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Abstract

In an increasingly digitalised world, visual media is utilised in a wide array of forms. This visual
content is made up of many individual elements, referred to as graphical assets. A wide variety
of well established and nascent methods, referred to as graphical asset generators (GAGs), can
be used to automate the production of graphical assets. Video games are a popular and growing
application of graphical assets, requiring copious amounts of 3D and 2D visual content. The aim
of this thesis is to examine how generative methods can be applied to the creation of graphical
assets for games, and to discover how game designers and developers choose to utilise them.
This is achieved through the pursuit of 5 research objectives: first, collating and examining the
state-of-the-art of GAGs in the literature; second, developing a framework for using, implement-
ing and evaluating GAGs (GAGeTXx); third, obtaining user needs and preferences through a user
experiment; fourth, developing a proof-of-concept prototype tool, serving to validate GAGeTx;
fifth, refining the framework through further user experimentation using the prototype tool.
Contributions of this thesis include: the GAGeTx framework; a systematic literature review
state-of-the-art GAG methods; empirical findings on user needs and requirements; a novel, game
engine-integrated framework and prototype tool for sword generation; and a method for dataset
creation, tailored to unsupervised deep learning for GAG tasks.

The GAGeTx framework offers a comprehensive categorisation and conceptualisation of GAG
methods, which allows researchers and practitioners to identify or create the most appropriate
GAG methods given their needs and requirements, through a step-wise process built on empirical
findings. This is supported by the integration of GAG evaluation metrics and the consideration
of user pipeline applications. The systematic literature review consolidates fragmented research
from various domains into a unified taxonomy, identifying key aspects of GAGs. This facilitates
cross-over between domains and provides a valuable entry point for both new researchers and
practitioners in the field of GAG research. Empirical findings from user studies provide guidelines
for integrating GAG tools into game design and production pipelines with minimal friction and
facilitating the adaptation of GAG research into practical tools. In addition, they identify the appro-
priate metrics for evaluating the strength and utility of GAG tools based on their technique, further
aiding in the benchmarking and improvement of GAG methods. The prototype, named Sword-
gen, allows users to generate varied sword assets for games via several generative techniques at
different levels of user initiative, providing and validating a configurable and extendable frame-
work for game-engine integrated GAG tools. The dataset creation method enables the creation of
bespoke content and style specific datasets for training unsupervised deep-learning-based GAGs.
Through selecting specific data sources, including concept-art from the user’s current project, users
can control the design constraints of a GAG model, without compromising on dataset size.
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Chapter 1: Introduction

Throughout history, humans have used graphics to represent the world around them, commu-
nicate, plan and share stories. In an increasingly virtual world, digital graphics have become
a common and expected part of daily life. Many industries that have traditionally relied on
hand-drawn graphics, such as architecture and engineering, have adopted digital methods such
as building information modeling (BIM) and computer aided design (CAD). This digitalisation
streamlines design tasks, and allows for fast iteration, collaboration and sharing. In addition, the
ability to incorporate algorithms elevates digital graphics methods far beyond what is possible
with hand-drawn methods. This only improves more as the processing capability of computer
hardware advances.

One of many applications of digital graphics is in video games. The video games industry is
the largest entertainment industry globally, expected to be worth $363.20bn USD by 2027 [447]
and by 2022 was worth more than the film an music markets combined [445]. As an audiovisual
form of content, video games can require a large amount of graphical data in order to represent
worlds, characters, objects, and graphical user interface (GUI) elements. This graphical data
takes a combination of artistic skill and technical knowledge to produce and requires careful
consideration for data storage and performance. These items, commonly referred to as assets,
form the building blocks of video game content. Typically, graphical assets are either created
by artists and designers during the production stage of game development, or purchased from
a third party. The former case can take a large amount of time, while the latter case, though
convenient, can be stylistically limiting.

Furthermore, the impact of games technology beyond entertainment is far-reaching. Gamification
and serious games present affective methods for training and increasing the awareness of individ-
uals [78, 441]. These methods utilise the immersive and engaging qualities of games to enhance
the experience of learning and improve confidence. For example, immersive gamified cycling
is shown to improve the on-road cycling of children as well as their self-reported confidence
[30].

One way to utilise the computing power afforded by a digital workflow is to automate asset
creation through procedural content generation (PCG). PCG is a class of methods and algorithms
that output or generate content, whether it be game levels, loot or characters. These methods take
many forms and can incorporate randomness as well as modifying existing content, they can be
constrained by parameters or used as a form of compression [109]. A range of games use PCG
as a way to produce new content during gameplay, creating unique experiences for players and
endless replay-ability. Alternatively, there are many software tools that utilise PCG algorithms
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such as speedtree [190] and houdini [421]. These systems illustrate the potential of PCG usage
within design and development pipelines.

While large development teams can put aside the necessary resources to create the many graphical
assets required for detailed game worlds, smaller teams with lower budgets are forced to limit
their scope to match their capabilities. Graphical asset generation has the potential to streamline
the asset creation process, reduce the resources required, and democratise game development
for those without digital drawing, painting and 3D modelling skill sets.

On top of more traditional and well established methods for graphical PCG, such as grammars
[85, 10, 514] and evolutionary algorithms [153, 245], there has been a surge in deep-learning
approaches [493, 416, 545, 126]. The current widespread interest in generative artificial intelligence
(AI), utilising deep neural network architectures, has given rise to the usage of such methods in
design and development tools. With new and emerging commercial technology, such as Muse
for Unity [472] and Adobe Firefly [5], there is a clear and valid interest in the use of generative

tools to help with creative graphical processes and pipelines.

PCG for games has been thoroughly examined throughout the years, such as in the work of
[465, 146, 164], and with further focus on machine learning [294, 450, 225]. Much of the existing
literature focuses on high level game elements, such as level structure and narratives, rather than
low level elements, such as graphical assets. While graphical assets have a lesser direct impact on
game-play, they are a necessary element of any game, serving to visually represent the game state
and provide immersion. As such they can be required in copious amounts, demanding a large
portion of production time and thus incurring a large cost for game developers. Due to being
a low-level element, graphical assets can be applied broadly across many fields, and while the
purpose of their creation may differ, the methods used are transferable. For example, a technique
for generating buildings in architecture can also be applied to creating buildings in games.

So far, there is no overarching research that consolidates the available methods for these purposes.
A centralised understanding of graphical asset generation methods would benefit researchers
advancing the generative frontier, companies wishing to provide creative tooling, and individual
practitioners seeking to streamline their workflows. Furthermore, while video games are a large
part of current society, the plethora of other industries that are augmented by or reliant on digital
graphics all benefit from the speed, convenience and utility of generative algorithms.
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1.1 Research aim and objectives

The aim of this research is to examine how generative algorithms and PCG can be applied to

the creation of graphical assets for games, and to discover how game designers and develop-

ers choose to utilise such methods as tools. To achieve this aim, the following objectives are

undertaken:

Objective 1: Conduct a comprehensive systematic literature review of the state-of-the-art in methods for

generating graphical assets. This will serve as a means to collate the breadth of generative

methods used.

Objective 2: Develop a framework for researchers and practitioners on how to use, implement and

evaluate graphical asset generators (GAGs).

Objective 3: Establish user requirements and preferences for asset generation systems by conducting

a user study with game designers and developers.

Objective 4: Design, develop and integrate a functional proof-of-concept prototype tool that emphasises

usage in game design and development pipelines.

Objective 5: Validate the design in objective 4 and refine GAGeTx. Pursued via a user study with game

designers and developers.

Objective | Method Outcome | Duration
Objective 1 Systematic literature review based on | A systematic review of state- | Oct 2021
PRISMA. of-the-art GAG literature -
April 2022
Objective 2 Inductive content analysis. GAGeTx and metrics frame- | April 2022
work -
June 2022
Objective 3 Empirical research, statistical analysis, | User study 1: UX preferences | Jun 2022
thematic analysis -
Dec 2022
Objective 4 Rapid application development (RAD) | Functional proof-of-concept | Dec 2022
prototype. -
Aug 2023
Objective 5 Empirical research, statistical analysis, | User study 2: Generative | Aug 2023
thematic analysis technique preferences, Re- | -
fined GAGeTx framework | Aug 2024

TABLE 1.1: Summary of thesis Objectives, Methods, Deliverables and their

Duration.
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1.2 Research approach

To achieve objective 1, a Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
based literature search will be conducted in order to collect and analyse research papers from four major
databases: ACM Digital Library, IEEE Xplore, ScienceDirect and Springer. The PRISMA protocol [350]
is a set of guidelines for presenting systematic literature reviews. The PRISMA guideline requires
that the number of papers identified, screened then assessed be reported along with the final
number of included studies. This allows for clarity and reproducibility in the procedures taken
in the systematic search. This literature review will yield a pool of papers pertaining to methods
for generating graphical assets. While the main body of analysis is to take place between October
2021 and April 2022, additional top-up searches following the same procedure will take place
up until August 2024.

In order to achieve objective 2, an inductive thematic analysis (ITA) of the literature obtained
through objective 1 was conducted. ITA allows themes to emerge from a body of qualitative data
through iterative coding and conceptual grouping [154]. This can be applied to the analysis of
literature by coding the described approaches and methods and grouping themes across the liter-
ature pool. Through conducting ITA on the literature from objective 1, a classification of the main
aspects of graphical asset generators will be derived and a taxonomy of the various categories
will be presented. From this a framework for graphical asset generators will be formed.

Objective 3 will be achieved via a mixed methods approach [448] examining quantitative data
through statistical analysis and qualitative data through thematic analysis. The findings of ob-
jective 2 will be used to develop three mock up user interfaces, each representing a different
style of interaction, these will be: stand-alone wizard, integrated editor window and integrated
editor inspector. These interfaces will implement the key steps and categories of the literature
derived framework of objective 2, covering common forms of Ul type, spanning stand-alone
and engine integrated UI. Via convenience sampling, game designers and developers will be
recruited to test each interface and complete a repeated measures questionnaire followed by an
optional semi-structured interview. Questionnaire results pertaining to the three mock ups will
be analysed via ANOVA and Wilcoxon signed ranks tests to determine significant differences
in preferences, and tested for demographic impact via regression. Participants that opt-in for the
semi-structured interview will be asked questions aimed at expanding on and extracting nuance
with regard to preferences and needs. Notes will be taken during these interviews, then analysed
via thematic analysis. Insights from this experimentation will be used to inform the design and
user interface of the prototype in the following objective.

To achieve objective 4, a proof-of-concept prototype graphical asset generation tool (with a focus
on generating 3D swords for games), will be developed via the rapid action development (RAD)
methodology. RAD is a form of agile development, in which software can be developed iteratively
through prototyping, with the flexibility of adjusting to evolving requirements [27, 9]. Initial
requirements will be determined based on findings from objective 1 and 3. This will be followed
by a design phase, applying the framework from objective 2 to select an appropriate generative
method. Implementation and testing of the various components, such as the generative method
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and the game engine-integrated Ul, will proceed iteratively. These components will be integrated
to form the final prototype tool.

Objective 5 will be achieved via a mixed methods approach, using statistical analysis for quantita-
tive data, and thematic analysis for qualitative interview data. A convenience sampling approach
will be used to recruit game designers and developers in order to test the proof-of-concept pro-
totype from objective 4. Quantitative data will be collected via a repeated measures questionnaire
for each of the implemented techniques. This will examine core user-perceptible evaluation types
derived from the framework of metrics, determining the preference of each technique in relation
to their overall perceived usefulness. The questionnaire data will be analysed via Friedman tests
and Wilcoxon signed ranks tests to determine significant differences in ratings between tech-
niques. Multiple linear regression will be used to determine the correlation between the various
technique ratings and their overall perceived usefulness. This analysis will help ascertain which
aspects most significantly impact user-perceived usefulness. Participants that choose to take part
in a semi-structured interview will be asked questions aimed at the reasoning and nuance behind
these ratings, which will serve to further validate findings. Interview data will be collected via
note taking, then analysed via thematic analysis. Insights will then be used to refine GAGeTx
from a user centred perspective, incorporating user needs and preferences. By integrating the
insights from this objective, along with the contributions of objectives 3 and 4, GAGeTx will both
be validated and refined with regard to game pipelines. This will ensure that GAGeTx not only
provides a view of all state-of-the-art methods but also aligns with the preferences and needs
of its users, thus improving its usability and relevance for tooling in game design and develop-
ment. This will be the culmination of this research, enabling GAGeTx to provide comprehensive
step-wise instruction in building or selecting GAG methods with the full integration of game
designer and developer needs and requirements, mapping the design and production pipeline to
the strengths of GAG techniques, and defining how to evaluate and compare approaches.

1.3 Planning

To achieve the 5 objectives stated in section 1.1, timelines and milestones were planned, as
shown in figure 1.1. Each objective has been achieved in order, with important findings and
outcomes feeding into each subsequent objective. This began with the systematic literature review,
providing a pool of literature containing graphical asset generation methods from 2016 until
present. The core output of this objective was achieved by April 2022, at which point it was
possible to formulate the GAGeTx framework. Upon completing the initial framework based
solely on the literature at the end of June 2022, work on the first user study commenced between
June and December 2023. Following this, it was possible to begin design and development of the
proof-of-concept prototype, which was finalised at the end of August of 2023. Between August
2023 and May 2024, the second user study was planned and conducted, results were then analysed
and used to inform refinements to the GAGeTx framework along with the results from the first
user study between May and August of 2024. During the intervening years, as new literature
has been published, the literature review and framework have been updated accordingly.
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Key Milestones

Objective 1

Systematic literature review

* PRISMA based systematic literature search.
* Collate evaluation metrics and datasets.

Objective 2

Graphical asset and metric frameworks

« Establish graphical asset generation framework.
« Establish framework for evaluation metrics.

Objective 3

generation (study 1)

Investigate user requirements for procedural asset

« Design study; formulate questions, design
questionnaire, design prototype interfaces.

« Ethics approval.

 Recruit users from LUUG, and other game
development communities.

 Data collection.
 Data analysis.

« Begin designing proof-of-concept prototype.

Objective 4

Proof-of-concept prototype

« Based on study 1: develop a proof-of-concept
prototype tool.
« Tool validation.

Objective 5

Evaluation of prototype (study 2)

« Plan study.

« Ethics approval.

« Prototype testing, followed by short questionnaire,
specifically invite LUUG members etc. Ask
participants for futher follow-up interviews.

« Data analysis.
« Refine and expand framework.

Refine and expand framework

J\.

J\_

J\\

J\.

Duration

[ Oct 2021 - Apr 2022 ]

Duration

[ Apr - Jun 2022 ]

Duration

[ Jun - Dec 2022 ]

Duration

[ Dec 2022 - Aug 2023 ]

Duration

[ Aug 2023 - May 2024 ]

Incorporating:

« User preference.

 Metric usage.

* Usage in the game design and development
pipeline.

Duration

[ May - Aug 2024 ]

FIGURE 1.1: Key milestones and timeline durations for each objective.
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1.4 Outline

The next two chapters (chapters 2 and 3) present the systematic literature review findings,
GAGeTx framework, expanded GAGeTx framework and framework for evaluation metrics.
Chapter 4 presents the conception, procedure, results and findings of user study 1, examining
user preferences regarding generative tools in game pipelines, prompted by hands-on experience
with interface mock-ups. In chapter 5, to build on the findings in chapter 4, a proof-of-concept
prototype 3D sword generation tool is developed in the Unity engine, and trained on a novel
silhouette dataset. This is followed by the planning, data collection and analysis of user study 2
in chapter 6, in which the prototype tool is evaluated and insights are derived on the relationship
between technique preference and choice of usage in the design and production pipelines, as well
as the perceived quality, speed and controllability. The findings and insights from this chapter and
chapter 4 are then applied to the expansion and refinement of the GAGeTx framework. The thesis
will conclude in chapter 7, consolidating the findings and contributions throughout the thesis,
beginning with a thesis summary, followed by a comprehensive discussion of highlights and con-
tributions, a discussion of research limitations and a discussion of future research directions.



Chapter 2: GAGeTx- Graphical
Asset Generation/Transformation

In this chapter, a systematic literature review has been conducted, examining the breadth of
state-of-the-art GAG methods. This review informed the development of a conceptual framework
for graphical asset generation and transformation (GAGeTXx), in which five main aspects have
been identified, including input type, technique, approach, target asset type and format. Various
categories have been identified within these aspects, while processes for decision making with
regard to these aspects have been provided.

21 Introduction

On-going improvements in computing technology have expanded the limitations of digital media
throughout the years. From websites to movies, video games, virtual reality (VR) and augmented
reality (AR) experiences, ranging from serious to recreational, there are many forms of content
in constant development. The ubiquity of computing hardware makes digital content available
to a wide audience of users. As such, the demand for digital content is ever growing.

The task of producing this content is typically handled by highly skilled artists and designers, re-
quiring creativity, technique and an understanding of user needs. However, production of content
takes time, which is further exacerbated by the amount of content required. At scale, this can be
counteracted by involving a large number of artists and designers, but this incurs large production
costs that studios with smaller budgets may not be able to afford. Software for producing digital
content, such as the Autodesk products [16], Blender [32], Unity engine [475] and Unreal engine
[105], provide tooling that aims to streamline the technical aspects of production workflows. The

creative aspect, however, is still very much the domain of the designer or artist.

Procedural content generation (PCG) is an area of research that involves the application of algo-
rithms and computational processes to the production of digital content. For many years the film
and video game industries have made use of PCG approaches to save time on large scale tasks
such as producing realistic and varied trees with SpeedTree [190], or simulating large crowds
with MASSIVE [385]. Video games in particular, consist of many varied types of content, much of
which can be procedurally generated, as seen in Dwarf Fortress [23], that generates entire worlds
and their histories, or No Man’s Sky [162] with generated planets and creatures.
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Hendrikx and Meijer [164] categorise these content types, in pyramid form, from low-level “game
bits”, such as vegetation, buildings and sounds, up to game spaces, such as maps; and at higher
levels, systems, scenarios and overall game design are considered. In this model each layer may
derive content by combining elements from layers below. Togelius et al. [465] introduce key
terminology, such as search-based, online and offline PCG. Offline content generation can be defined
as content generated during the development of a product, which allows for it to be curated
and edited by a designer. Online generation is content generated at runtime, and thus cannot be
curated by a designer. Typically, online generation approaches are presented as key gameplay
features, such as loot and level generation in games such as Diablo 2 [33] and Path of Exile [148].
Search-based PCG involves approaches that seek out quality content by searching a content space
and evaluating the results.

Interest in the use of machine learning (ML) for content generation is shown widely in recent
research, with the impact of generative adversarial networks (GANSs), approaches to style transfer
[134], and sketch to image generation such as GauGAN [355]. Summerville et al. [450] discuss
the concept of procedural content generation via machine learning (PCGML), whereby ML
models learn to generate novel game content from existing content. It is clear from such research
that many PCG approaches, while effective, still require human supervision or involvement to
produce content that would be sulfficient for commercial products. Humans can work with PCG
systems, as described by Liapis, Smith and Shaker [280] with the concept of mixed-initiative

content generation, whereby machine and user co-create content.

So far, focus has been placed on content with a functional purpose, i.e. the upper elements of
Hendrikx and Meijer’s [164] pyramid model; or covered game content broadly, for example
the work of Liu et al. [294] which examines the uses of deep learning for PCG, focusing on
game content with varying functionality constraints, from narratives down to textures. But less
focus has been placed on approaches applied to generating “game bits” with lower functionality
requirements, i.e. lower-level elements, such as: 3D models of vegetation and buildings, or 2D
textures and icons. It can be argued that these elements form a large proportion of the content
required in a game, and thus are a large part of the development time cost. This chapter will
examine the visual forms of this content, referred to as graphical assets, and the state-of-the-art

in generating them, with emphasis on offline approaches.

Furthermore, this work focuses on generative methods that demonstrate a level of "initiative",
defined as those that apply logic, reasoning or autonomous decision-making in the production of
assets, whether through rules that are built-in, such as in a grammar, or learnt through data, as in
deep-learning. This includes any method that embodies decision making that could be expected
from a human, based on given inputs. This definition is derived from the usage of the term in
existing literature [280, 48].
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In this chapter, state-of-the-art GAG methods have been aggregated with the goal of answering
the following research questions:

RQ1 What generative methods demonstrating “initiative” are in use for producing graphical
assets?

RQ2 What are the forms of graphical assets that have been produced through generative methods
demonstrating “initiative”?

RQ3 Can methods for graphical asset generation map onto the requirements and purposes of
the end-user and how?

Within this chapter, the goal is to discover the methods used in the current body of literature and
the asset types these apply to (RQ1, RQ2). Furthermore, through the lens of using generative
methods as tools for creating graphical assets, the aim is to elucidate the relationship between
the requirements of the user and the multitude of methods available (RQ3).

2.2 Literature search

To obtain relevant literature, a systematic literature search inspired by PRISMA and the approach
of Hughes et al. [183] has been employed, incorporating a series of screenings as shown in figure
2.2. The initial search examined literature published in four main databases: ACM Digital Library,
IEEE Xplore, ScienceDirect and Springer. An initial assortment of keywords was established
based on general terms in the PCG literature, alongside variations and synonyms of the word
“generation” or “creation”, and terms “asset” and “content”. These words, figure 2.2.c, were

separated into three semantic groups.

Query strings were formed by combining terms within each group using "OR" operators and
combining across groups using "AND" operators. For example: “(Environment OR Terrain OR
Layout) AND (Graphic OR Asset OR 3D OR Mesh) AND (Generation OR Synthesis)”. These queries
took two forms: broad queries with many search terms, and smaller specific queries that included
a single search term from the first group of terms, paired with smaller sets of terms from group
2and 3.
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Core
databases

Refine & Expand Keywords

ACM

EEE | FulRess.

ScienceDirect

Springer

I280I

Expanded
databases

Ebsco

Google Scholar

Cross referencing
ResearchGate

Inclusion Criteria Exclusion Criteria

* Methods for generating graphical assets ¢ Not distinctly graphical assets e.g. text or

(GGA). animation.
¢ Comparisons of methods for GGAs. ¢ Functional requirements rather than
¢ Combinations of methods for GGAs. visuals.
¢ Latest version where multiple iterations ® Non-procedural methods.

exist. * Methods not demonstrating “initiative”

e Published between 2016 and 2023.

Review or survey papers, posters, courses.

(@)

Quality Criteria
¢ The method is validated. ¢ The method is peer reviewed.
(b)

Group 1 Group 2 Group 3

Procedural* "Deep Learning” Grammar Graphic* Generation

Algorithmic* Inverse Deep Asset Synthesi*

"Machine Learning" Stochastic Parametric 3D Modeling

ML "3D Art" Modelling
Content Creation
"3D Model" Design
Mesh Production
Shape Assemb*

(©)

FIGURE 2.1: Systematic literature review process: a) inclusion and exclusion
criteria, b) the quality criteria applied to the literature search, c) The search terms
used to query the chosen databases with expanded search terms in grey.
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Using the inclusion and exclusion criteria seen in figure 2.2.4, results from these queries were
first selected based on their titles and abstracts. The pool was then reduced by examining their
methods and conclusions. Then the full text of each paper was examined, applying the quality
criteria, as seen in figure 2.2.b. The results that passed these criteria formed the pool of accepted
literature. The process of evaluation, for each query, was continued until the query was exhausted,
that is, once each result had been evaluated. It was necessary to deem a search exhausted once
a full page of results had not passed the criteria due to the impracticality of assessing every page.
However, smaller targeted queries aimed to fill any gaps from broad searches. Furthermore, the
ordering of each set of results was subject to the databases” own relevance ordering. The number
of results per page was also variable, and thus recorded. Queries that were too long for the
database search systems were split into smaller strings. The number of results per page for each
database, as well as the number of pages completed before queries were exhausted have been
provided in appendix 7.1.3. As common classes of graphical asset emerged, these were added as
search terms, and the literature search process resumed with queries incorporating the new terms.
In the accepted literature, related work was cross-referenced and evaluated against the criteria,
and additional supplementary queries were performed on the databases: Ebsco, Google Scholar,
and ResearchGate to ensure completeness. Pre-prints have been considered and discussed, but

have not been included in count tables or figure 2.2.

As shown in Figure 2.2, a total of 5503 papers were initially assessed. This number is ascertained
by multiplying the number of entries provided per page by the number of pages accessed for each
database. From this, 480 papers passed title and abstract screening, 284 of which were accepted
following the analysis of the methods and conclusions. After a full read of each paper, the final

accepted literature count was 280.

2.3 GAGeTx: A Framework for graphical asset generation/transformation

The conceptual framework, GAGeTx, was developed through an inductive thematic analysis
(ITA) [154] of the accepted pool of literature, detailed in section 2.2. The purpose of this analysis
was to establish a categorisation of the key components of graphical asset generation methods,
based on the literature. This iterative, inductive approach allowed categories to emerge from
the literature itself. ITA was conducted and coordinated using a spreadsheet containing entries
corresponding to each accepted paper. Analysing the content of each paper, entries were tagged
with codes as they emerged. Thematically grouping the emergent codes, a structure of categories
was formed. As more literature was analysed, the categories were iteratively refined by splitting
and merging categories and associated text extracts. Each paper was then classified based on the
established categories. During this process, certain thematic distinctions became clear regarding
graphical asset types. To ensure that the literature search was thorough in regard to the range of
asset types (RQ2), the search terms were expanded to include these graphical asset types before
conducting further rounds of searches, which subsequently expanded the literature pool. At this
stage, the final refinement of the category arrangement and naming took place, resulting in the

categories and sub-categories of GAGeTx.
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Five key aspects emerged as differentiators amongst generative methods, these are: input type,
technique, approach, target asset type and format. Within these aspects, various options were
observed and categorised. The structure of GAGeTx was formed by ordering these aspects based
on their prerequisites, starting with the base assumption that the most important aspect is the
asset type of the intended artefact. As such the asset type would be chosen first, and subsequent
decisions would follow in a logical order based on previous steps. For example, the approach can
only be decided once the technique and input type are determined, which is only possible when
the intended asset type is known.

The primary purpose of a generator is to automate or assist in a creative process. For graphical
assets, a breadth of approaches may be applied to the task, depending on the desired output, level
of control and available data. The GAGeTx framework, presented in figure 2.2, conceptualises
the task of building a generator, which requires an understanding of the desired outcome. For in-
stance, the user may desire variations of an existing asset, to digitise a real object via photographs,
turn sketches into 3D art, or obtain quick creative inspiration, which can be decomposed as the
type of asset required and the technique for producing it. Technique determines the level of
control and input type of the generator. Techniques for graphical asset generation fall under two
categories: conceived and synthesised.

Conceived techniques allow for the conception of new content either internally from prior learning
such as from a random seed or externally by transforming human creative input such as text
prompts, photos or sketches. Synthesised techniques construct new content by combining existing
data provided at the time of generation, which is useful for re-configuring, or creating variations
of existing content. Examples include object placement within an environment, interpolation
between different designs and style transfer. The balance of creative initiative between user and
generator is pertinent to the formulation of a useful generator. While conceived techniques may
require large datasets, synthesised techniques may require many pieces of data from which to
constitute new content. As such, the choice of technique may be constricted by the availability of
data. If the technique can be seen as the task, the approach can be seen as the solution i.e. the way in
which the technique is achieved. Different graphics formats, such as 3D meshes, point-clouds and
voxels, or 2D bitmaps and vector graphics may be required for different purposes. To maximise
the applicability of generative methods in cases where a different format is required, conversion
methods can be applied as a final step.

The following sections will examine each step of GAGeTx in detail while reviewing the state-of-
the-art. Section 2.3.1 will discuss asset types, then section 2.3.3 will examine techniques. Following
this, section 2.3.7 will examine approaches, while discussing the bulk of the literature. Generating
and converting assets will be examined in sections 2.3.14 and 2.3.15 respectively.
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23.1 Asset type

Each type of graphical asset requires distinct considerations when it comes to generation. For
example, structured grammar based approaches are favoured for 3D hard-surface assets, while
stochastic, growth or simulation methods may be applied to scenery. This section will introduce
the 21 types of asset examined in the literature and the task of selecting a target asset type within
the framework. The asset categories found in the literature are shown in figure 2.3 and count
tables 2.1 & 2.2 provide their distribution within the literature (many papers feature multiple
times as they demonstrate the capability of producing multiple asset types). It is evident there
have been more efforts toward 3D than 2D asset generation.

Asset Type
2D 3D
Arrangement Individual Arrangement Individual
Sprite Map Scenery Hard-Surface Characters/Creatures
[ Height [ Clouds ] [ Buildings ] [ Characters ]
[ Layouts ] [ Character ] [ Interior l [@
[ Furniture ] [ Faces ]
[Environment] [ Objects ][ Normal [ Exterior l [ enan
[ [ Vehicles ] [ Hair ]
Trees
[E [ Rocks ] [ Props ] [ Organs ]

FIGURE 2.3: Asset types categorisations, populated with types observed in the
literature.

2D

2D assets have applications in user interfaces (UI) for web, print and games; presenting game
worlds and characters as sprites; or augmenting 3D assets as texture, normal or height maps.
With the popularity of convolutional neural networks (CNNs) in interpreting 2D data, and the
development of GANs, deep learning approaches have become a large contributor in the area of
2D asset generation. In particular, the Pix2Pix framework [192] has had a large impact, allowing
for the translation of one form of image to another. This has formed the foundation for many
approaches that seek to produce content via user sketches in particular.

TABLE 2.1: Count and breakdown of 2D asset types within categories.

Asset Category Asset Type N

Layout 5

Arrangement Environment 2
. . Character 5
Individual (Sprite) Objects 35
Height 8

Individual (Map)  Normal 3

Texture 15
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2D Arrangement: Sprites and interface elements can be arranged on screen to form 2D envi-
ronments or present information to a user. In web and UI design, graphical elements are not
strictly visual. In many cases elements are interactive, which adds more complexity to the task
of arrangement. Unlike sprites or 3D environments, these arrangements must be precise in order

to capture the attention of an audience or user, and convey information succinctly.

Sprites: Sprites are standalone 2D assets, which for the purpose of this review includes general
bitmap images that mimic photographs [373], artwork [131], represent 2D characters [384] or
scenery [243]. Much like the distinction between objects and environments for 3D graphical assets,
sprites can be examined individually, or as part of a larger arrangement. In 2D games many
individual sprites may be arranged on the screen at once to form a cohesive game environment;
these individual elements may include characters, objects and traversable areas.

Maps: Typically, a 3D asset is expressed as a shape in 3D space. In the case of meshes, this shape
consists of vertices that are connected to form triangles. Rendering these triangles as a surface re-
quires a shader, which is an algorithm that rasterises each triangle into pixels that can be displayed
on the screen [406]. Here, a shader handles all computation relating to the lighting and appearance
of a 3D object. Shaders typically make use of 2D data, in the form of maps. These maps are images
that define how a shader renders the surface of a 3D object. In modern rendering approaches,
many types of map may be employed such as height maps [440, 193], which define offsets for
mesh vertices, normal maps [449] which determine how light affects the appearance of a model,
and texture maps [107, 130], which determine the colour of the surface. While many methods
have been developed with the sole purpose of generating maps, there have been some attempts at
generating textures alongside models end-to-end [126, 199, 57, 130, 535, 228]. Height maps in par-
ticular have been largely used as a representation for terrain data in generative methods, as they
efficiently represent detailed height variation in comparison to volumetric based alternatives, such
as voxels [193, 20, 496, 97, 112, 440]. Shaders can be used to dynamically highlight points of inter-
est in virtual environments. For example, in an immersive gamified cycling training intervention,

shaders were used to indicate dynamically detected hazards in a 360 video [30].

3D

Among 3D assets examined in the literature, there are five main categories: interior arrange-
ments, exterior arrangements, hard-surface, scenery and characters/creatures. These are split into

sub-categories as given in table 2.2.

3D Arrangement: There are two distinct categories of 3D arrangement: interior and exterior.
Interior arrangement refers to enclosed environments, such as bedrooms or offices; such ap-
proaches mainly emphasise object inter-relationship, where items have distinct purposes. Exterior
arrangement, however, refers to the placement of objects upon a terrain, such as vegetation or
buildings, where the approach to placement is more stochastic or naturalistic.

Buildings: The need for building generation can be found in architectural design tasks [525]
and games [535, 147], while in some cases entire cities are generated [485, 230]. Having a simple
structure, consisting of walls, doors, windows, and roofs, buildings are suited to approaches
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TABLE 2.2: Count and breakdown of 3D asset types within categories.

Asset Category Asset Type N
Arr ment Interior 16
angeme Exterior 6
Buildings 29

. Furniture 64
Individual (Hard-Surface) Vehidles 49
Props 38

Cloud 3

. Road network 6
Individual (Scenery) Terrain 17
Tree 8

Individual I(_le?rracter 24(?
(Characters or Creatures) Face 19
Organ 3

that work by combining simple elementary or parametric components, such as grammars or
procedural growth-based algorithms. Some approaches specifically focus on building facades
where these same techniques are applied [453, 46].

Furniture: 3D models of furniture, such as chairs, tables, cupboards and shelves are applied
commonly in architectural modelling and game worlds. Believable furniture requires a combina-
tion of functionality and stylistic consideration, specifically they must meet a functional purpose
while following established design conventions. Hence, it can be beneficial to use functionality or
structure aware representations when generating 3D furniture. Furniture is also popular category
in the ShapeNet dataset [52], used for testing deep-learning based generative models. Therefore
many of such implementations have been trained and evaluated on the generation of furniture
[489, 289, 351, 163, 265, 129, 216, 278, 523, 92, 292, 455, 493, 130, 327].

Vehicles: 3D digital environments that resemble the modern world are likely to require 3D assets
that represent vehicles. The ShapeNet dataset [52] contains many categories of 3D shape, includ-
ing aeroplanes, buses and cars; due to the popularity of the dataset, there are many generative
approaches validated on such vehicle models, including mesh [305, 292], voxel [236, 526] and
point-cloud [289] generation.

Props: To keep the list of asset types compact, hard-surface 3D objects that may be used to fill
a virtual world are generically defined as props. These may include guns [493], guitars, lamps
or bottles [270]. As a popular dataset for generative approaches, ShapeNet [52] contains many

types of prop.
Clouds: Clouds are a common depiction in digital environments that aim to portray a realistic,

earth-like world. They have a combination of attributes that make them challenging to implement,
namely that they have a form but no distinct surface [194, 330, 332].
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Roads: Roads, or road networks, are usually designed with functionality in mind [113, 230, 221,
90]. They exist to facilitate transportation throughout an environment, and in most cases can
be considered in two dimensions. However, they also exist in relation to a 3D environment or
terrain, conforming to a surface. To model a road system that simulates real-world roads it is also

relevant to consider the human decision making involved [410, 462].

Characters: Other than objects and terrains, digital 3D environments may be populated with
varied characters, and in the case of games, characters may be customised and used as digital
avatars [286, 416]. Alternatively, other tasks may require character mesh generation, such as
checking clothing fit in online shops [1].

Faces: Faces are a key element of character identity, thus high quality representations encom-
passing shape and texture are required. Furthermore, in games where character customisation
is allowed, the ability to adjust and customise player-character appearance is key. There have
been numerous attempts at the reconstruction of digital faces from photos [108, 247, 203, 226, 417,
286, 416, 491, 87, 290]. There is also a present interest in caricature generation, or the creation of
faces with exaggerated features [44, 272, 172, 272].

Hair: Hair consists of many individual strands that can be of varying lengths, and flow in different
ways. Current research in hair generation aims to achieve realistic hair flow, which necessitates
propagation based approaches to modelling [552, 415, 551, 398].

Terrain: 3D terrains have uses in various domains, from simulation, to video games and animated
film. Within these domains, terrains serve the purpose of establishing a setting and environment
for exploration. In games and film, terrain serves as a foundation for exterior environments, on
which a digital world is built. There are two primary approaches to terrain generation, these are:
surface displacement via height map [112, 193, 440], and the use of volumetric representations
[115, 24, 89].

Trees: Many 3D digital environments make use of tree models, as shown by the popularity of
SpeedTree [190]. Trees are the result of a natural growth process, and so tend to be visually unique.
In many cases environments may require dozens if not hundreds of trees, necessitating the use
of generative methods [312, 488, 383, 260].

Organs: Due to the need for accurate imaging and visualisation, medical fields benefit from re-
constructive visualisation/modelling approaches, particularly organs [467, 246, 241, 502]. Though
this does not directly relate to other applications mentioned here, it is necessary to include such
examples as the approaches could potentially be applied outside of this domain.

23.2 Input type

Within the literature, there are a variety of input types applied in the generation of assets, ranging
from single value seeds, to fully formed existing 3D assets. The framework, figure 2.2, presents
the input types observed in the literature.
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Seeds are the simplest input type, and are often pseudo-randomly generated. In such cases, no
user involvement is required. This simplicity, however, results in a low degree of control over
the output. An example is basic GANs [212, 107, 300, 498].

Parameters provide a greater degree of control than seeds. A number of parameters can be
employed, each mapping to a certain aspect of the asset, though this is dependant upon the
algorithm’s capacity to expose meaningful variables. Parameters can be configured by a user, but
may also be pseudo-randomly generated [136], inferred using deep-learning [181], or optimised
via evolutionary algorithms [332].

Text as an input has seen recent usage in deep-learning based text-to-image transformation [381,
390, 397], allowing for text descriptions to be interpreted in a meaningful way to generate images.
As an input, text is simple and intuitive to produce, but may not be interpreted as the user fully in-
tends. This, in some sense, asks both the user and the generator to be equally creative, or collabora-
tive. Prompt engineering research seeks to make this form of input more controllable [295].

Sketches are a form of input that also requires the user to be creative. Unlike more complex input
types, sketches need not be accurate or particularly detailed, requiring minimal time from a user
but providing a good amount of creative control. Sketch based input can be interpreted either
solely via deep-learning approaches [496, 83, 249] or in combination with procedural modelling
[181, 341].

As inputs, point-clouds and photographs require the user to scan or photograph a subject, or
otherwise source this data. The amount of control a user has over the output is constricted
by the limitations of reality, that is, a subject must exist physically in order to be scanned or
photographed. Photographs are largely interpreted via deep-learning [336, 87, 286, 261].

Fully formed assets may also be used as inputs to some techniques. Such inputs, however, require
the user to create precursor assets themselves or otherwise source or generate them [84, 85, 136,
153].

2.3.3 Techniques

Techniques present the core functionality and purpose of the generator. As such, there are many
possible approaches to the implementation of each technique, as will be discussed in section 2.3.7.
There are two major categories of technique: conceived and synthesised. Techniques are defined
by the inputs they require, as well as how the data is manipulated to form a result. Conversely,
the availability of inputs determines what techniques are possible. If the technique is chosen
first, the input type may be derived from the chosen technique’s requirements. This may not
always be possible in cases where certain input data is not feasibly obtainable. In such cases, a
choice of input type may take precedence and the technique may be derived from this choice.
Table 2.3 presents the count of each technique observed in the literature (many papers feature
multiple times as they demonstrate multiple techniques), with the most prevalent techniques

being photo-based, seeded and parametric.
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234 Conceived techniques

Externally conceived techniques intake meaningful input from an external source, interpreting and
producing a result that resembles the input. In other terms, the idea is preconceived, but the
algorithm is given creative license to interpret it. Text, photo and sketch-based techniques are
considered externally conceived, as the onus is on the user to conceive of an idea, either through
text prompts, photographs or hand-drawn sketches.

Text-based asset generation is explored primarily in the 2D domain, with CLIP and Diffusion
based deep-learning approaches [381, 397, 390], though text-based generation is achieved in
3D applications, such as with texture and displacement maps [123], or full model generation
[299]. Alternatively, photo-based 3D asset generation has seen considerable exploration, with
single-view [367, 336, 286, 387, 261], multi-view [261], and scan based generation of 3D assets
[132, 263], and many utilising depth data from RGB-D images [552]. Photo-based asset generation
allows for the digitisation of real-world objects, though with this comes the creative limitation
that the object must exist to be photographed. In contrast, sketch-based generation allows for
the creation of novel 3D [83, 531] or 2D [124, 384] assets through hand-drawn designs, though
different methods vary in the level of detail required from a sketch.

Seeded generation is considered internally conceived as it requires no meaningful input from a user,
instead producing outputs determined by a single, usually randomised value, that maps to a
range of possibility. As such, the algorithm conceives the output internally without meaningful
input or intervention. In deep-learning, asset generation approaches commonly involve learning
a latent space from a given data distribution. It is common to randomly sample from the latent
space, in order to produce novel outputs [130, 398, 459]. In essence this random sampling is
a result of noise, which is seeded using pseudo-random generation. Alternatively, some asset
generation approaches may be initialised using a seed, such as in noise based algorithms for
generating terrains [112, 424].

2.3.5 Synthesised techniques

In opposition to conceived techniques, synthesised techniques aim to produce results that are consis-
tent with the inputs provided them. In other words, they perform a logical service on the given
inputs and do not provide creative input.

Object placement involves the logical placement of pre-existing assets within a space or environment.
All arrangement type assets are produced via object placement, whether for 2D layouts [267, 266],
3D interiors [268, 369] or 3D exteriors [549, 442]. Patch-based/Partwise asset generation involves the
piecing together of existing components into novel configurations. For instance, [462] build road
networks out of pre-defined patches, while Krs et al. and Guan et al. [245, 153] piece together
and morph existing meshes to form new shapes.

Interpolation in the context of asset generation is the process of producing a result that is visually
in-between two given examples. For instance, Wang et al. [488] generate tree shapes using this
kind of technique. Many generative deep-learning approaches that successfully learn a latent
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space are in-turn capable of interpolation. Therefore, meaningful interpolation within the latent
space is commonly used as a way of testing a GAN or VAE model for its ability to generalise
[321], where successful examples show consistency in their mappings [278, 129]. Hence, these

approaches may be implemented for the purpose of interpolation based generation.

Style transfer involves the application of the style of one item to the content of another. Popularised
by the impactful work on neural style transfer for images [134], many works have followed
[218, 22, 131], including approaches to caricature [172] generation and photo cartoonisation
[420]. Furthermore, the concept of style transfer is extended into three-dimensions with mesh
texturisation [165] and functionality preserving stylisation [307].

Parametric methods take direct numerical inputs that have meaningful effects on the output. For
example, in video game character customisation a type of morphable mesh may be used [417].
This may take continuous values for characteristics such as "height", "eye size" and "jaw width".
By configuring these features randomly or through user input, many variations of the initial
model can be generated. Alternatively, methods based on noise may take numerical inputs which
directly impact the results of the noise generation [112, 401]. Some methods aim at converting
existing meshes into procedural models [136, 84, 85], while others use these models as mediums

for photo-based reconstruction [417, 1].

2.3.6 Select Technique(s) stage

This stage encompasses the selection process for GAG techniques, derived from the chosen
target asset type, and input complexity. Regardless of the algorithm chosen for the task of asset
generation, an input will always be required, whether this is provided by the user directly, or
randomly initialised. The choice of input type primarily depends on the level of involvement
and time investment the user is comfortable with. Hence the process of choosing the technique
and input type is highly dependant on user choice. Algorithm 1 presents the process for selecting
a technique and input, in which the input type input_types, and technique techniques are selected
from the pool of all generative techniques T and inputs IN. The input type is either determined
by a choice of technique, or chosen first to determine the technique. Each technique has required
inputs, as seen in figure 2.2. If the technique is not the priority, the input type may be chosen
first, in which case the inverse limitations apply. The choice of input type requires a compromise
between the user’s control over the output, and the work required.

There are three methods for obtaining input data: sourcing existing data, creating data or au-
tomating the creation of data. As shown in figure 2.5, when data instances already exist, such as
3D meshes within ShapeNet [52] or photographs found on the internet, and they are of acceptable
quality and relevance, they may be used as inputs. If not, inputs can be created by the user. This
provides the user with full control over the input at the cost of time and effort. Figure 2.4 presents
the input types ordered by their complexity, with the least complex at the bottom and the most
complex at the top. As the complexity of input increases the effort required in order to create,

automate or source the inputs also grows.
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Algorithm 1 Selecting a Technique and Input Type

procedure SELECT_TECHNIQUE(a, IN[], T[], ¢, u) >
INPUT: asset type, all input types, all techniques, chosen input complexity, user choices
if a= Arrangement then > Arrangement assets require object placement
techniques <— Object_placement > s stands for selected
IN « [Vinp € IN |inp.type =dimensions| >
Filter input type choices by asset type "dimension”
else
i=0
while i < |T|AT[i] # u.technique do > Allow user to choose an available option
techniques <— TI[i] > technique chosen by user

required_input_types= [Vinp € IN |inp € techniques.input_types|
IN < required_input_types > Filter choices by input types required by technique

i=i+l
if |IN| =1 then > Only one choice is available
input_types < IN|0]
else
i=0

while i <|IN|AIN[i] #u.input_type do > Allow user to choose an available option
input_types < IN]i]
return techniques,input_types > Pass selected technique and its input type to next step

Technique category Technique N
Text-based 19
Externally Conceived Photo-based 70
Sketch-based 26
Internally Conceived =~ Seeded 45
Object placement 23
Patch based / Partwise 4
Synthesised Interpolated 13
Style transfer 12
Parametric 29

TABLE 2.3: Count and breakdown of techniques within categories.

2.3.7 Approaches

After selecting a target asset type, technique and input type, an appropriate approach is determined.
This is the specific set of algorithms or processes that perform a specific technique, generating a
target asset type using particular inputs. For improved presentation within the framework (figure
2.2), approaches have been grouped and taxonomised under four main headings: optimisation,
stochastic, pattern based and deep learning. Table 2.4 presents the count of each approach within
the literature (many papers feature multiple times as they demonstrate multiple techniques).
Though in many cases a combination of approaches are employed, the prevalence of grammars
and deep-learning for the task of generating graphical assets is made evident. In particular, many
instances of shape grammars, encoder-decoder networks and GANSs are observed.
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2.3.8 Optimisation approaches

Optimisation based generative approaches include evolutionary, genetic and swarm algorithms, as
well as combinatorial and topology optimisation.

Evolutionary algorithms iteratively refine generated examples in accordance to a fitness function.
At each generation, candidates with the highest fitness score are combined (through crossover)
or altered (mutated) to produce a new generation of candidates. Over multiple generations, the



24 Chapter 2. GAGeTXx- Graphical Asset Generation/ Transformation

TABLE 2.4: Count and breakdown of approaches within categories.

Approach category | Approach

Evolutionary Algorithm
Genetic Algorithm
Swarm Algorithm
Combinatorial Optimisation
Topology Optimisation
Expectation Maximisation
Perlin Noise
Stochastic Simplex Noise
Voronoi/Worley Noise
Cellular Automata
Space colonisation

Optimisation

Pattern based Erosion

(Growth/Simulation) | Deformation model
Deprojection
Diffusion/Propagation
L-System

Pattern based g;zp; gre;mmr;a:;

(Grammar) ph &t

Split grammar
Stochastic grammar

NP, R, TR NEDEONRRNR,R,R~,R, R, N|Z

Convolutional Neural Network (CNN) 37
Deep Learning Regions with CNN features (R-CNN) 4
(Architectures) Graph Convolutional Network (GCN) 10
Recurrent Neural Network (RNN) 1
Encoder-Decoder 72
Deep Learning Generative Adversarial Network (GAN) 80
(Methods) Reinforcement Learning (RL) 2
Imitation Learning (IL) 1

fitness of candidates will improve, resulting in stronger (high fitness) candidates. The Procedural
Iterative Constrained Optimiser (PICO) framework [245] is centred around a graph that represents
a flow of parameterised operations that generate a 3D shape. An evolutionary algorithm is used
to generate and optimise this graph, incorporating user-constraints. This is used to generate a
variety of 3D assets, including trees, chairs and terrains. Functionality-Aware Model Evolution
(FAME) [153] evolves novel shapes in a functionality-aware manner. An evolutionary algorithm
is applied to a set of models by performing crossover between groupings of parts. Users can set
functionality constraints on this system, or guide evolution by selecting preferred results. Genetic
algorithms (GA) are a popular class of evolutionary algorithm, employed in the generation of
buildings [535, 318], vehicles [19], props [233, 318] and clouds [332]. A CNN has been used to
learn a fitness function for the optimisation of cloud shapes, scoring generated clouds based on
how real they appear [332]. Alternatively, GA is applied in object placement [442]. In this method,
an optimal scene layout is generated based on fitness to a set of positional rules, defined by the
authors. GA have also been used for camera parameter estimation [318].
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Interactive genetic algorithms (IGA) integrate user input as part of the fitness calculation, which
allows a user to influence the development of the asset. The 3DCSS framework [19], for example,
successfully integrates IGA into the car design process. Alternatively, Yoon and Kim [535] attempt
3D building generation with textures using IGA. Though, in a user study, their IGA approach
to texture generation was rated poorly, the generation of building models was effective. In the
method of Kiptiah Binti Ariffin et al. [233], IGA is combined with L-systems to produce abstract
3D shapes.

Swarm algorithms employ the use of many agents that behave independently while influenced by
the group. For example, in particle swarm optimisation (PSO), a global optimum can be found
in a search-space via a combination of individual search and group knowledge [223]. 3D asteroid
meshes have been generated based on real data for the purpose of simulating traversal of such
terrains [275]. Here, PSO is used to set optimal parameters, ensuring that the shape and surface
texture of the asteroids are realistic.

Combinatorial optimisation seeks to find optimal solutions to problems in vast but finite search
spaces. The work of Lun et al. [307] uses tabu search to perform shape style transfer that preserves
object functionality. In this method, tabu search is applied in the combinatorial optimisation of
the shape such that functionality is preserved and style adaptation is maximised. This is achieved
by efficiently searching through the possible modifications that can be made to the shape.

Topology optimisation aims at producing an optimal shape within a design space based on physical
constraints. This is employed in the work of Kazi et al. [220], wherein 3D solutions are generated
based on user provided sketches and constraints using the level-set method of Allaire et al.
[11]. This sketch based framework is effective at helping a designer to explore solutions to their
specifications, though slow computation times make it less feasible for fast design iteration. A
form of expectation maximisation, first introduced by Kwatra et al. [250] is applied in 3D cloud
generation using photographs [194].

2.3.9 Stochastic approaches

Stochastic approaches primarily involve the manipulation of noise in forming randomised yet con-
trolled shapes and designs. Though noise underpins a large proportion of generative approaches,
including many deep-learning architectures, this section will discuss methods that focus on its
usage. There are many noise algorithms in common use, each with their own characteristics,
including: Perlin noise [363], Simplex noise [364] and Voronoi/Worley noise [516]. Usage of noise can
be seeded and parametric depending on the implementation or number of variables exposed to the
user. Some approaches based on fractional Brownian Motion [311], for example, have parameters
such as octaves, lacunarity and gain that the user may adjust.

A common use case for noise is in the generation of terrains via height maps. Height maps
provide a two-dimensional representation of land height which can be applied via mesh surface
displacement. For example Fischer et al. [112] employs Simplex noise in height map terrain
generation as part of a multi-step pipeline for 3D environment generation, while Li et al. [275]

use Simplex noise to create surface variation on asteroid models and Satyadama et al. [401] use
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Simplex noise for surface variation when generating volumetric caves. Alternatively, Sin and Ng
[424] use 3D Perlin noise to generate consistent height mapping around a spherical surface, and
Dey et al. [89] initialise a volumetric terrain using Perlin noise.

Many methods combine noise with other approaches as a means to reflect the roughness and
variation found in nature. As an alternative to height map generation, Becher et al. [24] introduce
a method and pipeline for generating terrains using feature curves in volumetric space. The
application of the feature curves concept to 3D volumetric space is an extension of previous appli-
cations to 2D height maps [171]. Extending to volumetric space allows for overhangs and tunnels
in terrain. Montenegro et al. [330] propose a method, based on the work of Lipus and Guid [293],
which combines the use of implicit modelling and noise in generating clouds. This implementa-
tion performs in real-time, allowing for rapid iteration on ideas. 2D content can also be generated
using noise. For example, texture maps for colouring the walls of caves have been generated using
Perlin and Worley noise [115], and sprites for 2D game environments with Perlin noise [243].

2.3.10 Pattern based approaches

Pattern based approaches use serialised logic to solve generative tasks. Examples include growth or
simulation algorithms such as: cellular automata, space colonisation, erosion and diffusion/propagation.
As well as grammars: L-systems, shape grammars, split grammars, graph grammars. Cellular automata
has long existed, with early work of Von Neumann [484] and Conway’s Game of Life [133].
Cellular automation works on the basis of adjacency rules that determine the value of a cell in a
discrete grid. Evaluating each cell in the grid at each step allows for natural growth or formation
of shapes and volumes. Cellular automation is an effective approach to content generation, given
the appropriate rules. For example, while using a constrained-growth approach to generate floor
plans, Green et al. [147] use cellular automata to arrange the placement of windows on walls.
Cellular automata is also applied in combination with L-systems for the generation of caves [13].
Here, cellular automation is used to refine and smooth out the cave formations. Space colonisation,
attempts to mimic a natural growth process for branching tree-like shapes. For example, Ratul
et al. [383] use space colonisation for the real-time generation of trees, and Guo et al. [155]
combine multi-view depth data with a rule-based system to perform space-colonisation. Stylised,
plant-like designs, based on existing meshes, have also been generated using a form of space
colonisation [553], and space colonisation is used in the generation of road networks [90], where
it is used as a flexible method for generating organic looking road layouts that conform to user
defined constraints.

Realistic terrain details can be generated using erosion simulation. AutoBiomes [112] is a pipeline
for generating 3D environments with varying biomes. Using a combination of climate simulation,
biome refinement and asset placement, an initial noise-based terrain is built upon to create a
complex environment. This climate simulation models temperature, wind and precipitation.
Franke and Miiller [115] generate cave geometries using simulated physical properties, such as
water flow and erosion. This produces a voxel-based volume given a set of parameters. A surface
is formed from this volume via marching cubes, and textures are generated using a combination
of Perlin and Worley noise.
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Deformation model is used for generating creatures and trees. In the work of Dvoroznak et al. [100],
users are able to draw or trace from reference material on a 2D canvas to create creatures. Users
build semantic layers of the subject and order them based on depth. These layers are then inflated
to form a 3D shape, aided by a deformation model. In the work of Wang et al. [488], graph

representations are used for interpolation of tree models from existing examples.

Deprojection approaches have been applied in the reconstruction of props and scenes. Fedorov et al.
[110] propose single-image 3D mesh generation using edge detection in combination with user de-
marked guides. This method also generates textures by modifying the input image content.

With the current availability of stereo cameras and the Kinect, RGB-D data can be produced
readily at a much lower cost than traditional scanning methods. This added depth information
can be instrumental in reconstructing 3D objects [132]. Effective RGB-D scanning pipelines are
also suggested by Slavcheva et al. and Niemirepo et al. [428, 339], performing on par with other
state-of-the-art photogrammetry approaches, while Kim et al. [228] introduce a framework for
simultaneously texturing and reconstructing scenes using RGB-D data. Alternatively, Chen and
Rosenberg [54] suggest a view-dependant texturing approach to real-time rendering.

In a traditional game development pipeline, 3D art may be produced with concept art as reference.
It is also common for 2D designs to present different views of the object, typically the front, top
and side. In the manual 3D modelling process, these references allow for the accurate reconstruc-
tion of designs. This process can be automated by projecting multi-view concept art onto a voxel
volume [423], refining and converting the result to a mesh via marching-cubes [303].

Propagation approaches involve the progressive growing of shape through a space. For example,
hair generation is primarily achieved by growing strands through a 3D volumetric flow field, rep-
resenting the directional flow of hair through space [398, 552, 551, 415]. Gao, Yao and Jiang [132]
segment individual object meshes from a scene by propagating user assigned labels, capturing
the full shape of each object in the scene, while Dijkstra’s algorithm is used to traverse a terrain
and form natural height variation [140].

Patch-based generation is applied to road networks and web design. In the method of Teng and
Bidarra [462], main roads are built using a graph growing algorithm. The spaces between the
main roads are then populated with semantically tagged road patches, propagating inwards
from the main roads. Instead, Mockdown [306] learns layout constraints for positioning web

elements.

Deriving from the work of Chomsky [66], generative grammars operate as formalised rules and
structures from which instances can be built. There are many variations of grammar employed in
the generation of assets, including: L-systems, Shape grammars, Graph grammars, Split grammars and
Stochastic grammars. Devising a grammar that encompasses the aspects of a reconstruction target,
while mapping an input to said grammar is challenging. Li et al. [264] propose a probabilistic
context-free grammar (PCFG) for reconstructing buildings from images, learning rules from

existing models, and Martinovic and Van Gool [315] introduce an approach to grammar learning
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which focuses on facades. Alternatively, [46] attempt to reconstruct facades from low-resolution
images, while Jesus et al. [200] employ a layered approach using grammars.

The challenge of generating buildings with curved surfaces can be addressed with the use of
different coordinate systems, allowing for the same grammars to be applied on flat and curved
surfaces [101]. Demir, Aliaga and Benes [84] introduce a method, capable of inferring a grammar
from an existing building model. Building on this research, a framework has been established
for the proceduralisation of existing 3D models [85]. Grammars have also been applied in the
generation of ancient Roman and Greek style structures [240]. Nishida, Bousseau and Aliaga
[341] reconstruct 3D models of buildings from single-view images, using a series of CNNs that
output shape grammar parameters. This is adapted as a web tool [28], in which users interact
with a web-based UI and the bulk of the computation is completed remotely. A sketch-based
approach is also explored, allowing users to draw in aspects of a building [342].

Grammars have also been applied in interior layout generation. For example, a stochastic gram-
mar with Spatial And-Or Graph (S-AOG) is introduced Jiang et al. [205]. This method allows for
a large degree of user control, while adhering to rules and characteristics that are present in pre-
existing data. This can be used to synthesise data for training or validating deep-learning methods.
Freiknecht et al. [118] introduce an algorithm for generating full building assets including interiors
and textures. Alternatively, a Scene Grammar Variational Autoencoder (SGVAE) approach is intro-
duced by Purkait, Zach and Reid [369], which encodes indoor scene layouts via a grammar.

To create a logo, designers must spend time developing ideas, and creating many variations to
find the ideal design. Li, Zhang and Li [276] attempt to alleviate the amount of manual exploration
for designers, introducing a framework that augments the logo design process with the use of
shape grammars. The Procedural Shape Modeling Language (PSML) [514] allows users to express
3D shapes via code. This language integrates shape grammars and object-oriented programming
to allow object structures to be expressed hierarchically, with adjustable parameters.

Generative approaches may be used for design ideation, where users are not necessarily interested
in polished outputs, but rather unique ideas that can be refined. The approach of Alcaide-Marzal
et al. [10] uses a generative grammar system that produces variations of products by combining
pre-defined design elements and applying transformations to them. Alternatively, shape gram-
mars have been applied to large scale industrial designs, where parallels are drawn between
engineering specifications and generative rules [94]. Geometric graph grammars (GGGs) are
applied to the generation of road networks [113]. The GGG extends the concept of a graph

grammar by encoding geometric data alongside topology.

Volumetric terrain generation can be achieved via voxel grammars [89]. As a form of shape
grammar, voxel grammars define rules that are applied to a given starting point. Alternatively,
Raies and Von Mammen [377] combine grammars with a swarm algorithm to generate entire envi-
ronments consisting of terrain, vegetation and bodies of water. Swarm grammars [483], are devised

for each of these aspects, interacting with one another to produce a natural environment.
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Lindenmayer first introduced L-systems, a form of recursive re-writing grammar, as a way to
model the natural growth of plants [291]. L-systems have since been adapted to three-dimensions
[169] and applied to tree reconstruction from photos [155]. They have also been applied in road
generation [410], and combined with IGA for novel 3D shape generation [233].

2.3.11 Deep learning approaches

For the purposes of distinguishing high-level structures from network specifics, generative deep-
learning approaches are categorised by their methods, and the architectures that they employ. In
line with the rest of this review, this section will focus on the high-level strategy of each approach.
There are two dominant generative deep-learning strategies: GANSs, and encoder-decoder net-
works. These strategies are combined in the form of adversarial auto-encoders (AAEs), and to
a lesser extent, deep generative reinforcement learning (RL) and imitation learning (IL) have also
been attempted.

Generative deep-learning aims to extract patterns from large datasets, in order to derive novel
content. GANSs, first introduced by Goodfellow et al. [141], are a generative unsupervised learning
method that pits two models against each other, such that both models learn through competition.
The adversarial strategy has been highly popular in generative approaches throughout the years,
with simple image generation [107, 300, 212], sketch-based techniques [249, 559] and text-to-image
generation [381, 397, 542, 405, 361, 373].

Basic GAN based implementations have been applied in the generation of spell icons [212] and tex-
tures for games [107], aiding the process of design ideation [300] and generating images of indoor
scenes [498]. Such generation is seeded, as content is produced by randomly sampling the extracted
feature space in order to find novel content. GANs have been successfully applied in style-transfer
tasks [131, 22, 420, 541], as well as image generation from sketch-input [249], art colourisation
[559], and caricature generation [172]. An influential framework for such approaches Pix2Pix
[192], employs a conditional GAN (cGAN). cGANSs take additional inputs, allowing the end user
to specify the kind of result generated. For example, [500] conditions a face image generator on
high level attributes, such as age, gender and hair colour. CONGAN [161] provides an alternative
method of input for GANSs, in which the user provides photo constraints to the generator, causing
it to generate results more like, or less like other images. Instead, StyleGAN [213] introduces a style
based GAN architecture to great effect, producing high quality images of various types.

LayoutGAN [267] achieves 2D layout generation by learning to produce a feasible layout from
a given input. This is further developed with the addition of attribute conditioning [266]. User-
sketch based cGAN approaches have also been applied to the generation of height map based
terrains [353, 496, 440]. For example, Sketch2Map [496] allows designers to draw simple maps that
represent terrains, while a similar sketch-based approach, [97], allows users to sketch sections of
terrain that are seamlessly joined. Zhang et al. [561] introduce a GAN based method for combined
sketch and text based generation, in which the user sketches the shape of the object they wish to
depict, then describe its features and colours in text. Existing GAN based attempts at generating
novel images using text inputs include [542] CAGAN [405], SAM-GAN [361], CycleGAN [574],
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MirrorGAN [373], LeicaGAN [372] and ControlGAN [262]. These approaches extract semantic
meaning from input-text and apply appropriate transformations to an image via GAN based
architectures.

DALL-E [382] and CogView [91] demonstrate that high quality results can be obtained by scaling
the number of parameters and training data to a large degree. Recent methods, such as DALL-E
2 [381] Imagen [397], make use of diffusion and CLIP [375] mechanisms to generate high fidelity
images from text. Stable-diffusion [390] successfully applies a diffusion based approach which
can be conditioned on text, images and semantic maps.

The usage of GANSs also extends to the creation of 3D assets, where they have been successfully
applied in the reconstruction [237, 236, 455, 305, 567], generation [270, 278, 419] and interpolation
[419, 545, 567] of new mesh, point-cloud and voxel assets. Furthermore, diffusion models have
been applied in 3D shape generation [185, 545].

The Sphere as Prior GAN (SP-GAN) [270] is capable of generating point-clouds in a structure-
aware manner, while SG-GAN [278] and HSGAN [277] generate point-clouds in topologically
and hierarchically aware manners respectively. Voxel generation is also achieved via GANSs [489,
425, 439], and cGANSs [346]. cGAN has also been applied to generating varied voxel-based rock
shapes with user defined boundaries [248].

Hertz et al. [165] introduce an approach to shape texture transfer. Given a reference and target
mesh, this method is capable of outputting new geometry that applies the texture of the reference
to the form of the target mesh, improving on the results of OptCuts [269], which instead makes
use of 2D displacement maps.

3D model conception can be a combined effort between user and machine. Davis et al. [77]
introduce a VR based co-creative Al which allows users to generate 3D models by exploring
and iterating upon ideas. Deep generation of 3D meshes is a difficult task due to limited data
availability. This challenge can be avoided with the use of differentiable rendering. Differentiable
renderers allow for self-supervision in 2D to 3D tasks, removing the need for 3D ground-truth
data. This has successfully been applied to single-view reconstruction [216, 163, 360] and 2D
to 3D style-transfer [216], improved upon with use of normal maps [521], and applied in game
character face generation from photographs [417]. With a similar approach, GET3D [126] achieves
high quality textured meshes with complex typologies over the full range of 3D asset types.

In the task of building generation, effective GAN implementations have been presented for
internal room layouts using graphs [338], and facade image generation [453]. These methods
are centred around the 2D domain, however, may still be applicable in combination with other
methods for generating 3D buildings. Alternatively, [98] present an approach that is capable of
generating fully textured 3D building models by chaining multiple GANs together.

Encoder-decoder network structures allow for a mapping, and therefore, translation between
input and target domains. Such networks constitute an encoder network, that learns to condense
an input, and a decoder network that learns to interpret an output from this embedding [63,
325]. Autoencoders are a form of encoder-decoder that aims to produce outputs that are identical
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to the input, they are applied primarily in de-noising or compression tasks where the encoder
discards irrelevant information [481]. U-net is a popular form of encoder-decoder [391]. As a fully
convolutional architecture, it is primarily used for working with images, and as such, U-nets have
seen use in diffusion based generative models [390, 397], image translation [192], and interpreting
sketches [82, 249]. In general, encoder-decoder networks have been successfully applied in
photo-based [494, 216, 336, 261, 367, 531], sketch-based [82, 412, 83, 531, 76] and text-based 3D
shape generation tasks [299, 45, 327, 400, 196, 295, 122, 539].

Simple encoder-decoder networks do not learn a consistent latent space that can be sampled from
directly to generate new content. Variational autoencoders (VAEs) address this by employing
regularisation during the training process, allowing for smooth interpolation and parametrisation
of inputs. VAEs have been used to successfully generate 3D assets including furniture [206, 207,
129, 130, 61, 530, 271], textures [130], characters [459] and hair [398].

Jones et al. [206] introduce a method for generating primitive based objects using a VAE. The
model is trained to produce programs in an intermediary language called ShapeAssembly,
whereby 3D models are encoded as a list of operations applied to simple cuboids. This is ex-
panded upon with the introduction of a method that is capable of learning macro-operations
from existing ShapeAssembly programs [207].

SDM-NET [129] employs VAEs in learning the structure and geometry of objects, producing high-
quality generated and interpolated results. This is developed further with TM-NET [130], which
produces textured 3D models. A VAE is applied in the generation of novel object and character
poses [459], this incorporates the rotation-invariant mesh difference (RIMD) data representation
[127], allowing the VAE to learn surface deformation.

Expanding on encoder-decoder style models, generative transformer networks have quickly
risen in prominence since their introduction in 2017 [479]. The self attention mechanism of these
models allow for more effective sequence to sequence learning. In addition U-net based diffusion
models have been successfully employed in text-to-3D [368, 527] and image reconstruction tasks
[297, 371] via multi-view image generation. Mescheder et al. [319] introduce occupancy networks
as a method of representing 3D shapes in continuous space. This is achieved by predicting an
occupancy function from which surfaces can be extracted at arbitrary resolutions. This results
in high quality outputs with lower memory overhead than voxel, point-cloud or mesh based
representations. This was later improved by incorporating convolutional operations [362]. Similar
implicit representations have also been used such as IM-NET’s implicit fields [60], and DMTet
[414] which applies the implicit function to a tetrahedral grid, that is then converted into mesh

format using marching tetrahedra; a method similar to marching cubes.

The usage of diffusion models for text-guided image generation has also been extended to the
generation of textures. Methods such as TexPainter [548], MaPa [556], and TEXTure [389] each
produce textures for 3D mesh inputs, guided by text prompts. Additionally, the methods of
Chent et al. and Metzer et al. [57, 320] both successfully generate 3D mesh models with textures
simultaneously, using diffusion based models.
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Deep-learning has been applied in the estimation of hair flow fields. Single-image hair reconstruc-
tion is achieved in this way using VAE [398] or GAN [551]. DeepSketchHair [415] instead utilises
a sketch-based approach, where users sketch the outline of a hairstyle, and draw lines within
to indicate the flow of hair. The user is then capable of refining their design by providing more
sketches at different angles, while viewing the result. Alternatively, [552] generate hair using
multi-view RGB-D images.

Single-view reconstruction allows for the generation of highly specific 3D content with minimal
user input. This is largely a task of inferring a whole shape from a single viewing-angle, which
can be achieved through prior knowledge of similar objects. Many methods apply deep-learning
to the task, such as [292, 526, 235, 336, 184].

Pixel2Mesh [493, 492], uses a CNN in combination with a graph convolutional network (GCN)
to deform a base mesh with the goal of matching an input image. As this approach manipulates
vertices directly, each vertex can also have an associated colour value, which enables the genera-
tion of coloured meshes. This architecture has been successfully expanded with a graph attention
mechanism [92] and for multi-view reconstruction [508].

There are many other approaches that incorporate the template deformation concept. For in-
stance, Image2Mesh [367] encodes an input image using a CNN, finds the closest base model,
then deforms it via free-form-deformation [407] to match the input. A similar approach uses
free-form-deformation to generate lung models from single-view images [502], while template
mesh deformation is applied to liver [467] and heart [241] reconstruction.

EasyMesh [455], also takes a deformation approach, while processing input images into silhou-
ettes to gain consistency in training. Similar approaches use deformation to generate meshes
[265, 274, 352], and point-clouds [543]. These approaches are limited to deforming existing
topologies. Instead, Mesh R-CNN [139] is capable of reconstructing varying topologies from
single-view images. This approach expands om Mask R-CNN [158] by adding mesh prediction.
The template meshes typically used in such methods are genus-0. This covers a wide range of
possible geometries, but is not sufficient for all shapes. Pan et al. [351] circumvent this limitation
by introducing topology modification modules which remove faces from the mesh to form holes
where they are needed. Alternatively, a surface can be constructed out of elementary patches
of mesh data. For example, Adaptive O-CNN achieves patch-based image reconstruction by
building octrees of patches using a CNN [494].

One core challenge with single image reconstruction, is the lack of information about the parts
of the object that are occluded or facing away from the camera. This issue is addressed in the
framework of Lu et al. [305], which utilises generated multi-view silhouette data. Yang, Li and
Yang [531] disentangle shape and viewpoint in their encoder-decoder architecture by decoding
using separate shape and viewpoint transformer networks.

Generalisation is another challenge, often necessitating copious amounts of data to achieve. One
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way to circumvent this is to employ a few-shot approach, where a network is capable of generalis-
ing to new classes from a few samples [501]. Lin et al. [289] make use of few-shot learning in single-
view point-cloud reconstruction by separating class-specific and class-agnostic features.

Voxel representations have also been used in reconstruction tasks. Due to their structure, they can
be interpreted with CNN, but typically require a large amount of memory to work with at high
resolutions. Furthermore, small errors in generation can result in noise. Xie et al. [523] address

this latter issue with a novel weighted voxel representation.

Deformation of template meshes is also applied to photo reconstruction for characters [557, 480,
538], and hands [309]. Additionally, human body meshes have been reconstructed from pho-
tographs for the purpose of testing clothing fit in e-commerce [1]. While RODIN [495] achieves the
generation of 3D avatars from image or text input using a diffusion based model. Parameter based
face generation is a common technique in games, allowing users to adjust features of a character,
this is often achieved using 3D Morphable Models (3DMMs). Deep-learning approaches have
succeeded in translating photographs to these parameters [417, 286]. Furthermore, the approach
of Lin et al. [286], is capable of extracting texture from an input image, and applying it to a
reconstructed face model. Fan et al. [108] introduce a pipeline for full head and face reconstruction
based on 3DMM, and, [203] use a Siamese encoder-decoder architecture for face reconstruction.
While 3DMM models represent face shape well, they typically lack fine detail. This is addressed in
the method of Khan et al. [226], where meshes are refined via displacement, and Kuang et al. [247],
where a GAN produces a depth map for a given image. Face generation can be achieved via GAN,
as with the work of Kuang et al. [247], or PGAN [262], which generates faces with the use of geom-
etry images [151]. The approach of Shamai et al. [409] employs geometry images and a GAN archi-
tecture based on progressive growing GANs [214]. StyleGAN [213], has also been expanded upon
for learning 3D aware face generation [349]. In the method of Li et al. [272], a caricature mesh and
texture are extracted from a single input photograph and combined. The texture is extracted using
a GAN, and facial reconstruction is performed using the method of Deng et al. [87]. Facial land-
marks may be used to improve the accuracy of facial reconstruction methods. Cai et al. [44] intro-
duce a method for automatically detecting these landmarks for caricatures. Some approaches take
sketches as input, for example, in the method of Delanoy et al. [82]. This method struggles with
reconstructing thin structures, due to the resolution of the voxel space. This is addressed by com-
bining voxels with normal maps [83], where an additional normal prediction network, based on
Pix2Pix [192], produces normal maps from the input sketches. The normal maps are projected onto
the voxel representation, refined, and used to generate a mesh that is far smoother than the previ-
ous results. Yang et al. [532] introduce a method for generating human body meshes from sketches,
and a CNN is applied in converting sketch data to procedural model parameters [181].

Some research attempts to extract maximal information from a scene, attempting to either under-
stand a scene holistically or identify and extract individual items. CDMD3DM [263], for example,
reconstructs small scale indoor scenes using RGB-D data as an input, and Jeon et al. [199] produce
accurate texture maps for RGB-D based scene generation. Full scenes have been reconstructed
from single-view images, using cGAN architectures [237, 236] and CNN based approaches [509].
Some methods conceive scenes and objects using GAN based approaches, including point-clouds
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of outdoor scenes [418], entire cities from single-view images [230], and voxel-based scenes that
are segmented by object class [425]. Alternatively, full scenes and individual asset classes can
be successfully generated by utilising large language models (LLMs). 3d-gpt [454] achieves this
by using LLMs as decision making agents that select a sequence of functions and inputs for the
procedural modeling framework Infinigen [378]. This is shown to be effective at interpreting text

descriptions from users and producing 3D results.

The placement of furniture within indoor spaces requires an understanding of the functional
relationship between furniture types. Approaches to indoor layout generation largely apply deep-
learning [268, 560, 201, 490] and a form of combinatorial optimisation referred to as case-based
reasoning to the task [434, 435, 80]. SceneHGN takes a hierarchical approach to indoor scene
generation, recursively breaking down the task into room, functional regions, objects and object
parts [128]. In addition, transformer models have been successfully applied to interior arrange-
ment tasks, such as ATISS [357] and SceneFormer [499], which are both faster and more versatile
than previous approaches. DiffuScene applies a diffusion based model to the task of interior
object placement, achieving better symmetry and diversity than ATISS in scene re-arrangement
and completion tasks [460]. Floor plans can also be generated based on layout graphs via graph
neural networks, as presented in Graph2Plan [176]

AAEs combine the encoder-decoder concept with the the adversarial mechanic of GANs. For
example, Zhao et al. [563] apply AAE to style transfer, in which the latent representations of
content and style images are learned within an encoder-decoder, evaluated by a discriminator.
AAE have also been applied to interior object placement where an encoder-decoder generator
is trained in an adversarial manner against a scene discriminator and image discriminator [560].
The image discriminator takes top-down views of the generated and real scenes, providing an

extra visual based assessment.

Reinforcement learning involves learning a policy for a given task. This is achieved by placing
agents within an environment and rewarding or punishing their actions in order to guide the
policy. Some attempts at asset generation through reinforcement learning have been made, with
approaches such as double deep Q learning (DDQN) and deep deterministic policy gradient (DDPG).
For example Lin et al. [285], trains agents to reconstruct 3D objects by performing actions similar
to human creators, placing primitives and refining geometry with the goal of matching a target
model. To set an initial policy, IL is used in the form of dataset aggregation (DAgger). This research
shows promise, though more work is needed to achieve the generation of detailed models. DDPG
is applied to 2D layout generation [174]. In this approach, the network attempts to find an optimal
layout for a randomised set of elements.

2312 Determine Approaches stage

This stage entails the selection of a GAG approach, given a selected target asset type, technique
and input type. To determine an approach for a given task, the pool of existing generative

approaches are labelled based on:

1. the asset type they seek to generate,
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2. the technique they implement, and
3. the type of input they take.

Given that A, in algorithm 2, represents the pool of possible generative approaches, the task of
determining valid approaches is described as a process of filtering A in accordance to the three at-
tributes above. Then, the remaining valid approaches are selected based on user preference.

It is possible for a single approach to not be sufficient for some tasks, particularly when the
goal is to produce a large-scale system, with many inter-related outputs. For a hypothetical task
of generating unique buildings that have interior layouts consisting of procedurally generated
furniture, there may not be an existing approach that can achieve this on its own. Yet, when the
task is broken down into object placement, building, and furniture generation, for which there
are existing approaches, a combined solution can be formulated; by considering where an output
of one approach can be the input of another, a pipeline can be formed.

Algorithm 2 Determining Approaches

procedure DETERMINE_APPROACHES(a, t, in, A[], u) > INPUT: asset type, technique, input type, approaches, user choices
A=[Vapp € A|app.input_type=inAapp.technique=t Aapp.asset_type=a] >
Filter choices by input type and technique, f stands for filtered
if |A|=1 then

approachs = A[0]
else

i=0
while i < |A|AAli] #u.approach do > Allow user to choose approach
approachs < Ali]
i=i+1
return approachs > Pass selected approach to next step

2.3.13 Choose Datasets and Train stage

This stage details the selection process for datasets and training when using a deep-learning GAG
approach. Due to the prevalence of deep-learning approaches in the literature it is necessary
to consider data requirements in regard to training a model appropriately. Supervised and
unsupervised deep-learning approaches typically require large labeled or unlabeled datasets, of
which many exist publicly, such as ShapeNet [52], PartNet [329] or MPI FAUST [35]. The use
of an established dataset can facilitate benchmarking and comparison between similar methods.
Generative methods themselves can be used to produce synthetic datasets for other methods
[227, 205]. Such datasets benefit from the additional control and variation that a PCG algorithm
can facilitate, though at the same time, such datasets will inherit any biases in the generator.
Summervile et al. [450] identify the difficulty in producing datasets for game assets, as a result
of a lack in available data. There is also a lack of specific standardised benchmark datasets, as
a result of how broad game content is.

Alternatively, reinforcement learning requires hand-crafted training environments and reward
functions. Though usage of reinforcement learning as an approach to asset generation is largely
unexplored, Lin et al. [285] propose an RL network that successfully learns 3D modelling policies.
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This approach allows the RL agent to edit a 3D model using typical 3D modelling actions, reward-
ing it based on the similarity of the result to a target shape. With the usage of target shapes, this
approach requires pre-existing data, much like supervised and unsupervised approaches.

Figure 2.6 presents the proposed process for choosing or creating a dataset in order to train a
chosen deep-learning approach. If a supervised or unsupervised learning approach is chosen
and the approach is already validated on the target asset type, then the original authors may
have provided existing trained weights that can be used. Alternatively, if this is not the case, the
original authors may have provided the dataset used to validate their approach. The applicability
of existing weights or datasets can be determined by observing their outputs and comparing them
to the target result. If they suffice then they may be used. However, if they are close to matching
the desired result, a small dataset may be collected and used to fine-tune the model from the
existing weights. If no existing weights or datasets are provided, then it may be necessary to
obtain an alternative dataset that matches the data requirements of the chosen approach.
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FIGURE 2.6: Approach to choosing or creating a dataset.

2.3.14 Generate assets stage

At this stage, the method for generating graphical assets is formulated and ready for implemen-
tation. When multiple sub-components are required, multiple approaches are needed. These
approaches must be formed into a generative pipeline, with consideration for the necessary order
of operation. This is achieved by chaining the approaches, mapping output to input. The order of
approaches can be determined by considering each generative approach’s pre-requisite data. For
example, if the task was to generate a building with an interior containing furniture, the system
may begin with a building generator and furniture generator, which both feed into an interior

layout generator, as interior object placement requires both a defined environment and objects
to place.

Once implemented the generative method should produce assets of the type defined by the user,
given the required inputs. Depending on the approaches used, generated assets will be in 2, or
3 dimensions depending on asset type chosen, however there are multiple formats for presenting
2D and 3D data. The user’s required format may differ from the format of the output. This can
fortunately be rectified using algorithms that convert from one format to another. In the next
section the final step in the framework, format conversion, will be discussed.
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2.3.15 Formats and conversion

Format is an important aspect of a graphical asset, determining how the asset may be used, manip-
ulated and presented on-screen. Each possible format has limitations and benefits. In the frame-
work, figure 2.2, graphical asset formats are presented under two categories: 2D and 3D.

3D data can be presented as volumes, or a surfaces. Voxel representations are volumetric. This
means that they determine the space that an object occupies. They are the primary format for
presenting 3D shapes by volume, allowing for overhangs and tunnels in terrains [89, 424]. It is
also common to convert voxel data to mesh data using marching cubes [303] or surface nets [138].
Surface representations such as meshes or point-clouds instead directly represent the outline
of an object. Meshes are a common format for 3D content in games and other visualisations.
A watertight mesh is a mesh that has a complete, connected surface [219, 77]. This is often a
requirement for 3D content in real-time rendering and 3D printing. Alternatively a polygon soup
lacks full connectivity [153]. Point-clouds, much like meshes, represent surfaces of objects or
environments, and are used in the perception of real-world space, being applied to computer
vision among other tasks [345]. Such data is obtained in abundance, due to being the natural
output of 3D scanning technology. While point-clouds provide excellent spatial information, they
lack structure, and are not typically used directly within digital media applications. Nonetheless,
there is a great deal of research into generating point-cloud data [419, 345, 543, 283, 278].

With developments in deep-learning, novel internal representations of 3D form, lighting and
texture have been developed, including neural radiance fields (NeRF) [324], and the nascent
3D gaussian splatting approach [224], further explored in the work of Liu et al. [296]. These
representations are, however, reliant on the prediction and internal rendering of a model that has
been trained on the subject, which makes them un-transferable without necessary conversion
to more ubiquitous formats, such as voxel and mesh. Signed distance fields (SDF) have also seen
increasing use as 3D data representations [62, 428, 567]. SDF represent 3D shapes by defining
a function that returns the distance of a point from the nearest surface. The returned distance
is negative when inside a surface and positive when outside a surface. This representation lends
itself to deep learning approaches, as the shape representation itself is a function. This is opposed
to direct mesh generation, which often requires a template to manipulate. Unlike voxels, which
model occupancy on a fixed grid and can result in a blocky appearance when converted to
mesh format, SDFs allow for smooth representation of arbitrary surfaces. SDFs require their
own specialised rendering methods, such as ray marching, which differ significantly from the
traditional mesh rendering pipeline commonly used in game engines. Therefore, direct use of
SDFs for real-time rendering in games is uncommon outside of shaders and effects [473]. SDFs

can be converted to voxel, point cloud and mesh formats [344].

2D assets take the form of either bitmap or vector graphics. Depending on the application and
art-style, one form may be chosen over the other. Vector graphics benefit from being procedural,
thus constituting comparatively smaller file sizes, and limitless levels of detail, though they are
constrained to more simple or block-colour art-styles as a result. Bitmaps, however, allow for more
expression in terms of art-style, and benefit in particular from CNN based generative approaches.
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Though some approaches make use of implicit shape representations [184, 185], or signed
distance fields (SDF) [567, 349, 428, 126], these forms are intermediate representations that must be
converted into common formats, such as meshes or point-clouds, to be usable in rendering engines

for games and 3D editing tools, and are therefore not considered graphical asset formats.

Data Conversion Methods

The output format of a particular generator may not match the user’s desired format. In such
cases, output data can be converted to another format using a one-to-one conversion method.
These methods, unlike the generative approaches previously discussed, aim to translate data
from one format to another with minimal loss of information.

The framework, figure 2.2, presents the conversion methods. These are drawn from conversion
methods observed in the literature, though it is acknowledged that other methods may exist.
Some methods are named, while others, such as voxelisation and rasterisation refer to general
approaches that may vary in implementation, depending on the use case.

Marching cubes is a popular method for converting voxel data into a complete surface mesh [303].
The inverse conversion, mesh to voxel, is achieved through voxelisation [217]. Similarly, point-
cloud voxelisation is achievable [170]. Conversion from mesh to point-cloud can be achieved
through random point sampling [68], and conversion of point-cloud data to mesh data can be
achieved using Poisson surface reconstruction [219].

For 2D formats, the process of converting bitmap data to vector data, vectorisation [93, 433], and
the inverse, rasterisation [406], can be applied. Conversion from 3D to 2D can also be achieved by
rasterising the asset at a single viewing angle, though the reverse of this cannot be achieved with-
out a photo or sketch-based generative technique, as additional data must be inferred. Instead,
conversion from 2D to 3D can be performed through visual hull [255], which requires multiple
images at different viewing angles. Alternatively, deep-learning generative approaches such as
[412] achieve format conversion, though results are less reliable. Conversion methods may also be
used when multiple approaches are employed within a generator, for example one approach may
produce a voxel output but the following approach may require a mesh as input. A conversion
method may be used in this case to convert the voxel output to a mesh before it is passed to the
second approach.

2.3.16 Verifying and Converting the Data Format

Figure 2.7 presents the process for selecting a conversion method. First the user’s desired graphical
asset format should be determined. If a conversion method exists between the output format of
the approach and the desired format, this may then be used. If the output format of the approach
matches the desired format, then a conversion method is not necessary. In the scenario where
no conversion method is applicable, the user may consider selecting an alternative approach, or
reconsidering the desired format.



2.3. GAGeTx: A Framework for graphical asset generation/transformation 39

Choose
different
format

Change
approach

Alternative

Output

format of App_roprlateh h approach that_ Desired format Abort
generator matches conversion metho outputs assets in can be changed? process
desired exists? desired
format?

format.

FIGURE 2.7: Process for selecting a conversion method.

Figure 2.8 presents the mapping between formats and conversion methods. Within each set of
formats, 2D and 3D, data can be freely converted using a single method. When converting from
3D to 2D, however, it is suggested that the asset be converted to mesh format so that it may be
rasterised. Likewise, when converting from 2D to 3D using visual hull [255] any vector graphics

must be converted to bitmap.
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FIGURE 2.8: The mapping between conversion methods and formats.
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24 GAGeTx: Expanded with Modular Techniques for Multimodal

and Unimodal Generators

In recent years, more and more generative tools have begun incorporating multiple input types as
a means to improve their versatility, and to allow users to specify what they want more precisely.
Tools such as GPT-4o [347] and Google Gemini [142] bring such features to a world-wide general
user base with the capability of reasoning across textual, image, video and audio mediums. Each
type of input has its own strengths and weaknesses in presenting information. By integrating
data from multiple input types, users can compensate for potential misinterpretations of one type
and remix or alter ideas more effectively. Creative tools such as Adobe Firefly [5] and Midjourney

[323] exemplify this form of interaction for graphical content creation.

This paradigm of generative deep-learning is referred to as multimodal for its integration of
multiple modalities. Typically, multimodal models are generative models that simultaneusly
interpret multiple modalities, that is, they are trained to understand different modalities of data
at once. This requires advanced techniques in training to achieve. Multiple modalities may also
be incorporated without centralising the interpretation, this was the initial approach to creating
multimodal systems, where different modules were incorporated to handle different input types
[18]. It is clear that the various techniques discussed in this chapter can each be utilised to achieve
different results. While the present developments focus on singular models with multimodal
capabilities, these are exclusively deep-learning based and specifically engineered for simulta-
neous multimodal reasoning. The breadth of generative approaches explored in this chapter,
many of which not being deep-learning based, individually present useful capabilities that can
be used in conjunction to produce graphical assets in useful ways. To support this latter form
of multimodal generation and fully explore the potential of generative methods, it is necessary
to refine the GAGeTx framework accordingly.

The techniques previously identified are delineated by the inputs they require and the purpose
they fulfill. The approach then determines the implementation of the chosen technique, with
said implementation determining the output type and format. If the output of one technique
matches the input requirements of another, it is conceivable that the former could feed into the
latter. Techniques can be chained together to allow users to introduce data of different modalities,
or form a logical pipeline akin to the manual design and production process. This requires that
techniques be re-framed as modular elements.

24.1 Multimodal generation

Multimodal methods are defined by their simultaneous interpretation of different input types, via
a single process. These methods have the potential to reduce the difference between what users
envision and the output they receive, thus reducing frustration. By providing opportunities to
guide a generator through different modalities or input types, users can express their intentions
more closely, with the option to supplement this with additional details that cannot be expressed
in a single modality. For example, SDFusion [62] is a multimodal 3D asset generation method
built to make asset production easier for users that are less experienced at asset creation. This
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method leverages text, image, and 3D input conditions to allow users to, reconstruct, generate and
complete shapes. This is made more configurable by the inclusion of weighting between modal-
ities, facilitating the prioritisation of one input over another. Baltrusaitis, Ahuja and Morency [18]
identify two types of multimodal representation: Joint and Coordinated. In a joint representation,
inputs from different modalities are internally merged into a joint space, while coordinated
representations have individual tracks for each modality that are connected by some constraint.
For example, Swamy et al. [457], take a modular approach by using modality specific encoders
and decoders that can be connected to an internal embedding.

This is in contrast to unimodal techniques, which interpret a single input type or modality. These
are the most common configuration of graphical asset generator in the literature. The many
existing unimodal and multimodal methods applied in the literature, may be combined to form
overall systems that incorporate different input types. This is relevant in complex tasks, in which
multiple specialised processes feed into each other to form a compound generative system. For
example, Nostalgin [209] tackles the challenge of reconstructing cities from historical images by
forming a pipeline consisting of image adjustment, inpainting, and 3D model construction, accept-
ing additional input parameters along the way. Alternatively, Du et al. [98] generate 3D buildings
by chaining together specialised GAN models. Each GAN in the chain focuses on separate tasks
in the creation of building models, from wall and roof textures, to the overall 3D shape.

Figure 2.9 presents the expanded GAGeTx framework, which includes a re-categorisation of tech-
niques and a mapping of input types onto the corresponding interaction types. Here, techniques
comprise two components: Interaction and Process. Interaction refers to the input modality or means
of control for a given technique, while process refers to the way in which the method interprets
inputs to produce an output. Under this framework, unimodal techniques can be expressed as
a combination between a single interaction type and a single process, while multimodal techniques
are expressed as multiple interaction types combined with a single process. Section 2.4.2 will
discuss the modularity of techniques and present the taxonomy for technique interaction types
and processes.
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24.2 Techniques

It is clear that within the literature and among emergent commercial products, interest is growing
for combined generative methods that make use of a number of different input modalities for
maximum control over generated artefacts. The categorisation of techniques within GAGeTx lack

nuance in line with these needs and interests.

In many cases, multiple techniques can be applied in sequence to produce a single intended
artefact [209]. This is even necessary in cases where the user wants to provide multiple types of
input data. Figure 2.10 shows how data flows through a unimodal technique, which is comprised
of one interaction type and one process. Output data from one technique can be passed as an
input into another technique, or taken as a final artefact. This structure provides a large degree

of control over the interactions and processes that comprise a generator.

Technique

In 1

O Technique O In2 Process
St

Inn

FIGURE 2.10: The data

flow for unimodal tech- FIGURE 2.11: The data
niques. Outputs of a tech- flow for multimodal
nique can be used as in- techniques. Multiple in-
puts for another, therefore teraction types connect to

forming a "daisy chain". one process. This may also

be chained together, as
with unimodal techniques.

Figure 2.11 shows the data flow for multimodal techniques, which can be comprised of multiple
interaction types, connected to a single process. This may also be chained together with other
unimodal or multimodal techniques. Techniques have two key components that have relevance to
an end user, these are: "how it is interacted with", and "what it does". The previous categorisations,
while being directly derived from the literature, are rigid and are limited to the what has already
been explored. Separating these components provides a more flexible framework for defining and
examining generative techniques. Therefore, techniques have been re-categorised as interaction

types and process types.

Interaction

The interaction type defines the "how it is interacted with" component of a technique. While many
inputs map on to these interaction types one-to-one, there is an important distinction between
the two. Input types represent forms of data, while interaction types represent the modality and
purpose of the interaction. A multimodal technique is characterised by having multiple interaction
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types connected to a single process, while a unimodal technique will have only one interaction
type. The count of each technique interaction type in the literature is presented in table 2.5.

Random seed: A random seed interaction may take data of any structure or format. The purpose
of this input is to provide a non-meaningful starting point for a process, allowing for a pseudo
random output. Most common associated input types include pseudo random numbers [147]
or vectors [270, 212, 273], 2D noise such as Perlin [243] or Worley noise [115, 275] as well as 3D
noise [424] in some instances. However, it is also possible for other forms of data to be used as
a seed. As this interaction type imparts no meaningful user creativity, it can often be combined
with other interaction types without the technique necessarily being considered multimodal, such
as in the case of cGANSs [500, 248].

Parametric: A parameter based interaction provides the user with the ability to specify exact
attributes of their intended output. Parameters can take the form of floating point or integer
numbers, booleans and vectors. This type of interaction is most commonly paired with other
interaction types, as it can serve as a means for defining constraints within an algorithm. For
this reason, as with random seeds, it can be combined with other interaction types without
the technique necessarily being considered multimodal [248]. Alternatively, some systems use
parameters as the sole input, such as in parametric models [206] and grammars [94, 10].

Textual: Text based interaction may take the form of a prompt, command, or request using al-
phanumeric characters. Most recently, development in large language models (LLMs) has brought
this form of interaction to the forefront. Such deep-learning models interpret text prompts to
produce outputs such as images [405, 91, 390] and 3D models [123, 368, 527, 126]. Textual inter-
action provides a natural way for users to specify or express ideas outside of graphical artistic
skills. This makes for both a natural unimodal form of input [262, 405, 373] as well as a powerful
interaction type for multimodal applications [62, 457].

Sketch-wise: Sketch-wise interaction takes in loose or incomplete ideas in the form of low fidelity
images, designs or ideas. This form of interaction allows a user to quickly come up with ideas
and allow the generative system to contribute its own style or fill in the details [181, 320, 415, 58].
This is not limited to 2D sketch inputs, as simple 3D inputs can also be considered sketches [414,
82].

Photo-wise: As opposed to sketch-wise interaction, photo-wise interaction takes refined or
complete inputs. This includes what can be considered high fidelity images or scans, such as
photographs[455, 492, 508, 60], concept art [423], RGB-D [339, 263, 552] and LiDAR scans [544,
418]. Here, the balance of initiative is shifted more toward the user, with the assumption that the

input is a representation of how the output should look.

Asset-wise: Asset-wise interaction takes complete assets or parts of assets as input, usually for the
purpose of arranging the former within an environment [267, 268, 369, 112], or piecing together
the latter into new variations [153, 245, 84]. Here, the purpose is to take fully formed artefacts
and form a new artefact out of them. In 2D, inputs may be sprites, while in 3D, inputs may be
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surface, data-point or volume based instances. As this interaction type requires finished assets
as input, it is the user’s initiative that most affects the quality of the output artefact.

Interaction type N
Random seed 60

Parameter 43
Textual 47
Sketch-wise 32
Photo-wise 110
Asset-wise 42

TABLE 2.5: Count of techniques interaction types. Many methods demonstrate
multiple interaction types.

Process

The process type defines the "what it does" component of a technique. In other words it encom-
passes the job that the technique performs on given inputs, via interaction types. These can, within
reason, be mixed and matched with different interaction types depending on user needs. Where
multiple interaction types are applied to a single process, the resulting technique is considered
multimodal. Processes also have constraints when it comes to the number of inputs they expect,
as shown in figure 2.9. The count of each technique process type in the literature is presented
in table 2.6.

Random: This technique aims to convert an input, usually a seed, into an output without any spe-
cific user guidance. Therefore the creative task and conception of the artefact is achieved internally.
This is usually used for the purpose of creating new ideas or inspiration [410, 401, 270, 243].

Guided: In this technique, the user provides inputs as a way to influence the generated out-
come. Guidance can be of varying levels of complexity or detail, however the technique is
expected to produce new content given these inputs [299, 181, 389, 245, 495]. This is in contrast
to reconstructed techniques, where the object is to match the input content.

Arranged: This technique’s job is to place existing assets within an environment, in either 2D
or 3D space. Examples include graphical /Ul design [266, 174], web design [306], furniture
placement [499, 435, 201], room layouts [176] and object placement on terrains [442, 549, 112].
Arrangement also applies to part-wise shape completion [278, 153, 271, 62, 327]. These processes
may incorporate elements of randomness as well as logic surrounding the usage of the input

elements, or the overall balance of the layout.

Interpolated: This technique involves finding a point between two or more points within a space
[488, 126, 130, 60]. For graphical asset generation, this usually means sampling a point that sits
between chosen points in the regularised latent space of a deep-learning model [545, 345, 229,
459]. This process allows for blending between two or more examples to create variations or
results that mix the characteristics of said inputs.
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Style transferred: In this technique, the form of one input is combined with the style of another.
This process inherently takes exactly two inputs. This may be used to quickly produce assets of a
consistent style, or alternatively remix and alter existing assets to find variations or explore ideas.
The most well known usage is in image style transfer [134, 420, 218], however this has also been
attempted in 3D with texture [165] and shape [307, 119] transfer .

Reconstructed: In this technique, the goal is to accurately match or re-represent a given input,
usually in a different modality or format. The input is therefore reconstructed, or converted to
another modality or format. This type of process aims to predict or fill in missing data with
minimal artistic liberty or contribution on the side of the software. Thus, the user takes creative
initiative. Examples of use include reconstructing 3D building models [28, 387, 341], faces [286,
416, 87] or props [339, 297, 351] from images.

Process N
Random 45
Guided 101
Arranged 25
Interpolated 22

Style transferred 16
Reconstructed 103

TABLE 2.6: Count of technique processes. Many methods demonstrate multiple
technique processes.

2.4.3 Discussion

In this section, the GAGeTx framework has been expanded to accommodate growing trends in
the usage of multimodal generative systems. To achieve this, the categorisation of techniques for
graphical asset generation has been refined to better represent the nuances of generative tools and
the usage of multiple input types. Techniques are comprised of two elements, interaction types and
processes. This delineation accommodates both unimodal and multimodal configurations. Fur-
thermore, compound generative systems can be formed by chaining together techniques, given
that outputs of one technique can serve as inputs to another. Although this taxonomy presents
the techniques that can be used for generating graphical assets, it does not provide guidance on

which interaction types and processes are appropriate for different circumstances.

To expand on this, techniques can be seen to afford users a certain level of expressibility or creative
freedom. As such the level of user initiative and input complexity can be described as the "idea
fidelity", with no fidelity representing "no existing idea to work with", and maximum fidelity as
"the asset is already fully designed". As the expressibility of a technique increases, so too does
the complexity and onus on the user to pre-conceive an idea before the generator’s involvement.
Figure 2.12 shows the user idea fidelity ranges that each technique interaction type and process
applies to. Technique processes are grouped under four headings: Ideation, Guided design, Partial
design and Full design.
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Random seed interactions can be used as the sole interaction type if there is no existing idea to
base outputs off of. Whereas, parametric, textual, sketch-wise and photo-wise interaction can
be used to guide a process, while affording the generator a wide range of variation and freedom.
However, sketch-wise and photo-wise interaction types do require more specificity and effort at
a minimum level. Arranged, interpolated and style transfer processes require inputs with more
definition due to the direct inclusion of the inputs, or parts of the inputs in the output artefact.
Interpolated processes are considered partial design, as the output is a combination of the inputs.
This is dependent on how the generator interprets the features, thus the output cannot be fully
determined by the user. Sketch-wise interaction’s lo-fi nature limits it to basic forms of these
processes. These are superseded by asset-wise interaction as higher idea fidelity is needed. This is
also where the inclusion of random seeds becomes less relevant, particularly for interpolation and
style transfer, as users typically define exactly how the inputs are to be combined. Reconstructed
techniques are then used when the design is already complete, and the intended output is clearly
envisioned by the user. This requires inputs that encapsulate the specific details of the intended
artefact, such as exact parameters, detailed textual descriptions and detailed photo-wise inputs
or assets. Here, the graphical asset generator acts as a method for converting these designs to
a modality, dimensionality or format that the user desires.

Ideation Guided design Partial Design Full design

Random Guided Arranged, Reconstructed

Interpolated,
Style transferred

Interaction User Idea Fidelity

Random seed

Parametric

Textual

Sketch-wise

Photo-wise

FIGURE 2.12: The user idea fidelity range that each interaction type and process
inhabits. The lighter shade on random seed represents the range in which random
seed can supplement but not be the sole interaction type.

2.5 Summary of chapter

In this chapter, a systematic literature review has been conducted, examining the existing research
regarding graphical assets. From this literature has emerged key categories surrounding graphical
asset types, generative techniques, input types, generative approaches, formats and conversion
methods. These aspects have been ordered based on the prerequisites of each, and formed into
a framework named GAGeTx. In recent years, approaches to multimodal generative systems
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have become more popular. As such GAGeTx has been expanded in light of this new research.
The framework accommodates mixed and multimodal methods with a re-taxonomisation of
techniques for modularity.
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Chapter 3: Evaluation metrics

framework

In the previous chapter, a systematic literature review of GAG methods was conducted, resulting
in the formulation of the GAGeTx framework. While this framework categorises the five main
aspects of GAGs, there is no way to compare the effectiveness of each specific implementation
and thus determine which is best for a given purpose.

Quantitative testing and evaluation is paramount to the development and dissemination of
effective software tools. While appropriate metrics are applied in assessing the various individual
methods present in the GAG literature, there is no unified framework for metrics applicable
across the gamut of methods. While deep-learning approaches have a well developed collection
of applicable metrics [38] others are fragmented or otherwise context specific. Thus, in this chapter
the literature from chapter 2 will be examined through the lens of evaluation processes to build

a centralised understanding of evaluation metrics applicable to GAGs.

3.1 Evaluation metrics

There are various metrics that can be applied to GAG methods, depending on the type or format
of the asset, or the generative technique employed. These metrics are categorised into three main
classifications: Operation, Artefact Validation, and Artefact Quality.

Methods for generating graphical assets take many forms. These methods largely vary by target
asset type and overall technique employed. Figure 3.1 shows the taxonomy of asset types and
techniques found in the literature, introduced in section 2.3; related with the high-level metrics
framework, contributed here. Methods for generating 2D and 3D assets work with vastly dif-
ferent forms of data. 2D data may consist of bitmaps made up of pixel values, or vector data
that represents points in 2D space. Whereas 3D data may consist of meshes, point-clouds or
voxels. The technique represents the general task that the generator completes, but also relates
to a particular arrangement of input and output data types for a given method. Selecting the
correct metrics for evaluating a generative method requires that the asset type and technique is
known. For example, a method that uses a sketch guided technique to produce 3D mesh assets
will take 2D bitmap or vector data as an input, and will output mesh data. With this knowledge,
appropriate operation, artefact validation and artefact quality evaluation metrics can be selected.
Low-level diagrams in figure 3.2, figure 3.4 and figure 3.5 show the expanded list of metrics found
in the literature. Items are placed under 3D and 2D groupings, and all ungrouped metrics have
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FIGURE 3.1: A high-level view of the metrics framework, with a taxonomy of
asset types and techniques found in the literature.

been used in both 3D and 2D use cases. Exceptions relating to specific approaches or formats are
marked with tags which are defined at the bottom of the figures. Metrics that occur only once in
the examined literature are marked white, and metrics that occur more than once in the examined
literature are marked grey.

Togelius et al. [464] put forth 5 desirable properties of PCG methods in games. These are: Speed,
generation time; Reliability, the meeting of baseline expectations; Controllability, the user’s ability
to specify or steer content; Expressivity/Diversity, the variety of possible artefacts; and Creativ-
ity/Believability, the quality of artefacts. While it would be invaluable to have the capability of
addressing each of these properties via quantitative means, only 4 of these properties are covered
by the methods found in the literature. Artefact validation metrics assess the Reliability and to some
extent the Expressivity/Diversity of the method via statistical aggregation. Artefact quality metrics as-
sess the Creativity/Believability of the the artefacts, and operation evaluation, namely performance
metrics, cover the Speed and scalability of the method. On the other hand, Controllability is harder
to quantify, and thus no metrics were observed in the literature. This could be mapped to the
method’s technique classification by means of user degrees of freedom, though it is difficult to
determine what constitutes a meaningful degree of freedom. For example, a sketch-based system
affords the user a large amount of control over the outcome in exchange for a moderate degree
of effort; whereas a seeded approach may require close to zero user input and thus affords very
little control. A parametric approach may have varying degrees of freedom depending on the
parameters exposed to the user, but whether or not these are meaningful controls is not objectively
identifiable. In figure 4 of GAG input types have been ranked in terms of complexity.
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Artefact validation consist of objective and perceptual similarity metrics. Objective similarity metrics
assess the similarity between outputs and corresponding ground-truths and are often used in
aggregate form for evaluation purposes. For these metrics to be applied, the ideal (i.e. ground-
truth), corresponding data must exist for each output in the test. As such these metrics are largely
seen in deep-learning generative approaches where this data is available as a matter of course.
This naturally limits the relevance of objective similarity metrics to externally conceived methods,
where the generator’s job is to reliably interpret data of one form to another e.g. text-to-image
or sketch-to-mesh. Conversely, objective similarity metrics are counter-productive if at all possible
in cases where the generator should have creative agency, as they punish variation and reward
conformity. Some common objective similarity metrics include, Mean squared error (MSE) [367,
400, 440, 459], Root mean square error (RMSE) [341, 87, 205, 342, 46] or Intersection over union
(IoU) [574, 278, 336, 369].

Perceptual similarity metrics offer an alternative approach to validating artefacts, requiring less
correspondence to ground-truth data. This is achieved either through human perception, or stan-
dardised deep-learning models that behave as a proxy for human perception such as Inception
score (IS) [399] and Frechet inception distance (FID) [167].

Artefact quality metrics assess the generator’s ability to produce high quality outputs. This in-
cludes human-centered measures, such as questionnaires and rating systems [286, 397, 539, 91],

and automatic metrics, measuring the particular characteristics of assets [20, 206, 514].

Operation evaluation includes performance and controllability measures. Performance metrics assess
resources, such as memory [553, 94, 494] or time cost [77, 268, 153, 94, 494] of a method. While
these metrics are important during development and testing, they are particularly important
when applications go into production and release and run in real-time, as they have direct

implications for user-experience and usability.

It is in the best interest of researchers and practitioners to evaluate the validity and the quality of
artefacts as well as the operability of their generative methods, in order to assess and present the
capability of their approach, and compare it with existing alternatives. Sections 3.1.1, 3.1.5 and
3.1.9 will cover artefact validation, artefact quality and operation metrics respectively.

3.1.1 Artefact Validation Metrics

A wide breadth of established metrics may be applied in validating the capabilities of generative
methods as shown in framework figure 3.2. These artefact validation metrics assess the degree to
which generated artefacts match the intended asset type. This can be achieved through objective
or perceptual similarity measures, which are presented in section 3.1.2 and 3.1.3 respectively.
Section 3.1.4 will present relevant procedures.
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FIGURE 3.2: The low level metric evaluation framework, focusing on operation

metrics, and the various contexts in which they are applied. Keys at the bottom

indicate their corresponding value within the diagram. White coloured boxes

indicate metrics that only occur once within the examined literature, while

grey coloured boxes indicate metrics that have more than one occurrence in the
examined literature.
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3.1.2 Objective similarity metrics

Objective similarity testing assumes that there is an exact intended output for every input. There-
fore only applying to methods, often deep-learning based, that have the purpose of reliably
re-interpreting an input in some way. However, this is not always a complete limitation. For
example, with variational autoencoders (VAEs), such metrics can validate how well the method
captures the desired features of a dataset, with the method itself still being capable of producing
novel and varied outputs by sampling or interpolating between data points [130, 369, 530]. Many
games follow a specific art direction, with requirements for the style of assets. Altogether, validat-
ing and training a VAE on data that fits these requirements would help ensure style consistency
while still producing varied results. In other words, objective similarity can help ascertain in these
cases, whether a method has successfully captured a target search space.

Objective similarity metrics are applied in the comparison between corresponding data points, such
as mean absolute error (MAE) [553, 226, 384], mean squared error (MSE) [367, 400, 440, 459], root-
mean-squared error (RMSE) [341, 87, 205, 342, 46] and sum of squared errors (SSE) [230]. MAE
aggregates the absolute error of data-points, that is the positive difference between corresponding
values. The squared values of SSE and MSE make them more sensitive to outliers [102]. SSE
aggregates via summation while MSE aggregates via mean. The resulting values are in squared
units, however. RMSE negates this effect by taking the root of the resulting value [38].

Intersection over union (IoU) measures the overlap between two volumes or regions, measur-
ing the difference in shape and positioning between two assets. This has be applied in 2D for
evaluating segmentation tasks [574] and layouts [278] or in 3D for comparing shapes [336] or
bounding boxes [369]. Chamfer distance (CD) compares the difference between two sets of points
by averaging the difference between each point and its closest point in the other set, thus not
requiring a defined pairing or matching set sizes. This can be applied to all point-based asset
formats such as point-clouds [543], and meshes [508]. Also used for point-based formats, Haus-
dorff distance finds the greatest difference between two sets of points [502, 240]. The F-score is a
measure that combines the precision and recall for generated and ground-truth counterparts. This
is used to score shape similarity between the two, therefore measuring the reconstruction quality
of the method. This has been used to evaluate single-view [305, 265, 492] and multi-view [508]
reconstruction approaches. For methods of interpolation, a separability score can be obtained to
measure how disentangled the latent space is [213]. To test how well a deep-learning model gener-
alises, irrespective to the set of training data, K-fold cross-validation may be employed [332]. This
method splits the dataset into K subsets. For each subset, the model is trained on all other subsets,
and tested using the subset in question. The mean and variance across tests can then be reported
in the chosen evaluation metric. Zhao et al. [563] utilise log-Likelihood analysis in assessing an
adversarial autoencoder’s ability to capture the distribution of the training data.

Statistical tests may be necessary in the case of large deep-learning models, providing insight into
the capability of the method through analysis over output distributions. These tests are purely
statistical analysis such as analysis of means and standard deviations, and nearest neighbour
classification and regressions. 1-nearest neighbour accuracy (1-NNA) assesses the similarity



54 Chapter 3. Evaluation metrics
framework

between two distributions using a 1-nearest neighbour classifier. This classifies each sample as
belonging to one of the two groups, thus identical distributions should converge on an accuracy
of 50%, therefore the closer the value is to 50% the better [529]. This approach takes into account
the similarity in both the quality and the variation or diversity of the two sets, and has been used
for 3D deep-learning approaches [567, 185, 545, 61]. Jensen—Shannon divergence (JSD) is used
to measure the divergence between a ground truth and output distribution. For example, this
is applied in point-cloud evaluation [270, 277]. Ivanov et al. test that their results follow a normal
distribution, using Kolmogorov-Smirnov and Shapiro-Wilk tests [193].

Many similarity metrics are specific to 3D assets. For example, earth mover’s distance (EMD)
is used to measure the difference between an output and a ground truth distribution. This is used
for point-clouds [345], voxels [119], and meshes [351]. Coverage scores the amount of similarity
between two sets of point-clouds or meshes, for example, between generated results and a
reference set [283, 545, 126]. Minimum matching distance (MMD) [126, 545, 271] instead gives
a better representation of difference between the two sets, matching items by minimum distance
and yielding the average of these distances [3]. Mesh reconstruction similarity can be calculated
using point-wise euclidean distance between target and generated meshes [467, 455].

Surface distance metrics densely compare 3D points as a measure of surface similarity [237, 367,
423]. Light field distance metrics use multi-view renderings of the 3D assets to calculate shape sim-
ilarity invariant to rotation [185, 126]. Whereas multi-view consistency error observes the distance
between the same points at different viewing angles [261]. Here, a normalised object coordinate
space (NOCS) representation is used. A NOCS discontinuity score is also introduced, to measure
the connectivity of the surface [261]. Ongiin and Temizel [346] introduce average absolute dif-
ference (AAD) and average voxel agreement ratio (AVAR) metrics, which measure the agreement
between paired voxel shapes at different angles. For assessing data in graph form, graph edit dis-
tance [2] can be used. This represents the minimum amount of change required to transform one
graph to another, and thus how similar their topologies are. A key aspect when generating charac-
ters is the joint angle. Mean per joint position error (MPJPE), vertex error and quaternion distance
error may be used to measure this [557]. For interior object placement, bounding box displacement
and angular errors have been used as metrics for correct positioning and rotation [369].

In the task of reconstructing caricature faces in 3D, inter-pupil and inter-ocular distance metrics
have been used [42]. While sliced Wasserstein distance is used to compare the difference in
ground-truth and generated face patch distributions [409], and mean alignment error may be
used to find the average difference between vertex positions [203].

Alternatively, some similarity metrics are specific to 2D assets. For example, peak signal-to-noise
ratio (PSNR) can be used to determine the strength of noise within an image, and therefore can be a
measure of visual quality [286, 390, 108]. Structural similarity (SSIM) measures the perceptual qual-
ity based on high-level structure, comparing the output to a ground-truth image [505]. This has
seen widespread use across image and texture generation approaches [286, 390, 440, 130]. Yadav
et al. [528] use the visual information fidelity (VIF) metric [411] to assess the visual quality of their
outputs. VIF measures the difference in visual information for the output image by assuming the
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ground-truth image to be a perfect signal [411]. Alternatively, when evaluating methods for gen-
erating normal maps, an angular or normal difference metric may be applied [449, 521]. These are
similar to other pixel-wise error metrics, in that distances in pixel-wise values between two images
are assessed. Angular error is reported as angles in degrees, as each pixel on a normal map repre-

sents a direction [449], while the normal difference metric reports non-angular values [521].

Root-mean-squared deviation (RMSD) has been applied in evaluating 2D layout generation by
computing the discrepancy between the positioning of elements in generated and ground truth
layouts [306].

3.1.3 Perceptual similarity metrics

While objective similarity is not always possible due to requiring one-to-one ground-truth data,
perceptual similarity can be used to classify or score an artefact based on perceived similarity
to a visual reference. Perceptual similarity in its simplest form may involve human-centered
classification of artefacts. Here, a human evaluator will be given visual references to compare
generated artefacts with, and tasked with judging whether the artefact is "real" or "fake" [130,
554], or whether it belongs to the target classification [307, 286], as mentioned in section 3.1.8.
Alternatively, a variety of automatic perceptual similarity evaluators may be used. The Inception
CNN model has been shown to perform well at image classification and detection tasks [458].
Since its introduction, subsequent versions of the Inception model have been used for evaluating
generative models, such as generative adversarial networks (GANSs). Metrics such as inception
score (IS) [399], frechet inception distance (FID) [167] and kernel inception distance (KID) [29] each
make use of the inner layers of the Inception model to compare latent similarities. Though IS uses
this to evaluate the perceptual similarity of images with their expected class, FID and KID compare
a distribution of generated artefacts with a ground-truth distribution. As a result, IS is limited
to the categories that Inception is trained on, (typically ImageNet ILSVRC [394]) but requires no
ground-truth data. However, FID and KID are not limited to assessing pre-defined categories but
require a reference or ground-truth dataset for comparison. FID utilises Frechet distance between
the two image distributions, and assumes that the two are Gaussian. This is applied to 2D assets
[212,76, 131, 420, 213, 218, 453], 3D assets via 3D classifiers [400, 298] or rasterisation to 2D form
[123, 338].The Frechet point cloud distance extends FID for applications in assessing the similarity
of point-based 3D shapes [419]. This has been used to evaluate many deep-learning based 3D
point-cloud [270, 419, 270] and mesh [567] generators. KID instead utilises the maximum mean
discrepancy between the image distributions, and does not assume a Gaussian form [29]. This
has been used for evaluating faces in 2D [349] and for evaluating 3D assets rendered in 2D form
[163]. IS however, does not take into account the statistical distribution of the data. It has been
used primarily in the evaluation of 2D approaches [500, 107, 91, 405, 349], though it has been
adapted for 3D as the 3D Inception Score, which uses a 3D classification network instead [489].
The 2D IS has also been applied to 3D assets that have been rendered in 2D form [163].

For the generation of trees, the ICTree metric can be used [365] as an automatic measure of per-
ceptual realism, as an alternative to human evaluation. For VAE based interpolation, a perceptual
path length metric is proposed [213]. This metric measures the perceptual distance at points along
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a path in the latent space, determining how smooth the interpolation is. For text-based generation
methods, CLIP score [166] or R-precision may be used to measure the alignment between the
output and the text prompt used to produce it. The latter is calculated using a Deep Attentional
Multimodal Similarity Model (DAMSM) or CLIP-R-precision [354]. Extending this concept to
3D, the ShapeGlot dataset [4] can be used to train a similar alignment score model for text-3D
generation methods [122]. A similar metric for faces is proposed [409], making use of features
from a facial recognition network. For 2D tasks, learned perceptual image patch similarity (LPIPS)
can be applied. This metric is trained on the Berkeley-Adobe Perceptual Patch Similarity (BAPPS)
dataset, which consists of human perceptual judgements across many sets of images [555]. In
a similar way, some approaches use alternative pre-trained fully convolutional networks (FCNs)
as perceptual measures for 2D images [575, 192].

3.1.4 Evaluation Procedures

For methods that contain multiple sub-processes, e.g. deep-learning approaches. Ablation studies
are a common procedure for assessing the effectiveness of these sub-processes or components
[563, 369, 126, 412, 139, 417]. In an ablation study, components are systematically assessed for their
contribution to the effectiveness of the method. This is achieved by removing the component
and evaluating the rest of the method without it.

When developing generative Al systems, developers require a way to evaluate the quality and
performance of their iterations against each other and against other existing methods. Bench-
mark datasets provide a controlled input to objectively compare outputs and performance. The
challenge of benchmark datasets is that it might be difficult to always find a dataset that closely
matches the intended input/output of the method being developed. Hence, may require slight
adjustments to how the method functions. For methods that require image data, a popular dataset
to use is ImageNet [111]. While general 3D datasets include: ShapeNet [52], ModelNet [519] and
Pix3D [456]. Part-wise 3D methods may use PartNet [329]. Datasets are also available for certain
specific object types, such as shoes (UT Zappos50K [536]) and birds (CUB-200-2011 [486]). Figure
3.3 shows the ground-truth datasets found in the literature, separated into 2D and 3D data types,
and grouped by asset type.

When conducting objective similarity validation, the dataset must meet two requirements: 1) it
must contain data that can be used as an input into the generative system and 2) it must contain
corresponding ground-truth data in the same form as the artefacts. When conducting validation
via perceptual similarity, wherein most methods compare 2D image data, as long as the data
can be arranged as such it can be used. For example, mesh data could be rendered to create
2D data for perceptual comparison, as seen in the work of [567]. There are exceptions to this
approach, namely with captioning evaluation and 3D-text alignment in which artefacts are scored
on closeness to text descriptions. Alternatively, when using IS no dataset is required, because
scoring is based on a pre-trained classifier.



3.1. Evaluation metrics 57
TABLE 3.1: Usage of 2D metrics in literature, organised by generative technique
process used.
) ) Style/
Metrics Random Guided | Arranged | Interpolated Transferred Reconstructed
LPIPS 130 52508,528 130 218 (297,371,
Perceptual [130] T [130] [218] 130]
s 53]
similarity
FCN [575,192]
Facial recognition
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Characteristic ~ Visual balance ‘ [174] ‘
Ol
[390, [130, 228,
SSIM [440,130] | 286, 520, [130] [384] 297, 106]
528, 542] ’
- [390,
Objective [371 228,
o PSNR 286,520, | [430] ’ ’
similari 297 1
v 528] 97, 108]
Visual information
fidelity [528]
Angular/Normal
difference [449] (5211
[266, 267,
1
Overlap 174, 242]
] [242, 266,
Alignment 267]
RMSD [306]
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TABLE 3.2: Usage of 3D metrics in literature, organised by generative technique
process used.
. . Style/
Metrics Random | Guided Arranged | Interpolated Reconstructed
Transferred
Frechet Point Cloud [270, [299 [277, 419
Perceptual rechet tomt L-lou 277 419 4 4 ’ 567
ereept Distance P22 0y 530, 567] [567]
similarity 530]
3D-text alignment
(ShapeGlot) (122]
Flood extent [20]
Stability [206] [206] [206]
Rootedness [206] [206] [206]
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Mesh intersection ratio [265]
CNR [462]
Density [462]
[185,
270, 279, [545, 345,
271,277, 277,278,283, [345, 129, 235,
C 126 518
overage 278,283, | 12! [518] 419,530, 126, 182, 61,567]
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Objective 277,278, 530] 61, 412]
similarity 419, 530]
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400, 545, 126,
MMD 279,271, 526] [518] [567] [61,567]
98, 126]
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Multi-view
consistency error 261]
NOCS Discontinuity
score 261]
Graph edit distance [338]
Average absolute
distance [346]
Average voxel
. [346]
agreement ratio
Euclidean distance [152] [467, 538, 455]
Angular error [449] [369]
Displacement error [369]
Mean Per Joint
Position error 552] (557, 538]
Vertex error [459] [459] [309]
Quaternion
distance error [557]
Inter-pupil
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Inter-ocular
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Mean alignment
error [203]
Sliced Wasserstein
distance [409] (178]
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TABLE 3.3: Usage of metrics that do not require 2D or 3D data specifically, within
the literature, organised by generative technique process used.
. . Style/
Metrics Random Guided Arranged Interpolated Reconstructed
Transferred
Memory usage [179] [549] [494, 94]
[416, 417,
Performance 548, 389, 59,
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(213, 212, 550, 400, 520,
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3.1.5 Artefact Quality

Artefact quality evaluation methods are categorised as human-centered, or automatic quality metrics,
shown in framework figure 3.4. Human-centered quality metrics rely on human assessment, while
automatic quality metrics assess objective characteristics of assets. The following subsections 3.1.6
and 3.1.7 will cover human-centered and automatic quality metrics respectively. Section 3.1.8 will
cover relevant evaluation procedures.

3.1.6 Human-centered quality metrics

Human perception and opinion can be used to measure asset quality. Such metrics are particularly
valuable given the purpose of graphical assets, and their integration into games or other digital
media where end-user experience and immersion are paramount. However, these measures can
be inconsistent, and dependent on many factors. Thus, are best paired with more objective forms
of evaluation i.e. characteristic metrics. Human perception is a common approach to evaluation
in text-guided generative methods for example [397, 539, 91].

A preference metric may be used, where human evaluators choose the result that they prefer out
of a selection of examples. These examples can consist of outputs from the method being eval-
uated and outputs from existing alternative methods. These questions can be posed as a general
preference [286], or preferences for certain aspects of the result [397]. Users may alternatively rate
or score the method on a scale [263, 561].

In assessing interior room layouts, [435] introduce a layout accuracy metric, which observes the
number of furniture pieces a human evaluator chooses to move in a generated layout. In other

words, this is the number of placements that the human evaluator is unsatisfied with.

3.1.7 Automatic quality metrics

Automatic characteristic metrics may be applied in examining particular characteristics of generated
assets. These metrics tend to be specific to the type of asset and format used. To choose or develop
a characteristic metric, desired characteristics of an artefact must first be determined. This will
be be dependent on the intended use case, and whether the characteristic can be objectively
measured. For example, symmetry score [489] and mesh intersection ratio [265] are applied in
quantifying the symmetry and self-intersection of 3D assets respectively. For road networks, or
graphs in general, connected node ratio and density metrics [462] can be employed to examine
the properties of the networks. Jones et al. [206] introduce stability and rootedness metrics for
evaluating generated furniture assets, which use physics interactions such as gravity and pushing
forces to test the generated shapes. While a measure of flood extent is used for measuring the
realism of terrains, as natural formations tend to have a degree of drainage [20]. For 2D layouts
a measure of visual balance has been used; considering the distribution of elements across the
layout [174]. While the overlap and alignment of elements have been used as measures for layout
quality, where the positioning of text and visuals are key. Here, a good layout will have minimal
overlap between elements and maximal alignment [278, 267]. Where programming languages
for shape creation are concerned [514], the number of lines of code has been used as a metric
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to determine the the language’s efficiency or writing speed. Interestingly, the literature did not
include any instances of symmetry score in relation to 2D assets.

Depending on the use case, there may be certain desirable quality requirements for the generated
artefacts. For example, to consider a 3D model "game ready", it may need to meet geometric
standards, such as having low self-intersection [265]. If the realism or functionality of a design

is a concern, metrics similar to stability or rootedness will be of more relevance [206].

3.1.8 Evaluation Procedures

For the task of collecting human feedback or observing human perceptions, questionnaires are the
primary method employed. When receiving quantitative feedback from users, it is common to
obtain a scoring or ranking from participants. This is obtained through a Likert-scale for example
[372]. In many cases Likert-scales are used to collect ordinal ratings, or binary choice questions
may be used for classification. For text-to-image generation methods, DrawBench [397] may
be used to benchmark and compare the performance of one method with another, providing a
systematic list of prompts. For example, an experiment may ask users to compare two images
generated via the same prompt, from different methods, and rate them in terms of fidelity or
image-text alignment [397].

When developing a questionnaire for evaluating a generative method, consider general question-
naire design principles [244] and practices for implementing Likert scale questions [438]. As an
alternative to rating, a questionnaire may present participants with a reference asset (i.e. image
or 3D model) and ask them to choose between a number of assets based on similarity to the
reference [307, 286], where one image is the output of the chosen method, and others are from
comparative methods. Similarly, a set of images from various methods can be ranked [561]. A
human classification score, or fooling rate may also be obtained by presenting participants with a
"real" asset and a generated result, and asking them to select the one that is "real" [130, 554]. Here,
the "real" asset does not necessarily have to be a photograph or an exact match to the generated
result. The purpose is to see if the quality of the artefact can fool the participant into believing that
it was not generated. This also acts as a form of artefact validation as, if the participant believes
the artefact is a "real" example of a particular asset type, then it must be identifiable as such.
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FIGURE 3.4: The low level evaluation metrics framework, focusing on artefact

quality metrics used in the literature, and the various contexts in which they are

applied. Keys in the bottom-most table are used to indicate their corresponding

value within the diagram. White coloured boxes indicate metrics that only occur

once within the examined literature, while grey coloured boxes indicate metrics
that have more than one occurrence in the examined literature.
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3.1.9 Operation Metrics

Figure 3.5 presents the operation metrics used in the literature. These consist of various performance
metrics and controllability. There are four performance metrics that can be applied to most
methods, these are: memory usage, speed, time complexity and running cost. Alternatively, for
grammars specifically, there are two performance metrics that can be applied, encoded size, and
grammar precipitate. Memory usage and speed can be observed by monitoring the hardware usage
or efficiency during runtime. In general, these metrics are dependent on the relevant specifications
of the machine used, so these should be reported in any performance evaluation. It is often
necessary to measure the speed of an implementation. A faster approach can allow for more
content to be produced in a shorter amount of time. An example of speed testing can be found in
the work of Delanoy et al. [82], where the method’s performance with different numbers of inputs,
and different hardware are compared. A common finite hardware resource is volatile memory
such as dynamic random access memory (DRAM) for CPU based computation, and video random
access memory (VRAM) for GPU based computation. These have been used as evaluation metrics
[494, 553, 94]. Memory usage provides a benchmark for the minimum system memory required to
run the method, determining the type of device it may operate on. The scalability of a system can
be assessed by evaluating the time complexity of a method given the inputs [54]. This provides
an indication for the speed of a method depending on its scale or number of inputs.

Running cost may be relevant for commercial projects or content generation services, for example,
Bhatt et al. [28] report potential running cost of their generative method as a cloud-based tool.
For grammar based methods, an encoded size [113] or grammar precipitate metric [264] may be
used, determining the efficiency of the grammar encoding, and the versatility of extracted rules

respectively.

Characteristics such as parallelizability, distributability and access to intermediate results [77], are
contributing factors to performance. Though the review did not yield any quantitative measures
for these, they should be considered per user need and expertise. Memory usage, speed, time
complexity and running cost can all be impacted by these characteristics. Hence their impact can
be measured through these metrics. While not observed in the literature, the controllability of a
method could be measured in user degrees of freedom. While more degrees of freedom does not
necessarily equate to more control, it could suggest more variability of input. But more controls
can come at the cost of usability [388]. Instead, controllability could be indicated via user studies or
indirectly through general usability assessment, such as System Usability Scale (SUS) [39].
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FIGURE 3.5: The low level metric evaluation framework, focusing on operation

metrics used in the literature. White coloured boxes indicate metrics that only

occur once within the examined literature, while grey coloured boxes indicate

metrics that have more than one occurrence in the examined literature. *G
indicates metrics that are specific to grammar based methods.

3.1.10 Selecting metrics

This section will present how to select appropriate evaluation metrics from those found within the
literature. Figures 3.2, 3.3, 3.4 and 3.5 show the categorisation of validation metrics, ground-truth
datasets, quality metrics and operation metrics, while tables 3.1, 3.2 and 3.3, show the literature
organised by metric and technique used for 2D, 3D and shared metrics respectively. It is evident
that some metrics are very popular for evaluating specific techniques, while others are popular
regardless of technique. For example, PSNR has been used in 8 instances for evaluating image-
based 2D guided and reconstruction tasks, while FID has been used in a total of 46 instances
evaluating random, guided, arranged, interpolated, style-transfer and reconstructed generation
tasks. There are many metrics that, due to being context specific, are only used in one or two
instances, e.g. flood extent, stability, rootedness, inter-pupil and inter-ocular distances.

Figure 3.6 presents the selection procedure for operation, validity and quality metrics. This process
is about finding available methods to consider for all three metric types. In this process, relevant
metrics are first narrowed down by category based on various limiting factors, and then the
dimensionality of the asset type. Visiting the relevant figure a list of metrics can be obtained from
headings related to the asset type, and more general metrics: figures 3.2, 3.3, 3.4 and 3.5. These



3.1. Evaluation metrics

67

metrics can then be found in the relevant tables, where the choice can be narrowed down based

on the technique and by observing their application in existing examples cited: tables 3.1, 3.2 and

3.3. Metrics applied to the same technique may be considered more relevant. If the intention is

to compare with existing methods, then a popular metric for that technique should be chosen. To
identify the technique a method’s inputs and functionality should be considered, as discussed in
section 3.1. For artefact validation metrics, human-centered or automatic approaches can be used.

Algorithm 3 Algorithm for selecting metrics.

1:

. function E1C1:

procedure SELECTING EVALUATION METRICS(asset_type,
input_type, AIM) > Prioritise metrics
applied to same technique/input_type, consider relevance
of metrics based on the example uses in the literature.
if AIM = Does the generated asset look like what I
wanted? then
return Dataset,
El(asset_type, input_type)
> Choosing a validation metric.
if AIM = Are these assets "good'? then
return QualityMetrics <— E2(asset_type, input_type)
> Choosing a quality metric.

Validation Metrics —

if AIM = How operable is this approach? then
return Operation Metrics <— E3(asset_type)
> Choosing an operation metric.

: function E1: ARTEFACT VALIDATION(asset_type, in-

put_type)
Dataset <— E1C1(asset_type, input_type)

ValidationMetrics < E1C2(Dataset, asset_type, input_typfgi:

return Dataset,Validation Metrics

CHOOSE GROUND-TRUTH(asset_type,
input_type)
if Relevant dataset in figure 3.3 for given asset_type then
if input_type matches dataset input type then
return Dataset <— dataset matching asset_type
and input_type
return Dataset < dataset matching asset_type

if Ground-truth dataset can be created or has been used
in training then
return Dataset < created or unused portion of
training dataset

. function E1C2: CHOOSE VALIDATION METRIC(dataset,

asset_type, input_type)
if there is an expected output for every input_type then
if dataset contains asset_type and input_type then
if asset_type is 3D then
Metric options <— Relevant 3D Objective
similarity metrics

: in figure 3.2 based on asset_type.

Metrics < Find metric options in tables 3.2
and 3.3.
else if asset_type is 2D then
Metric options <— Relevant 2D Objective
similarity metrics

: in figure 3.2 based on asset_type.

Metrics <— Find metric options in tables 3.1
and 3.3.

if dataset matches the intended general appearance of
asset_type then

if asset_type is 3D then
Metric options <— Relevant 3D Perceptual sim-
ilarity metrics

: in figure 3.2 based on asset_type.

Metrics < Find metric options in tables 3.2 and
33.
else if asset_type is 2D then
Metric options < Relevant 2D Perceptual sim-
ilarity metrics
in figure 3.2 based on asset_type.
Metrics <— Find metric options in tables 3.1 and
33.
if consider human participation then
Metrics <— Human Classification Score (table 3.3)
if asset_type belongs to an ILSVRC [394] category then
Metrics <— Inception Score (table 3.3)
if appearance of asset_type can be put into words then
if asset_type is 3D then
Metrics < ShapeGlot (table 3.2)
else if asset_type is 2D then
Metrics < ClipScore (table 3.1)

return Metrics

. function E2: ARTEFACT QUALITY(asset_type, input_type)

if consider human participation then
Metrics < Human classification or feedback (table
33)

if asset_type has measurable characteristics then
if asset_type is 3D then
Metric options <— Relevant characteristic metrics
in figure 3.4 based on asset_type
Metrics < Find metric options in tables 3.2 and
33.
Metrics <+ Devise new characteristic metric/s
based on use case.
else if asset_type is 2D then
Metric options <— Relevant characteristic metrics
in figure 3.4 based on asset_type
Metrics < Find metric options in tables 3.1 and
33.
Metrics <+ Devise new characteristic metric/s
based on use case.
return Metrics

: function E3: OPERATION(asset_type)

Metrics <— Memory usage, speed and time complexity
(table 3.3)
if consider human participation then
Metrics < User control satisfaction
if intended to be run as a service then
Assess running cost (table 3.3)
if asset_type is grammar based then

Assess grammar precipitate and encoded size (table
33)
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The purpose of artefact validation is to assess whether artefacts are of the intended asset type.
Artefact validation via objective similarity is only possible when ground-truth data is available. In
most cases, evaluation of a method via ground-truth datasets is only possible with reconstruction
method in which there is a known intended result for a given input e.g. conversion from sketch-to-
mesh. Many of such methods, often deep-learning based, will already use this form of validation
as a means to optimise the generative model itself. Naturally, applying these metrics to the final
generative system using data previously unseen to the model will assess its ability to perform the
reconstruction task. To compare a method with existing approaches a benchmark dataset may
be used, though the availability of a relevant dataset depends on how popular the asset type is
for other generative systems. For example a generic 3D reconstruction task has many options for
benchmark datasets, while a method that produces a highly specific type of artefact may require
a bespoke dataset. Perceptual metrics require less direct conformity to a ground-truth. Here,
artefacts can be compared with datasets that represent the general intended appearance of the
artefacts. Metrics such as FID can be used to assess visual similarity between generated artefacts
and a reference dataset without one-to-one correspondence. Alternatively, IS does not require
any ground-truth data, but can only be used if the asset type belongs to the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) categorisation [394]. Human-centered validation
is achievable with any method, though it may not always be feasible due to the time it takes to
recruit and access participants. The creator of a method designs or trains their system based on
their conception of what attributes define the asset type. Human-centered perceptual similarity
testing may be used to confirm if others deem the artefacts to meet their own conceptions.
Typically a description, example or reference will be provided as a point of comparison for the
assessor. This is not an assessment of quality, but a subjective assessment of whether artefacts
are perceived as what they should be, i.e. is the method for generating chairs producing what
can be deemed a chair. Where possible, both automatic and human validation metrics should
be applied, though the former is only possible with externally conceived methods.

Artefact quality evaluation metrics can either be automatic or human-centered. These can be
selected based on relevance to a use case. Automatic quality evaluation can be achieved through
characteristic metrics. These are metrics that apply to specific characteristics of an artefact, and
will be dependent on the asset type, data format or end use case of the artefact. For example,
assessing the stability of furniture under physics simulation [206], or the quality of a mesh by the
amount that it intersects with itself [265]. These make assumptions about what makes a quality
asset e.g. a good chair will remain upright when exposed to gravity, and a good mesh surface will
not intersect with itself. As such, it is difficult to systematically choose characteristic metrics as it
is highly context specific. Alternatively, human-centered feedback through scoring can provide a
more subjective, opinion based assessment of the quality of artefacts. Though finding participants
and collecting this data will take more time than automated testing. Both should be used where
possible.

Operation evaluation includes performance and controllability measures. Memory usage, speed
and time complexity can be applied to any generative algorithm. These measures are beneficial for
determining the resources required to use a given method. Additionally, in the case of generative
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methods as a cloud service, running cost may be assessed [28], while grammar based methods
may benefit from assessing grammar precipitate [264] and encoded size [113]. Controllability
should be considered based on the context of use. While there are no direct quantitative measures,
users may be asked to indicate their satisfaction with the controls, whether they are too limited
to achieve their goals, or too complex to comfortably use.

In most cases, multiple metrics of each category will be relevant. Where feasible, applying every
relevant metric will provide the most precision in evaluating a method. This is not always possible
due to time constraints, therefore, in such cases individual judgement should be used to prioritise
which metrics are used.

Algorithm 3 presents the process for selecting all three types of metric based on the artefact
asset type, the input type of the method, and the evaluation aim. To illustrate the use of this
algorithmic approach, the following scenario is presented. Game developer A has produced a
method for generating 3D models of castles using a GAN architecture. The method is using a
random technique process with a randomised input vector. Firstly, game developer A validates
if the outputs of the method are in fact "castles". They choose a dataset and validation metric (E1)
by first examining if there are any ground-truth datasets available for buildings (E1C1). Looking
at buildings in figure 3.3, there is LIDAR data from the UK environment agency, which has been
used for finding roof shapes [544]. This is not so relevant to their use case. Not finding an existing
similar dataset, they can use an unused portion of the dataset they used for training. They proceed
with selecting a validation metric (E1C2). As they use a random technique process, there is no clear
expected output for every input. Once they validate that their dataset matches their intended
artefact appearance, they consider general or 3D perceptual similarity metrics as their asset type
is 3D. Due to the challenges of human participation, they decide not to use human classification.
Therefore, they move on to other perceptual similarity methods which includes Inception Score,
where "castles" is a category of ILSVRC, figure 3.2 and table 3.3. Then, developer A proceeds to
to assess the quality of their artefacts (E2). As before, they reject human participation and use
an automatic characteristic metric. They choose to measure mesh intersection ratio based on
figure 3.4 and table 3.2, as self-intersecting geometry can look bad and waste resources. Finally,
to evaluate the operability of their method (E3), developer A assesses the memory usage, speed
and time complexity. They once again reject human participation, so do not assess controllability.
They run their GAN solution locally, not on cloud, and their method does not use grammars,

therefore they do not assess running cost or grammar metrics.
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FIGURE 3.6: The process for selecting appropriate operation, validity and quality
metrics. Box colours match counterparts in figures 3.2-3.5.

3.2 Chapter summary

In this chapter a framework has been developed pertaining to the selection of metrics for GAGs.
This framework, based on the same body of literature as chapter 2, presents and categorises
the range of evaluation approaches and metrics in use. GAGs can be evaluated through artefact
validation, artefact quality and operation metrics, evaluating whether generated artefacts pass as the
intended asset type, how "good" generated artefacts are and how controllable or performant the

implementation is, respectively.
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While this chapter examines methods for evaluating the effectiveness of GAG methods them-
selves, practical tools also require appropriate user interfaces (Uls) and user experiences (UXs).
The following chapters will address these aspects such that GAG tools can be effectively evaluated
and appropriately presented to users. Chapter 6 will revisit and improve the application of the
metrics framework, by exploring how users prioritise certain evaluable aspects of GAGs.
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Chapter 4: Game Developer
and Designer UX preferences

In the previous two chapters, the existing literature pertaining to graphical asset generation has
been systematically reviewed, resulting in the development of a conceptual framework dubbed
GAGeTx. Furthermore, the evaluation metrics used in the same body of literature has been
examined to form an additional framework for the evaluation of graphical asset generators.
While these frameworks lay out and taxonomise the existing approaches and techniques, the
rationale behind the selection of said approaches and techniques is loosely defined as a user
"choice" or "preference".

In this chapter a user study has been conducted with 16 game designers and developers in order
to shed light on the greater context in which asset generators can be used, as well as observing pref-
erences for their usage and implementation. In this study, three mock-up graphical asset generator
systems were implemented and tested via repeated measures. Data collection was achieved and
guided through a web form. Through statistical analysis, four key insights were observed.

41 Background

While PCG methods are a popular topic, with many practitioners and researchers suggesting
their value in "offline" use cases, there are few existing works that examine generative tools in
game development from the perspective of game designers and developers, i.e. the users of such
tools. It is apparent that different generative methods and techniques are designed with different
use cases in mind, each attempting to solve a problem or streamline a process within a larger
creative pipeline. Game designers and developers use many tools during game production to
create video game products, from editor tools for game engines, to asset editing software such as
Photoshop [7] and Blender [32], or integrated development environments such as Visual Studio
[322]. These tools each have their place within the workflows and development pipelines of game
creators. While these workflows look different from company to company or from one individual
to another, there exists three ubiquitous stages of development: prototyping/design, production
and testing [379]. All graphical assets are formulated and produced during the prototyping,
design and production stages. Within this, there are many ways that PCG can help, from early
inspiration and creating rough placeholders to creating fully fledged assets or remixing existing

assets for variety. Each of these use cases, naturally, will have different requirements for the
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complexity of input, method of interaction and quality of output. However, no research has yet
explored the purposes for which designers and developers prefer to use PCG tools.

Mixed initiative PCG (MI-PCG) is a common instance of offline PCG. The user study of Walton
et al. [487], examines user opinions of an MI-PCG level creation tool using a mixed-methods
approach. The findings suggest that the MI-PCG method stimulates user creativity, and helps to in-
spire new ideas. They discover that the inclusion of qualitative data from participants is important
for gaining the full picture, as it provides important context to the quantitative data.

The concept of designer modeling extends MI-PCG by considering the adaptability of a system to
user needs [281]. In such a system, the tool aligns itself to the designers style choices, or may even
help break design fixation by producing results that are different to what the user is accustomed
to, thus providing inspiration.

In a qualitative study examining expectations of Finnish game developers regarding their tools,
Kasurinen et al. [215] present some key insights. Across the seven organisations examined,
developers were largely satisfied with the tools they have, though, when it comes to assets, many
preferred to purchase rather than create in-house. It is found that the companies ‘expect their tools
to allow easy prototyping and ability to design while implementing’ [215]. Many of the companies relied
on third-party game engines, and thus compatibility with these engines was a large part of the
consideration when selecting new tools.

While there is an extensive body of literature pertaining to MI-PCG there are limited case studies
which examine their use and fit in design and development pipelines [251]. While it is clear
that MI-PCG has the potential to improve game development asset pipelines, the opinions and
preferences of game designers and developers remain, in general, unheard. Individual MI-PCG
systems may be validated with user feedback [267, 415, 412], but feedback is limited to specific
purposes of use, and are not contextualised within the larger scope of the development pipeline.
The goal of this study is to obtain insights into where and how graphical asset PCG is most useful
to game designers and developers.

4.2 Applications of GAGs in game design and development pipelines

The creation of graphical assets occurs during the prototyping, design and production phases of
the game design and development process. Graphical asset generation may be utilised through-
out each of these phases to streamline or augment the creation of games. Through observing
existing generative methods, tools and pipelines in the literature, seven potential usages for
graphical asset generators have been identified:

Generating inspiration

Creative block and design fixation [197] are widely experienced in creative fields, including game
production. Generative methods for graphical assets can be used to help circumvent this issue by
providing unexpected or varied outputs that can serve as inspiration. In this context, the quality
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of the generated content is less important than its ability to spark the user’s creativity, serving
as a starting point or trigger for further design iterations.

Exploring ideas
During early stages of design, iteration is key for expanding on initial inspirations and producing
finalised designs. During this process, designs are flexible, thus ideas can be quickly tested and
evaluated before committing extensive resources and time. The speed and configurability of some
generative methods such as [397] may help with exploring ideas and potential design directions
for this use case.

Creating placeholder assets

Placeholder graphics are assets that are used as a stand-in for future intended game elements. They
are used during the prototyping phase to allow for the testing of game features and mechanics. As
the intention is for these assets to be replaced during later stages, quality and detail is unnecessary.
However, to serve fast prototyping, placeholder assets must be fast to produce.

Creating variations of existing (complete) assets

In games, asset variation can help to immerse players and reduce the repetitiveness of content
throughout a digital environment. Many generative methods facilitate the ability to create similar
variations of assets. This is most commonly seen with methods that rely on parametric modelling
[207, 136], or with the usage of VAEs [459]. Therefore, there is potential in the usage of generative
tools for increasing the diversity and richness of content available, making the digital environment
more engaging and varied for players.

Creating assets from existing (complete) designs

During the design phase, the appearance of an asset may be determined and planned through
the use of concept art. This concept art is later used as reference for creating the final asset during
the production phase. A graphical asset generator may be used to achieve the latter task, by con-
verting initial designs and plans into finalised assets. For example, [423] use orthographic concept
art from multiple views to generate 3D assets, even utilising the initial art for texturing.

Creating assets from scratch

Some generative tools, such as SpeedTree [190], encompass a full pipeline for designing, con-
figuring then producing assets. In these cases, the process covers the creation of assets from
scratch.

Player (or user) made content

A common application of PCG, beyond its use in generating graphical assets, is for online content
generation. This typically refers to the generation of game elements such as levels and loot to
produce unexpected and re-playable experiences. With regard to graphical assets however, some
games such as Spore and Dreams provide tools that allow players to create their own designs
within a constrained creation framework. In a sense, many of these tools are constrained versions
of development tools, there is therefore potential for the application of generative tooling within
similar systems. Generative systems can also be used for avatar personalisation, such as through
the reconstruction of faces from photographs [286].
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A) Offline asset generation (designer
curated)

Generating
inspiration.

B) Online asset generation (at runtime,
end-user)

Exploring ideas.

A) High quality (game ready)

Creating
placeholder
assets.

B) Low quality (fast)(needs considerable
human work)

Creating
variations of
existing
(complete)
assets.

Creating assets
from existing
(complete)
designs.

A) Aid in part of development process

B) Replace part of development process

Creating assets
from scratch.

Player (or user)
made content.

FIGURE 4.1: The key characteristics of design and production uses. Generating
inspiration, Exploring ideas and Creating placeholder assets are grouped together as
they share the same characteristics.

Figure 4.1 presents the key characteristics of each game centred use case. As shown, graphical

asset generators may be applied offline during the production of a game product, or online during

run-time. Uses may also necessitate high quality outputs, such as in creating variations of existing

designs and creating assets from scratch, or low quality outputs with an emphasis on speed, such as

in the case of generating inspiration. These uses may also aid in streamlining part of a development

process, such as with exploring ideas, or replace an entire process, as with creating assets from
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scratch.

These characteristics represent the underlying acceptable qualities of the usages, helping to map
different generative methods to specific stages in the development pipeline. For instance, during
the early design phase, a generator prioritising speed over quality can help by rapidly generating
ideas, thereby encouraging creative exploration. Alternatively, high-quality generators are more
suited for final asset production, where precision and detail is necessary.

4.3 Research questions

The purpose of this study is to examine if game designers and developers would find generative
systems for graphical assets useful, what their requirements are for such as system and where in
the pipeline they will find most use in it. There are five core questions this study seeks to answer,
shown below in order of importance.

CQ1 Would a generative system for asset generation be useful to game
designers/developers?

CQ2 Where in the design/development pipeline would game design-
ers/developers find value in such as system?

CQ 3 What are the expectations regarding speed and quality for such a system?

CQ 4 Is this type of system preferred as integrated or stand-alone?

CQ 5 Which type/s of Ul interaction do game designers/developers prefer for
this type of system?

A mixed methods approach is taken to collect quantitative and qualitative data from participants.
This methodology attempts to answer a series of research questions, which expand the above;
presented in table 4.1 as RQ1-RQ9, by proving or disproving a relative set of hypotheses, listed
H1-H7 in table 4.2 and demographical impact hypotheses IH1-IH3 listed below. To achieve this,
three prototypes have been devised, as shown in figures 4.2, 4.3 and 4.4.

IH1.1 Role impacts preference.

IH1.2 Size of team impacts preference.
IH2.1 Experience impacts preference.
IH2.2 Age impacts preference.

IH3.1 Gender impacts preference.
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TABLE 4.1: List of research questions and associated questionnaire questions.

Research Questions

Survey Questions

RQI1

Which prototype/mock-up (M;) is deemed the
most useful to game designers/developers?

“Iwould find this software tool that generates
graphical assets useful in the projects I work
on.”

RQ2
RQ2.1
RQ22
RQ23

RQ2.4

RQ25

RQ26

RQ2.7

Where in the pipeline would game design-
ers/developers find value in M;?

Do designers/developers find value in M; for
Generating inspiration.

Do designers/developers find value in M; for
Exploring ideas.

Do designers/developers find value in M; for
Creating placeholder assets.

Do designers/developers find value in M;
for Creating variations of existing (complete)
assets.

Do designers/developers find value in M;
for Creating assets from existing (complete)
designs.

Do designers/developers find value in M; for
Creating assets from scratch.

Do designers/developers find value in M; for
Player (or user) made content.

“Where in your development pipeline would
you find value in this software tool?”

RQ3

If M; were to be used in a pipeline, would
designers/developers prioritise volume of
output or quality of output?

“Considering your answer to the previous
questions, would you prefer if this tool
generated a large variety of assets at a lower
quality, or that it generated a small variety of
high-quality assets?”

ROQ4

How much time would designers/developers
find acceptable for M, to take in generating a
single asset?

“Please indicate the largest timescale you
would find acceptable for generating a single
graphical asset, if you were to use this software
tool in your projects.”

RQ5

Do designers/developers prefer M; as a
stand-alone solution or integrated into a
game-engine?

“Given the option, would you prefer such a
system to exist as stand-alone software, or inte-
grated into your game engine editor of choice?”

RQ6

How important is the ability to configure or
modify M; according to designers/developers?

“Please rate on a scale of 1 (not important) to
5 (very important), how important to you, is
the ability to configure or modify such a tool.
For example, importing your own bespoke
algorithms or trained models?”

RQ7

Which M do designers/developers identify as
more useable?

System Usability Scale [39]

RQ8

What are the concerns and perceived benefits
of this tool?

RQ9

What are the desired asset types?
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TABLE 4.2: List of hypotheses and associated research questions.

Hypotheses Associated RQs
H1 Participants prefer an integrated RQ1, RQ5
solution over a standalone
H2 Participants favour the integrated RQ1, RQ6.1
window interface type over an
inspector integrated interface
H3 Participants find the tool valuable RQ2
in all stages
H4 Participants prefer shorter gener- RQ3
ation times over quality /variety
H5 Participants find asset generation RQ4
times of less than a minute accept-
able
H6 Participants prefer an open solu- RQ6
tion i.e., high-configurability
H7 Participants identify the solutions RQ7

useable
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Graphical Asset Gens

Add Component

Steps 2 & 3

Transform
B Graphical Asset Generator (Script)

Add Component

Step 5 - Part 1 Step 5 - Part 2

FIGURE 4.4: Step-by-step process for interface M3.

44 Mock-ups

In order to obtain game designer and developer feedback, three Ul mock-ups have been devel-
oped and compared. To ensure that opinions are not shaped by the type of asset, technique or
approach to generation; the Ul mock-ups are designed to present a fully customisable generative
system, where the user decides these specifics. As such, this system is based on the multimodal
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technique selection presented in GaGeTx.

Each graphical asset generator can consist of any number of techniques, which are in turn com-
prised of an interaction type and a process type. Inputs are provided via the interaction type
and outputs of the process can be fed as an input to another technique, or as a final artefact. In

addition, a user can choose to convert the format of input and output data as needed.

The three mock-ups represent stand-alone wizard, editor window integrated and editor inspector in-
tegrated implementations of this system. Figures 4.2, 4.3 and 4.4 show an example usage process
implemented in each of the three mock-ups. This process involves the configuration of a generator
that takes text as input, and outputs bitmap images.

441 My;y: Stand-alone wizard

The first mock-up (M;) represents a stand-alone wizard application in which the user answers
a series of questions that determine the configuration of the generator. This mock-up was created
using the Electron framework which packages designs built for web into an executable form. In
addition, this mock-up was hosted as a web-page for users that did not have system permissions
to run the application version.

A software wizard is an application designed to guide a user through a series of steps [150]. These
steps can be dependent on choices made in previous steps, thus allowing for branching behaviour.
This can be used to match the logical process for GaGeTx, with information from each procedure
feeding into later procedures.

The goal of this UI was to directly present the decision process proposed within the GaGeTx
framework. The Ul presents relevant multiple-choice questions that drill-down on a configuration
based on the user’s needs. The options are dynamic, such that certain answers limit the choices
for certain proceeding questions. The result is a save-able generator configuration that the user
can edit and return to. A breadcrumb navigation system allows the user to return to earlier

choices and make changes as needed.

As shown in figure 4.2, this mock-up introduces the process, asks the user what type of asset
they need to generate, the format, and then the input type. The choice of input then determines
the possible techniques, in this example, there is only one choice so the user does not receive a
selection. This is because there is only one technique for image generation via text. The user then
arrives at a screen in which they choose input and output data paths, set the number of assets
to generate, and begin the generation process.

442 My: Integrated in an editor window

Mock-up M, represents an interface that would be integrated within existing game development
software, in this case, the Unity engine. This uses Unity’s experimental graph view API to render
a node-based interface for designing generator configurations. This is incorporated as a separate
sub-window of the Unity editor application.
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As with the other mock-ups, this mock-up aims to present the GaGeTx framework decision
process. For M, the order in which decisions can be taken is up to the user. The Ul provides four
categories of node: inputs, generators, convertors, and outputs. The user can chain nodes from
these categories to produce their desired configuration. Each node contains its own parameters
that the user may adjust. These configurations can be saved as asset files within the Unity
project. This Ul also includes two modes: Generate, and Train. The set of nodes within the graph
view persist between both modes, but connections between them can vary between the two. In
generate mode you define outputs under a single output node. You then chain together input,
generator and convertor nodes with the goal of connecting the final result to an output. In train
mode the flow between nodes is indicative of a training pipeline. Alternative input paths can be
provided as training data, labeling nodes can be inserted for labeling input data and output paths
are disabled. The goal is to present this as a tool in which you design a pipeline, then fine-tune
its inner workings. As this Ul is an editor window, it is suited to offline content generation as it
does not directly connect with the active game scene. Instead, it directs outputs to user chosen
folder paths from which the user can browse, refine or export results.

M, is shown in figure 4.3. Here, the user creates a new bitmap path in the output node, creates
an "image from text" node, and then creates an input path node while defining image size

parameters.

4.43 Mj3: Integrated in an editor inspector view

Mock-up M3, also built in Unity, presents the same node based system as M;, but is instead
incorporated within the editor inspector window. This means that the interface is attached to an
entity within the game scene, that the user must have selected in order to edit. This has the same
functionality as My, however it is presented in a vertical, linear format.

The same categories available in M, are shown as collapsible sections in M3. Nodes are added
under these categories using the respective "Add New Node" buttons which produce a relative
list of nodes to choose from. To connect these nodes the user must select connections at the top
of each node UL An indicator at the bottom of each node will turn green if the node has been
connected to, and which node this is. In the Unity Editor, inspector Ul applies to a specific entity
within a game scene. In a full implementation, this would give this version of the tool the ability
to instantly load generated content within the game scene at a position of the user’s choosing,

facilitating rapid prototyping, variation, or runtime generation.

As presented in figure 4.4, M3 presents a vertical list of categories which the user can add to.
The user adds an output node with the format of "bitmap", adds an "image from text" generator
node, and creates the necessary input nodes. These nodes are then bound to each other using
drop-downs in the UL
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45 Procedure

As stated in the previous section, three mock-ups were developed, each implementing the same
underlying system with different forms of Ul interaction. Each participant is asked to complete a
form consisting of demographic questions, followed by a section for each mock-up. In each section
the mock-up is introduced and instructions for installing and using the mock-up are provided. The
participant is asked to try the mock-up for as long as they like, then complete a set of preference
questions. After all three sections are completed, the participant is provided with an opportunity
to book a semi-structured interview to provide qualitative feedback. In analysis, the questionnaire
responses are compared between the three mock-ups, and overall. The following subsections

will provide more detail on the participants, mock-ups, questionnaires and interviews.

4.5.1 Participants

Participants were recruited via a convenience sampling approach, in which members of the
game development communities: LUUG and BCS Animation and Games specialist group, were
contacted via group emails through the respective community administrators. Participants were
required to be over the age of 18, with professional experience in game design or development.
Participants were also required to have Unity engine installed on their personal machines, and
experience with the software was preferred. Of the group email respondents, participants were
recruited based on the aforementioned criteria. Participation was not incentivised on the basis

of financial gain, and was thus voluntary.

4.5.2 Interface prototype mock-ups

In order to explore the preferences of participants, three prototype mock-ups have been devised,
as presented in section 4.4. These mock-ups Mj, M, and M3 represent three forms of tool im-
plementation; stand-alone, integrated in an editor inspector and integrated in an editor window
respectively. These mock-ups were designed as representations of the flow of interaction and
were therefore not functional under the hood. M, and M3 have been implemented in the Unity
engine. Figures 4.2, 4.3 and 4.4 show a step-by-step process within each of the three mock-ups,
achieving an equivalent result. As the figure shows, M takes a direct approach by asking the
user a series of questions that drill down on a configuration based on the user’s need. M, and
M3 take a more free-form approach, giving the user a palette of options from which to build
their generator. Users were provided walk-through videos to watch before using each interface,
demonstrating the functionality at each step.

4.5.3 Questionnaires

Participants were given the opportunity to explore each mock-up at their own discretion and com-
plete a questionnaire for each one, as well as a fourth questionnaire for collecting data independent
of the mock-ups, such as demographic data. These questionnaires consist of 5-point Likert scales,
multiple-choice tick boxes and dichotomous questions. Demographic data, such as age, years of
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experience and team size, were recorded by range. These surveys were hosted on Microsoft Forms.
The research questions and the corresponding survey questions are presented in Table 4.1.

454 Semi-structured interviews

Participants were scheduled 10-to-15-minute interviews following their completion of the pre-
vious step, this was on an opt-in basis. In these interviews, participants were first asked questions
to confirm their answers within the questionnaires to ensure validity, then asked to describe
any concerns or perceived benefits of such a tool, what asset types they desire to generate, and
what additional features they desire. Participants were also given the opportunity to voice any
opinions that had not been addressed at any other stage in the study. Notes were taken during

these semi-structured interviews for later analysis.

4.6 Results

All quantitative data from the questionnaires was analysed univariately, extracting average scores
from Likert scale and single-choice questions, and frequency distributions for multiple choice ques-
tions. For this, one-sample Kolmogorov-Smirnov (K-S) [73] tests were used to determine whether
results were normally distributed. Wilcoxon signed-rank tests [513], and one-way-ANOVA [392]
were conducted for each question, comparing the results from the three questionnaires. These
results answer hypotheses H1 to H7, with respect to variance between mock-ups. IH1 to IH3 are
assessed via linear regression and independent samples T-Tests [72], observing the relationship
between demographic and preference data, and an inductive thematic analysis was conducted
on the notes from the semi-structured interview, answering RQ8 and RQ9. During the data
collection period, a total of 16 participants tested the mock-ups and completed the questionnaire,
4 of which also completed informal follow-up interviews. The initial mock-up testing phase took

participants an average of 63 minutes to complete.

K-S tests were performed for each question to determine if the distributions are normal. RQ7
(the SUS results) and RQ2 frequency of options picked (Table 4.3), are found to have normal
distributions with statistical certainty (P >0.05). All other questions meet the null hypothesis (P
<0.05).

Descriptive statistics

Overall, responses to RQ1 (usefulness) were moderately positive (1 = 2.72,0 = .669). Of the
options in RQ2, the most popular choices (1 > .5) were RQ2.1 (generating inspiration), RQ2.2
(exploring ideas) and RQ2.3 (creating placeholder assets). The number of options picked by
participants was between 2 and 3 (4 = 2.78,0 = 1.629). For RQ3, participants show a clear
preference for a high volume of lower quality assets over a lower volume of high quality assets
(u = 17,0 = .383). RQ4 responses show an acceptable generation time for a single asset to be
between 1 and 10 minutes (1 =1.67,0 = .686). For comparison, existing tools such as Didimo [188]
can take 5-10 minutes to produce a result, so this may be an expectation based on what is already
available. RQ5 responses point toward preference for a tool integrated within a game-engine
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TABLE 4.3: One-sample Kolmogorov-Smirnov test results for RQ1 - RQ7,
presenting the mean, standard deviation (SD), and significance scores.

Research Question Mean SD Sig.
RQ1: (0-4) 2.72 669 001
RQ2.1 (0-1) 67 485 .000
RQ2.2 (0-1) 72 461 .000
RQ2.3 (0-1) 61 502 .000
RQ2: RQ24(0-1) 17 383 .000
RQ2.5 (0-1) .06 236 .000
RQ2.6 (0-1) 17 383 .000
RQ2.7 (0-1) 39 502 .000
RQ2 Frequency of options picked. 2.78 1.629 194
RQ3: (0-1) 17 383 .000
RQ4: (0-6) 1.67 686 001
RQ5: (0-1) 78 428 .000
RQ6: (0-4) 3.50 985 .004
RQ?7: (0-100) 7875 134287 131

or editor (u = .78,0 = 428). For RQ6, results show that participants considered the ability to
configure or modify the tools important (i = 3.50,0 = .985). The overall usability (RQ7) across
all mock-ups was considered good (1 =78.75,0 =13.4287).

Tool Preference

In order to determine the statistical significance in the difference in preference between the three
mock-ups, ANOVA and Wilcoxon tests were conducted for the research questions RQ1 to RQ7.
As seen in Table 4.4, none of the questions presented statistically significant difference in prefer-
ence between the mock-ups when tested using one-way ANOVA. This is confirmed in Table 4.5,
where the Wilcoxon tests similarly report no statistically significant difference. Therefore, there

is no significant difference in preference between the three mock-ups.

Beyond this, there is a slight leaning in the selection of RQ2.7 (user made content) for M2 and M3
over M1 (Z =—1.414). RQ2.6 (assets from scratch) is chosen more for M1 than M3 (Z = —1.414),
and slightly more than M2 (Z = —1.000). RQ2.4 (variations of complete assets) is chosen more
for M2 than M3 (Z =1.1414) and slightly more than M1 (Z = —1.000). Overall these ANOVA and
Wilcoxon Test results suggest a slight separation between stand-alone (M1) and integrated (M2
and M3) mock-ups.

Further ANOVA and Wilcoxon tests were conducted between the integrated and stand-alone
solutions for RQ1 (usefulness) and RQ5 (preferred as stand-alone or integrated), shown in table
4.6. These also present non significant differences, though ther is a slightly higher mean RQ1
score for integrated mock-ups, and a leaning towards preference for integrated solutions overall

(RQ5 j=78).
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TABLE 4.4: One-way ANOVA significance scores for RQ1 to RQ7, alongside
means and standard deviations per mock-up.
Research Question Ml M2 M3 Overall
Mean SD |Mean SD |Mean SD |Mean SD  Sig
RQ1: (0-4) 250 548 |28 753 |28 753|272 669 637
RQ21(0-1) 50 548 | .83 408 | .67 516 | .67 485 521
RQ22(0-1) 67 516 | .83 408 |67 516 | .72 461 791
RQ23(0-1) 50 548 |67 516 |67 516 | .61 502 821
RQ2: RQ24(0-1) .17 408 |33 516 |00 000 |.17 38 @ 342
RQ25(0-1) 00  .000 |.17 408 |.00 000 |.06 236 391
RQ26(0-1) 33 516 |.17 408 |00 000 |.17 @ 383 @ 342
RQ27(0-1) 17 408 |50 548 |50 548 |39 502 439
RQ3: (0-1) 17 408 |17 408 |.17 408 |.17 383 1000
RQ4: (0-6) 167 816 |167 816 |167 516 |167 686  1.000
RQ5: (0-1) 67 516 | .83 408 |83 408 |78 428 761
RQ6: (0-4) 350 1378 [350 548 |350 1049 |350 .985  1.000
RQ7: (0-100) 80.00 12.649 | 7875 10694 | 7750 18303 | 7875 13429 .99

TABLE 4.5: Z-values and significance (P-values) for Wilcoxon Signed Ranks Test
between each mock-up, for each question.

M2 ->M1 M3 ->M1 M3 ->M2
4 Sig. \ V4 Sig. \ 4 Sig.

RQ1 -1414 157 157 | 000 1.00
RQ21 -1.000 317 |.000 100 |-1.00 317
RQ22 -1000 317 |.000 100 |-1.000 317
RQ23 -1.000 317 |.000 -1.00 | .317  1.00
Rop RQ24 1000 317 |-100 317 | L1414 157
RQ25 -1000 317 |.000 100 |-1.000 .317
RQ26 -1000 317 |-1414 157 |-1.00 317
RQ27 -1414 157 |-1414 157 | 000  1.00
Total -1.342 180 |-1.00 317 |-816 414
RQ3 000 1000 | .000 100 |.000  1.00
RQ4 000  1.000 | .000 100 |.000 100
RQ5 -1.000 317 |-1.000 317 |.000  1.00
RQ6 000 1.000 | .000  1.00 |.000  1.00
RQ7 -406 684 |-184 854 | 713 713

Demographic impact

14 of the 16 participants were male, and 13 participants were under the age of 25. Additionally,

12 participants had under 1 year of experience in professional game development, while 2 had

between 1 and 4 years, and 2 had between 5 and 9 years. 10 participants typically work solo,

and 6 participants typically work in a team size of 11-25. The most common typical roles of
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TABLE 4.6: One-way ANOVA and Wilcoxon Signed Ranks tests comparing
stand-alone mock-up results (M1) to integrated mock-up results (M2 & M3), for
relevant research questions.

One-way ANOVA Wilcoxon Signed Ranks
Research Question M1 M2 & M3 Overall M2 & M3 ->M1
Mean SD ‘ Mean SD ‘ Mean SD  Sig. ‘ 4 Sig.
RQ1 250 548 | 283 718 | 272 669 334 | -1414 157
RQ5 67 516 | .83 389 | .78 428 453 | -1.000 317

participants were artist and designer (50%), followed by technical artist and programmer ( 33%).
To examine impact, multiple regression with a confidence interval of 95.0% was conducted for
each single choice scale question (RQ1, RQ4, RQ6 and RQ7), against participant demographic
variables. Table 4.7 presents the results of the multiple regression for single-choice scale questions,
showing their correlation with the four single-choice demographic questions. As RQ3 and RQ5
are binary questions, Independent-Samples T-tests were instead conducted, comparing demo-
graphic answers between two groups, where the the groups are defined by the binary answer to
the option (chosen or not chosen). This approach was also taken with RQ2, where multiple choice

answers were binary, due to being tick-boxes. These results are presented in table 4.8.

RQ2.5 "Creating assets from existing (complete) designs" (shown in grey table 4.8), was only
selected once out of all samples. As a result there was not enough variance to report a T-test
result. The RQ3 gender T-test could not be completed due to standard deviations of both groups
being zero, this is also shown in grey.

The ANOVA on the linear regressions of RQ1 (usefulness), RQ6 (importance of configurability)
and RQ7 (SUS results) in table 4.7, are statistically significant (P < 0.05). Of these, RQ7 has a
strong correlation with the four tested demographic questions (Adjusted RSquare =.671), while
RQ1 (AdjustedRSquare = 305) and RQ6 (AdjustedRSquare = .428) show low correlation. For RQ7
age, years of professional experience and size of team have high negative correlations. That is,
the older and more experienced participants, and those that work in larger teams, gave lower
SUS ratings. A moderate negative correlation for age, years of experience and size of team is also
observed in results for RQ6 and RQ1. Additionally there is an insignificant and low degree of
correlation between gender and results of RQ6 and RQ1.

T-test results in table 4.8 show similar levels of impact for the four demographic categories. Gen-
der’s impact is insignificant in all cases, while years of professional experience and size of team are
significant for RQ2.1, RQ2.2 and RQ3. Positive T values for RQ2.1 and RQ2.2 show that those with
more professional experience and larger team sizes choose these options (generating inspiration,
and exploring ideas) more frequently. More years of professional experience (P =.014,T = —2.806)
and a larger size of team (P =.000,T = —7.483) both point toward the choice of volume over quality,
though a near unanimous selection of volume over quality was made by participants.

While years of professional experience and age are intrinsically linked, they are not found to have
equivalent impact in most cases. This suggests that the two are decoupled. Age does not have

a significant impact in any of the T-test results, while years of professional experience does. The
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TABLE 4.7: Linear regression results for RQ1, RQ4, RQ6 and RQ7 (all single-choice

questions scale), reporting Pearson correlation [71], R Square [74], adjusted R

Square and ANOVA p-value for each single-choice demographic question. (*)
Experience stands for Years of professional experience

Research Question Correlation Model Summary ANOVA
Correlation Sig. | RSquare Adjusted R Square | Sig.
Age -.497 018
Gender -267 142
RQ1 Experience* -.615 .003 387 305 026
Size of team  -.604 .004
Age -.447 031
Gender -224 186
RQ4 Experience* -.546 .010 302 209 067
Size of team  -.530 012
Age -701 001
Gender 078 379
RQ6 Experience* -.646 .002 495 428 006
Size of team -.492 019
Age -.614 .003
Gender -443 .033
RQ7 Experience* -.815 .000 710 671 000
Size of team -.835 .000

level of experience and size of team both correlate with lower ratings (RQ1/RQ7) and interest in
using the tools for generating inspiration and exploring ideas (RQ2.1/RQ2.2). This is corroborated
by the near unanimous selection of volume over quality. It can be concluded that experienced
users prefer graphical asset generation in early ideation/inspiration stages of creation. This is
also reflected in the choices overall for RQ2.1 (= .67), and RQ2.2 (1 =.72).

Interview Results

4 out of the 16 participants agreed to complete a follow-up interview. During these interviews,
the participants generally confirmed the results of the questionnaires. There is no clear preference
between the three mock-ups but they emphasised compatibility with their existing tools. One
participant mentioned that each mock-up was fine, as long as they didn’t need a converter or
third tool to get the assets into their game. Most participants confirmed that they would prefer
to use the tool for ideation and therefore prefer speed and volume over quality.

Overall, the participants were very supportive and excited about content generation tools and
use of Al in their pipelines. The main concern they had was regarding the ease of use and prior
knowledge of Al or PCG needed to be able to use the tool effectively. for example a participant
pointed that whilst they would not necessarily expect tools such as DALL-E and Mid-Journey
to be integral part of game design and development but did like the idea of a middle ground so
that they can have control but also use the tool relatively easily. There was not a clear preference

towards the type of assets they would prefer to generate with such a tool. Most participants



90 Chapter 4. Game Developer and Designer UX preferences

mentioned a wide variety of asset types, based on their current project, but also highlighted that
any one type would also be useful. Furthermore, with regard to the format used to store these
assets, participants expressed that as long as the assets were in a standard, readable format for
their game engine of choice, there were no concerns.

With regard to usability, one participant noted that they found it frustrating that they could not
undo and redo their changes within the Unity integrated tools. They stated that this was a feature
that they expected, considering that the tool appeared to be part of the engine interface that they

were familiar with.

Findings

For H1, given answers to RQ5, users prefer an integrated solution over a stand-alone implemen-
tation, with a mean value of .78 (- = .428), where 1 represents an “integrated solution’. This is
confirmed by RQ1, in which the integrated solutions scored higher. With regards to H2, results
of RQ1 and RQ6.1 suggest no significant preference between window and inspector integrated
interfaces. H4 is confirmed with a preference for volume over quality across the board, with a
mean value of .17 (o = .383), where 0 represents ‘'volume over quality’. Regarding H5 (RQ4), a
mean selection of 1.67 (¢ = .686) shows a preference for a maximum generation time between
1 and 10 minutes for a single asset, rejecting this hypothesis. For H6, a mean score of 3.5 (0 =
985) on a 5-point Likert scale, RQ6, suggests a moderate preference for the ability to configure or
modify the tool. Answers to RQ7 present an overall mean SUS score of 78.75 (¢ = 13.429), therefore
confirming H7. The individual mean SUS scores for M1, M2 and M3 were 80.00 (¢ = 12.649), 78.75
(0 =10.694), and 77.50 (¢ = 18.303) respectively. Following the adjective rating system provided by
Bangor et al. [21], the mean overall score can be classed as "Good" (78.75). Section 4.7 will discuss
these findings and provide recommendations, as well as suggestions for future research.

4.7 Concluding discussion

This study has found that there is a preference for all Uls to be integrated into game-engines/editors,
and for the system to generate larger amounts of lower quality assets as opposed to smaller
amounts of higher quality assets. This is also corroborated by a preference for using such a system
in early stages of development to generate inspiration, explore ideas and create placeholders. The
ability to configure or modify such a tool is also considered important. The maximum acceptable
time scale for generating a single asset is between 1 and 10 minutes. This is not surprising, as
existing tools such as Didimo [188] can take 5-10 minutes to generate assets, especially at higher
qualities. The other findings suggest that a much faster generation speed would be ideal, in
order to provide larger volumes of assets for inspiration and ideation. There is however no
statistically significant difference in preference between a stand-alone multi-choice based UI,
integrated graph-view Ul and integrated inspector UI for generating graphical assets.

Overall, results are in alignment with the findings of Walton et al. [487] and Kasurinen et al.
[215]. Users were interested in using the tool for inspiration and prototyping, and favored inte-
gration, and thus compatibility with their chosen game engine. Additionally, when observing
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TABLE 4.8: Independent-Samples T Test results for RQ2, RQ3 and RQ5 (all
binary-choice questions), reporting t-statistic (t) and p-value (sig.). (*) Experience
stands for Years of professional experience

Research Question T Sig.
Age 2236 076
RO2.1 Gender 1103 .309

Experience* 3.638 .012
Size of team 4.536 .000

Age 2449 070
Gender 1.258 .266
RQ22 Experience* 5.932  .002
Size of team 7.303 .000
Age -1.936 .082
Gender 947 368
RQ23 Experience* -1.049 310
Size of team -323 751
Age 1.871 .082
Gender -8l6 426
RQ24 Experience* 392 700
Size of team .000 1.000
RQ25
Age 1.871 .082
Gender -1.765 210
RQ26 Experience* -392 700
Size of team -1.333 .201
Age 1936 .082
Gender -947 368
RQ27 Experience* 1.049 310
Size of team  .323 751
Age 1.871 .082
Gender
RQ3 Experience* -2.806 .014
Size of team -7.483 .000
Age 1441 235
RO5 Gender -1.883 .082

Experience* 1.068 353
Size of team .770 453
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FIGURE 4.5: Graphical asset creation within the game production framework.

the characteristics of the three preferred usages according to the characteristics shown in figure
4.1, in general, users prefer generators for work in an offline context, with an expectation for lower
quality and to augment, rather than replace an existing process in their pipeline.

Figure 4.5 presents the flow of graphical asset data in both stand-alone and integrated scenarios.
As shown, creative tools can either be integrated within the main development environment
(game engine) or implemented externally as stand-alone programs. Users interact with these
tools via user-interfaces, and in the case of integrated tools, the implementation itself can rely
on the native features of the environment through application programming interfaces (API).
Stand-alone external generative tools, as with other creation tools such as Photoshop [7], Blender
[32] and Visual Studio [322] instead rely on outputting artefacts in standardised formats that most
game engines support, such as FBX, OBJ, PNG and JPEG. Integrated tools may implement GAG
technique interactions and processes using game engine UI APIs and native engine features via
back end APIs respectively.

Figure 4.6 presents guidelines resulting from the findings of this user study, spanning both
the user intent as well as the implementation and integration of graphical asset generators in
design/development pipelines. Table 4.9 presents the mapping of these guidelines to the research
questions.

The first consideration is user intent with regard to the usage application, what technique inter-
action and process is used and what the desired outcome is. When considering user intent, based
on the findings, there are three main considerations:
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FIGURE 4.6: Guidelines resulting from research findings.

e Cater to early pipeline usage. Users favour early pipeline generation for purposes of gener-

ating inspiration, exploring ideas, and creating placeholders, as presented in figure 4.6.
Furthermore, the system should aim for variety and volume of outputs rather than quality.
This is because users prefer not to use the results in a finished product directly, but would

rather use them as ideas to build on and refine.

* Augment a stage of design and development. The preferred use cases are all supportive of

a human-driven design and development process, and do not directly replace the final
creation of assets. Rather, they give designers and developers ideas to expand on, break
creative block or help to streamline more mundane or inconsequential tasks. This entails

the majority of applications, excluding player made content as shown in figure 4.6.

Facilitate tool configurability. Game design and development is a creative endeavor and
thus, new, unique forms of asset are part and parcel. A graphical asset generator that
has a pre-defined style or rigid way of working becomes a tool with limited applicability.
Configurability should be considered, regardless of the chosen application.

Once intent is established, and the GAG technique and approach is determined, the tool must

be implemented and integrated within the game design and development pipeline. Here there
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are four main considerations:

4.8

Match the design language of the environment. The less the user has to learn on top of what
they are accustomed to within their pipeline, the easier it is to incorporate the tool. If the
interface of the tool provides functionality that other native features of the environment
have, such as the ability to undo and redo changes, frustration or confusion can be avoided.
This can be achieved through appropriate use of front-end UI APIs within the host software,
as illustrated in figure 4.5.

Use common and expected data formats. To smoothly integrate the tool, whether it is integrated
or stand-alone, the output artefacts must be in a format that the development environment
can utilise. Typically these are ubiquitous data formats, such as OBJ or common proprietary
formats that are supported due to popularity, such as Autodesk FBX. This is particularly
important in the transfer of artefacts from and between external generative tools, creation
tools and the users development environment of choice, as shown in figure 4.5.

Develop a suitable interface for the underlying interactions. Design an interface to best interact
with the features of the tool, assuming that it provides good usability, there is no preference
between step by step options, graph view windows and inspector editors.

Integrate with application programming interfaces (APIs). The tool should be integrated as a part
of an existing popular engine or editor, or at the very least should have full compatibility
with said application. Technique interactions and processes must interact with each other
while appropriately utilising the host game engine’s front-end and back-end APIs, as shown

in figure 4.5.

TABLE 4.9: Mapping of guidelines to research questions.
Recommendations Research Questions
Facilitate tool configurability RQ6
Cater to early pipeline usage RQ2, RQ3, RQ4
Augment a stage of design and development RQ2
Match the design language of the environment RQ8
Use common and expected data formats RQ8, RQ9

Develop a suitable interface for the underlying interactions RQ1, RQ7

Integrate with application programming interfaces (APIs)  RQ5, RQ8

Chapter summary

In this chapter a user study was conducted to examine the user preferences and needs regarding

graphical asset generation tools in game production. Three mock up UI designs were developed

representing a stand-alone tool, integrated window tool and integrated inspector tool. These

mock up Uls were presented to game designers and developers in a mixed methods experiment
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in which a questionnaire was used to collect quantitative data with repeated measures, and semi-
structured interviews were conducted to obtain nuance through qualitative analysis. Resulting
from these findings, a set of guidelines for graphical asset generation tools were formulated.
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Chapter 5: Swordgen-
A proof-of-concept protototype

In the previous chapter, an initial user study was conducted in order to obtain insights into
the preferences of game designers and developers with regard to graphical asset generators as
tools. For this purpose, three non-functional mock-ups were implemented and tested. It was
found that in general, participants preferred to have an integrated solution, and to use such
tools at early stages in their pipeline, such as creating placeholders and generating inspiration.
Participants also expressed a preference for volume over quality, in line with the latter point, and
compatibility with their existing tools, which is consistent with the preference for integration.
These observations are useful, however, without testing a functional system, many nuances and
details regarding the moment to moment use and satisfaction with such software cannot be
gauged. In this chapter, a proof-of-concept prototype tool was developed, incorporating four
different generative techniques.

5.1 Introduction

Leading on from the findings in chapter 4, it is clear that the lack in functionality was a limiting fac-
tor on the perception of mock-ups. To add to these findings and obtain a deeper understanding of
the potential usage of graphical asset generators, user preference must be observed regarding func-
tional implementations. In this chapter a proof-of-concept prototype has been developed with the
goal of representing a range of generative techniques. This prototype was tested with game design-
ers and developers to examine technique preference and observe the relationship between usage
and technique choice. Results of this testing confirm a connection between the user pipeline choice

and preferred technique, as well as an affinity between technique and assessment criteria.

5.2 Proof-of-concept prototype

The proof-of-concept generator was designed to cover representative techniques from all four
idea fidelity groupings under a single implementation. This has been achieved using a Variational
Autoencoder (VAE) architecture, combined with a procedural shape system. As a result, the
final system allows the user to guide and iterate designs via procedural modelling parameters,
reconstruct designs based on silhouette images, interpolate between two images, and generate

random designs, all via a shared UL



5.2. Proof-of-concept prototype 97

In the development of this prototype, two key elements had to be considered. The first being the
generative method itself, informed by the literature and framework in chapter 2, and the second
being the Ul and integration, informed by the guidelines in chapter 4. The UI and integration
needed to support the features of the generative method, ensuring it can take inputs and provide
outputs seamlessly. Additionally, the generative method needed to offer the necessary access
while being capable of running in the background alongside all the features of the host game
engine. Rapid action development (RAD) is a methodology that emphasizes quick development
and iteration of prototypes, allowing for continuous refinement [27, 9]. As such, a RAD approach
was applied, to ensure that both elements could be iterated in support of each other.

To achieve this, a common game related 3D asset type was selected as a target for the generative
system to output. Here, 3D swords were chosen due to their ubiquity in many genres of video
game, e.g. role-playing, fighting and strategy in historical and fantasy settings. In addition, the
main characteristics of a sword’s form can be easily represented in two dimensions, making them
a good candidate for silhouette representations and single view reconstruction. This would allow
for more efficient training and a more compact dataset in terms of file size. Requiring a single
view per sample would also make obtaining training data easier, as any standalone image of a
sword would be compatible.

As such, the VAE is trained on a dataset of 13,728 front profile silhouette images of swords. This
dataset was formed of 513 images sourced from the internet, obtained from the Unity Asset store,
or generated via StableDiffusion, then expanded upon by variation. The training process made use
of differentiable rendering to allow the model to backpropagate from the final mesh result and thus
learn to output the correct shape parameters given the input image. The VAE was implemented
in PyTorch. Initially, the Unity MLAGENTS LLAPI was to be used as an interface between the
training code in python, and the Unity implementation. The result however was very slow and
lacked the possibility of differentiation. To achieve efficient training, a one-to-one implementation
of the procedural modelling algorithm was instead created in python. As not all parameters of the
procedural modelling system were used, and a predetermined number of nodes were used (12),

it was possible to create a version of the algorithm that would support GPU processing.

While this system is trained on sword data, the same framework may be applicable to other forms
of graphical asset, and potentially trained on general prop shapes, due to the flexibility of the
procedural modelling algorithm. Though the effectiveness would be dependent on degree to
which the shape can be represented from a single-view perspective.
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5.2.1 Procedural Shape System

The procedural shape system was designed as a method for making generic sword shapes out
of simple constituent parts. In this system, each design consists of individual mesh nodes that
are chained together to form a complete mesh. These nodes each have their own parameters that
define their form. There are two types of node, segments, and branching segments. Segments
can be connected to a maximum of two other nodes, whereas branching segments can have a
maximum of 6 connections.

Segments

In 3D mesh modelling, consistent topology is important for producing clean looking shapes. This
is reliant on having uniform, even length edge loops across the model. An edge loop is a sequence
of vertices, connected by edges, with the last vertex connecting to the first vertex. Edge loops
define the contour of a shape, allowing for consistent deformation and subdivision [253].

As presented in figure 5.2, segments are made up of edge loops that run from the bottom of
the shape to the top. Each loop has the same number of vertices, equal to the n-th value in
the sequence (4, 8, 16, 32, 64, 128,...) where n = subdivisions (Zi)fin 4o As each segment can
have varying parameters, the end loops are not likely to line up with those of other segments.
Therefore, when segments are joined together, the last loop from the first segment is duplicated

and connected to the new segment.

Tapering is achieved by linear interpolation between the center loop and top outer loop (forward
taper), or center loop and bottom outer loop (backward taper). In which, each loop’s relative
position is converted to a t-value, and this t-value is used to produce a scale amount that is then
applied to the loop.
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FIGURE 5.2: Representation of segment geometry parameters along the XY plane.
Loops Ly...L7 are each formed of vertices Vj... V4 as well as an equal number of
vertices for three other faces.

Rounding is applied by linear interpolation of the distance (v;) between the center of the loop
(c) and the vertex (v), and the circumradius (d), along the direction, di, where di = (615). This
is shown in figure 5.3.
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Size:Z

l Size: X |

FIGURE 5.3: Top-down representation of segment geometry in regard to the
rounding parameter. Vertices Vj...V; represent points along one face of the shape,
which are interpolated along di between initial position V;, and V,+Vd.

Curvature is achieved via quadratic bézier curve: p0(1 — t)? + p1(2(t(1 —t))) + p2t?, where
0<t<1, p0=origin, pl = curveof fset, p2 =tipof fset. The center of each loop is positioned by
sampling the bézier curve using the loop’s associated t-value.

Mesh Joining

A depth first traversal over the list of segments adds each segment’s vertices, triangles and UVs
to a final mesh. At each point in the stack, a transformation matrix is generated by combining
the stored transform matrix of each element in the rest of the stack. This is then applied to the
current segment’s vertices, causing them to be offset at the correct position and rotation relative
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to the rest of the shape. In addition, leaf segments get tagged so that end cap geometry can be
added to enclose the shape.

A key limitation of this approach is the inability to create cyclic connections within the node graph.
Each segment in the graph is defined by its own set of parameters, which independently define
its geometry. As a result, aligning the individual segments to form cyclical shapes would require
overriding or violating these individual parameters, while not overriding the parameters would
result in gaps at connection points between segments. This limitation restricts the algorithm’s
applicability for a broad range of generic shapes, though it suffices for typical sword shapes.

High level parameters

The subdivision value is applied to all segments generated. This ensures that all segments share
the same number of vertices in each loop, allowing for clean geometry when joining meshes. This
also provides a very easy control for vertex density and mesh detail without altering the shape
itself. This way the designer can adjust the value to achieve a balance between vertex count and
mesh detail. Furthermore this feature may be used for producing different levels of detail (LoD)
of the same shape, which is a common optimisation technique.

Following the mesh generation algorithm is a post-processing stage in which faceted shading
can be applied, and mesh optimisation is performed. The mesh generation algorithm produces
meshes with shared vertices. This means that a single vertex can be included in up to eight
triangles, this makes manipulation of the shape much more efficient at the cost of having smoothed
normals. Each vertex has a related normal vector which is the average direction of all triangles
the vertex belongs to. To allow shapes to have sharp edges when rendered, additional vertices
must be added to allow for separate normal vectors on each triangle. To achieve this a faceting
algorithm has been implemented. This algorithm iterates over the triangle array, duplicating a
vertex each time that it is seen, and updating the indices of the triangle array accordingly. This
way, each triangle gets unique vertices, and thus has its own normal.

Algorithm 4 Faceting Algorithm, editing the vertices (verts), texture space coordinates (uv) and
triangles (tris) of the mesh data.

1: function FACET(verts, uv, tris, bounds)
2 initialize seen < {}

3 originalCount <— COUNT(tris)

4 for i <0 to originalCount-1 do

5: if CONTAINS(seen, tris[i]) then
6
7
8
9

ADD(verts, verts[tris[i]])
ADD(uv, uv[tris[i]])
tris[i] +— COUNT(verts) - 1
ADD(seen, tris[i])
10: return verts, uv, tris

Mesh optimisation accounts for additional loose vertices or redundant triangles that may have
occurred as a result of the previous steps. This is achieved by iterating over the vertex and triangle
arrays, removing any duplicate triangles and vertices that do not belong to a triangle.
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5.2.2 Variational Autoencoder Architecture

The goal of this prototype implementation is to test as many techniques as possible within the
same tool. VAEs can be used for reconstruction, randomisation and interpolation tasks, due to
their architecture. This section will introduce the architecture design of the VAE.

Given the design of the procedural shape system, the number of segments to produce outputs
for had to be defined. A total of 12 segments was chosen to provide a balance between shape
variation and model complexity. Alternative segment counts between 4 and 20 were tested. It was
observed that with fewer than 12 segments the model struggled to match the input image shapes,
while with more than 12 segments, the model had a tendency to underutilise some segments
by assigning small size values. It was decided that 12 segments would provide enough control
for shape variation, while not introducing too much complexity. An additional benefit of this
limitation was that, rather than generating a new set of triangles for each output, a pre-defined
set of triangles could be used. This is because the output contains the exact same number and
order of vertices each time, when the subdivision is constant.

As the goal of the model was to produce general shapes within the scope of a single silhouette,
not all parameters were necessary, and would add to the complexity and parameter count of the
model. Of the procedural modelling system’s parameters, 7 were chosen for the VAE to train on,
based on their affect on the silhouette. These were size (x, y and z), taper top, taper bottom and
the curve amount (x and z). A value range also had to be defined, which the outputs of the VAE
were scaled to. These were chosen in order to keep results in frame of the differentiable rendering
camera. In the final integration, these were once again scaled to an appropriate amount for Unity,
with the same ratios as before.

The network architecture consists of three parts: the encoder, the bottleneck and the decoder. The
encoder consists of a typical CNN structure, involving four repeating sets of convolution and
batch normalisation layers, followed by a final convolution layer. The convolved data is then
flattened and passed through a dropout layer, then three linear layers. Input data was first scaled
from 128 x 128 pixels to 64 x 64 pixels to reduce model complexity and improve training speed.
Convolutional layer output channel counts were in the following order: conv1l = 32, conv2 = 256,
conv3 = 256, conv4 = 512, conv5 = 512. As a result of the four batch normalisation layers, the filter
sizes go from 64 x 64 down to 2 x 2. Leaky ReLu activations were chosen to improve training
efficiency by avoiding issues with ‘dying ReLu’ and vanishing gradients [95].

The bottleneck passes the output of the encoder through two linear layers to obtain the mean ()
and log variance each. These linear layers (four in total) have a size of 512, matching the encoder
output. The reparameterization trick, proposed by [232] is then applied to these two values, the
output of which is passed to the decoder.

The decoder first progressively increases the dimensions of the input via two linear layers, then
passes the result into three separate identical modules, each of which focuses on different sets of
shape parameter, these are: the size decoder, bezier decoder, and taper decoder. Outputs of these
modules are stacked together then flattened, such that the values are interleaved in the order
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that the procedural modelling system expects i.e. in a node-wise manner. The Tanh activation
function was used for the size and bezier decoder sub-modules so that values were centered
around 0 and bound within negative and positive 1. This was necessary for ease of computation
in the procedural modelling algorithm. Similarly, the Sigmoid activation function was used for
the taper sub-module, as the taper parameter is bound between 0 and 1. Here, the unbounded
positive outputs of Leaky ReLU, would not map appropriately.

An alternative decoder was used for phase 1 of training. This decoder directly mirrors the encoder,
progressively expanding the dimensionality via transposed convolutional layers until the shape
matches the input. The purpose of this decoder was to reconstruct the input images the same
way as a typical convolutional autoencoder, such that the encoder could learn to extract features
of input images without the asset form conversion that the main architecture imposes.

When integrated into Unity, the interpolation and randomisation functionalities will make use
of the separation between the encoder, bottleneck and decoder. When two images are passed
into the encoder for interpolation, the two outputs are interpolated to form a single tensor before
being passed into the decoder. Randomisation functionality is achieved by producing a new
tensor with values drawn from a normal distribution with a mean of y =3 and standard deviation
of o = 3. These values were obtained through tuning and observation of output value ranges
from the encoder. The image reconstruction functionality, however utilises all three sections in

sequence.
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FIGURE 5.4: The final encoder architecture, consisting of downsampling

convolutional layers, linear (fully-connected) layers, Leaky RELU (LR), and Batch

normalisation (BatchNorm). After convolutional feature extraction, the data

is reshaped into a single dimension for the linear layers. Filter dimensions are
shown above the layers.
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Layer (type) Output Shape Parameter Count
Conv2d-1 [B,32,32,32] 832
BatchNorm2d-2 [B,32,32,32] 64
Conv2d-3 [B, 256,16,16] 73,984
BatchNorm2d-4 [B, 256, 16,16] 512
Conv2d-5 [B, 512, 8, §] 590,080
BatchNorm2d-6 [B, 512, 8, 8] 512
Conv2d-7 [B, 512, 4, 4] 1,180,160
BatchNorm2d-8 [B, 512, 4, 4] 1,024
Conv2d-9 [B, 512, 2, 2] 2,359,808
Dropout-10 [B, 2048] 0
Linear-11 [B, 2048] 4,196,352
Linear-12 [B, 1024] 2,098,176
Linear-13 [B, 512] 524,800

TABLE 5.1: The final encoder summary. B represents batch size.

e )
Linear]—[ R HLinear

. J

( \
Linear]—[ R J—[Linear

(. J

FIGURE 5.5: The final bottleneck architecture, consisting of linear (fully-connected)
layers and RELU (R). Mean (y) and standard deviation (0) are extracted the
encoded features, then added together.
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FIGURE 5.6: The final decoder architecture, consisting of linear (fully-connected)
layers and RELU (R). Size and bezier decoding modules output via a Tanh function,
and the taper decoding module outputs via a Sigmoid function. Outputs are un-
squeezed (U) [370] such that they can be concatenated (C) to form a collection of seg-
ments, where the corresponding size, bezier and taper parameters are sequential.
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Layer (type) Output Shape Parameter Count
Linear-1 [B, 1,1024] 525,312
Linear-2 [B, 1, 2048] 2,099,200
Linear-3 [B, 1,1024] 2,098,176
Linear-4 [B, 1, 1024] 1,049,600
Linear-5 [B,1,512] 524,800
Linear-6 [B, 1, 24] 12,312
SizeDecoder-7 [B,12,2] 0
Linear-8 [B, 1, 1024] 2,098,176
Linear-9 [B, 1, 1024] 1,049,600
Linear-10 [B, 1,512] 524,800
Linear-11 [B, 1, 24] 12,312
BezierDecoder-12  [B, 12, 2] 0
Linear-13 [B, 1, 1024] 2,098,176
Linear-14 [B, 1,1024] 1,049,600
Linear-15 [B, 1,512] 524,800
Linear-16 [B, 1,24] 12,312
TaperDecoder-17  [B, 12, 2] 0

TABLE 5.2: The final decoder summary. B represents batch size.
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5.2.3 Supporting training

For a deep-learning model to be trained via backpropagation, the full process from input to
output must be differentiable. As the output of the VAE was a set of parameters that had to
be first converted to a mesh using the procedural modelling algorithm, then rendered to allow
for pixelwise comparison to the input, both the procedural modelling and rendering had to be
backpropagatable. This presented two main challenges, differentiable mesh generation, and
differentiable rendering.

Differentiable generation was achieved by adapting the procedural shape algorithm from C# to
a Python GPU implementation. This allowed the algorithm to be made differentiable via PyTorch
autograd, with the added benefit of faster computation using CUDA. For this, the number of
parameters was limited to those provided by the final layer of the VAE.

Differentiable rendering was achieved via the PyTorch3D renderer implementation. For this the
Soft Silhoutte Shader was used with a sigma (edge sharpness) and gamma (opacity fall-off) of 1e-5.
The Rasterization settings had an image size to match the input resolution (128px), a blur radius of
1le-5 and backface culling was disabled. An orthographic camera was used and positioned such
that the 3D origin was positioned at the bottom pixel of the rendered image, therefore causing

renders to be consistent with the framing of the input images.

524 Method for game asset dataset creation

While generalised datasets like ShapeNet [52] enable deep-learning generative systems to learn
generic shape reconstruction, their performance varies when tasked with reconstructing asset
classes not seen in the training dataset. Games often feature diverse styles and settings, resulting
in numerous possible shape classes. Game creators may need generative systems tailored to
specific asset types, such as swords, aircraft, or barrels. Additionally, to maintain stylistic cohe-
sion, creators might require non-generic assets that align with their established style. Given this
specificity, bespoke datasets are often necessary to achieve effective generative solutions.

Addressing this with a focus on developing shape datasets for unsupervised learning, the fol-
lowing three step method is introduced. Consisting of: Building a data foundation, Preprocessing,

and Augmentation.

Building a data foundation

In a typical game design and development pipeline, ideas are first explored via concept art and
visual or photographic reference. In the context of game tooling, it could save time to leverage
this data, which is already used to inform the creation of assets, as a basis for developing training
datasets. Here, stylistically cohesive and relevant data can be created or otherwise sourced to
form a small initial dataset. This may also be further supplemented by other GAG generated

content.
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Preprocessing

In order to use this data in training deep-learning methods, it must first be standardised and pre-
processed to ensure smooth training. To begin with, it is necessary to remove un-needed data, such
as colour and texture in the case of shape focused generation, as well as background removal. Fur-
thermore, the data should be standardised to ensure consistency across the dataset. This includes
scaling images to the same size and resolution and centering shapes within the data frame.

Augmentation

As deep-learning methods require a large amount of data to avoid overfitting during training, it is
necessary to expand the dataset through augmentation. Common methods of data augmentation
include cropping, rotating and applying filters to the source data. However, these methods do not
provide alternate variations of the selected shapes, but rather account for variation in the quality
of input. Subtle automated manipulation of the source shapes can instead introduce conceptual
variation into the dataset. For example, raster images can be converted into vector graphics, and
these vectors can be moved to create variation. Alternatively, source designs can be combined
to create new variations through existing generative techniques [99]. Furthermore, the degree
of manipulation as well as constraints can be defined to limit the amount of deviation from the
initial source material. This can be achieved by converting the initial data into a manipulable

format such as vector graphics.

5.2.5 The sword dataset

To train the model, a large dataset of sword silhouettes including a wide variety of different
shapes and styles was required. As no publicly accessible dataset of this type existed, a new

dataset was created for this purpose.

In accordance with the above method, an initial set of concept designs and assets were collected
to form the basis of the dataset. Various sources were accessed including the Unity Asset store
[461] and game wikis for Diablo 2 [510], Diablo 3 [511] and Final Fantasy IX [512]. Additionally,
CCO licensed images were accessed from Smithsonian open access [189] and Freelmages [117].
This dataset was supplemented further with a set of sword images generated through Stable
Diffusion [390]. The number of images sourced from each location are presented in table 5.3. In
total there were 513 images obtained from the above mentioned sources.
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Source Count | Total count
Web CCO 122
Unity Asset Store 165
Stable Diffusion 60 513
Diablo 2 Wiki 21
Diablo 3 Wiki 60
Final Fantasy IX Wiki 85

TABLE 5.3: The number of source images obtained from each source to form the

dataset.

To pre-process the dataset, source images first had their backgrounds removed via Background

Remover Al [334], which uses a pre-trained u2net model to identify and remove image back-

grounds. Following this, the output images were reduced to their alpha channel to produce

greyscale silhouettes.

To facilitate augmentation of data, the image silhouettes were then loaded into Photoshop and

batch processed using the “actions’ system. First, colour range selection is used to select the shape,

the shape is then converted to a path, which is then converted into a vector shape. The original

layer is then deleted and the project is saved as a .psd” file. Photoshop is then used to bulk load the

".psd’ files as layers, then export each layer as an SVG file for the data augmentation stage.

Step

Details

1. Color Range
Fuzziness
Minimum
Maximum

2. Make Path

Form
Tolerance
3. Make Fill Layer
Using
Type
Slot Color
Gray

4. Select Layer "Background"

5. Delete Current Layer

6. Save

125
Grayscale: 50
Grayscale: 2.81

Selection
2 pixels

Fill Layer
Solid Color

Grayscale
100

TABLE 5.4: The Photoshop actions for preprocessing.

To augment the SVG data, Python libraries svgpathtools and cairosug were used to create variations

of the vector silhouettes. This was achieved by randomly shifting the positions of 10% of the
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vertices in each shape, with the displacement for each affected vertex drawn from a uniform
distribution ranging between -20 and +20 pixels along both the x and y axes. 30 variations were
created for each vector shape via this method. Control points could have also been randomised
via this approach, however this caused the shapes to deviate too far from the original designs,
so this was not done. The resulting dataset of 15,390 images was further refined by examining
the shape of each output and removing any results that had inverted shapes, i.e. poor topology
resulting in folds or misalignment. Furthermore, the final images were rotated so that they
aligned with the vertical axis, i.e. pointing from bottom-to-top or top-to-bottom. This ensured that
training data could be matched to the output of the trained model, as output segments would be
constructed from the bottom of the image frame, upwards. Variation in top-bottom, bottom-top
directions was included as both forms are equally achievable given the rendering constraints, and
would support inputs from either orientation. This can be observed in Figure 5.8, in which sample
100 is oriented from top-bottom. The final dataset image count after this process was 13,728.

5.2.6 Training

Throughout development, the VAE architecture and training procedure took multiple iterations to
obtain the final model. The training process involved two phases. In the first phase, the encoder
was paired with a convolutional decoder and the model was trained to match input images via
pixel-wise MSE loss. In the second phase the decoder was replaced with a decoder that output
a set number of parameters corresponding to the procedural shape parameters of the segment
nodes.

Two main varying factors were used to produce the final model configuration and determine the
size and complexity of the model. These were the filter counts of the five incremental layers within
the encoder, and the size of the bottleneck layer. As the encoder and decoder were mirrored
in phase one, filter counts were applied in ascending order within the encoder and descending
order within the decoder for this setup. The size of the bottleneck was also required to match
the filter count of the final encoder.

The phase two decoder consisted of a series of fully connected layers that progressively increased
to 4 times the bottleneck size. The ouput of this was then passed to three sub-decoders. These
were the size decoder, bezier decoder and taper decoder. Each of these decoders were structured
to have four layers, the first three progressively reducing in dimension until matching the bottle-
neck size and the final layer reducing this to match the appropriate number of parameters, which
in each case was 2 times the node count, as there were 2 size values: x and y, 2 bezier values: tip

and center offset, and 2 taper values: forward and backward.

Feeding these outputs into the differentiable procedural shape algorithm, then rendering the
shape using the differentiable renderer, the generated results could be compared with the input
images and a loss value could be computed. The loss function combined a Sobel loss for edge
based comparison, and a KL-divergence to for a variational loss.

The final chosen layer filter configuration was: 32, 256, 256, 512, 512. With the bottleneck size being
512. This yielded the lowest loss given the above loss setup for phase one of training, as shown in
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figure 5.9. This first phase model was trained for 491 epochs, at which point loss had plateaued.
Figure 5.7 shows the progress of pre-training outputs from the 1st epoch to the 400th epoch.

After phase one was complete, the convolutional decoder was replaced with the phase two
decoder. The bottleneck and new decoder were then trained with the pre-trained encoder’s
parameters locked. After 200 epochs of training, the encoder’s parameters were unlocked and
the full model was trained for a further 200 epochs. For this phase, a learning rate scheduler was
configured to reduce the learning rate by a factor of 0.9 each time a plateau was detected across
the preceding 20 epochs of training. This allowed the model to continue improving throughout
the extended training period. Figure 5.8 shows the progress of outputs from the 1st epoch to the
400th epoch.

FIGURE 5.7: Output images FIGURE 5.8: Output images
during phase one of training during phase two of training
at 50 epoch increments at 50 epoch increments
between the first epoch and between the first epoch and

epoch 400. epoch 400.
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Colour Layer Configuration (filter count per layer) Final Loss Value

1024, 32,128, 256, 512, 1024 0.01368
256, 64, 128, 256, 512, 1024 0.01426
512,128, 256, 512, 512, 1024 0.02499
512, 32, 128, 256, 512, 1024 0.01261
512, 32,128, 256, 512, 512 0.01159
512, 32, 256, 256, 512, 512 0.01105

TABLE 5.5: The colour coding of lines on figure 5.9, along with final loss values.

Loss/val

FIGURE 5.9: The step-wise validation loss of different configurations.

5.2.7 Unity integration

The final model was integrated into the Unity Engine and its features were presented through
a graph view user interface. To achieve this an Open Neural Network Exchange (ONNX) file
of the final model checkpoint was generated, then loaded within Unity via the Barracuda APIL In
the UX preference study (chapter 3) no statistically significant preference was found between the
tested interface types. Instead, the results highlighted a need for good usability of the underlying
tool’s features. Therefore, a UX should be chosen based on its ability to encompass the necessary
controls for the system. Therefore, a graph view interface was chosen as it allows for the assign-
ment of each nodes parameters while also mapping the high-level structure of the shape. This
style of interface allows for flexibility in designing shapes as well as the configurability required

for manual adjustment of parameters in real-time.

To import user sourced images as inputs, the previous pre-processing method involving the use
of the stand-alone background remover tool [334] could not be integrated seamlessly. Therefore,



5.2. Proof-of-concept prototype 113

an alpha matting approach was implemented within tool to achieve the conversion to silhouette.
This method used the same pre-trained u2net model used within the original tool [334] to produce
an alpha matte from an input image.

The graph-view interface, shown in figure 5.10 is situated within a Unity Editor window. Access
to generative features are provided in a sub-panel, as well as a real-time preview of the generated
mesh. Features such as saving and loading of shape graph data are provided, as well as an export
option that outputs the mesh and chosen materials in the serialized Unity GameObject (Prefab)

format.

FIGURE 5.10: The main tool FIGURE 5.11: The tool screen
user interface, broken down populated with graph data.
into: graph view (panel 1),
config panel (panel 2) and

preview box (panel 3)

Configuration panel

Under the configuration panel, general mesh options can be found, including a slider for the
subdivision count, a toggle for facetted shading, and a button that creates a pop-up menu for
assigning materials. Below this are three tabs for accessing the generative functionality: Random,
Image Reconstruction and Interpolation.

The random tab provides a button for full random generation, and three buttons for randomising
dimensions, edge shape and curves respectively. Full random generation is achieved by sampling
the latent space of the VAE using a normal distribution, via random mean and standard deviation
values. These values are fed into the bottleneck, then the decoder to produce the output parame-
ters. The dimension, edge shape and curve randomisation simply applies a pseudo random value
to relevant parameters of selected nodes in the graph. The edge shape and curve randomisation ap-
plies the same values to all selected nodes such that they share the same randomised form.
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The Image Reconstruction tab allows the user to import an image of their choosing via a system
file-picker. Once selected, the image is automatically pre-processed using the alpha matting
solution and dimension resizing. The user is asked to manually adjust the rotation of the image
via a slider so that the orientation is consistent with the training data, i.e. alighed on the vertical
axis. Upon clicking generate the processed image is passed into the VAE and the generated result
is loaded into the graph-view.

The Interpolation tab provides two image input fields, of the same type found in the Image
Reconstruction tab. These represent the two shapes that will be interpolated between. The user
is also provided a slider for inputting the ¢ value of the interpolation between the two provided
images. Upon clicking generate the encoder processes each image independently, then the resulting
tensors are linearly interpolated before passing the result into the decoder. For example, consider
two images, A and B. Image A will first be processed by the encoder and bottleneck models,
followed by image B. Each corresponding value in the two output tensors from image A and image
B are then linearly interpolated with the given t parameter to produce a new tensor with values
in-between the two. This is then passed into the decoder model to produce the final output.

For the purposes of data collection, and additional Save Process button was added. The user
study participants were instructed to click this button at the end of each task to record their data.
Upon clicking this button, the current graph is saved along with the processed input images, the
assigned materials, generated mesh and overall prefab, along with information on the generative
process used. This data is packed into a folder within the Asset directory of the Unity project,
then compressed as a zip file. This will allow testing participants to share their data easily.

Manual parameter technique

To design swords using manual parameter input, users create nodes within the canvas of the
tool’s window using context menus and configure their individual parameters, as shown in figure
5.13. Users connect nodes by dragging from the output of one node into the input of another,
a connection is then signified by a line within the interface. Icons on node inputs and outputs
signify the orientation of the connection along Cartesian axes relative to the global coordinate
system. Connected nodes are then rotated based on the direction of the connection, for example
connecting a segment to the left output of a branch node will cause the output of the segment to
also point left globally. This is all represented dynamically by the directional icons. A full sword

shape can be created by chaining together segment and branch nodes in this manner.

Materials can be applied to a generated shape by matching submesh indices on each node to
corresponding submesh indices in a pop-out materials window found within the config panel, as
shown in figure 5.12. Users can assign any material within their Unity project using this method.
Additionally, within the config panel, users can adjust the overall subdivision factor of the shape
and toggle faceted shading, as shown in figure 5.14. The latter applies the algorithm 4 to create
sharp edges between rendered faces at the cost of generating more vertices.
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Branch

Add New Material

FIGURE 5.12: The materials FIGURE 5.13: The graph

pop up window, that allows view populated with seg-

users to assign materials to ment and branch nodes,

sub-mesh indices. containing the parameter
control UI (panel 1).

Config

Assign Materials

Save Process

FIGURE 5.14: Config controls including a subdivision slider and toggle for faceted
shading (panel 2).

Image reconstruction technique

To create sword shapes from images, users select the the image reconstruction tab within the config
panel, as shown in figure 5.15. This provides an image input box with a button for opening a
file picker. After clicking the button marked with ellipses, the user navigates to the file location
of a JPG or PNG image file representing a front view of a sword. Once an image is selected, it
is automatically processed into a silhouette using the u2net model described in section 5.2.5. The
result of the processing is loaded into a preview box, where the user adjusts a slider to rotate the
image until the shape is vertical, as shown in figure 5.16. Clicking generate then passes this input
through the VAE, and the output nodes are loaded into the graph view canvas.
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a

Materials

Save Pro

Random Image Reconstruction Interpolate Random Image Reconstruction Interpolate

Image [ Image | ...

Generate Generate

FIGURE 5.15: The image FIGURE 5.16: The populated
reconstruction tab (panel 2). image reconstruction tab,
with the input image cor-

rectly rotated (panel 2).

Image interpolation technique

The interpolation technique is used by selecting the inferpolate tab in the config panel, as shown in
figure 5.17. The same input method as shown in section 5.2.7 is used to select two images within
the Ul and a slider below the two loaded images can then be adjusted to determine the blend of
inputs. This slider represents a t value between 0 and 1, shown figure 5.18. Clicking the generate
button then passes each input through the encoder of the VAE, and a latent vector is formed via
linear interpolation between the two encoder outputs before passing this to the decoder. The

resulting nodes are then loaded into the graph view canvas.

an Materials

Random mage Reco Interpolate Random mage Re Interpolate

Firsti First

Generate Generate

FIGURE 5.17: The interpola- FIGURE 5.18: The populated
tion tab (panel 2). interpolation tab, with input
images correctly rotated

(panel 2).
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Randomisation technique

Randomisation is accessed via the random tab within the config panel, shown in figure 5.19.
Clicking the generate button will produce a random outcome from the learned latent space of the
VAE model. This is done by generating a random vector consisting of values from a normal dis-
tribution, and passing this vector into the decoder. The output is then loaded into the graph view
canvas, where it can be further randomised by selecting segments within the graph view canvas
and clicking the randomise selected dimensions, edge shape or curves buttons. Users can apply these
modifications one by one. Multiple modifications can be applied repeatedly or sequentially.

Save Process

Image Reconstruction Interpolate

Randomise selected (Dimensions)

Randomise selected (Edge shape)

Randomise selected (Curves)

Generate

FIGURE 5.19: The random tab (panel 2).

5.3 Chapter Summary

In this chapter, a proof-of-concept prototype sword generation tool was developed and inte-
grated into the Unity engine, incorporating a total of four techniques representing the four idea
fidelity groupings. To achieve this a method for creating datasets for game asset shapes was
developed and utilised to create a novel sword silhouette dataset. This dataset was used to train
the GAG system which consisted of a VAE trained to convert image silhouettes to procedural
shape parameters.
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Chapter 6: Empirical Study

In the previous chapter, a proof-of-concept prototype was developed, implementing represen-
tative techniques from the four idea fidelity groupings first introduced in chapter 2. This prototype
was integrated within the Unity engine editor, and utilises the Barracuda API to interface with
a VAE trained on a novel sword silhouette dataset. A method for developing asset shape
datasets for unsupervised training tasks, which was used to create the sword dataset, was also

presented.

In this chapter, the proof-of-concept prototype is tested and evaluated via a user study examining
the preferences and needs of game designers and developers. This study explores the relation-
ship between perceived quality, speed, and controllability, and how these factors influence the
usefulness of each implemented technique, as well as their preferred usage in the development

pipeline.

6.1 Introduction and research questions

To assess game designer and developer opinions and preferences regarding the developed proof-
of-concept prototype, a user study has been planned and conducted. The focus of this user study
is to identify the difference in preference between the four techniques provided by the prototype
tool, the perceived usability of the tool, and the relevance and usefulness of such a tool in game
development pipelines. Furthermore, the opportunity has been taken to compare the functional
prototype tool with the corresponding mock up from the previous study (ST1).

This study is structured as a repeated measures experiment, measuring the user perception of
each technique and its interface, followed by an overall rating of usability via SUS [39] and the
set of preference questions used to assess the mock-ups in chapter 4. This is followed up with
an optional interview in which more nuanced feedback could be provided by participants, while
helping to obtain further insights into the quantitative data.

In this study, user perception of techniques is assessed via participant ratings on four main
points. These are: Quality, Speed, Control and overall Usefulness. In chapter 3 three main forms of
evaluation metric are identified: artefact Validation, artefact Quality and operation evaluation. Artefact
Validation assesses whether the output of the method can be perceived as belonging to the target
asset type. Most methods, if tested, have been evaluated via some form of artefact validation
metric. While it is variable whether or not operation evaluation or artefact validation is employed.
Therefore the questions instead focus on the perceived quality and operational aspects of the

tool. For the former, a general question of quality is posed, and for the latter, performance and
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controllability are assessed. Speed is chosen as a measure of performance, as it is the only identi-
fied performance metric that can be directly perceived by a user, while controllability satisfaction
is also directly experienced. An overall usefulness rating is also included to assess whether
participants would use the particular techniques of the tool in their own projects.

This study aims to answer 4 core questions surrounding generative techniques in the context
of tools for graphical asset creation. ST2-CQ1 and ST2-CQ2 regard the usefulness and core
qualities of the techniques respectively, while ST2-CQ3 regards the relevance of such a tool in
different parts of the design/development pipeline. Additionally, ST2-CQ4 regards how the tool
is perceived or rated differently when functional as opposed to being a mock up. These core
questions (ST2-CQ1 to ST2-CQ4) are presented below.

ST2-CQ1 Which type of generative technique do game designers/developers find
most useful and why?

ST2-CQ2 Which type of generative technique do game designers/developers find
to be fastest, highest quality and most controllable and why?

ST2-CQ3 Where in the design/development pipeline would game design-
ers/developers find value in such as system?

ST2-CQ4 Are preferences different for the functional prototype in comparison with
the non-functional mock up?

These core questions have been expanded into a series of research questions (RQs) which have
a corresponding questionnaire question presented in table 6.1. Listed below are the research
questions ST2-RQ1 to ST2-RQ8. These are ordered similarly to the mock up preference study (ST1)
research questions for ease of comparison (ST2-CQ4). There are some key differences in these
research questions, ST2-RQ1 is concerned with the usefulness of techniques in place of the mock
ups of ST1-RQ1, while ST2-RQ8 focuses on the perception of speed (ST2-RQ8.1), quality of output
(ST2-RQ8.2) and controllability (ST2-RQ8.3) for techniques, where technique i is represented as
T;, as defined in table 6.3.
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ST2-RQ1 Which T; do game designers/developers find most useful?
ST2-RQ2 Where in the pipeline would game designers/developers find value in
the tool?
ST2-RQ2.1: Do designers/developers find value in the tool for Generating
inspiration.
ST2-RQ2.2: Do designers/developers find value in the tool for Exploring ideas.
ST2-RQ2.3: Do designers/developers find value in the tool for Creating
placeholder assets.
ST2-RQ2.4: Do designers/developers find value in the tool for Creating
variations of existing (complete) assets.
ST2-RQ2.5: Do designers/developers find value in the tool for Creating assets
from existing (complete) designs.
ST2-RQ2.6: Do designers/developers find value in the tool for Creating assets
from scratch.
ST2-RQ2.7: Do designers/developers find value in the tool for Player (or user)
made content.
ST2-RQ3 If the tool were to be used in a pipeline, would designers/developers
prioritise volume of output or quality of output?
ST2-RQ4 How much time would designers/developers find acceptable for the tool
to take in generating a single asset?
ST2-RQ5 Do designers/developers prefer the tool as a stand-alone solution or
integrated into a game-engine?
ST2-RQ6 How important is the ability to configure or modify the tool according
to designers/developers?
ST2-RQ7 What is the perceived usability of the tool?
ST2-RQ8 Which T; is rated highest for the following aspects...?
ST2-RQ8.1: Which T; do designers/developers find to be fastest.
ST2-RQ8.2: Which T; do designers/developers find to produce the highest
quality assets.
ST2-RQ8.3: Which T; do designers/developers feel in the most of control when
using.

10 main hypotheses were formed in relation to the research questions, based on the results of the
first study (ST1) and the amount of interaction required for each technique.

This study also aims to observe the impact of participant demographic on the ratings and pref-
erences of the techniques. Four impact hypotheses are presented, mirroring those of the mock
up study (ST1) and are listed below.
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ST2-IH1 Role impacts technique rating.
ST2-IH2 Size of team impacts technique rating.

ST2-IH3 Experience impacts technique rating.
ST2-IH4 Age impacts technique rating.
ST2-IH5 The rating of speed, quality and controllability each correlate with the

rating of usefulness.

TABLE 6.1: Survey questions corresponding to each research question

Research

Question  Survey Question

ST2-RQ1 'Please rate on a scale of 1 (strongly disagree) to 5 (strongly agree), how much you
agree with the following statement: I would find this particular technique useful in
the projects I work on."

ST2-RQ2  “Where in your development pipeline would you find value in this software tool?
Please tick all boxes that apply.”

ST2-RQ3 “Considering your answer to the previous questions, would you prefer if this tool
generated a large variety of assets at a lower quality, or that it generated a small variety
of high-quality assets?”

ST2-RQ4  “Please indicate the largest timescale you would find acceptable for generating a single
graphical asset if you were to use this software tool in your projects.”

ST2-RQ5 “Given the option, would you prefer such a system to exist as stand-alone software,
or integrated into your game engine editor of choice?”

ST2-RQ6 “Please rate on a scale of 1 (not important) to 5 (very important), how important to
you, is the ability to configure or modify such a tool. For example, importing your own
bespoke algorithms or trained models?”

ST2-RQ7  System Usability Scale [39]

ST2-RQ8 '"For each aspect listed below, please rate the technique you have just used on a scale
of 1 (very poor) to 5 (very good)."

TABLE 6.2: List of hypotheses and associated research questions.

RQs Hypotheses

ST2-RQ1  ST2-H1  Participants will find T to be the most useful technique

ST2-RQ2  ST2-H2  Participants find the tool valuable in all stages

ST2-RQ3  ST2-H3  Participants prefer shorter generation times over quality /variety

ST2-RQ4  ST2-H4  Participants find asset generation times of less than a minute acceptable

ST2-RQ5  ST2-H5  Participants prefer an integrated solution over a standalone

ST2-RQ6  ST2-H6  Participants prefer an open solution i.e., high-configurability

ST2-RQ7  ST2-H7  Participants identify the solutions useable

ST2-RQ8.1 ST2-H8  Participants will find T4 to be fastest

ST2-RQ8.2 ST2-H9  Participants will find Ty to produce the best quality assets
ST2-RQ8.3 ST2-H10 Participants will find T; to provide the most control
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Technique ‘ Technique code
Parameter guided | Ty
Reconstruction T,
Interpolation T3
Randomisation Ty

TABLE 6.3: Implemented techniques and their abbreviations.

6.1.1 Procedure

Data was collected remotely via a single web form hosted on Microsoft Forms. This form guided
participants through the process of installing and testing the technique, providing questionnaires
between each technique tested. Instructions were provided for participants to install the tool on
their computer, and video tutorials were provided to show participants how to navigate the UI
and interact with each technique being tested. Participants were presented with a series of tasks
contextualised around a design/development scenario. In this scenario the participants were
presented with two character personas and asked to design a sword for each of them, for every
technique. The personas, shown in figure 6.1, were provided with the following description:

"You are working on a fantasy role-playing game and have been tasked with designing weapons for two
rival characters. Your goal is to create weapon designs that match the personalities and attributes of these
two characters. You will be making use of generative tools integrated within the Unity Editor to produce
your designs.”

Name

Lucian Elora
Age
25 24

Occupation
Hunter of the Night Watch ~ Warrior of the Sun Tribe

Appearance

Medium height and lean. Tall and muscular.
He carries a sword at his side. She carries a sword at her back.

Personality

Quiet, vigilant, loyal and brave. Fiery, proud, fierce and loyal.
Prefers to fight with stealth and speed. A skilled fighterand a leader.

FIGURE 6.1: Character personas for the testing scenario.
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Participants

A convenience sampling approach was employed in the recruitment of participants. Game
development communities such as LUUG and BCS Animation and Games specialist group were
contacted through their respective gatekeepers. Participants were required to be over the age of
18 with some amount of professional experience in game design or development. To successfully
test the tool, participants were also required to have some experience in the Unity Engine and
to have it installed on their machine.

Questionnaires

Prior to testing, participants provided demographic information including their age group, years
of experience and size of team they are used to working in. Participants then completed a short
questionnaire after testing each of the four techniques. This questionnaire included questions
corresponding to ST2-RQ1 and ST2-RQ8, as shown in table 6.1. After the participant had tested
the four techniques and completed the associated questionnaires, they completed a further set
of questions regarding their preferences for the overall tool. These questions corresponded with
research questions ST2-RQ2, ST2-RQ3, ST2-RQ4, ST2-RQ5, ST2-RQ6 and ST2-RQ7, which are
presented in table 6.1. These questions match those of ST1-RQ2 to ST1-RQ7 and are intended
as a repeated measure, for comparison of the original mock up with the prototype tool.

Semi-structured interviews

Participants were asked to schedule and complete a 10 to 15 minute interview following the
completion of the tool testing. Within the web form, participants were provided with a link
to book a meeting time at their own convenience. This was on an opt-in basis. During these
interviews, participants were asked questions to confirm their answers within the questionnaires
to obtain more nuanced explanations of their preferences and reasoning. Furthermore, they were
given an opportunity to voice any thoughts or opinions regarding the tool that they could not
address through the questionnaires. These interviews were recorded via note-taking.

6.1.2 Results

In total, 18 participants completed the testing process between the approved dates of 24/11,/2023
and 31/03/2024, and 3 agreed to a follow-up interview. The following subsections will present
the analysis of questionnaire results, starting with technique preference (S5T2-RQ1 and ST2-RQ8),
then demographic impact analysis (ST2-IH1 to ST2-IH4) and comparisons to the original mock
up (ST2-RQ2 to ST2-RQ7), followed by the interview findings.

Technique preference

Technique preference is established along four variables: Usefulness (RQ1), Speed (RQ8.1), Qual-
ity (RQ8.2) and Controllability (RQ8.3). To compare the four repeated measures corresponding
to the techniques, a Friedman test was first conducted, followed by a set of pairwise Wilcoxon
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Signed Ranks tests to assess the statistical significance of any differences in rating. The results
of both tests are presented in table 6.4.

For speed (RQ8.1) there is an overall statistically significant difference in ratings between tech-
niques (P <0.05) when conducting the Friedman test. Wilcoxon results show significant differ-
ences (P < 0.05) between all pairwise comparisons except for the comparison between image
reconstruction (T,) and interpolation (T3), where P =0.083. Randomisation (T4) was rated fastest,
followed by reconstruction (T3), interpolation (T3) then parameter guided (T;). This result is in
line with the amount of interaction and initiative required from users within these techniques,
as the randomisation technique is the least involved of the four with the least user initiative.
Whereas the parameter guided technique requires the most user input of the four and therefore
takes the most amount of time to produce an asset. This result therefore confirms ST2-H8.

For quality (RQ8.2), the Friedman test shows that there is a significant overall difference in ratings
between techniques (P <0.05). In addition, all Wilcoxon tests show statistically significant pair-
wise differences between techniques (P < 0.05). The rating for asset quality with the parameter
guided technique (T;) was highest, followed by randomisation (T4), interpolation (T3), then
reconstruction (T3). This result is expected, due to the parameter guided technique being entirely
dependent on user inputs, thus confirming ST2-H9. Randomisation being the second highest
rated technique is likely due to it being sampled from a normal distribution, resulting in generic
but believable average results. Interpolation and reconstruction, due to the model’s weakness
in generalisation, produced results that did not match the inputs in many cases as confirmed by
interviews in section 6.1.2.

For controllability (RQ8.3) the Friedman test shows a significant overall difference in ratings
between techniques (P < 0.05). The Wilcoxon tests show the difference between reconstruction
(T) and interpolation (T3), as well as parameter guided (T;) and randomisation (Ty) to be in-
significant (P > 0.05), while other pairwise comparisons were significant (P <0.05). The rating
of controllability was highest for parameter guided (T;) and randomisation (T4), followed by
interpolation (T3) and reconstruction (T3). These results are in line with the amount of direct
controls provided to users in each of these techniques, with parameter guided design having the
most, and reconstruction having the least. This confirms ST2-H10.

For usefulness (RQ1) the Friedman test shows that the difference in rating between techniques
is statistically significant (P < 0.05). The Wilcoxon tests show the difference between ratings for
reconstruction (T,) and randomisation (Ty), and interpolation (T3) and randomisation (T4) are
statistically significant (P < 0.05), while other comparisons are not (P >0.05). Overall, randomi-
sation (Ty) was rated significantly higher than both reconstruction (T) and interpolation (T3).
Randomisation (T4) and parameter guided (T1) are both rated similarly with a non statistically
significant difference in regard to usefulness. The lower ratings of reconstruction and interpolation
can be partially attributed to the models weakness in generalising to varied and unseen inputs.
However, the interviews discussed in section 6.1.2 suggest there are other reasons for the rating
of usefulness regarding parameter guided and randomisation, such as the ability to create 3D
models quickly and with little experience. These results confirm ST2-H1.
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Users care about the quality of the output and the amount of meaningful control they have over
the outcome. Speed is less of a concern due to the tool being faster than the manual methods they
already employ. These manual methods are favorable because they provide maximum control
and the quality is unlimited. However, the main interest in this tool is not for creating final assets
in a game, but rather to explore ideas, create placeholder assets or generate inspiration. Users
deemed the randomisation more controllable than reconstruction and interpolation because they
could target a specific part of the shape and keep the segments that they prefer.

TABLE 6.4: Friedman and Wilcoxon results for differences in technique ratings
(ST2-RQ1 and ST2-RQ8)

Research Question Wilcoxon sig.  Friedman sig.

Tz -> T1 .083
T3 -> Tl 277
T4 -> T1 335
RQL T3 ->Tp 1.000 002
T4 -> Tz .003
Ty >T;s .003
T2 -> Tl .001
Ty >T; .006
T4 -> Tl .002
RQ8.1 Ty > T, 083 <.001
T4 -> Tz .003
Ty >T;s .001
T2 -> T1 <.001
T3 -> Tl <.001
T4 -> T1 020
RQ8.2 T>T, 001 <.001
T4 -> Tz <.001
Ty >T;s 014
T2 -> Tl .006
Ty ->T; 048
T4 -> Tl 335
RQ8.3 Ty > T, 083 .002
T4 -> Tz .006
Ty->T;s 014

Demographic impact

To observe the impact of demographic on the rating of the four techniques, multiple linear re-
gression (MLR) analysis was conducted for RQ1 and RQ8. Checking impact hypotheses ST2-IH1
to ST2-IH4. Table 6.5 shows results of MLR for RQ1, where T,, T3 and T4 have statistically
significant ANOVA results. For the rating of usefulness for T,, age and years of experience both
have significant positive correlation. While the rating of usefulness for T3 is positively correlated
with years of experience and negatively correlated with size of team, with the former and latter
being statistically significant. The rating of usefulness for Ty is statistically significant for age and
years of experience, and both positively correlated.
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TABLE 6.5: Demographic impact multiple linear regression results for rating of

usefulness RQ1. (*) Experience stands for Years of professional experience

Research Question Correlation Model Suiérj\s;ym 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.
Age 445 .032
Experience* 544 010
RQIT, Size of team -.349 .078 388 257 069
Age 741 .000
Experience* 905 .000
RQAIT: oo of team  -332 089 | 57 863 <001
Age 304 110
Experience* .603 .004
RQITs g e of team  -434 036 | 7 610 <001
Age 782 .000
Experience* 920 .000
RQITs g e of team 087 365 | 7% 890 <001

Table 6.6 presents MLR results for the impact of speed, quality and controllability on the rating

of usefulness for each technique. Here, results for Ty, T, and T, have significant ANOVA results.

For T, speed and controllability both have significant positive correlations with the rating of

usefulness. For Ty, quality and controllability have significant positive correlations with the rating

of usefulness. While, for Ty, only quality has a significant positive correlation with the rating of

usefulness.

TABLE 6.6: Multiple linear regression results for the impact of the perceived Speed,
Quality and Controllability on rating of usefulness RQ1.

Research Question Correlation Model Su%?jge 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.

Speed 710 .000
Quality -.134 298

RQITL - Controllability 492 019 | 731 673 <001
Speed 186 230
Quality 585 .005

RQLT Controllability .643 .002 468 354 028
Speed 412 045
Quality - -

RQIT; Controllability .343 082 176 067 233
Speed - =
Quality 958 .000

Ry Controllability 147 280 | 7% 909 <00t

Table 6.7 presents the MLR results for the rating of speed (RQ8.1), where T3 has a statistically
significant ANOVA result. For the rating of speed for T3 all demographic variables have a
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statistically significant impact. Age and years of experience have a positive correlation, while the
size of team has a negative correlation. Analysis of T4 could not be conducted as all participants

gave a rating of 5, or very good.

Table 6.8 presents the MLR results for the rating of output quality (RQ8.2), where Ty, T, and Ty
have statistically significant ANOVA results. No individual correlation is statistically significant
for T1. While for the ratings of T», size of team has a statistically significant negative correlation.
Ratings of Ty are positively correlated with age and years of experience. Analysis could not be
conducted on T3 as all participants gave a rating of 5, or very good.

Table 6.9 presents the MLR results for the rating of controllability (RQ8.3), where T; and T3 have
statistically significant ANOVA results. For T; there are no individual statistically significant
correlations, while for T3 age and years of experience both have statistically significant positive
correlations.

TABLE 6.7: Demographic impact multiple linear regression results for rating of

speed RQ8.1. Highlighted rows indicate a constant result, wherein all participants
gave the same answer.

Research Question Correlation Model Su?é?j;’?e 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.

Age 579 .006
Years of professional experience 452 .030

RQ8.1T, Size of team -.060 407 396 267 063
Age 342 082
Years of professional experience .100 347

RQ8.1T2 Size of team 447 031 394 264 065
Age 525 013
Years of professional experience 410 045

RQ8.1T; Size of team -542 .010 807 766 <001
Age - -

RQ8.1 T4 Years of professional experience - - - - -
Size of team - -

Table 6.10 shows the MLR results for ST2-RQ3 to ST2-RQ7 where all results have statistically
significant ANOVA results. For ST2-RQ3 (preference of volume or quality), age and years of
experience have positive correlations, while size of team has a negative correlation. For ST2-RQ4
(acceptable time for generation), and ST2-RQ6 (importance of configurability), no individual
correlations are statistically significant. For ST2-RQ5 (preference for stand-alone or integrated so-
lution), years of experience has a negative correlation, while size of team has a positive correlation.
For ST2-RQY7 (perceived usability), age has a positive correlation.

Within these results there is a general trend of more experienced participants rating individual
techniques and the overall tool higher in many aspects. With more experience, users have had
the opportunity to experience a wider range of tools and projects. This makes new tools easier

to adopt, and results in the user seeing more contexts in which a tool may be beneficial.
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TABLE 6.8: Demographic impact multiple linear regression results for rating of
quality RQ8.2. Highlighted rows indicate a constant result, wherein all participants
gave the same answer.

Research Question Correlation Model SuAmdmj Sge 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.

Age 192 222

RQ8.2T; Years of professional experience -.204 208 | .773 725 <.001
Size of team 240 169
Age 028 457

RQ8.2T, Years of professional experience .265 144 | 807 766 <.001
Size of team -.868 .000
Age - -

RQ8.2T; Years of professional experience - - - - -
Size of team - -
Age 778 .000

RQ8.2T,; Years of professional experience .951 .000 | .940 927 <.001
Size of team -.072 388

TABLE 6.9: Demographic impact multiple linear regression results for rating of
control RQ8.3
Research Question Correlation Model SuAmdmj Sge 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.

Age -.028 457
Years of professional experience -.265 144

RQAB3T1 e of team -108 34 | 42 299 047
Age 395 052
Years of professional experience .345 081

RQ8.3 T2 Size of team -.387 .056 386 25 070
Age 766 .000
Years of professional experience .598 004

RQ8.3 T3 Size of team 158 265 625 45 003
Age 481 022
Years of professional experience .300 113

RQ8.3 T4 Size of team 270 .140 331 187 121

Furthermore, more experienced participants prioritise lower volume, but higher quality outputs

for this tool. The interview results suggest that more experienced users are less concerned with

producing larger volumes of assets as they expect to use such a tool to supplement their manual

efforts. While those in smaller teams prefer larger volume but lower quality of output. As was

found in the interviews, users that work in smaller teams prefer to explore and try different ideas,

then refine and add quality when they find something that works.

Those who work in larger teams prefer this tool as an integrated solution. This finding is in line

with previous research, as teams have been found to prioritise compatibility with their existing
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TABLE 6.10: Demographic impact multiple linear regression results for RQ3-RQ7

Research Question Correlation Model SuAmdmj sge 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.

Age 570 .007
Years of professional experience .697 <.001

ROB " Size of team 447 01 | O 86 <00t
Age -.054 Al6
Years of professional experience .384 058

RQ " Size of team -337 086 | 7 i <00t
Age -.051 420
Years of professional experience -.489 020

RQ5 Size of team 400 .050 240 192 039
Age 221 189
Years of professional experience -.193 221

RQ6 Size of team 217 194 836 825 <001
Age 485 021
Years of professional experience .263 146

RQ7 Size of team -.308 106 235 187 04l

tools [215]. In addition, less experienced participants prefer this tool as an integrated solution.
This is likely due to the resulting ease of incorporating such a tool into their pipeline, as opposed
to altering their pipeline to accommodate a separate piece of software.

Experienced participants also rate usability higher. This may be due to having more opportunities
to experience similar interfaces, thus becoming more accustomed to this style of interaction.
Furthermore, more experienced users can be expected to have more confidence with new tools,
as opposed to users with less experience, being less comfortable with integrating new tools into
their pipeline.

The ratings of usefulness are correlated differently with speed, quality and controllability depend-
ing on the technique in use. Speed and controllability correlate with the rating of usefulness for
parameter guided design (T;). This suggests that users do not consider quality a concern when
it comes to parameter guided creation as the quality is dependent on the amount of input and
initiative they apply. While faster generation speed and more controllability would allow them
to work more efficiently within the tool to create designs.

Quality and controllability correlate with the rating of usefulness for image reconstruction (T5).
Here, it is likely that speed is less of a concern, assuming the result meets their expectation for
quality, and the tool provides the means to configure their inputs. Quality correlates with the
usefulness rating of randomisation (Ty). Here, it is likely that controllability is not a concern as
users do not expect to have much control over this technique. A correlation could not be found
between speed and usefulness due to the unanimous rating of “Very good” for generation speed
on this technique. The positive correlation between quality and usefulness rating suggests that
better quality outputs are however preferred.
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Correlation between pipeline choices and technique usefulness

It is important to this research that the connection between technique usefulness and the choice
of location in the design/development pipeline is examined in order to expand on the existing
GaGeTx framework. Table 6.11 presents results of a multiple linear regression test between ratings
of usefulness for each technique, and the preferences for the locations in the pipeline participants
would find the tool useful.

Here, parameter guided (T;) usefulness ratings are shown to be negatively correlated with the
choice of generating inspiration, while positively correlated with creating placeholder assets, creating
assets from existing designs and creating assets from scratch. Reconstructed (T,) usefulness ratings are
shown to be negatively correlated with generating inspiration and exploring ideas, while positively
correlated with creating placeholder assets, creating assets from existing designs and creating assets
from scratch. Interpolated (T3) usefulness ratings are shown to be negatively correlated with
generating inspiration and exploring ideas, while positively correlated with creating assets from scratch.
Random (T4) usefulness ratings are shown to be negatively correlated with exploring ideas, creating
variations of existing assets and player made content, while positively correlated with creating assets
from scratch.

Comparison to previous mock-up

The use of a graph based Ul was a choice based on the results of the mock-up evaluation in
chapter 3. It is therefore relevant to compare the final graph-based prototype tool with the initial,
non-functional mock-up in terms of user perception. As a graph view interface was chosen, the
prototype will be compared with the graph view mockup M.

A Mann-Whitney U test was conducted on the set of questions asked in both studies, with the
mock-up data assigned to group 1 and the prototype data assigned to group 2. Results are shown
in table 6.12. The difference in perceived usefulness was found to be statistically significant (P
< 0.05) with higher mean ranks in the prototype group. This suggests that users perceived the
functional tool to be more useful as they were able to observe the results and meaningfully interact
with the tool. There is a statistically significant difference (P < 0.05) for finding value in using
the tool for creating assets from scratch and player made content. The mean ranks show that
more participants in the prototype testing group found value in creating assets from scratch and
less found value in using it for player made content, while the opposite is true for the mock-up.
This suggests that when experiencing the functional tool, users had a better understanding of the
quality of output or the complexity of controls, and thus found the tool less valuable for player
made content and more valuable for creating assets from scratch.

Output Examples

Participants anonymously uploaded their result data to a secure upload folder by following the
instructions in the form, using a generated number as identification both in the the web form and
in the upload location. This section will present example results, and inputs where applicable,
highlighting key observations regarding each generative technique.
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TABLE 6.11: Multiple linear regression results for the impact of technique
usefulness on pipeline choices
Research Question Correlation Model Suié?jgym 4 ANOVA
Correlation Sig. | RSquare R Square | Sig.

Generating inspiration -521 013
Exploring ideas -.330 091
Creating placeholders 929 .000

RQ9T; Creating variations of assets 330 091 | 993 991 <.001
Creating assets from designs 521 013
Creating assets from scratch 737 .000
Player (or user) made content 330 091
Generating inspiration -495 018
Exploring ideas -.589 .005
Creating placeholders 405 .048

RQ9T, Creating variations of assets .037 442 | 990 997 <.001
Creating assets from designs 495 018
Creating assets from scratch 906 .000
Player (or user) made content 037 442
Generating inspiration -.698 001
Exploring ideas -.806 .000
Creating placeholders -.077 381

RQ9T; Creating variations of assets .077 381 | 981 976 <.001
Creating assets from designs 102 343
Creating assets from scratch 698 001
Player (or user) made content 077 381
Generating inspiration -017 473
Exploring ideas -.535 011
Creating placeholders 218 192

RQ9 Ty Creating variations of assets -.513 015 | 911 .883 <.001
Creating assets from designs 095 354
Creating assets from scratch 488 .020
Player (or user) made content -513 015

Table 6.13 shows an example of two designs via parameter guided creation (T) from a single

participant. Here, many of the features and parameters have been utilised to create two distinct

sword designs, including the use of the material editor, curves, edge properties and rounding.

The results corroborate with the higher ratings of quality within the questionnaires compared
to the other techniques.
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TABLE 6.12: Mann-Whitney test results for independent samples comparison
between the graph based mock-up and final prototype, presenting the Mann-
Whitney U, Wilcoxon W, mean ranks for group 1, mean ranks for group 2 and

significance scores.

Mann-Whit. Wilcoxon Meanrank Mean rank
Question U \W group 1 group2  Sig.
Sus 117.0 288.0 21 16 152
“I would find this software tool 58.5 229.5 12.75 24.25 <.001
that generates graphical assets
useful in the projects I work on.”
Find value in:  Generating 135 306 20.00 17.00 225
inspiration
Find value in: Exploring ideas 162 333 18.5 18.5 1.000
Find value in: Creating place- 135 306 17.00 20.00 225
holder assets
Find value in: Creating variations 135 306 20.00 17.00 225
of assets.
Find value in: Creating assets 135 306 17.00 20.00 225
from designs.
Find value in: Creating assets 108 279 15.50 21.50 036
from scratch
Find value in: Player (or user) 108 279 21.50 15.50 .036
made content.
Total selected pipeline options 157.5 328.5 18.25 18.75 883
"How important to you, is the 121.5 2925 16.25 20.75 203
ability to modify such a tool?"
TABLE 6.13: Exemplar user creation using Ty
Guided (T7)
Original Processed Result
Not applicable Not applicable

Table 6.14 shows an example reconstruction result (T,), with the associated input image and pre-

processed silhouette. This example demonstrates a common issue regarding the pre-processing

stage of the system. In this case, the user has provided an input image that contains multiple dif-

ferent depictions of swords, with various obfuscating effects. This resulted in a partial silhouette,
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which then had a large impact on the appearance of the end result.

TABLE 6.14: Exemplar user creation using T, including the input data [103],
pre-processed input data and the final result outputs.

Reconstruction (T»)

Original Processed ‘ Result

-

Table 6.15 shows an example interpolation result (T3), with the two input images and their pro-
cessed silhouettes, marked A and B. As can be seen, the user had chosen images of bows, rather
than swords. The output appears to not match any of the characteristics of the input images,
aside from having a long, thin profile. This is a result of the focus on sword shapes in the training
data. This focused approach limits the model’s ability to generalise to other types of shape and
more unconventional sword designs. User confusion could be avoided by including an object
detection layer during pre-processing, to filter out inputs that do not contain swords. If shape
generalisation is to be further explored, this may be achieved with a wider variety of shapes types
in the training data, and a larger number of trainable parameters.
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TABLE 6.15: Exemplar user creation using T3, including the input data,
pre-processed input data and the final result outputs. The two input images, that
are interpolated between, are marked A[506] and B[507].

Interpolation (T3)

Processed ‘ Result

/
q
>
A
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Table 6.16 shows an example of two designs generated by the same participant using the random
technique (T4). It can be observed that results are more simple than that of parameter guided
creation, though still somewhat resemble swords. This also highlights that many results of the
random generation are unremarkable, due to the random vector generation pulling from a normal
distribution.

TABLE 6.16: Exemplar user creation using Ty

Randomisation (T4)

Original Processed ‘ Result

Not applicable Not applicable

N
Bl
L
R
N
W

Interview Results

Of the 18 participants, 3 agreed to a follow up interview. Participants generally confirmed the
questionnaire results in the interviews, stating a clear preference for parameter guided creation
(T1) and randomisation (T4). Interviewees stated that they did not find reconstruction (T») and
interpolation (T3) to be as useful due to output not being high enough quality to justify the effort
required to find or create the inputs. In many cases, the output designs did not match or have
a close enough likeness to the input images for this technique to be useful. On the contrary,
interviewees stated that they preferred parameter guided creation for the amount of control it

provided, and randomisation for the speed at which they could generate new ideas.

Participants confirmed the analysis of demographic impact shown in section 6.1.2. One intervie-
wee mentioned that they found the tool easy to pick up as they were familiar with graph interfaces
from using Shader Graph and Substance Designer in the past. Mentioning that although the
results did not meet their standards for final assets, they have experienced contexts in which such
a tool would be beneficial, citing "generating inspiration" and "exploring ideas" as applicable use
cases. They also suggested that these contexts are not so common as they usually design in 2D
before creating 3D models, stating that a similar tool in 2D would be more useful.

One participant stated that they have no experience with 3D modelling tools, and that the pa-
rameter guided design gave them a middle ground where they could design 3D shapes without
technical know-how. They expressed that this could be improved by having visual controls such
as drag-able handles, instead of direct number inputs. The same participant also stated that the
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low time investment and effort involved in the randomisation technique could help them with
“creative block”.

When asked to consider how their preference would change if reconstruction and interpolation
produced results that closely matched the inputs they provided, participants stated that they
would consider these techniques more useful. But between the two, they considered interpolation
more versatile as it can be used to achieve the same result as reconstruction.

Some further suggestions were made regarding interaction with the tool itself. One interviewee
stated that the tool should have pre-set data for parameter guided creation, so that the user does
not have to start from scratch. This way they can alter existing conventional sword shapes, which
would speed up the design process.

A participant also expressed the importance of enjoyment in the process of designing, and that
the more they enjoy using a system, the more motivated they are to work with it to produce
designs, and the more useful they find it. This participant suggested the addition of a feature
that would allow the user to preview their designs in a final context, such as in the hands of the
character it will belong to. This suggestion is rather specific to the scenario that was provided
in the study, however, the underlying point remains that such tools can be made more useful by
incorporating features that stoke the user’s creativity.

6.2 Concluding Discussion

In this chapter, a proof of concept prototype tool has been developed and tested with game
designers and developers. This tool implemented the four techniques of parameter guided gener-
ation, image reconstruction, interpolation and randomisation, covering the breadth of generative
techniques within GaGeTx. To achieve this a VAE was trained on a novel dataset of 13,728 sword
profile silhouettes. The final model was integrated within the Unity game engine [475], then tested
with 18 game designers and developers. The focus of testing was to examine user preferences
between the various techniques and to obtain insights into how users best utilise such a tool. Dur-
ing testing, data collection was achieved via repeated measure questionnaires for each technique,
overall preference questions for the tool, and semi-structured interviews on an opt-in basis.

Results of the testing suggests that users most prefer the parametric guided technique, followed
by randomisation, then interpolation and image reconstruction. Though the image reconstruction
and interpolation technique implementations were shown to produce poor results, participants,
as suggested by ratings for perceived speed and controllability and confirmed within interviews,
had lower preference for these techniques for reasons other than output quality. Instead, the
rigidity of their control being limited to the input image they provided, and the time it takes to
source an image as input both reduced the appeal of these techniques. It is expected that the
ratings of all techniques would improve if the tool itself produced higher quality outputs. Future
work should re-examine this with improved, generative models to determine the impact output
quality has on these perceptions. As suggested by the interview results, users expect to do some
level of manual design or refinement when creating assets to include in their final video game
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products. This naturally shifts interest to the simpler and faster techniques that help users to come
up with ideas that they can then refine, as opposed to techniques that produce a close to final
output. When comparing the results of questions asked in the initial mock-up study with results
from the prototype testing, the latter was rated higher for usefulness. Which is to be expected

considering the prototype is functional, while the mock-up consisted of a Ul in isolation.

Table 6.17 presents the correlations between the rating of usefulness for each technique and the
ratings of quality, speed and control. As shown, each technique correlates differently with the three
ratings. The usefulness rating of the parametric guided technique is positively correlated with the
ratings of speed and control, suggesting that speed and control assessments are more relevant than
quality assessments to the usefulness of the method. For reconstruction, quality and control are
more relevant than speed and for randomisation, quality and speed are more relevant that control.
Interestingly, usefulness of the guided technique does not significantly correlate with quality,
while the usefulness of randomisation does. For the guided technique, this is to be expected, as the
output quality is largely dependent on the effort of the user. The more detail and refinement added
through parameters the more elaborate the result. For randomisation however, better quality can
be beneficial as it reduces the effort required to adapt the asset, and provides greater inspiration.
The perceived usefulness of interpolation has a positive correlation with speed, and no significant
correlation with quality and controllability. This may be because the output quality is dependent
on the quality of the two inputs. Similarly, controllability may be less relevant, as it comes in
the form of selecting the inputs, leaving little need for further controls. Figure 6.2 presents these
relationships with green lines for relevance and a dashed red line for partial irrelevance.

The above is a valuable insight in determining which metrics to focus on when selecting an
approach, given a chosen technique. While it was not possible to observe the importance of each
individual metric in relevance to each technique, the importance of the broader categories of
quality, performance and controllability are captured through user perceived quality, speed and
control.

Reconstructed Output Quality Random

How in control

Guided Output Speed Interpolated

FIGURE 6.2: Relationship between the perceived usefulness of each tested
technique and the three rating types: Quality, Control and Speed.

Table 6.18 presents the correlations between the usefulness ratings of each technique and the
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Usefulness of: Quality Speed Control

Guided Norelation Correlation Correlation

Reconstructed Correlation No relation  Correlation

Interpolated ~ Norelation Correlation No relation

Random Correlation Correlation No relation

TABLE 6.17: Correlations between the perceived usefulness of each tested

technique and the three rating types: Quality, Speed and Control. Cells are

labeled "Positive” or "Negative" for statistically significant positive or negative

correlations (P < 0.05). Cells are labeled "Partial positive" or "Partial negative"

for non-statistically significant positive or negative correlations (P > 0.05). Cells
are labeled "No relation" where significance exceeds 0.1 (P >0.1).

choice of usage in the pipeline. These results are coherent with what would be expected, and
are confirmed in part within the interviews. In essence, this maps what the participants want
from the tool to the techniques they found more useful. Generating inspiration and exploring ideas
are both use cases in which quality is not necessary. However, as stated in the interviews, the 3D
stage of creation is usually past the ideation phase so it is unlikely that this would find real use,
thus connecting this with low usefulness ratings. Creating placeholder assets requires that to some
degree, you know what kind of asset you will need, and creating assets from designs implies that
the intended artefact is already designed. Higher ratings of the parametric guided and image
reconstruction techniques, as expected, did correlate with interest in creating placeholder assets
and assets from designs. This is because it is possible to specify the general shape of what you
want, using these techniques. While users are not interested in blending or creating random
designs in this context.

As expected creating variations of assets and player made content were two options that were selected
with the lowest frequency. None of the four techniques facilitated the ability to create variations
of designs and player made content is an uncommon use case and requires a bespoke solution
depending on the product. The choice of creating assets from scratch positively correlates with the
usefulness of each of the techniques due to it being a generic use case, as well as it being possible
to create assets from scratch via all techniques.

The results of this study provide insights into how game designers and developers view gener-
ative methods for graphical assets, which techniques they prefer and which aspects are of most
importance when assessing the usefulness of each technique. Findings both confirm, answering
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Guided Reconstructed Interpolated Random
Negative Negative Negative No
Generating inspiration correlation correlation correlation relation
Partial negative Negative Negative Negative
Exploring ideas correlation correlation correlation correlation
Positive Positive No Partial positive
Creating placeholders correlation correlation relation correlation
Partial positive No No Negative
Creating variations of assets correlation relation relation correlation
Positive Positive No No
Creating assets from designs correlation correlation relation relation
Positive Positive Positive Positive
Creating assets from scratch correlation correlation correlation correlation
Partial positive No No Negative
Player (or user) made content correlation relation relation correlation

TABLE 6.18: Correlations between pipeline choices and technique usefulness.
Cells are labeled "Positive" or "Negative" for statistically significant positive or
negative correlations (P < 0.05). Cells are labeled "Partial positive" or "Partial
negative" for non-statistically significant positive or negative correlations (P

>0.05). Cells are labeled "No relation" where significance exceeds 0.1 (P >0.1).

some key questions regarding the GaGeTx and metric frameworks, providing the means to ex-

pand and give clarity to some of the processes involved. Consequently, this relationship can guide

the selection of appropriate metrics for evaluating a method, depending on the technique.
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6.3 Expanding GaGeTx

Following the findings in this chapter, the needs and preferences of users have been integrated
into the GaGeTx framework. Figure 6.3 shows the expanded framework, including the user goal,
which encompasses intent and method priority. User intent represents the general task that the
graphical asset generator must fulfil and reflects the point in the design and production pipeline
that it will target. This consists of the four applications as discussed in chapter 5. The method
priority represents the preference for the generalised user-centric metric types: Speed, Quality and
Controllability. While these metric groupings have been shown to have affinities with different
technique types in this chapter’s findings, this priority represents the individual user’s preference,
which may deviate from this trend.

User intent is considered at the point of technique selection and is used to determine the appropri-
ate range of technique interaction types and processes that may be applied. Figure 6.4 presents the
application of intent to technique choice. Here, user intent is split into four sections, spanning the
two relevant stages of design and development: design/prototype and production; and aligned
with the four user idea fidelity groupings. These groupings are ordered by the level of pre-design
needed, and by definition, the minimum complexity or quality of the required inputs. At the
lowest level, wherein there is no pre-design required, random techniques can be used to generate
inspiration. In cases where the user has "some idea" about what they want out of the generator,
such as when "exploring ideas" or "creating placeholder assets", guided techniques may be used
for working with such limited designs or constraints. Here random seed interaction may be
used as a supplement to other interaction types in order to help with developing and exploring
ideas. As the level of pre-design becomes more specific and complex, the creative load of the
technique becomes more specific. When the user is in the production phase of a project, they
may have finished or semi-finished assets they wish to create variations of, or arrange in a larger
environment i.e. the user has "partial designs" to work with. This level encompasses arranged,
interpolated and style transferred techniques. In the final level, users have "full designs" that
must be formed into a final or close to final asset. A reconstructed technique should therefore
be used, as the intent is to match the input design as faithfully as possible, without randomness,
variation or creative expression from the generator.
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As discussed and shown in chapter 2 there are many examples of graphical asset generators in
the literature. As current techniques and approaches are explored further, and new techniques
and approaches emerge, the number of proposed implementations will only grow. This makes it
challenging to systematically select or devise the most appropriate implementation for a given use
case, considering user needs or preferences. With the categorisation of metrics in chapter 2, and
the discovered affinity between technique process and metric type from chapter 4, it is possible to
select the best implementation for the user’s needs. Figure 6.5 presents the selection process for the
approach and its implementation, based on the chosen technique and user method priority.

Initially, the available approaches are filtered by the chosen asset type and technique. A set of
metrics are then used to rank the approach implementations based on user needs, from which the
highest scoring approach implementation is selected. Metrics that have been used in the selected
approaches from the previous step, form the pool of available evaluation metrics. Of the three
main types of metric introduced in chapter 2, two are dependent on user need. These are artefact
quality and operation metrics. In line with the depiction in chapter 4, these are broken down into
three groups of metric: quality, control and speed. Quality refers to all forms of quality metric,
shown in figure 3.4, while control refers to the controllability metrics shown in figure 3.5 and
speed refers to the speed operation metric shown in figure 3.5. The selected technique process first
determines which two of these metric groups are appropriate to assess based on the established
affinities from chapter 4. For each metric group, a metric from the approach relevant pool is
selected. Approach implementations are then assessed using both selected metrics and ranked. To
rank approach implementations using the two selected metrics, a multi-criteria decision-making
(MCDM) approach can be used [49].

Artefact validation metrics can only be used to compare methods that use the same datasets.
Therefore it is not possible to rank most approach implementations in this way. They are however
useful for evaluating every method individually to determine if they produce valid outputs. If
a method fails to produce valid outputs, then it is not usable.

6.3.1 Chapter summary

In this chapter a user study was conducted with game designers and developers to observe the
perceived usefulness, quality, speed and controllability of each technique in the proof-of-concept
prototype from chapter 5. Results of this study found that quality, speed and controllability ratings
impact the perception of usefulness differently depending on the technique used. This informed
the expansion of the GaGeTx framework by incorporating user needs in the form of intent and

priority, providing more clarity in how decisions are made in the framework process.
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In the previous chapter, a user study was conducted with game designers and developers to
observe the perceived usefulness, quality, speed and controllability for each technique imple-
mented by the proof-of-concept prototype tool. Results of this study found that quality, speed and
controllability ratings impact the perception of usefulness differently depending on the technique
used. This informed the expansion of the GaGeTx framework by incorporating user needs in the
form of intent and priority, providing more clarity in how decisions are made in the framework
process. This chapter will conclude the thesis, starting with a summary of chapters, followed by
a comprehensive presentation of the highlights and contributions, leading into a discussion of
the limitations, and avenues for future research.

7.1 Summary of thesis

Starting with a systematic literature review in chapter 2, where 280 accepted journal and con-
ference papers were examined out of an initial pool of tbd following the PRISMA protocol,
thus achieving objective 1. Inductive thematic analysis led to the formulation of the GaGeTx
framework (section 2.3), which categorises the main aspects of graphical asset generators and
presents a logical process for selecting these aspects, thereby achieving objective 2. Following
this, the GaGeTx framework has been expanded to facilitate the nascent interest in multimodal
techniques in section 2.4.1.

As identified in chapter 2, the core framework covers the techniques and approaches to asset gen-
eration, but not the methods by which to evaluate and compare the many applications presented.
Chapter 3 introduces framework the for evaluation metrics that can be applied to graphical asset
generators, resulting from a further ITA which targets the methods and metrics used to evaluate

generators in the literature.

These findings lead into chapter 4, in which the needs and preferences of game designers and
developers were examined through a mixed methods user study in order to achieve objective
3. Through a combination of the statistical analysis of questionnaire data and thematic analysis of
interview data, it was found that game designers and developers prefer the use of generative tools
in the early stages of design, such as creating placeholders or generating inspiration. Furthermore,
a preference for integrated solutions is observed, along with the need for configurability.

Building on these findings to achieve objective 4, a proof-of-concept prototype was designed and
developed following the RAD methodology in chapter 5. The prototype tool consisted of a VAE

for generating 3D sword assets, which was integrated into the Unity engine using the Barracuda
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API [474]. This GAG tool was developed to implement reconstruction, interpolation, guided and
random techniques, representing each of the idea fidelity groupings introduced in chapter 2.

The prototype developed in chapter 5 was then tested using a mixed methods approach in
chapter 6, with a focus on quality, speed and controllability evaluation, derived from chapter 3.
The perceived usefulness of each technique is found to correlate with different evaluation types.
Suggesting that users associate the usefulness of each technique with specific evaluation criteria.
This achieved objective 5. Following this, GaGeTx was refined to include findings from chapters
4 and 6; incorporating the affect of user preference and needs. This resulted in the addition of the
user goals aspect to the framework, encompassing intent and method priority. Intent represents the
chosen application within the design and development pipeline, while method priority presents
the user’s preferred evaluable characteristic. A mapping between intent and the technique was
developed, allowing for the selection of appropriate techniques based on the intent. Furthermore,
the findings in the user studies informed a procedure for selecting the best approach given the
user needs and priorities.

7.1.1 Highlights and contributions

Throughout this thesis the following contributions have been made via the fulfillment of the 5
objectives laid out in chapter 1. The following subsections will present these contributions in

order of prominence.

Contribution Objective

GAGeTx framework Objective 2

A systematic review of state-of-the-art GAG Objective 1
literature.

User preference and applications for GAGs. | Objective 3 and 5

Proof-of-concept prototype generative tool. Objective 4

A method for formulating training datasets Objective 4
for GAGs, and a novel sword shape dataset.

TABLE 7.1: Summary of research contributions.
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GAGeTx framework

The GAGeTx framework is the primary contribution of this research, addressing objective 2 by
conceptualising the key aspects of GAGs and providing guidance on formulating and selecting
GAGs through user derived requirements. The framework serves multiple key roles: it eluci-
dates the varied and complex range of state-of-the art GAG methods, consolidates the concepts,
approaches and techniques fragmented across the many research domains that benefit from
GAGs, and provides systematic guidance for selecting and developing the most appropriate
GAG tools in accordance to user intent and priority. By doing so, GAGeTx offers value to both
researchers and industry practitioners, enabling researchers to explore new methods with a
cohesive understanding of the field, and allowing game designers and developers to choose,
build and apply GAG tools that best meet their project needs.

As GAG methods continue to advance, it is evident that they can provide significant value by
streamlining and enhancing game design and production, particularly in the areas of ideation and
creative inspiration. With an increasing number of practitioners adopting generative tools for this
purpose [471], GAGeTx forms the foundation for understanding and applying GAGs as practical
tools, with user needs and requirements at its centre and allowing new GAG methods to be
situated within the wider context. As a step-by-step guide, GAGeTx addresses practical questions
users can answetr, such as: "What type of artefact is needed?", "For what purpose are these assets
being generated?", and "Should I prioritize quality, speed, or controllability?". It then connects
these considerations to the functional strengths of state-of-the-art methods, providing logical
and empirically-based guidance on selecting the appropriate technique, required inputs, and
implementation approach. By integrating empirical data from practitioners and users, GAGeTx
bridges the gap between GAG methods and their practical application in game design and
production pipelines. It also facilitates the prioritisation of user-perceptible metrics, enabling the
selection of the most suitable implementation approach for the task. Additionally, the framework
highlights the value of non-deep learning methods used for PCG, which can be easily overlooked
amidst the growing focus on deep-learning research.

GAGeTx represents the culmination of this research, integrating findings from objectives 1 to
5. It incorporates the GAG categories established by the outcome of objective 1, and has been
expanded, refined, and validated through the outcomes of objectives 3 to 5.

The GAGeTx procedure begins with determining the target asset type, followed by selecting a
technique based on user needs. The chosen technique is then implemented using a generative
approach, which is selected via evaluation based ranking, and format conversion is performed as
needed to meet the output requirements. The GAGeTx framework subsequently lays out a logical
process for choosing and selecting each aspect of a GAG. GAGeTx has been further refined in two
instances. The first being an adaptation resulting from the nascent advancements in multimodal
generative techniques, resulting in a more flexible definition of GAG techniques, involving the
distinction between technique interaction and technique process. The second augments the
decision process with considerations for user needs and preferences, based on insights obtained
from user study 1 and user study 2.
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Furthermore, effective evaluation is important for both improving and comparing GAG imple-
mentations. A comprehensive analysis of the metrics used to evaluate graphical asset generation
methods has been conducted, resulting in an additional metric selection framework. This iden-
tifies three main types of metric evaluation: Artefact validation, Artefact quality and Operational.
Artefact validation metrics are used for the purpose of verifying whether or not generated out-
puts match the intended asset type. These consist of both objective and perceptual similarity
metrics, which require corresponding ground-truth data to calculate. Artefact quality metrics
either assess specific characteristics of generated outputs, or utilise human-centred feedback or
perception. While operation metrics assess a method’s performance, such as speed and memory
usage, or controllability from a user perspective. This paves the way for the standardisation of
evaluation metrics, which will allow methods to be accurately compared and assessed, aiding
in the advancement of GAG solutions across all domains.

A systematic review of state-of-the-art GAG literature

The systematic literature review of state-of-the-art GAG methods serves as a foundational element
of this research. Not only does it establish the basis of the GAGeTx framework but it also identifies
the shared characteristics or aspects of current GAG methods. Furthermore, highlighting the
prevalence of different choices and approaches for different tasks, offering valuable insights into
the popularity and applicability of various techniques and approaches.

While existing research broadly covers PCG for games [164], procedural virtual worlds [429] and
deep-learning for content generation [294], none so far have endeavoured to consolidate genera-
tive methods applied across the full gamut of graphical applications. This left an incomplete view
of current GAG methods, and thus a large barrier to entry for researchers and practitioners new
to automated asset production. Through the comprehensive identification and categorisation of
state-of-the-art GAG methods the systematic literature review addresses this shortfall.

The systematic review of literature resulted in a collection of 280 papers spanning across major
databases between 2016 and 2024, a full list of which can be found in appendix A1l. GAG methods
have been applied in various fields of research and practice, from architecture to medical imaging.
All of these methods are aimed at the creation of graphical assets, which, due to their graphical
nature, may be applied cross-domain. The literature on graphical asset generation has so far been
fragmented across these different disciplines. This review centralises the understanding of the
various aspects of graphical asset generators, providing a basis for future research, encouraging
the cross-pollination of ideas between the various research domains that benefit from graphical
assets, and providing a point of reference for researchers and practitioners considering GAG
development and usage. Furthermore, this allows researchers to identify gaps and potential
applications of GAG methods within alternate domains, while fostering the development of
novel methods, highlighting more overlooked approaches and advancing promising research
directions. By identifying shared aspects of GAG methods, researchers and practitioners can
easily find and compare alternative methods based on those that share the same target asset type,
technique, inputs, approaches, or formats. Consequently informing the integration of appropriate
methods within design and production workflows.
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User preference and applications for GAGs

In pursuit of objectives 3 and 5, two user studies have been conducted to examine the UX pref-
erences and needs of game designers and developers regarding the use of GAGs in design and
production pipelines.

The initial iteration of the GAGeTx framework, being derived from research on specific GAG
methods, lacked the nuance necessary to address the user aspect of such tools. While existing
studies explore general user sentiments toward tools used in game production [215], and evaluate
the usage of generative tools for interactive game content such as levels [487], no prior research
has focused on the UX implications for GAG tools. This is integral to the appropriate application
of GAGs in the design and production of games. The first study addresses this by examining
game designer and developer preferences surrounding the use of GAGs in game design and
development applications. The output of this study is a set of guidelines, enabling game designers
and developers to incorporate GAG tools effectively within their pipelines catering toward design
and production intent, as well as implementation and integration. In addition, this provides a
clear direction for further research and development by identifying a key focus on early pipeline
applications, such as generating inspiration and exploring ideas, and identifying the importance of
augmenting and streamlining the asset design and production pipeline as opposed to completely

replacing it via automation.
For user intent, the following insights are presented:
1. Facilitate tool configurability.
2. Cater to early pipeline usage.
3. Augment a stage of design and development.
For GAG implementation or integration the following insights are presented:
1. Match the design language of the environment.
2. Use common and expected data formats.
3. Develop a suitable interface for the underlying interactions.
4. Integrate with application programming interfaces (APIs).

These insights and guidelines give GAG researchers and developers a core foundation for inte-
grating GAGs as tools that benefit design and production workflows with minimal friction and
user frustration. This also has great value in the adaptation of many existing methods, initially
formulated under a research context, into tools that are useful in practical settings.

In pursuit of objective 5, the second user study was conducted. This study established a link
between the conceptual GAG techniques and the pipeline applications explored in objective 3, as
well as connecting key perceptible metrics to each technique group. In doing so, this also validated
the prototype developed in objective 4. The findings provide insights into the measurement of
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usefulness for each technique type, highlighting which metrics are relevant and which are less ap-
plicable in each case. This identifies the appropriate metrics for evaluating the strength and utility
of GAG tools, based on their technique, allowing for them to be compared and improved with
regard to their usefulness as tools. Furthermore, the insights gained from this study contributed
to refining the GAGeTx framework, improving its utility as a comprehensive tool for guiding the
selection, application, and evaluation of GAG methods based on user needs and priorities.

To achieve this, user preferences were assessed in the context of the prototype tool, inspecting the
differences in favoured usage for the main technique process types depicted in GaGeTx. Users
are found to prefer to have full control over the output in the form of parametric modelling or
using a random seed technique in which they have minimal control. Users are found to associate
the usefulness of different techniques with different combinations of the three evaluation types:
quality, speed and controllability.

Proof-of-concept prototype generative tool

Building on the contributions of GAGeTx and incorporating general user preferences from the
findings of objective 3, a proof-of-concept prototype sword generation tool named Swordgen was
developed in pursuit of objective 4. This tool addresses the limitations of the mock-up testing
conducted in objective 3 by offering a functional, interactive implementation that validates the
GAGeTx framework. Furthermore, providing a platform for the second user-centered experiment,

allowing for a deeper exploration of UX considerations.

Swordgen is a mixed-initiative asset generation tool for offline asset creation during game design
and production pipelines, implementing GAG techniques at all levels of user-system initiative
balance. While this is demonstrated with its successful application to the sword generation task,
it is built as a highly configurable software framework integrated within the Unity engine, the
structure of which provides a scalable platform for integrated generative tools. At its core, this
system has two components, the first being a procedural shape algorithm, and the second being
a GAG. The procedural shape algorithm abstracts the low-level asset structure, such as mesh
data in this case, into a parametric system that simplifies and constrains the design space for
both manual human creation and automated GAG-based generation. This abstraction reduces
the complexity of implementing GAGs while embedding asset requirements like mesh topology,
optimisation, and the target data format, which are particularly important in the production of
game assets. It also facilitates easy user interaction, enabling edits within a unified interface. The
interface provides high level controls, access to GAG features and a live asset preview, as well
as direct structural and parametric controls for iteration and refinement through a graph view.
Both the procedural shape algorithm and the GAG can be swapped depending on the task. For
example, the procedural shape algorithm could be replaced with a parametric 2D icon system,
while a new GAG could be built or trained for this new purpose.

Furthermore, this is not limited to a single GAG system at one time. While Swordgen demon-
strates a range of techniques using a VAE-based GAG for proof-of-concept, further development
can scale the system to integrate multiple GAG techniques, each specialised according to the
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GAGeTx framework. This specialisation would ensure that each method is optimally suited to
its task, leading to the highest possible output quality in line with state-of-the-art standards. In
addition, this highlights the potential for specialised generative tools to improve and streamline

game design and production pipelines.

This tool implemented representative members of the four main technique process categories via
a single implementation. This tool uses a VAE in combination with a novel procedural modelling
system for generating 3D sword assets. To achieve this, the VAE is trained on a purpose built
sword shape silhouette dataset in combination with differentiable rendering. While the procedural
modelling system involves the chaining together of individual parametric segments with shape
defining parameters. The trained VAE is capable of taking an input silhouette and converting
it into procedural modelling parameters, taking two inputs and interpolating between the two to
produce output parameters, and generating parameters via a random latent vector. Representing
reconstruction, interpolation and random technique processes, as well as representing guided
techniques through the ability to manually input and iterate parameters.

A method for formulating training datasets for GAGs, and a novel sword shape dataset.

In the pursuit of objective 4, a method for formulating new shape-based datasets for graphical
assets has been developed to address the need for data in asset specific deep-learning GAGs for

games.

While generalised datasets such as ShapeNet [52] are crucial for learning a wide variety of shape
classes, such datasets do not cover the often specific shapes and styles required within games.
Given that different game genres and settings can require specialised assets, relying on general
datasets will result in inconsistent or poor quality artefacts. In these cases, it can be necessary to

create datasets tailored to these needs when developing deep-learning based GAGs.

The GAG dataset creation method, validated through its usage in Swordgen, enables researchers
and practitioners to generate bespoke datasets with complete control over content style and shape
variation, all without compromising on dataset size. This enables the production of large datasets,
comprised of thousands of samples, from manually curated sources. Dataset creators can tailor
the specificity or breadth of the content to suit their needs, even aligning it with their current
project designs by using their own concept art. This level of customisation would otherwise be
challenging to achieve due to the limited amount of source data.

The dataset creation method involves sourcing or producing a body of concept art, sample assets,
and photographic references, standardising their format, and augmenting them to create large,
asset-specific shape datasets. Through this method, a dataset of 13,728 sword silhouettes was
generated from 513 source images using data augmentation. This dataset was then used to
train the VAE component of the proof-of-concept prototype tool from objective 4. This was
instrumental in producing the functionality for reconstructing sword shapes from photos and

sketches, and learning sword features for random sampling and interpolation.
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7.1.2 Research Limitations

During the creation of the proof-of-concept-prototype it was not feasible to include all technique
process and interaction types due to time constraints, as achieving this would require multiple
approaches and implementations. Instead, representative techniques from each idea fidelity group
were included. Covering all categories would provide more granular insights with regard to
which techniques users prefer, and how they can be used in the development pipeline. In addition,
it was necessary to develop and fulfill these techniques through a single core implementation.
Therefore, an approach that was capable of all techniques was selected. Provided enough time,
each individual technique process should be fulfilled by an approach selected specifically for that
purpose. This would ensure the maximum quality and validity of generated artefacts; thus, more
faithfully representing state-of-the-art capabilities.

This research would benefit from accessing users from other game engine user-bases. While the
Unity engine [475] is currently one of the most popular game engines in use, employed in the
creation of many games each year, there is a multitude of other engines in use throughout the
industry. Though many of these are proprietary, others such as Unreal Engine and Godot are
openly accessible, providing APIs and frameworks for plugin and tool development. While the
Unity engine does have a broad user-base, other engines are popular for different types of product,
with which come different workflows and pipelines as well as user needs and preferences.

Due to the small sample sizes of the two user studies, findings cannot be generalised to a user-
base at large. Furthermore, some insights can only be derived by corroboration between the
quantitative and qualitative data. The findings, however, demonstrate validity and significance,
with parallel insights in larger-scale studies. For instance, there is a high amount of generative tool
usage for prototyping and concept work among users of generative Al in Unity game develop-
ment [471]. Participants for both user studies were recruited via a convenience sampling approach.
This was achieved through contacting gatekeepers of various organisations such as LUUG, BCS
Animation and Games specialist group and game design students. 16 and 18 participants were
recruited for user studies 1 and 2 respectively. With the number of creative games industry staff in
the UK alone being approximately 24,000 in 2023 [446], larger scale testing would be imperative
for supporting further insights. A more polished version of the tool with improved output
quality would help to generate interest in participation. Additionally, in-person monitoring of
participant’s usage of the tool would provide further insights into the usability, controllability
and effectiveness of the tool. Furthermore, the order in which mock-ups (study 1) and techniques
(study 2) were presented to participants was intended to incrementally introduce the tool’s
functionality. However, it is acknowledged that using a pre-defined order may have introduced
order effects, which could have influenced participant preferences. Future studies should address
this by randomising or counterbalancing [202] the order of repeated measures.

During the interviews conducted in both studies, note-taking was used to record participant
responses. This had the potential to introduce interviewer bias with regard the points recorded.
Future work should make use of audio recording and transcription to ensure that the full nuance

of participant responses can be analysed.
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7.1.3 Future Research and Development

This section will present the avenues for research in the immediate, short-term and long-term
future, as summarised in table 7.2. These are presented under three domains: Graphical asset gener-
ation, Evaluation and UX for generative tools. Further research into graphical asset generation entails ef-
forts to build on the GAGeTx framework and provide accessible, reliable generative tooling based
on user needs. Research into evaluation will seek to improve and standardise metrics and measures
surrounding GAG tools, thus aiding in selecting appropriate methods based on user needs, while
advancing GAGeTx. Further research in UX for generative tools will help to ensure that GAG
tools can be affectively and seamlessly deployed in design and production pipelines.

X Timeframe
Domain . . 4 - 3
Immediate future Short-term future Long-term future

Graphlcal'asset Web-based automated GAGeTx Library of integratable generative
generation methods.

Empirical studies on user preferences
Evaluation and requirements for controllability in
GAGs.

A framework for measuring
controllability in GAG tools.

Empirical studies on user preferences
and requirements for UX with respect
to GAG techniques.

UX guidelines for graphical asset
generation techniques.

UX for generative
tools

TABLE 7.2: Summary of future research and development.
Immediate future

In the immediate pursuit of research in the domain of graphical asset generation, GAGeTx should
be implemented as a web-based interactive tool, serving to improve the applicability and dis-
semination of this research. Thus far, the GAGeTx framework facilitates the choice of generation
method, based on user needs. An interactive web-based tool would guide a user through the steps
and selection process, retrieving appropriate matches from a growing database of state-of-the-art

methods, and facilitating the ranking of relevant matches based on metric preference.

With regard to evaluation, controllability continues to be a challenging aspect to meaningfully
measure. As is apparent from this research and others [464, 251], controllability and the balance
of initiative between user and algorithm are pertinent when it comes to the usefulness of a
given generative system. In order to support further understanding of the relationship between
controllability and the usefulness of GAG tools, further empirical user-centred studies should be
conducted. Such studies should examine the balance of initiative between user and GAG, how this
affects the preferred usage of GAGs, and how much control each interaction type provides.

In the immediate future regarding UX for generative tools, further investigation into user pref-
erences and requirements with respect to GAG techniques is necessary. According to Unity’s
game report 62% of developers that have begun adopting Al tools use them for asset generation
[471]. As more game designers and developers integrate generative systems into their workflows,
the demand for useful and user-friendly tools will only grow, highlighting a need for sustained
research into generative tool integration. Further user-centred empirical studies should seek to
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investigate questions such as "what interface features are most effective for each technique?" and
"what features are required, based on the type of design and production usage?". This would
lead to identifying intuitive interfaces for GAGs.

Short-term future

In the pursuit of advancing the domain of graphical asset generation, a library of integratable GAG
methods would serve to greatly improve the accessibility and applicability of GAG. Throughout
this research, generative methods for graphical assets have been documented comprehensively.
The many methods introduced and applied in the literature each independently solve problems
across a range of fields. Furthermore, there are many methods that serve the same purpose,
with varying benefits and drawbacks. Although it is valuable to develop and maintain a list
of these methods, as shown in appendix Al, a library of these methods including ready-made
implementations, would greatly enhance the accessibility and dissemination of GAG methods.
Achieving this would open up the possibility for plug and play GAG systems, configured based
on user need.

In the short-term regarding evaluation, building on the findings of empirical studies in the imme-
diate future, focus should be placed on expanding controllability findings into a framework for
mapping usage needs to interaction types and input complexity. By establishing controllability
factors, such a framework would provide guidance on selecting the correct GAG techniques,
based on the amount of control needed for a task. This would enable the comparison of GAG
methods that share similar levels of controllability, and in combination with UX preferences, allow

for the selection of GAG methods that match the balance of initiative users need.

In the short-term, the domain of UX for generative tools would benefit from a set of guidelines
to help creators of GAG tools to effectively integrate their solutions. While the current work
demystifies how each type of generative method can be used, it does not provide guidance for
how to present these methods as tools for end-users such as game designers and developers.
Building on experimentation in the short-term, the development of user experience guidelines
relating to technique processes and interaction types would help to address this gap. Such
guidelines should aim to provide best practices to ensure the efficient usage of graphical asset
generation methods, aiding in their adoptability.

Long-term future

Graphics have and will continue to have a large impact on how we communicate, plan and
entertain. Recent adoption of generative tools marks a huge turning point in how video games
are designed and developed, and more broadly in how digital graphics are created. When used
well, GAGs can serve as tools for streamlining design processes while preserving the human
essence of creativity, and provide those with non-graphical skill sets a method of expressing
their ideas visually. GAGeTx provides a starting point for future tools to incorporate the correct
state-of-the-art methods according to the needs and requirements of users.
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In the long-term, development of a modular, cross-engine software framework for graphical
asset generation would be highly beneficial. Such a system could provide users with a range
of methods to select and combine based on their needs. This would directly lead on from the
curation of generative methods achieved in the short-term. A tool of this kind would be highly
impactful, raising the ceiling for quality, variety and scale in game development, with additional

potential use cases outside of games.

In the long-term with regard to evaluation, efforts should be made to standardise and automate the
evaluation of GAGs. So far, the framework for metrics provides a descriptive presentation of met-
rics that are used in evaluating and comparing generative methods. However, with the wide varia-
tion in metrics used, comparisons are difficult to achieve unless all counterparts use the same met-
rics. Standardised metrics for generative techniques will ensure that new methods can easily be
compared with existing alternatives. Achieving this will first require an in-depth investigation into
which metrics best assess the performance of generative methods and the quality of their outputs.
This will inform a prescriptive model of evaluation metrics. Following this, existing approaches
may be assessed using these metrics, such that new and old methods can be ranked. This would
also serve to strengthen the effectiveness of a GAGeTx web-tool, or a game engine integrated
software framework, as it would facilitate the ranking of approaches for a given user goal.

With regard to UX for generative tools, research in the long-term should seek to examine the benefits
of moving beyond user interaction via GUL Natural user interfaces (NUIs) allow users to interact
with computers in a manner that feels more intuitive and natural, by use of gestures, voice
commands, and other forms of natural input. NUIs enhance UX by making software interactions
more seamless and engaging [258]. Generative tools and the game design and production process
at large may benefit greatly from more natural interaction methods, reducing the time and effort in
bringing ideas to fruition and reducing the time cost of learning new tools. Utilising multimodal
inputs, such as gestures and voice, allows for a richer interaction experience. This is evident
in applications like gesture recognition systems, which have been successfully implemented in
various fields, including medical applications and robotics [14, 313]. NUIs may also address
the balance of initiative in PCG by providing un-restrained controllability, allowing users to

intuitively provide as much input as necessary for a task, according to their capabilities.
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a concavity-aware geometric test to create 3D | Props, Vehicles, wise Qualitative observations distance
textured coarse models from concept art and | Furniture,
orthographic projections Characters
[31] A morphable model for the synthesis of | Face Deprojection Photo-wise | Reconstructed | Assessment Qualitative observations N/A N/A
3D faces
[228] TextureMe: High-Quality Textured | Textures Deprojection Photo-wise | Reconstructed | Comparative Metric  analysis  (Quantitative), | PSNR, SSIM, | 3D Scene,
Scene Reconstruction in Real Time assessment Qualitative observations Domain spe- | ScanNet
cific

[54] Dynamic Omnidirectional Texture Synthe- | Textures, 3D | Deprojection Photo-wise | Reconstructed | Comparative Qualitative observations N/A redwood-
sis for Photorealistic Virtual Content Creation | General, Furni- assessment 3dscan

ture, Props
[524] A 3D grape bunch reconstruction | 3D General Deprojection, Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative) Precision, Grape bunches
pipeline based on constraint-based optimisa- Grammar assessment Recall, F-Score

tion and restricted reconstruction grammar




[155] Realistic Procedural Plant Model- | Trees Deprojection, L- | Photo-wise | Reconstructed Comparative Qualitative observations, Metric | Domain spe- | N/A
ing from Multiple View Images System, Space assessment analysis (Quantitative) cific
Colonisation
[548] TexPainter: Generative Mesh Texturing | Textures Diffusion Textual, Guided Comparative Metric analysis (Quantiative), Quali- | Speed, FID N/A
with Multi-view Consistency Asset-wise assessment tative observations, Ablation study
[556] MaPa:  Text-driven Photorealistic | Textures Diffusion Textual, Guided Comparative Metric analysis (Quantiative), Quali- | FID, KID ABO, TMT
Material Painting for 3D Shapes Asset-wise assessment tative observations, Ablation study
[389] Texture: Text-guided texturing of 3d | Textures Diffusion Textual, Guided Comparative Metric analysis (Quantiative), Quali- | User score, | N/A
shapes Asset-wise assessment tative observations, Ablation study speed
[518] Blockfusion: Expandable 3d scene gen- | OP Exterior Diffusion, Asset-wise | Arranged Comparative Metric analysis (Quantiative), Quali- | CD,  Surface | 3D-FRONT,
eration using latent tri-plane extrapolation Autoencoder assessment tative observations, Ablation study normal error, | 3D-FUTURE
MMD, Cover-
age, 1-NNA,
EMD
[59] Subject-driven text-to-image genera- | 2D General Diffusion/Propagafiextual Guided Comparative Metric analysis (Quantiative), Quali- | User score, | DreamBench
tion via apprenticeship learning assessment tative observations, Ablation study speed, running

cost, CLIP

Score




[358] Localizing object-level shape variations | 2D General Diffusion/Propagafiextual Guided Comparative Metric analysis (Quantiative), Quali- | LPIPS, CLIP | N/A
with text-to-image diffusion models assessment tative observations, Ablation study Score, IOU
[195] Vectorfusion: Text-to-svg by abstracting | 2D General Diffusion/Propagafiextual Guided Comparative Metric analysis (Quantiative), Quali- | CLIP- N/A
pixel-based diffusion models assessment tative observations Similarity,

R-precision
[284] Magic3d: High-resolution text-to-3d | 3D General Diffusion/Propagafiextual Guided Comparative Metric analysis (Quantiative), Quali- | Speed, human | N/A
content creation assessment tative observations, Ablation study ranking
[132] Multi-target 3D Reconstruction from | 3D General, | Diffusion/Propagalbnto-wise | Reconstructed | Assessment Metric  analysis  (Quantitative), | Speed, Accu- | N/A
RGB-D Data Props Qualitative Observations racy
[552] Modeling hair from an RGB-D camera Hair Diffusion/Propagalhnto-wise | Reconstructed Comparative Qualitative observations N/A N/A

assessment

[140] Dijkstra-based Terrain Generation Using | Terrain Diffusion/PropagaHarametric | Guided Comparative Metric  analysis  (Quantitative), | Speed N/A
Advanced Weight Functions assessment Qualitative observations
[24] Feature-based volumetric terrain gener- | Terrain Diffusion/Propagafiketch- Guided Assessment Qualitative observations, Speed test Speed N/A
ation Perlin Noise wise




[390] High-Resolution Image Synthesis with | 2D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | FID, Inception | LAION-400M
Latent Diffusion Models Decoder assessment tative observations Score,  Preci-
sion,  Recall,
PSNR, SSIM,
LPIPS
[375] Learning Transferable Visual Models | 2D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | Accuracy N/A
From Natural Language Supervision Decoder assessment tative observations
[397] Photorealistic Text-to-Image Diffusion | 2D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | FID, User score, | COCO, Draw-
Models with Deep Language Understanding Decoder assessment tative observations, Ablation study CLIP Score Bench
[575] Unpaired Image-to-Image Translation | 2D General Encoder- Photo-wise | Style trans- | Comparative Metric analysis (Quantiative), Quali- | User score, | Cityscapes
using Cycle-Consistent Adversarial Networks Decoder ferred assessment tative observations, Ablation study FCN, Accuracy,
(0)8)
[539] Scaling Autoregressive Models for | 2D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | FID, Auto- | C4, BERT,
Content-Rich Text-to-Image Generation Decoder assessment tative observations, Ablation study mated caption- | LAION-400M,
ing evaluation, | FIT400M,

User score

JFT-4B




[550] Adding Conditional Control to Text-to- | 2D General Encoder- Textual, Guided Comparative Metric analysis (Quantiative), Quali- | Human rank, | LAION-5B
Image Diffusion Models Decoder Sketch- assessment tative observations, Ablation study FID, CLIP
wise Score
[304] Att3d: Amortized text-to-3d object syn- | 2D General Encoder- Textual Guided Assessment Metric analysis (Quantiative), Quali- | R-precision, DF27
thesis Decoder tative observations, Ablation study running  cost,
speed

[482] Clipasso: Semantically-aware object | 2D General Encoder- Photo-wise | Style trans- | Comparative Metric analysis (Quantiative), Quali- | confusion N/A
sketching Decoder ferred assessment tative observations matrix
[116] Clipdraw: Exploring  text-to- | 2D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | CLIP- N/A
drawing synthesis through language-image Decoder assessment tative observations Similarity
encoders
[319] Occupancy Networks 3D General Encoder- Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | IoU, CD, | ShapeNet

Decoder assessment tative observations, Ablation study Normal Consis-

tency




[184] Neural Template: Topology-Aware | Furniture, Vehi- | Encoder- Photo- Reconstructed, | Comparative Metric analysis (Quantiative), Quali- | Point-to- ShapeNet
Reconstruction and Disentangled Generation | cles, Props, 3D | Decoder wise, Ran- | Interpolated, assessment tative observations surface-
of 3D Meshes General dom seed, | Style trans- distance,
Asset-wise | ferred, Ran- CD, Light Field

dom Distance
[368] DreamFusion: Text-to-3D using 2D | 3D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | R-precision MS-COCO
Diffusion Decoder assessment tative observations, Ablation study
[297] SyncDreamer: Generating Multiview- | 3D General Encoder- Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | PSNR, SSIM, | Objaverse,
consistent Images from a Single-view Image Decoder assessment tative observations, Ablation study LPIPS, CD, IoU | Google

Scanned Object

[371] Magic123: One Image to High-Quality | 3D General Encoder- Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | PSNR, NeRF4, RealFu-
3D Object Generation Using Both 2D and 3D Decoder assessment tative observations, Ablation study LPIPS, CLIP- | sionl5
Diffusion Priors similarity
[527] Dream3d: Zero-shot text-to-3d synthesis | 3D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | FID, CLIP | LAION-5B
using 3d shape prior and text-to-image Decoder assessment tative observations, Ablation study precision

diffusion models




[179] Mesh-controllable multi-level-of-detail | 3D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | CLIP- N/A
text-to-3D generation Decoder assessment tative observations, Ablation study Similarity,
CD, speed,
memory usage,
user score
[160] Text-image conditioned diffusion for | 3D General Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | CLIP- T3Bench
consistent text-to-3D generation Decoder assessment tative observations, Ablation study Similarity
[152] Diverse part synthesis for 3D shape | 3D General Encoder- Asset-wise | Guided Comparative Metric  analysis  (Quantitative), | Euclidean ShapeNet
creation Decoder assessment Qualitative observations distance, CD,
EMD
[58] Deep3DSketch-im: rapid high-fidelity | 3D General Encoder- Sketch- Reconstructed | Comparative Metric  analysis  (Quantitative), | CD, user score | ShapeNet-
AI 3D model generation by single freehand Decoder wise assessment Qualitative observations Synthetic,
sketches ShapeNet-
Sketch
[62] SDFusion: Multimodal 3D Shape | 3D General Encoder- Textual, Guided, Recon- | Comparative Metric  analysis  (Quantitative), | Uni-directional | Pix3D,
Completion, Reconstruction, and Generation Decoder Photo- structed assessment Qualitative observations Hausdorff Dis- | ShapeGlot,
wise, tance, Mutual | Text2Shape
Asset-wise difference, CD,

F-score




[216] Neural 3D Mesh Renderer 3D  General, | Encoder- Photo-wise | Reconstructed | Comparative Metric  analysis  (Quantitative), | IoU ShapeNet
Props, Furni- | Decoder assessment Qualitative observations
ture, Vehicles
[57] Fantasia3d: Disentangling geometry and | 3D General, | Encoder- Textual Guided Comparative Qualitative observations, Ablation | N/A LAION-5B
appearance for high-quality text-to-3d content | Textures Decoder assessment study
creation
[320] Latent-nerf for shape-guided genera- | 3D  General, | Encoder- Sketch- Guided Comparative Qualitative observations N/A N/A
tion of 3d shapes and textures Textures Decoder wise, assessment
Textual
[37] Text-to-building: experiments with | Buildings Encoder- Textual Guided N/A N/A N/A N/A
Al-generated 3D geometry for building Decoder
design and structure generation
[495] Rodin: A generative model for sculpting | Characters Encoder- Photo- Guided Comparative Metric analysis (Quantiative), Quali- | FID LAION-400M
3d digital avatars using diffusion Decoder wise, assessment tative observations, Ablation study

Textual




[44] Landmark Detection and 3D Face Recon- | Face Encoder- Photo-wise | Guided Comparative Ablation study, Metric analysis (Quan- | Speed, Inter- | CaricatureFace
struction for Caricature using a Nonlinear Decoder assessment titative), Qualitative observations pupil distance,
Parametric Model Inter-ocular

distance, Mean

error
[203] View Consistent 3D Face Reconstruction | Face Encoder- Photo-wise | Reconstructed Comparative Qualitative observations, Metric | Mean  align- | 300W-LP,
Using Siamese Encoder-Decoders Decoder assessment analysis (Quantitative) ment error AFLW2000-3D
[286] MeInGame: Create a Game Character | Face Encoder- Photo-wise | Guided Comparative Qualitative observations, Metric | PSNR, SSIM, | WildUV, RGB
Face from a Single Portrait Decoder assessment analysis (Quantitative), Questionnaire | User score 3D Face
[290] Free editing of Shape and Texture with | Face Encoder- Photo-wise | Reconstructed | Comparative Qualitative observations, Metric anal- | User score 3DCaricShop
Deformable Net for 3D Caricature Generation Decoder assessment ysis (Quantitative), Ablation study
[299] Towards Implicit Text-Guided 3D Shape | Furniture, 3D | Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | IOU, = EMD, | ShapeNet
Generation General Decoder assessment tative observations, Ablation study Inception score,

Accuracy, TS,
Frechet Point
Cloud Distance,
R-Precision




[122] ShapeCrafter: A Recursive Text- | Furniture, 3D | Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | CLIP- Text2Shape++
Conditioned 3D Shape Generation Model General Decoder assessment tative observations, Ablation study Similarity,
ShapeGlot-
Confidence,
FID
[327] AutoSDF: Shape Priors for 3D Comple- | Furniture, Encoder- Photo- Reconstructed, | Comparative Metric analysis (Quantiative), Quali- | Uni-directional | ShapeNet
tion, Reconstruction and Generation Vehicles, 3D | Decoder wise, Guided assessment tative observations Hausdorff
General Textual Distance, Total
mutual dis-
tance, IOU, CD,
F-score
[400] CLIP-Forge: Towards Zero-Shot | Furniture, Vehi- | Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | MSE, IOU, FID, | ShapeNet
Text-To-Shape Generation cles, Props, 3D | Decoder assessment tative observations, Ablation study MMD,  User
General score, MSE,
Accuracy
[246] Deep Learning-Based Pulmonary Artery | Medical Encoder- Photo-wise | Reconstructed | Comparative Metric analysis (Quantitative) 10U, MD N/A
Surface Mesh Generation Decoder assessment




[460] Diffuscene: Scene graph denoising | OP Interior Encoder- Asset-wise, | Arranged Comparative Metric analysis (Quantiative), Quali- | FID, KID, | 3D-FRONT
diffusion probabilistic model for generative Decoder Textual assessment tative observations, Ablation study Classification
indoor scene synthesis accuracy, KL
Divergence
[336] 3D Mesh Reconstruction of Foods from | Props Encoder- Photo-wise | Reconstructed Assessment Metric  analysis  (Quantitative), | Iou, Chamfer | N/A
a Single Image Decoder Qualitative observations distance, Ap-
proach specific
[196] Zero-shot text-guided object genera- | Props, 3D | Encoder- Textual Guided Assessment Metric analysis (Quantiative), Quali- | R-Precision COCO
tion with dream fields General Decoder tative observations, Ablation study
[430] Marionette: Self-supervised sprite learn- | 2D Environ- | Encoder- Asset-wise | Arranged Comparative Qualitative observations, Metric anal- | PSNR, IoU N/A
ing ment Decoder, CNN assessment ysis (Quantitative), Ablation study
[163] Leveraging 2D Data to Learn Textured | 3D General, | Encoder- Random Random, Assessment Metric analysis (Quantitative), | Inception score, | CUB-200-2011,
3D Mesh Generation Furniture, Vehi- | Decoder, CNN | seed, Reconstructed Qualitative observations FID, Kernel | BrnoComp-
cles, Characters Photo-wise inception Speed,
distance ShapeNet
[185] Neural Wavelet-domain Diffusion for | Furniture, Encoder- Random Random Comparative Metric analysis (Quantiative), Quali- | 1-NNA, Cover- | ShapeNet
3D Shape Generation Vehicles, 3D | Decoder, CNN | seed assessment tative observations, Ablation study age, MMD, CD,
General EMD




[362] Convolutional Occupancy Networks 3D General, OP | Encoder- Sketch- Reconstructed Comparative Metric analysis (Quantitative), Qual- | IoU, CD, | ShapeNet, Syn-
Interior Decoder, CNN | wise assessment itative observations, Ablation study Normal Consis- | thetic Indoor
tency, F-Score Scene Dataset,
ScanNet,
Matterport3D
[298] ISS: Image as Stepping Stone for | Furniture, Encoder- Textual Guided Comparative Metric analysis (Quantiative), Quali- | Frechet Point | ShapeNet,
Text-Guided 3D Shape Generation Vehicles, Props | Decoder, CNN assessment tative observations, Ablation study Cloud Distance, | CO3D
FID
[241] A deep-learning approach for direct | Medical Encoder- Photo-wise | Reconstructed | Comparative Qualitative observations, Metric | Dice, Jaccard, | MMWHS,
whole-heart mesh reconstruction Decoder, CNN assessment analysis (Quantitative) ASSD, Haus- | orCalScore,
dorff distance SLAWT, LASC
[508] Pixel2Mesh++: 3D Mesh Generation | Furniture, Encoder- Photo-wise | Reconstructed Comparative Metric analysis (Quantiative), Quali- | CD,  F-score, | ShapeNet
and Refinement from Multi-View Images Vehicles, 3D | Decoder, CNN, assessment tative observations, Ablation study 10U
General GCN
[387] Intuitive and efficient roof modeling for | Buildings Encoder- Photo-wise | Reconstructed Comparative Metric analysis (Quantitative) Speed, Ap- | N/A
reconstruction and synthesis Decoder, GCN assessment proach specific




[538] Multi-view Shape Generation for a 3D | Characters Encoder- Photo-wise | Reconstructed Comparative Metric analysis (Quantiative), Quali- | Average MPI-FAUST,
Human-like Body Decoder, GCN, assessment tative observations, Ablation study Euclidean UP-3D
CNN Distance, CD,

Mean Per Joint

Position Error,

10U
[76] Cloud2curve: Generation and vectoriza- | 2D Icons Encoder- Sketch- Reconstructed Comparative Qualitative observations, Metric | FID Quick, Draw!,
tion of parametric sketches Decoder, RNN | wise assessment analysis (Quantitative) K-MNIST
[245] PICO: Procedural Iterative Constrained | 3D General, | Evolutionary- Parametric, | Guided Comparative Metric analysis (Quantitative), Inter- | Domain  spe- | N/A
Optimizer for Geometric Modeling Props, Trees, | Algorithm Asset-wise assessment action, Questionnaire (Quantitative) cific, Speed

Terrain

[153] FAME: 3D Shape Generation via | Furniture Evolutionary- | Asset-wise, | Guided Comparative Metric  analysis  (Quantitative), | Speed, Accu- | N/A
Functionality-Aware Model Evolution Algorithm Parametric assessment Qualitative observations racy
[194] Example-based synthesis of three- | Clouds Expectation Photo-wise | Guided Comparative Qualitative observations N/A N/A
dimensional clouds from photographs Maximisation assessment
[231] ChartPointFlow for  Topology- | 3D General Flow-Based Random Random Comparative Various domain tests (Mixed) EMD ShapeNet
Aware 3D Point Cloud Generation seed assessment




[262] Controllable text-to-image generation 2D General GAN Textual Guided Comparative Qualitative observations, Metric anal- | Inception Score, | CUB-200-2011,
assessment ysis (Quantitative), Ablation study Error, Accuracy | COCO
[373] Mirrorgan: Learning text-to-image | 2D General GAN Textual Guided Comparative Qualitative observations, Metric | Inception Score, | CUB-200-2011,
generation by redescription assessment analysis (Quantitative), Questionnaire | R-precision, COCO
(Quantitative), Ablation study User score
[372] Learn, imagine and create: Text-to-image | 2D General GAN Textual Guided Comparative Qualitative  observations, Metric | Inception Score, | CUB-200-2011,
generation from prior knowledge assessment analysis (Quantitative), Questionnaire | R-precision, Oxford-102
(Quantitative) User score flower
[213] A Style-Based Generator Architecture | 2D General GAN Photo-wise | Interpolated, Assessment Metric analysis (Quantiative), Quali- | FID, Path | FFHQ
for Generative Adversarial Networks Random, tative observations, Ablation study length, Separa-
Guided bility
[212] Automatic generation of graphi- | 2D Icons GAN Random Random Assessment Metric  analysis  (Quantitative), | FID N/A
cal game assets using GAN seed Questionnaire (Quantitative)
[414] Deep marching tetrahedra: a hybrid | 3D General GAN Sketch- Reconstructed | Comparative Metric analysis (Quantiative), Quali- | CD, Normal | TurboSquid
representation for high-resolution 3d shape wise assessment tative observations, Ablation study Consistency,
synthesis LFD




[439] Naive Mesh-to-Mesh Coloured Model | 3D General GAN Random Random N/A N/A N/A N/A
Generation using 3D GANs seed
[126] GET3D: A Generative Model of High | 3D  General, | GAN Random Random, In- | Comparative Metric analysis (Quantiative), Quali- | CD, Light Field | TurboSquid,
Quality 3D Textured Shapes Learned from | Furniture, Vehi- seed, terpolated, assessment tative observations, Ablation study Distance, Cov- | ShapeNet
Images cles, Buildings, Textual Guided erage, MMD,
Characters, FID
Textures
[349] StyleSDF: High-Resolution 3D- | Face GAN Random Random Comparative Metric analysis (Quantiative), Quali- | FID, = Kernel | FFHQ, AFHQ
Consistent Image and Geometry Generation seed assessment tative observations Inception
Distance
[193] An Explorative Design Process for Game | Terrain, Height | GAN Random Random Assessment Metric analysis (Quantitative) Kolmogorov- NASA Visible
Map Generation Based on Satellite Images | map seed Smirnov test, | Earth
and Playability Factors Shapiro-Wilk
test
[440] Realistic and Textured Terrain Genera- | Terrain, Tex- | GAN Random Random Comparative Visual quality comparison (Qualita- | SSIM, MSE SRTM
tion using GANs tures, Height seed tive)

map




[453] Automatic generation of architecture | Buildings GAN Sketch- Guided Assessment Metric  analysis  (Quantitative), | FID N/A
facade for historical urban renovation using wise Qualitative observations
generative adversarial network
[45] Text and Image Guided 3D Avatar | Face GAN Textual, Guided Comparative Qualitative observations, Ablation | User score N/A
Generation and Manipulation Photo-wise assessment study
[567] SDF-StyleGAN: Implicit SDF-Based | Furniture, Vehi- | GAN Photo- Reconstructed, | Comparative Metric analysis (Quantiative), Quali- | Frechet Point | ShapeNet
StyleGAN for 3D Shape Generation cles, Props, 3D wise, Interpolated assessment tative observations, Ablation study Cloud Distance,
General Parametric FID, ECD, 1-
NNA, MMD,
Coverage
[60] IM-NET: Learning implicit fields for | 3D General GAN, AE Photo- Reconstructed, | Comparative Metric  analysis  (Quantitative), | LFD ShapeNet
generative shape modeling wise, Ran- | Random, assessment Qualitative observations
domseed | Interpolated
[551] Hair-GAN: Recovering 3D hair struc- | Hair GAN, Photo-wise | Reconstructed Assessment Qualitative observations N/A N/A
ture from a single image using generative Dif-
adversarial networks fu-
sion/Propagation




[279] Wavelet transform-assisted generative | 3D General GAN, Encoder- | Random Random Assessment Metric analysis (Quantiative), Quali- | CD, EMD, | ShapeNet
model for efficient 3d deep shape generation Decoder seed tative observations, Ablation study MMD, Cover-
age
[270] SP-GAN: sphere-guided 3D shape gen- | 3D General GAN, GCN Random Random Comparative Metric analysis (Quantitative), Visual | Minimum ShapeNet,
eration and manipulation seed assessment quality comparison, Ablation study matching SMPL, SMAL
distance, Cov-
erage, Frechet
Point  Cloud
Distance
[384] Towards Machine-Learning Assisted As- | 2D Characters | GANs Sketch- Style trans- | Explorative Qualitative observations, Metric analy- | RMSE, MAE, | N/A
set Generation for Games: A Study on Pixel wise ferred sis (Quantitative) Qualitative feedback | SSIM
Art Sprite Sheets
[124] Generation of Character Illustrations | 2D Characters GANs Sketch- Guided Assessment Metric  analysis  (Quantitative), | Loss N/A
from Stick Figures Using a Modification of wise Qualitative observations
Generative Adversarial Network
[520] Cali-sketch: Stroke calibration and | 2D Characters GANs Sketch- Guided Comparative Qualitative observations, Metric anal- | PSNR, SSIM, | CUHK  Face
completion for high-quality face image wise assessment ysis (Quantitative), Ablation Study FID, Precision, | Sketch

generation from human-like sketches

Recall




[528] CSA-GAN: Cyclic synthesized attention | 2D Characters GANs Sketch- Guided Comparative Metric analysis (Quantiative), Quali- | SSIM, PSNR, | CUHK  Face

guided generative adversarial network for wise assessment tative observations Visual infor- | Sketch, AR

face synthesis mation fidelity, | Face, WHU-IIP
LPIPS

[500] From Attribute-Labels to Faces: Face | 2D Characters GANs Parametric | Guided Assessment Metric analysis (Quantiative) Inception score, | CelebA, UvVA-

Generation Using a Conditional Generative FID NEMO

Adversarial Network

[172] MW-GAN: Multi-Warping GAN for | 2D General GANs Photo-wise | Guided Comparative Ablation study, Metric analysis (Quan- | FID, Accuracy | WebCaricature

Caricature Generation With Multi-Style assessment titative), Questionnare (Quantitative)

Geometric Exaggeration

[218] Style and Content Disentanglement in | 2D General GANs Photo-wise | Style trans- | Comparative Qualitative observations, Metric | FID, LPIPS CelebA, LSUN

Generative Adversarial Networks ferred assessment analysis (Quantitative)

[420] GAN-based Multi-Style Photo Car- | 2D General GANs Photo-wise | Style trans- | Comparative Ablation study, Metric analysis (Quan- | FID N/A

toonization ferred assessment titative), Qualitative observations,

Questionnaire (Quantitative)




[131] RPD-GAN: Learning to Draw Realistic | 2D General GANs Photo-wise | Style trans- | Comparative Qualitative observations, Metric | FID Places2, Stan-
Paintings With Generative Adversarial Net- ferred assessment analysis (Quantitative) ford Back-
work ground, CUHK
Face  Sketch,
CelebA
[542] Progressive Semantic Image Synthesis | 2D General GANs Photo- Guided Comparative Qualitative observations, Metric | SSIM, Incep- | CUB-200-2011
via Generative Adversarial Network wise, assessment analysis (Quantitative) tion score
Textual
[249] Synthesizing Images from Hand-Drawn | 2D General GANs Sketch- Guided Assessment Qualitative observations N/A Edges2Shoes,
Sketches using Conditional Generative Ad- wise Ut-Zappos50K
versarial Networks
[559] Sketch-to-Color Image with GANs 2D General GANs Sketch- Guided Assessment Qualitative observations N/A N/A
wise
[22] MISS GAN: A Multi-llluStrator style | 2D General GANs Photo-wise | Style trans- | Comparative Ablation study, Qualitative observa- | N/A GANILLA,
generative adversarial network for image to ferred assessment tions CycleGAN

illustration translation




[361] SAM-GAN: Self-Attention supporting | 2D General GANs Textual Guided Comparative Metric analysis (Quantitative), Qual- | Inception CUB-200-2011,

Multi-stage Generative Adversarial Networks assessment itative observations, Ablation study score, FID, | COCO

for text-to-image synthesis R-precision

[561] Customizable GAN: Customizable Im- | 2D General GANs Sketch- Guided Comparative Metric analysis (Quantiative), Quali- | Human rank CUB-200-2011,

age Synthesis Based on Adversarial Learning wise, assessment tative observations Oxford-102
Textual flower

[405] CAGAN: Text-To-Image Generation | 2D General GANs Textual Guided Comparative Metric analysis (Quantiative), Quali- | Inception score, | CUB-200-2011,

with Combined Attention Generative assessment tative observations FID COCO

Adversarial Networks

[192] Image-to-image translation with | 2D General GANs Photo-wise | Style trans- | Assessment Metric analysis (Quantiative), Quali- | User score, | Cityscapes

conditional adversarial networks ferred tative observations, Ablation study FCN

[359] StyleCLIP: Text-Driven Manipulation of | 2D General GANs Textual, Style trans- | Comparative Qualitative observations N/A N/A

StyleGAN Imagery Photo-wise | ferred assessment

[541] Art Font Image Generation with Con- | 2D Icons GANs Photo-wise | Style trans- | Comparative Qualitative observations N/A N/A

ditional Generative Adversarial Networks ferred assessment




[266] Attribute-Conditioned Layout GAN for | 2D Layout GANs Asset-wise | Arranged Assessment Ablation study, Metric analysis (Quan- | Speed, Overlap, | N/A
Automatic Graphic Design titative), Questionnare (Quantitative) | Alignment
[267] LayoutGAN: Synthesizing Graphic Lay- | 2D Layout GANs Asset-wise, | Arranged Assessment Metric  analysis  (Quantitative), | Overlap, Align- | RICO,
outs With Vector-Wireframe Adversarial Net- Sketch- Questionnaire ment, IoU Pix2Code
works wise
[165] Deep geometric texture synthesis 3D General GANs Asset-wise | Style trans- | Comparative Qualitative observations N/A Thingil0K
ferred assessment
[248] Masked 3D conditional generative | 3D General GANs Parametric | Guided Comparative Qualitative observations N/A N/A
adversarial network for rock mesh generation assessment
[230] CityCraft: 3D virtual city creation from | 3D General, | GANs Photo-wise | Guided Assessment Qualitative observations, Metric | SSE loss, RMSE | OpenStreetMap
a single image Buildings, analysis (Quantitative)
Roads

[346] Paired 3D Model Generation with Con- | 3D General, | GANs Random Random Comparative Metric analysis (Quantiative), Quali- | Average abso- | ModelNet
ditional Generative Adversarial Networks Furniture seed, assessment tative observations lute difference,

Parametric Average voxel

agreement ratio




[300] A Generative Adversarial Network for | 2D General GANs Random Random N/A N/A N/A N/A
Al-Aided Chair Design seed
[161] Constrained Generative Adversarial Net- | 2D General GANs Random Guided Comparative Metric  analysis  (Quantitative), | Error Ut-Zappos50K,
works for Interactive Image Generation seed, assessment Qualitative observations CelebA
Parametric
[498] Generative Image Modeling Using Style | 2D General GANs Random Guided Comparative Metric analysis (Quantiative), Quali- | Classification NYU Depth v2
and Structure Adversarial Networks seed, assessment tative observations, Questionnaire score
Photo-wise
[523] Weighted voxel: a novel voxel represen- | 3D General, | GANs Photo-wise | Reconstructed | Assessment Metric analysis (Quantitative) IoU ShapeNet
tation for 3D reconstruction Vehicles, Furni-
ture
[26] Multi-chart generative surface modeling | 3D General, | GANs Random Random, Comparative Qualitative observations N/A DFAUST,
Characters seed Interpolated assessment CAESAR
[489] Global-to-local generative model for 3D | 3D General, | GANs Random Random Comparative Metric  analysis  (Quantitative), | 3D Inception | ShapeNet,
shapes Furniture, seed assessment Ablation Study (Quantitative) score, Symme- | ImageNet
Vehicles try score, Distri-

bution distance




[278] SG-GAN: Adversarial Self-Attention | 3D General, | GANs Random Random, Comparative Metric analysis (Quantitative), Qual- | JSD, Coverage, | ShapeNet,
GCN for Point Cloud Topological Parts Gen- | Props, Furni- seed Interpolated assessment itative observations, Ablation study Minimum DFAUST
eration ture, Vehicles, matching dis-
Characters tance, Chamfer
distance, EMD
[77] Designing Co-Creative Al for Virtual | 3D  General, | GANs Random Guided Explorative Co-design Speed N/A
Environments Props, Vehicles, seed,
Furniture Parametric
[305] Single Image Shape-from-Silhouettes 3D  General, | GANs Photo-wise | Reconstructed | Comparative Metric analysis (Quantitative), Qual- | IoU, F-score ShapeNet,
Vehicles, assessment itative Observations, Ablation study FreiHAND
Furniture,
Characters
[237] Image-to-Voxel Model Translation with | 3D  General, | GANs Photo-wise | Reconstructed Comparative Metric analysis (Quantiative), Quali- | IoU, Surface | VoxelCity,
Conditional Adversarial Networks Vehicles, assessment tative observations distance VoxelHome
Furniture,
Characters
[455] EasyMesh: An efficient method to | 3D  General, | GANs Photo-wise | Reconstructed | Comparative Metric analysis (Quantitative), Qual- | Average PASCAL VOC,
reconstruct 3D mesh from a single image Vehicles, Furni- assessment itative observations, Ablation study euclidean ShapeNet
ture, Props distance




[283] Point Cloud Generation Using Deep Ad- | 3D General, | GANs Random Random, Comparative Metric  analysis  (Quantitative), | JSD, Coverage, | ShapeNet
versarial Local Features for Augmented and | Vehicles, Furni- seed Interpolated assessment Qualitative observations Minimum
Mixed Reality Contents ture matching
distance

[526] ARShape-Net: Single-View Image | 3D  General, | GANs Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | IoU ShapeNet,
Oriented 3D Shape Reconstruction with an | Vehicles, Furni- assessment tative observations, Ablation study Pix3D
Adversarial Refiner ture, Props
[236] Image-to-Voxel Model Translation for | 3D General, | GANs Photo-wise | Reconstructed Comparative Qualitative observations, Metric anal- | IoU SemanticVoxels
3D Scene Reconstruction and Segmentation | Vehicles, Fur- assessment ysis (Quantitative), Ablation study

niture, Props,

Characters
[277] HSGAN: Hierarchical Graph Learning | 3D  General, | GANs Random Random, Comparative Ablation study, Metric analysis (Quan- | JSD, Coverage, | ShapeNet
for Point Cloud Generation Vehicles, Furni- seed Interpolated assessment titative), Qualitative observations Minimum

ture matching dis-

tance, Frechet
point cloud dis-
tance, Chamfer
distance, EMD




[419] 3D Point Cloud Generative Adversar- | 3D General, | GANs Random Random, Comparative Ablation study, Metric analysis (Quan- | Frechet point | ShapeNet
ial Network Based on Tree Structured Graph | Vehicles, Furni- seed Interpolated assessment titative), Qualitative observations cloud distance,
Convolutions ture JSD, Coverage,

EMD, Chamfer

distance
[98] 3D building fabrication with geometry | Buildings GANs Random Random Comparative Metric  analysis  (Quantitative), | JSD, MMD, F- | CMP, ShapeNet
and texture coordination via hybrid GAN seed assessment Qualitative observations score, Chamfer

distance, EMD
[338] House-GAN: Relational Generative | Buildings GANs Random Guided Comparative Metric analysis (Quantiative), Qual- | Realism(User LIFULL
Adversarial Networks for Graph-Constrained seed, assessment itative observations, Questionnaire, | score), FID, | HOME’s
House Layout Generation Parametric Ablation study Graph edit

distance
[173] Semi-supervised adversarial recognition | Buildings GANs Photo-wise | Reconstructed Comparative Metric analysis (Quantitative), Qual- | MAE CMP fagade,
of refined window structures for inverse assessment itative observations, Ablation study LSAA
procedural fagade modelling
[273] PGAN: Prediction Generative Adversar- | Face, Normal | GANs Random Random Comparative Qualitative observations N/A BU-4DFE
ial Nets for Meshes map seed assessment




[409] Synthesizing Facial Photometries and | Face, Textures GANs Random Random Comparative Metric  analysis  (Quantitative), | Facial recog- | N/A
Corresponding Geometries Using Genera- seed assessment Qualitative observations nition dis-
tive Adversarial Networks tance, Sliced

Wassertein

distance
[353] Procedural 3D Terrain Generation using | Terrain GANs Random Random, Assessment Qualitative observations N/A AW3D30,
Generative Adversarial Networks seed Interpolated Google Earth

Engine API
[108] Full Face-and-Head 3D Model With | Face GANs Photo-wise | Reconstructed Comparative Metric  analysis  (Quantitative), | PSNR, SSIM WildUV
Photorealistic Texture assessment Qualitative observations
[247] 3D Face Reconstruction with Texture | Face GANs Photo-wise | Reconstructed Comparative Metric  analysis  (Quantitative), | Relative error, | LFW
Details from a Single Image Based on GAN assessment Qualitative observations RMSE
[272] Deep 3D caricature face generation with | Face GANs Photo-wise | Reconstructed Comparative Ablation study, Qualitative observa- | Speed, Incep- | WebCaricature,
identity and structure consistency assessment tions, Metric analysis (Quantitative), | tion score, | CelebA
Questionnaire Human score

[97] Terrain Edge Stitching Based On Least | Terrain, Height | GANs Random Random Assessment Metric analysis (Quantitative) FID Geospatial data
Squares Generative Adversarial Networks map seed cloud




[107] A Case Study of Generative Adversarial | Textures GANs Random Random Assessment Metric analysis (Quantitative) Inception score | VGLC
Networks for Procedural Synthesis of Original seed
Textures in Video Games
[449] Interactive Sketch-Based Normal | Normal map GANs Sketch- Guided Comparative Metric analysis (Quantitative), Qual- | Loss, Angular | Labeled PSB
Map Generation with Deep Neural Networks wise assessment itative Observations, Questionnaire | difference

(Quantitative)
[125] Automatic Generation of Background | OP Exterior GANs Sketch- Guided Assessment Qualitative observations N/A Fundamental
Computer Graphics by Deep Learning wise geospatial data
According to User’s Preference (Japan)
[222] Procedural Generation of Roads with | Roads GANs Sketch- Guided Comparative Qualitative observations N/A OpenStreetMap
Conditional Generative Adversarial Networks wise assessment
[496] Sketch2Map: A Game Map Design Sup- | Terrain, Height | GANs Sketch- Guided Comparative Qualitative observations N/A N/A
port System Allowing Quick Hand Sketch | map wise assessment
Prototyping
[425] Auto-Encoding Progressive Genera- | 3D General, | GANs, AAE Random Random Comparative Qualitative observations N/A SUNCG
tive Adversarial Networks for 3D Multi | Furniture, seed assessment
Object Scenes Characters, OP

Interior




[415] DeepSketchHair: Deep  Sketch- | Hair GANSs, Sketch- Guided Assessment Qualitative observations, Tutorial, In- | Speed, MSE 3DHW
Based 3D Hair Modeling Dif- wise teraction, Qualitative feedback, Speed

fu- test, Ablation study (Quantitative)

sion/Propagation
[490] Planit: Planning and instantiating indoor | OP Interior GCN Asset-wise, | Arranged Comparative Qualitative observations, Metric anal- | Classification SUNCG
scenes with relation graph and spatial prior Random assessment ysis (Quantitative), Ablation study accuracy,
networks seed speed, human

ranking
[176] Graph2plan:  Learning floorplan | OP Interior GCN Asset-wise | Arranged Comparative Metric analysis (Quantiative), Quali- | IoU RPLAN
generation from layout graphs assessment tative observations, Ablation study
[535] 3D Game Model and Texture Generation | Buildings, Genetic Algo- | Random Guided Assessment Questionnaire (Quantitative) N/A N/A
Using Interactive Genetic Algorithm Textures rithm seed,
Parametric

[442] Procedurally generated virtual reality | OP Exterior Genetic Algo- | Photo-wise | Arranged Explorative Interaction, Qualitative Feedback N/A N/A
from 3D reconstructed physical space rithm
[318] Multi-view 3D reconstruction and | 3D  General, | Genetic Algo- | Photo-wise | Reconstructed Assessment Qualitative observations N/A N/A

modeling of the unknown 3D scenes using
genetic algorithms

Props, Build-

ings

rithms




[233] Evolving 3D Models Using Interactive | 3D General, | Genetic Algo- | Random Guided Assessment Qualitative observations N/A N/A
Genetic Algorithms and L-Systems Props rithms seed,
Parametric
[19] 3D Computational Sketch Synthesis | Vehicles Genetic Algo- | Sketch- Guided Explorative Interview, Interaction, Questionnaire | N/A N/A
Framework: Assisting Design Exploration rithms wise (Quantitative), Qualitative feedback
Through Generating Variations of User (interview)
Input Sketch and Interactive 3D Model
Reconstruction
[13] Generation of Complex Underground | Terrain, Height | Grammars, Cel- | Parametric | Guided Assessment Speed test, Qualitative observations Speed N/A
Systems for Application in Computer Games | map lular Automata,
with Schematic Maps and L-Systems L-System
[410] Procedural City Generator Roads Grammars, Random Guided N/A N/A N/A N/A
L-System seed,
Parametric
[377] A Swarm Grammar-Based Approach | Terrain Grammars, Parametric | Guided Assessment Qualitative observations N/A N/A

to Virtual World Generation

L-System




[169] Visualization of A Three-Dimensional | Trees Grammars, Parametric | Guided Assessment Qualitative observations N/A N/A
Tree Modeling using Fractal Based on L-System
L-System
[94] CAD Shape Grammar: Procedural Gen- | 3D General Grammars, Parametric | Reconstructed | Assessment Metric  analysis  (Quantitative), | Memory usage, | N/A
eration for Massive CAD Model Shape Gram- Qualitative observations Speed
mar
[514] Volumetric procedural models for shape | 3D General, | Grammars, Parametric | Reconstructed Assessment Metric  analysis  (Quantitative), | Speed, Lines of | N/A
representation Buildings, Shape Gram- Qualitative observations code
Props, Furni- | mar
ture
[10] A 3D shape generative method for | 3D  General, | Grammars, Parametric | Guided Assessment Application case studies N/A N/A
aesthetic product design Vehicles, Props, | Shape Gram-
Furniture mar
[85] Proceduralization of urban models Buildings Grammars, Parametric | Reconstructed N/A N/A N/A N/A
Shape Gram-

mar




[101] Procedural Modeling of Round Building | Buildings Grammars, Parametric | Reconstructed Assessment Qualitative observations N/A N/A
Geometry Shape Gram-

mar
[240] Procedural Modeling in Archaeology: | Buildings Grammars, Parametric | Reconstructed | Assessment Metric analysis (Quantitative) FID, Hausdorf | N/A
Approximating Ionic Style Columns for Shape Gram- distance
Games mar
[200] Layered shape grammars for procedural | Buildings Grammars, Parametric | Reconstructed | Comparative Qualitative observations N/A N/A
modelling of buildings Shape Gram- assessment

mar
[84] Proceduralization for Editing 3D | Buildings Grammars, Parametric | Reconstructed Assessment Qualitative observations N/A N/A
Architectural Models Split Grammar
[264] 3D scene reconstruction using a texture | Buildings Grammars, Photo-wise | Reconstructed | Comparative Metric  analysis  (Quantitative), | Grammar pre- | N/A
probabilistic grammar Stochastic assessment Qualitative observations cipitate, Speed

Grammar




[205] Configurable 3D Scene Synthesis and | OP Interior Grammars, Asset-wise, | Arranged Comparative Metric  analysis  (Quantitative), | Absolute rel- | SUNCG,
2D Image Rendering with Per-pixel Ground Stochastic Parametric assessment Qualitative observations ative error, | ShapeNet
Truth Using Stochastic Grammars Grammar Square  rela-
tive distance,
Average log
error, RMSE,
Log RMSE,
Threshold
[89] Procedural feature generation for | Terrain Grammars, Parametric | Guided Assessment Speed test Speed N/A
volumetric terrains using voxel grammars Voxel Gram-
mar
[113] Learning geometric graph grammars Roads Graph Gram- | Random Guided Assessment Metric analysis (Quantitative) Speed, encoded | OpenStreetMap
mar seed, size
Parametric
[147] Organic building generation in minecraft | Buildings Growth- Random Random, Assessment Metric  analysis  (Quantitative), | Speed, Ap- | N/A
Algorithm, Cel- | seed, Guided Qualitative Observations proach specific
lular Automata | Parametric




[553] Shrubbery-shell inspired 3D model | 3D  General, | Growth- Asset-wise | Style trans- | Assessment Qualitative observations N/A N/A
stylization Props, Furni- | Algorithm, ferred
ture Space Colonisa-
tion
[260] Latent L-systems: Transformer-based | Trees L-System, Random Random Assessment Metric  analysis  (Quantitative), | Speed, ICTree N/A
Tree Generator Transformer seed Qualitative observations
[17] Applying machine learning algorithms to | Buildings MLP Parametric | Guided Comparative Metric analysis (Quantiative), Quali- | R-score, MSE, | N/A
architectural parameters for form generation assessment tative observations RMSE, MAE,
Accuracy, Pre-
cision, Recall
[316] Automated data-driven method for | Buildings MLP Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative) Precision, S3DIC
creating digital building models from dense assessment Recall, IOU,
point clouds and images through semantic Accuracy
segmentation and parametric model fitting
[477] Deep learning aided web-based | Buildings MLP Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | Precision, N/A
procedural modelling of LOD2 city models assessment tative observations Recall
[201] Procedural Content Generation via | OP Interior MLP Asset-wise | Arranged Assessment Metric analysis (Quantiative) Domain spe- | N/A
Machine Learning in 2D Indoor Scene cific




[547] Mesh deformation-based single-view | Props MLP Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | Reconstruction | N/A
3D reconstruction of thin eyeglasses frames assessment tative observations, Ablation study error, IOU
with differentiable rendering
[532] Deep 3D Modeling of Human Bodies | Characters MLP, CNN, | Sketch- Guided Comparative Ablation study, Metric analysis (Quan- | Reconstruction | AMASS
from Freehand Sketching Encoder- wise assessment titative), Qualitative observations error, MPJPE
Decoder

[263] Combining data-and-model-driven 3D | 3D General, | MLP, Deprojec- | Photo-wise | Reconstructed | Comparative Metric  analysis  (Quantitative), | Precision, Kinect V2,
modelling (CDMD3DM) for small indoor | Furniture, tion assessment Qualitative observations Recall, RMSE Washington
scenes using RGB-D data Props RGB-D, S3DIS
[53] Sofgan: A portrait image generator with | Face MLP, GAN Photo- Guided Comparative Qualitative observations, Metric anal- | FID, LPIPS, | CelebA, FFHQ
dynamic styling wise, assessment ysis (Quantitative), Ablation study 10U

Parametric
[178] Generating Procedural Materials from | Textures MLP, GCN Photo- Guided Comparative Metric analysis (Quantiative), Quali- | CLIP- Substance
Text or Image Prompts wise, assessment tative observations, Ablation study Similarity, Source

Textual Sliced Wasser-

setein




[330] A New Method for Modeling Clouds | Clouds Noise Parametric, | Guided Assessment Qualitative observations N/A N/A
Combining Procedural and Implicit Models Random
seed
[401] Procedural Environment Generation for | Terrain Noise Random Guided Assessment Metric analysis (Qualitative), Tutorial, | Domain  spe- | N/A
Cave 3D Model Using OpenSimplex Noise seed, Interaction, Qualitative Feedback cific
and Marching Cube Parametric
[424] Planetary Marching Cubes: A Marching | Terrain, Height | Noise Random Random N/A N/A N/A N/A
Cubes Algorithm for Spherical Space map seed
[136] Automatic procedural model generation | 3D General, | Parametrisation | Parametric | Reconstructed Comparative Metric  analysis  (Quantitative), | Domain spe- | N/A
for 3D object variation Props, Charac- assessment Qualitative observations cific
ters, Vehicles,
Furniture
[306] Synthesis of web layouts from examples | 2D Layout Patch  place- | Asset-wise | Arranged Comparative Ablation study, Metric analysis | RMSD, Accu- | RICO
ment assessment (Quantitative) racy, Speed
[462] A semantic approach to patch-based | Roads Patch  place- | Asset-wise, | Random Assessment Metric analysis (Quantitative) CNR(connected | N/A
procedural generation of urban road networks ment Random node ratio),
seed Density




[243] Procedural Content Generation for | 2D  Environ- | Perlin Noise Random Random Comparative Interaction, Questionnaire (Quantita- | N/A N/A
Game Props? A Study on the Effects on User | ment seed tive), T-test
Experience
[1] Generating 3D Model for Human | Characters R-CNN Photo- Guided Assessment Metric analysis (Quantitative) Error SPRING, CAE-
Body Shapes from 2D images us- wise, SAR, COCO
ing Deep Learning Parametric
[209] Nostalgin: Extracting 3D City Models | Buildings R-CNN, GAN Photo-wise | Reconstructed Assessment Qualitative and Quantitative observa- | Precision, COCO, Places2
from Historical Image Data tions by component Recall, Loss
[274] 3D Shape Reconstruction of Furniture | Furniture R-CNN, GCN Photo-wise | Reconstructed Assessment Metric analysis (Quantitative) Chamfer dis- | 3D-FUTURE
Object from a Single Real Indoor Image tance, F-score
[174] A study on the automatic generation of | 2D Layout RL Asset-wise | Arranged Comparative Metric  analysis  (Quantitative), | Text alignment, | N/A
banner layouts assessment Qualitative observations Overlap, Visual

balance
[285] Modeling 3D Shapes by Reinforcement | 3D General, | RL,IL Photo-wise | Reconstructed Assessment Qualitative observations, Metric | IoU, Chamfer | ShapeNet
Learning Vehicles, Furni- analysis (Quantitative) distance

ture, Props




[118] Procedural Generation of Multistory | Buildings Shape Gram- | Parametric, | Guided Assessment Interaction, Questionnaire, Metric | Domain spe- | N/A
Buildings With Interior mar Random analysis (Quantitative) cific

seed
[276] Rule-based automatic generation of logo | 2D Icons Shape Gram- | Random Random Assessment Qualitative observations N/A N/A
designs mar seed
[28] Design and Deployment of | Buildings Shape Gram- | Photo-wise | Reconstructed | Assessment Speed test, Running cost analysis Speed, Run- | CMP
Photo2Building: A Cloud-based Proce- mar, CNN ning cost
dural Modeling Tool as a Service
[342] Interactive sketching of urban procedu- | Buildings Shape Gram- | Sketch- Guided Assessment Tutorial, Recorded  interaction, | Accuracy, N/A
ral models mar, CNN wise Questionnaire (Mixed) RMSE, Speed
[544] Neural Procedural Reconstruction for | Buildings Shape Gram- | Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | Accuracy, UK  Environ-
Residential Buildings mar, Encoder- assessment tative observations IoU, Precision, | ment agency

Decoder, CNN Recall

[46] Facade geometry generation from low- | Buildings Shape Gram- | Photo-wise | Reconstructed Assessment Qualitative observations, Metric | RMSE N/A
resolution aerial photographs for building mar, Random analysis (Quantitative)

energy modeling

Forest




[112] AutoBiomes: procedural generation of | Terrain, Height | Simplex Noise, | Parametric, | Arranged Assessment Qualitative observations, Speed test Speed N/A
multi-biome landscapes map Erosion Asset-wise
[115] Procedural generation of 3D karst caves | Terrain Simulation, Parametric | Guided Assessment Qualitative observations, Speed test Speed N/A
with speleothems Erosion, Perlin

Noise, Voronoi

Noise
[90] Space Colonisation for Procedural Road | Roads Space Colonisa- | Parametric | Guided N/A N/A N/A N/A
Generation tion
[383] Applicability of Space Colonization | Trees Space Colonisa- | Parametric | Guided Assessment Speed test, Metric analysis (Quantita- | Speed, Domain | N/A
Algorithm for Real Time Tree Generation tion tive) specific
[275] AstroGen — Procedural Generation of | Terrain Swarm Algo- | Parametric | Guided Assessment Metric analysis (Quantitative), Speed | Speed, Domain | DAMIT
Highly Detailed Asteroid Models rithm, Perlin test specific

Noise
[220] DreamSketch: Early Stage 3D Design | 3D General Topology Sketch- Guided Explorative Tutorial, =~ Recorded Interaction, | Speed N/A
Explorations with Sketching and Generative optimisation wise Questionnaire (Qualitative)

Design




[242] Blt: Bidirectional layout transformer for | 2D Layout Transformer Asset-wise | Arranged Comparative Metric analysis (Quantiative), Quali- | IOU, Overlap, | RICO, Pub-
controllable layout generation assessment tative observations, Ablation study Alignment, LayNet, Mag-
FID, human | azine, Image
classification Ads, COCO,
score 3D-FRONT
[454] 3d-gpt: Procedural 3d modeling with | OP Exterior, 3D | Transformer Textual Guided Assessment Metric analysis (Quantiative), Quali- | CLIP score, fail- | N/A
large language models General tative observations, Ablation study ure rate, param-
eter diversity
[357] Atiss: Autoregressive transformers for | OP Interior Transformer Asset-wise | Arranged Comparative Qualitative observations, Metric | KL Divergence, | 3D-FRONT
indoor scene synthesis assessment analysis (Quantitative) FID
[499] Sceneformer: Indoor scene generation | OP Interior Transformer Asset-wise, | Arranged Comparative Metric analysis (Quantiative), Quali- | Accuracy, SUNCG
with transformers Textual assessment tative observations, Ablation study speed
[91] Cogview: Mastering text-to-image | 2D General VAE Textual Guided Comparative Metric  analysis  (Quantitative), | FID, Inception | COCO
generation via transformers assessment Questionnaire (Quantitative) Score, Caption
loss, User score
[382] Zero-shot text-to-image generation 2D General VAE Textual Guided Comparative Qualitative observations, Metric | FID, Inception | JFT-300M,
assessment analysis (Quantitative) Score CUB-200-2011,

COCO




[128] SceneHGN: Hierarchical Graph Net- | OP Interior VAE Asset-wise | Arranged Comparative Metric analysis (Quantiative), Quali- | FID, EMD 3D-FRONT
works for 3D Indoor Scene Generation with assessment tative observations, Ablation study
Fine-Grained Geometry
[129] SDM-NET: deep generative network for | 3D General, | VAE Random Random, Re- | Comparative Metric analysis (Quantitative), Qual- | JSD, Coverage, | ShapeNet,
structured deformable mesh Props, Furni- seed, constructed, assessment itative Observations, Ablation study Minimum ModelNet
ture, Vehicles Asset-wise | Interpolated matching
distance
[130] TM-NET: deep generative networks for | 3D General, | VAE Photo- Random, In- | Comparative Metric analysis (Quantitative), Qual- | LPIPS, SSIM, | ShapeNet
textured meshes Vehicles, Furni- wise, Ran- | terpolated, assessment itative Observations, Ablation study Fooling rate
ture, Textures dom seed Reconstructed
[459] Variational Autoencoders for Deforming | Characters VAE Random Random, Comparative Metric analysis (Quantitative) Vertex  error, | SCAPE, Dyna
3D Mesh Models seed, Interpolated assessment MSE
Asset-wise
[207] ShapeMOD: macro operation discovery | Furniture VAE Parametric, | Random, In- | Comparative Tutorial, Recorded  interaction, | Approach N/A
for 3D shape programs Asset-wise, | terpolated, Questionnaire (Mixed) Specific
Random Reconstructed

seed




[206] ShapeAssembly: learning to generate | Furniture VAE Parametric, | Random, In- | Comparative Defined metric comparison (Quanti- | Rootedness, PartNet
programs for 3D shape structure synthesis Asset-wise, | terpolated, assessment tative), Visual qualities (Qualitative) Stability, Real-
Random Reconstructed ism(Classifier
seed fool rate), FD
[530] DSG-Net: Learning Disentangled Struc- | Furniture, 3D | VAE Random Random, Comparative Metric analysis (Quantiative), Quali- | CD, EMD, Cov- | PartNet
ture and Geometry for 3D Shape Generation | General seed Interpolated assessment tative observations, Ablation study erage, Quality
score*, Frechet
Point  Cloud
Distance
[271] EditVAE: Unsupervised Parts-Aware | Furniture, VAE Random Random Comparative Metric analysis (Quantiative), Quali- | JSD, MMD, | ShapeNet
Controllable 3D Point Cloud Shape Genera- | Vehicles, 3D seed assessment tative observations, Ablation study Coverage, CD,
tion General EMD
[545] LION: Latent Point Diffusion Models for | 3D General VAE, CNN Asset-wise | Interpolated Comparative Metric analysis (Quantiative), Quali- | 1-NNA, CD, | ShapeNet
3D Shape Generation assessment tative observations, Ablation study EMD, MMD,
Coverage, IOU
[61] Autoregressive 3D Shape Generation via | Furniture, VAE, CNN Photo-wise | Reconstructed | Comparative Metric analysis (Quantiative), Quali- | CD, EMD, | ShapeNet
Canonical Mapping Vehicles, 3D assessment tative observations, Ablation study MMD, Cover-
General age, 1-NNA,
Total Mutual

Distance




[398] 3D hair synthesis using volumetric | Hair VAE, Photo-wise | Reconstructed Comparative Ablation  study (Quantitative), | IoU, Precision, | USC-
variational autoencoders Dif- assessment Qualitative observations Recall, Flow | HairSalon
fu- field loss
sion/Propagation
[36] Broomrocket: Open Source Text-to-3D | OP Exterior Textual Arranged Assessment Metric analysis (Quantitative) Lines of code Sketchfab
Algorithm for 3D Object Placement
[20] Deterministic procedural generation of | Terrain, Height Asset-wise, | Guided Assessment Metric analysis (Quantitative) Flood extent, | N/A
mesh detail through gradient tiling map Random Speed

seed
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Appendix A: Literature review data

TABLE A2: Datasets used within GAG literature.

Datasets

[180] LFW [437] SUNCG
[187] DFC2022 [534] ShapeNetPart
[519] ModelNet [328] PartNet
[413] ClipNet [52] ShapeNet
[444] ShapeNetPlain [436] SUN RGB-D
[80] PROCTHOR [257] Helen
[301] CelebA [503] ShapeCOSEG
[310] SynHand5M [564] Structure3D
[470] CMP [111] ImageNet

3D Sketching using Multi-View
[82] Deep Volumetric Prediction [478] SURREAL
[238] AFLW [476] Human3.6M
[486] CUB-200-2011 [335] Cloud image classification
[402] Pigraphs [468] SketchUp 3D Warehouse
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[571] 3D Scene

[41] EuRoC MAV

[333] Hagley Museum model data

[427] 3D-Printed RGB-D Object

[64] redwood-3dscan [524] Grape bunches
[69] ABO [120] 3D-FRONT
[393] DreamBench [403] LAION-400M
[288] COCO [70] Cityscapes

[376] C4 [404] LATON-5B
[304] DF27 [79] Objaverse

[371] NeRF4 [159] T3Bench

[210] ShapeNet-Synthetic [456] Pix3D

[43] CaricatureFace [577] 300W-LP

[86] WildUV [374] 3DCaricShop
[122] Text2Shape++ [579] MMWHS

[35] MPI-FAUST [213] FFHQ

[469] TurboSquid [337] NASA Visible Earth
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[476] SRTM [476] CUHK Face Sketch

[186] WebCaricature [570] Places2

[191] Edges2Shoes [168] GANILLA

[81] RICO [572] Thingi10K

[348] OpenStreetMap [422] NYU Depth v2

[34] DFAUST [237] VoxelCity

[106] PASCAL VOC [236] SemanticVoxels

[282] LIFULL HOME's [470] BU-4DFE

[198] AW3D30 [451] VGLC

[208] Labeled PSB [135] Fundamental geospatial data (Japan)
[50] SDHW [517] RPLAN

[308] AMASS [256] Kinect V2

[6] Substance Source [533] SPRING

[121] 3D-FUTURE [104] UK Environment agency
[582] DAMIT [452] JFT-300M
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[12] SCAPE [175] USC-HairSalon
[426] Sketchfab [326] IIIT 5K-word

[443] ShapeNetCOCO [80] ARCHITECTHOR
[466] NYU Hand Pose [55] Floor-SP

[180] Pix3D [254] UP-3D

[396] 300W [432] Online products
[157] PROX [75] ScanNet

[177] TMT [397] DrawBench

[88] BERT [96] Google Scanned Objects
[317] RealFusion15 [558] ShapeNet-Sketch
[4] ShapeGlot [578] AFLW2000-3D
[287] RGB 3D Face [431] BrnoComp- Speed

[362] Synthetic Indoor Scene Dataset | [386] CO3D
[515] orCalScore [144] Quick, Draw!
[340] Oxford-102 flower [65] AFHQ
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[302] SMPL [314] AR Face

[137] UvA-NEMO [537] LSUN

[145] Stanford Background [536] Ut-Zappos50K
[574] CycleGAN [25] Pix2Code

[395] CAESAR [580] FreiHAND

[237] VoxelHome [576] LSAA

[143] Google Earth Engine API [252] Washington RGB-D
[569] PubLayNet [366] Dyna

[8] RoboTHOR [234] I-JBA

[540] BigHand2.2M [522] SUN

[408] CFPW [149] Multi-pie

[573] RESY [156] LVIS

[56] Text2Shape [211] SLAWT

[67] K-MNIST [581] SMAL

[504] WHU-IIP [497] CUHK Face Sketch
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[15] S3DIS [568] Magazine
[380] HM3D [341] ECP

[331] AgeDB [356] VGG Face
[204] FIT400M [51] Matterport3D
[463] LASC [259] Image Ads
[239] AI2- THOR [40] LS3D

[566] CALFW [343] FRGC

[546] JFT-4B [565] CPLFW

[47]1 VGGFace2
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Metric Frequency

Metric Frequency

Speed 40 Average voxel agreement ratio
FID 29 CNR(connected node ratio)
loU 28 Correspondence error
Chamfer distance 21 Density

EMD 19 Displacement error
Coverage 15 encoded size

Inception score 15 Facial recognition distance
CD 10 Flood extent

RMSE 10 Flow field loss

SSIM 10 Grammar precipitate

User score 10 Graph edit distance

JSD Human classification score
F-score Inter-ocular distance

MMD Inter-pupil distance

Recall Kernel Inception Distance
Frechet Point Cloud Distance K-fold cross-validation
PSNR Kolmogorov-Smirnov test
MSE Layout accuracy
R-precision Lines of code

1-NNA Log-Likelihood

Hausdorf distance

Mean alighment error

Captioning evaluation (CLIP or Mode score)

Mesh intersection ratio

Euclidean distance

Multi-view consistency error

LPIPS NOCS Discontinuity score
MAE Perceptual Path Length
Mean per joint position error Quaternion distance error
Memory usage RMSD

Overlap Rootedness

Surface distance Running cost

Alignment Separability

FCN Shapiro-Wilk test

Light Field Distance Sliced Wassertein distance
Vertex error SSE loss

3D-text alignment (ShapeGlot) Stability

Angular error

Symmetry score

Angular/Normal difference

Visual balance

Average absolute difference

RIR(ERERININININIWWWWIwwWwwWww|~|hUU|N|N|(O|[0|00|WO

Visual information fidelity

RR(R(R|IR[R|R|PR|PR|P|PR|R[R|R[R[R[R[R|R|R|R|R|R|PR|PR|PR|R|PR|R[R[R[R|[R R |, |~

TABLE A3: Metric frequency

Database ‘ Results per page

ACM Digital Library 20
IEEE Xplore 25
ScienceDirect 25
Springer 20
Ebsco 20
Google Scholar 10
Research Gate 10

TABLE A4: Results per page for each database.
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Database Pages completed

ACM Digital Library: broad search 2
ACM Digital Library: focused searches (averaged) 9
IEEE Xplore: broad search 6
IEEE Xplore: focused searches (averaged) 5
ScienceDirect: broad search 4
ScienceDirect: focused searches (averaged) 5
Springer: broad search 11
Springer: focused searches (averaged) 11
Ebsco: broad search 4
Ebsco: focused searches (averaged) 5
Google Scholar: broad search 10
Google Scholar: focused searches (averaged) 8
Research Gate: broad search 8
Research Gate: focused searches (averaged) 6

TABLE A5: Pages of results completed for each database search.
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Appendix
B: Participant recruitment material

Subject: Participation in a study looking at Al based asset generation tools in game design and development pipelines.
Hello everyone! I am a postgraduate researcher at Brunel University London, interested in the integration of generative
Al tools within game design and development workflows. Specifically, I am looking at how graphical assets such as
3D models can be procedurally generated and used beneficially in real-world game projects. Regarding this, I will be
conducting a study to examine the needs and requirements of those experienced in game design and/or development.
Imagine that there was a tool that could quickly generate inspiration in the early stages of design, perhaps you could
sketch what you want and receive similarly shaped 3D models, or a tool that lets you use a combination of generation
and hand-refinement. Would such a tool be useful in your projects? Obtaining your opinions and insights on this
matter would be greatly appreciated. All this requires is that you take a look at a prototype tool for the Unity engine
and complete some online questionnaires, this should take around 20-30 minutes. This whole process will be through
a web form. In the form you will complete a series of tasks, answer some questions and upload what you have made
throughout the process. After this, if you have the time, you may opt in for a quick chat (approximately 10 minutes),
where you can share any ideas, questions or feedback on the prototype and concept as a whole. None of the data
collected will be identifying, and thus your participation will be confidential and anonymous. If you like, you may also
keep the tool for your own projects. If this sounds interesting to you, and you would like to participate in this study,
please follow the link below: https:/ /forms.office.com/e/yD17MDBKMw Thanks for reading! Kind Regards,

Kaisei Fukaya Kaisei.Fukaya@brunel.ac.uk
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Appendix C: Interview questions

AR

What do you think about the idea of a tool that generates assets for your projects?

Do you have any concerns about such a tool?

What benefits do you see for such a tool?

Are there particular types of asset that you would like to see a generative tool for?

Would you prefer a stand-alone tool or a tool integrated into your game engine of choice? and why?

Are there any thoughts you would like to share, that we haven't already covered?



258

Appendix
D: Sample notes from study 1

¢ Found mock-ups to be about as good as each other, as the process was the same. Preferred integrated mock-ups
as they are more familiar with Unity interface and do not want to download a new software.

* Would use as long as they don’t need a third software to get their assets into their game.

e Would use the software for helping when they are stuck with ideas, but does not trust it to create final
production assets.

¢ Currently working on a game that requires a lot of clothing and cosmetic variety, generative Al would be
useful for this and save a lot of time.

* Mostly use FBX for 3D content so ideally this should be an output option. While there are plenty of ways to
convert formats, having options that cover their main choices will make things much easier.

e Stand-alone could be useful, but prefer not to download and open up more software than necessary.

* Was frustrated by lack of undo and redo controls, as this is how they are used to working within Unity. Did
not like having to manually delete nodes and connections.
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Appendix
E: Sample notes from study 2

¢ Terminology might not be understandable, needs tooltips.

e Ability to see the result in an end context, e.g. weapon in the hands of a character. Integration into an iterative
design workflow.

e Participant not used 3d modelling tool before. this was rather accessible for them instead.

* Visual controls e.g. draggable handles rather than numbers.

* Manual creation could start with pre-sets as a starting point for design, rather than an empty canvas.
* Enjoyed randomisation, can play around a lot more.

e If they worked perfectly, then interpolate would be the best as you can also use it like the single reconstruction
so it is more versatile.

¢ As they are now, 1 (manual) and 4 (random) are best.
* Would like the ability to edit images before generation, such as cropping etc.

¢ Itis important to see the final design in context, this provides extra certainty and more fun which leads to more
motivation to create designs.

¢ Interviewee suggested strong desire for viewing assets in final context during the design process, such as
showing the sword on the character in real-time, to “envision the end goal”. In addition, viewing the asset
in a refined form while editing. It would be easier and more fun to create designs.

* Suggested starting with preset start points for manual editing.
* Suggested a preference for visual controls over numbers

* Enjoyed the randomisation technique as they could play around a lot more with little effort.
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Appendix F: Sword generator tool

Link to Swordgen files on GitHub and animated GIFs of techniques: https://github.com/Kaisei-Fukaya/SwordGeneratorTool


https://github.com/Kaisei-Fukaya/SwordGeneratorTool
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