to estimate their number and location. The
command can be applied to time series and panel data, and can hence be seen as a
complete break detection toolbox that is applicable regardless of the structure of the
data. In our empirical illustration, we employ US country-level and state-level data
to investigate the relationship between the number of COVID–19 cases and deaths,
which may well have changed as a result of improvements in testing capacity, reporting
routines and treatments. While the time series data set suggests 2 breaks, the panel
data set suggests 4. Moreover, 2 out of the 4 breaks detected using the panel data set
coincide with those detected using the time series data set. The use of the relatively
larger panel data therefore leads to the detection of two additional breaks which are not
detected when using the time series data set.

In a second empirical application we examine if there are breaks in the relationship
between consumer confidence and the approval ratings of country leaders. In the panel
of 8 countries we estimate two breaks, which however have wide confidence intervals. We
analyse each country separately and find that there is great cross-country heterogeneity
in terms of the number and locations of breaks.

9 How to install
The latest version of the xtbreak package can be obtained by typing the following in
Stata:

net from https://janditzen.github.io/xtbreak/

Updates and further documentation can be found on GitHub.
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