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A B S T R A C T

This study investigates the extruded texture of a 6xxx series high-strength aluminium alloy as a function of 
profile geometry using Electron Backscatter Diffraction (EBSD) and X-Ray diffraction pattern (XRD). A novel 
texture analysis method was designed to acquire and prepare reliable texture data for machine learning appli-
cations. The method categorizes textures into five distinct groups, with volume fractions calculated for each 
group. Furthermore, finite element analysis of the extrusion process revealed that axial tensile strain promotes a 
combination of 〈100〉 and 〈111〉 //ED texture components, while shear deformation induces 〈211〉 //ED texture 
components. The results were subsequently fed into an artificial neural network (ANN) model developed to link 
the texture to profile geometry, which governs the deformation modes experienced during the material flow. This 
approach represents a significant advancement towards real-time control of material properties during extrusion.

1. Introduction

Aluminium alloys are increasingly used in the automotive sector for 
their lightweight properties, offering up to a 28 % reduction in vehicle 
weight compared to steel [1], which significantly lowers CO2 emissions 
and improves fuel efficiency. Aluminium alloys of 6xxx are particularly 
valued for their corrosion resistance, weldability, formability and 
recyclability [2,3]. Extrusion, one of the oldest and most complex 
manufacturing technologies, is the main processing method for wrought 
aluminium alloys. Higher performance and more complex-shaped 
extruded aluminium components are increasingly demanded by the in-
dustry to meet decarbonization targets. A comprehensive understanding 
of the process-microstructure-property relationship is essential to 
enhance product performance [4]. While much research has been con-
ducted on texture development in rolled aluminium alloys [5– 6], the 
texture evolution in extruded 6xxx aluminium alloys remains less un-
derstood. Most research [7– 12] has investigated small-scale laboratory 
extrusions, mainly focusing on round bar profiles, for which a combined 
<100> and < 111> duplex fibre has been widely reported. Zhang et.al 
[10] studied the texture variation of an Al-Si-Mg round bar extruded at 
300 ◦C (lower than temperatures that may be typically applied in the 
industrial practice for this type of alloy) and reported the duplex fibre 

texture is strongest in the centre region and becomes weaker and rotated 
when approaching the surface. Studying the deformation texture of 
extruded flat profile, Furu and Vatne [12] observed a strong β fibre and 
Cube texture component at the centre, weak to nearly random texture at 
the surface. The β fibre extends from the Brass component{110}〈112〉 to 
the Copper component {112} < 111>, with the S orientations (S1 
component {124} 〈211〉, S2 component of {124} < 412>, and S3 
component of {123} < 634>) located at the intermediate position along 
the fibre. These findings indicate the presence of typical copper-type 
texture along with Cube components in extruded flat profiles, as 
copper-type rolling texture in FCC metals is generally described by the 
superposition of Copper, S and Brass components.

In contrast to the plane strain deformation in rolling, aluminium 
experiences more severe plastic deformation at higher temperatures 
(typically above 500 ◦C) and follows complex deformation paths during 
extrusion. Finite element (FE) modelling is extensively used to investi-
gate the extrusion process where interactions between the die, billet and 
container at high temperatures, combined with intricate die geometry 
significantly influence the material flow [13]. Various research has used 
FE modelling to simulate extruded texture, commonly simplified the 
extrusion deformation to a 2D model [14].

Machine learning (ML) has seen rapid adoption in material 
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processing due to its ability to model complex, nonlinear relationships 
between process parameters, microstructure and mechanical properties 
[15]. Hsiang et al. [16] developed an artificial neural network (ANN) 
model to predict the tensile strength of extruded magnesium rectangular 
profiles based on selected processing parameters. Recently, Oien and 
Ringen [17] used a data-driven approach to predict the mechanical 
properties of extruded aluminium based on alloy composition and arti-
ficial ageing data. Extensive research has applied ML to predict material 
properties using alloy composition and basic processing parameters as 
features. However, there is a growing recognition that incorporating 
physical information, such as microstructure, is crucial for accurately 
capturing process-structure correlations [18]. While grain sizes can be 
readily used as an ML input feature, grain orientations (texture) require 
digitization into workable data, necessitating a new approach for texture 
analysis.

This study investigates the texture of six extrusion profiles produced 
on an industrial-scale extrusion line, using a combination of EBSD and 
XRD. The selected profiles include bulky shapes, such as round bar and 
townut, and thin profiles, such as flat bar and hollow rectangle, realis-
tically representing extrusion profiles commonly used in industry. 
Compared to lab-scale extrusion, the friction between the billet and the 
tooling is substantially higher at the industrial-scale extrusion which 
operates at higher temperature and pressure. For instance, studies have 
shown that as billet temperature rises from 300 to 430 ◦C, the friction 
condition between billet and container interface can change from sliding 
to almost perfect sticking [19]. Research has also demonstrated that the 
friction factor increases with higher initial billet temperatures, varying 
from 0.65 at 300 ◦C to 0.91 at 450 ◦C after reaching peak pressure [20]. 
Consequently, higher shear deformation is experienced at the surface of 
the extrusion profile leading to a texture gradient in the cross-section.

This study examines the texture gradient from the centre to the edge 
of the extruded samples and provides a quantitative analysis of the cross- 
sectional deformation heterogeneity using three-dimensional FE anal-
ysis in DEFORM [21]. The experimental EBSD &XRD texture data were 
analysed using a novel method that categorizes textures into five distinct 
groups. By correlating the distribution of these groups to the FE defor-
mation results, the study explores the impact of deformation modes on 
texture formation. The categorized texture data were subsequently used 
as input features in an ANN model to predict deformation modes in 
complex extrusion profiles, demonstrating the effectiveness of the pro-
posed texture analysis method in digitizing EBSD and XRD data for ML 
applications.

2. Methods

2.1. Materials and investigated profiles

The billet material is an Al-Mg-Si-Cu alloy used in the automotive 
industry. The billets were produced by Direct Chill (DC) casting and 
homogenized at the Advanced Metal Casting Centre (AMCC) in Brunel 
University London. The initial texture of the billet is random. The size of 
the billet is 152 mm diameter and 420 mm long. Six extrusion profiles 
were investigated in this study: round bar, flat bar, hollow rectangle and 
solid thick shape (townut). For the round bar profile, three different 
diameters were investigated. Fig. 1 shows the geometry of the profiles.

2.2. Extrusion experiments

All extrusions were also performed at the AMCC. The DC cast billets 
were firstly heated to above 500 ͦ C then extruded on a horizontal 
extrusion press of 16 MN maximum press capacity. The container was 
held at 420 ◦C during the whole procedure. As a final step after extru-
sion, the material was immediately quenched using agitated water wave 
combined with sprays. Table 1 summaries the extrusion parameters used 
for each investigated profile.

2.3. Finite element simulation of extrusion

Aluminium extrusion is a thermo-mechanical process. The thermos- 
mechanical behaviour of the material flow during the hot extrusion was 
simulated using the commercial finite element software DEFORM. The 
extrusion processing is broadly characterised by three distinct stages: an 
initial transient state, during which the compressed billet material fills 
the die cavity and breaks through the die orifice, and a subsequent 
steady state that persists for the remainder of the process cycle. There is 
also an end transient state which occurs when about 80–90 % of the 
billet is extruded, leading to a rapid flow of billet material towards the 
die orifice. To ensure the quality of the extruded profile, a pre-
determined length of the initial and final sections of the extrudate is 

Fig. 1. Extrusion profiles investigated a) hollow rectangle, b)flat bar, c) townut, d) Round bars: small, medium and big (dimension in mm).

Table 1 
Extrusion parameters for the investigated extrusion profiles.

Profile Extrusion exit speed (m/min) Exit T (◦C)

Small round bar 9.3 548
Flat bar 9.6 545

Medium round bar 8.5 559
Big round bar 5.8 553

Tow nut 7.0 552
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routinely removed on the processing line. Texture investigation is 
typically performed on samples obtained during the steady-state period 
of the extrusion process, when the material is subjected to a constant 
deformation rate and temperature. Therefore, an Arbitrary Lagrangian 
Eulerian (ALE) formulation model was considered appropriate to 
simulate the extrusion process of the flat bar and the medium round bar 
profile. Fig. 2 presents the three-dimensional FE model of the round bar 
profile. Taking advantage of structural symmetry, a quarter of the billet, 
ram and container were simulated. The symmetry plane boundary 
conditions were applied. Four-node tetrahedral element was used. Fine 
mesh of 0.5 mm was applied in the die region. Table 2 summarises the 
modelling parameters in the DEFORM simulation. A heat transfer co-
efficient of 10 kW/m2K was assumed between the aluminium and the 
container and between the aluminium and the die face. The material 
property of aluminium 6082 from the DEFORM library was used in the 
study. The FE models were validated by comparing the simulation re-
sults of the extrusion pressure, velocity and exit temperature with the 
experimental data, where a good agreement was observed, as shown in 
Table 3.

2.4. Material characterization

The middle section of the extruded product, i.e., the extruded ma-
terial of steady-state extrusion was investigated. To represent the texture 
of the extruded material, in this paper, the specimen frame of reference 
is defined with regard to the sample by its normal direction (ND), the 
extrusion direction (ED - analogous to the rolling direction RD), and the 
transverse direction (TD).

2.4.1. Electron backscatter diffraction (EBSD)
The microstructure and texture of the extruded material was studied 

with EBSD. Samples were taken from the extrusion-normal plane as 
illustrated in Fig. 3. The preparation for EBSD analysis included stan-
dard metallurgical grinding steps, and then polished to a 0.04 μm finish 
using an OPUS non-crystallising colloidal silica suspension (Metprep 
Ltd.), followed by electropolishing as a final step. For the electro-
polishing, a mixture of 30–70 % nitric acid-methanol was used, and the 
samples were immersed in it for 1 min at 12 V. EBSD analysis was 
performed on a Crossbeam 350 FIB-SEM (Carl Zeiss AG) equipped with a 
Hikari Plus EBSD camera (EDAX Inc.). The samples were tilted by 700 

from horizontal axis and a 20 kV accelerating voltage was used. The scan 
step size was set to 0.5 μm. The scanned EBSD data were analysed with 
TSL-OIM Analysis software (EDAX Inc.).

2.4.2. X-ray diffraction pattern (XRD)
In selected cases, EBSD samples were further analysed for texture 

using XRD at the Constellium Technology Centre, at Vorppe France. XRD 
measurements were conducted in the normal-transverse plane. A Pan-
alytical X’Pert Pro goniometer equipped with a copper ceramic X-ray 
tube and flat graphite monochromator was used. The goniometer is 
equipped with a collimator with parallel slit at 0.270 and polycapillary 
lens, φ 14 mm, calibrated with crossed slits. A voltage of 45 KV and a 

current of 40 mA was used.
Sample preparation varied by profiles. For the flat bar, a sandwich 

structure was used while for the bulk profiles, a slice of the sample was 
sufficient. For the round bar, cross-section sliced in both the longitudinal 
and transverse directions were measured, while a single cross-section 
sliced in the transverse direction was used for the townut profile. The 
scanned XRD data were analysed using ATEX [22] analysis tool.

2.5. FE analysis results

Fig. 4 shows the distribution of plastic strain, include three normal 
and three shear components, in the cross-section at 15 mm after the die 
exit. The global Z axis of the FE model aligns with extrusion direction. 
The plastic strain components of material points along the Y axis in the 
cross-section of the medium round bar (Ø = 34 mm) are plotted in 
Fig. 4a. The X and Y axes represent two radial, axisymmetric directions. 
At the centre, ϵx and ϵy have the same negative values due to the sym-
metry of the round profile, indicating equal radial compression; the axial 
strain along extrusion direction, ϵz, is at its peak value and positive. The 
shear strain components are lowest at the centre, with ϵxy in the cross- 
sectional XY plane at zero, and the two out-of-plane shear components 
ϵxz and ϵyz having similar magnitudes but opposite signs.

Moving from the centre to the edge, ϵz gradually decreases to zero 
and becomes slightly negative at the edge, while ϵy gradually increases 
as a result of volume conservation. The in-plane shear strain ϵxy remains 
zero throughout while the ϵyz increases to its maximum value at the 
edge. Both ϵx and ϵxz remain constant for the material points along the Y 
axis. These results indicate that the material at the centre advances 
fastest and gradually slows approaching the periphery due to the friction 
at the die interface. The material of the medium round bar experiences 
the deformation mode equivalent to uniaxial axial tension at the centre, 
transitioning to shear deformation at the edge.

The plastic strain components across the thickness (along X axis) of 
the flat profile are plotted Fig. 4b. The most prominent feature in he 
strain distribution is its the uniformity across the thickness, with all 
plastic strain components showing minor increase from centre to sur-
face, markedly different from the behaviour observed in the round 
profile. The compressive strain along the thickness (ϵx) is greater than 
that along the width (ϵy). The positive value of axial strain ϵz suggests 
that material at the centre of the die flows fastest, producing an axial 
tensile strain. The shear strain ϵxy and ϵyz remain nearly zero across the 
thickness, while ϵxz is the largest among all strain components. The axial 
strain results deviate from ideal plane strain compression due to the high 
tensile strain in the extrusion direction. Additionally, unlike in rolling 
where shear strain is zero at centre and peaks at the surface, the 
extruded flat profile exhibits significant shear strain at the centre, 
exceeding axial strain levels.

2.6. Microstructural analysis

2.6.1. Through thickness texture studied by EBSD
Fig. 5 presents IPF maps of the hollow rectangle scanned from the 

Fig. 2. Schematic view of the 3D finite element model of the round bar 
in DEFORM.

Table 2 
Finite element model parameters.

Process parameters Round die Flat die

Billet length (mm) 250 250
Billet initial temperature (◦C) 520 500
Die initial temperature (◦C) 520 500
Ram initial temperature (◦C) 520 500

Container initial temperature (◦C) 450 420
Ram speed (mm/s) 6.4 2.9

Friction condition at container/ 
billet interface

No separation, shear 
1.0

No separation, shear 
1.0

Friction coefficient at die/billet 
interface

Separation, shear 
0.4

Separation, shear 
0.3

M. Zhou et al.                                                                                                                                                                                                                                   



Materials Characterization 223 (2025) 114859

4

inner to outer side, the flat bar scanned from top to bottom, and the 
medium round bar scanned from the centre to edge. To better charac-
terise the texture through the thickness of the profile, the sample was 
extracted from the centre of the ND-TD cross-section, as illustrated in 
Fig. 5, to minimise the edge effects. Fig. 6 depicts multiple scans of the 
townut, divided into three areas as shown in Fig. 6a, with approximately 
33 mm out of the total 54 mm profile length scanned. EBSD was con-
ducted on the middle area of the townut’s cross-section, covering a 
smaller region than that investigated by XRD. These EBSD maps were 
obtained from the ND-ED plane, and the IPF plots were plotted to show 
the ED with respect to the crystallographic axes.

The colour coding in the IPF maps suggest a similar texture distri-
bution between the hollow rectangle and the flat bar. In contrast, the 
round bar exhibits a non-uniform texture distribution in its cross- 

Table 3 
Experimental data vs. simulation results.

Die profile Extrusion pressure (MPa), steady state Exit velocity (mm/s), steady state Exit temperature (◦C), steady state

Measured Simulated Measured Simulated Measured Simulated

Round 244 238 133 138 559 560
Flat 315 308 143 134 545 554

Fig. 3. Schematic representation of the plane used for EBSD scans of all 
the profiles.

Fig. 4. Effective strain results of FE models a) medium round bar, b) flat bar.
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section. The texture distribution of the townut also exhibits non- 
uniformity, with the top edge of area a and the very edge of area c 
displaying similar crystallographic textures, distinct from other regions.

3. Discussion

3.1. Texture analysis using a novel method

3.1.1. A novel texture analysis method
Texture component analysis method is widely used for FCC alloys to 

study grain orientation changes as a function of thermomechanical 

treatment. The traditional texture component analysis reduces the rep-
resentation of the orientation distribution into a small set of ideal ori-
entations, commonly observed in rolling process. An ideal orientation 
({hkl} < uvw>),such as Brass({110} 〈112〉), means that the crystallo-
graphic {hkl}plane is parallel to the rolling plane (ND) and the crys-
tallographic <uvw> direction is parallel to the rolling direction.

The traditional approach presented challenges in this study. First, 
inconsistencies were observed in the percentage of grain orientations 
identified across EBSD and XRD scans, particularly among different 
extrusion profiles, which madebit difficult to achieve consistent 100 % 
orientation identification. Secondly, the number of texture components 

Fig. 5. IPF maps of the whole cross section of a) hollow rectangle and b) flat bar c) half cross section of the medium round bar.

Fig. 6. Townut profile: a) segmented into three area for EBSD and XRD measurements b) EBSD IPF maps of areas a, b, c and edge of c.
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required for accurate identification varied; for instance, while Brass and 
Cube components might account for 70 % of grain orientations in one 
scan, an additional S component was needed to reach a similar level in 
another. These inconsistencies post a major obstacle for comparative 
analysis, as reliably detecting differences is crucial before assessing the 
underlying causes.

To address this issue, this paper proposes a novel texture analysis 
method. A list of orientations was constructed based on Miller indices, as 
summarised in Table 4. The list categorizes orientations into five groups. 
Focusing on crystallographic direction in the extrusion direction, Group 
1 encompasses orientations with <100>//ED, Group 2 with 〈1− 10〉// 
ED, Group 3 with 〈− 1− 11〉//ED, Group 4 with 〈2− 11〉//ED and Group 5 
represents higher order crystallographic directions. This grouping 
naturally reveals classic rolling texture components: Cube and Goss 
appear in Group 1, Copper in Group 3, and Brass and S in Group 4. It is 
noted that it is the (123)[6 3–4] orientation often quoted as the char-
acteristic S component [23], however there is only 8 degrees difference 
between the characteristic S orientation and the orientation of (− 1 2 4) 
[2− 11].

The proposed list was implemented in the OIM software to calculate 
the volume fraction of specified orientation with a tolerance of 15◦, 
based on the Crystal Orientation Map. For Group 1 texture components, 
a tolerance of 30◦ was applied to improve the identification of subgrain 
orientations. A total number of 64 EBSD scans of 6 extrusion profiles 
were analysed. Table 5 summarises the average percentage of orienta-
tions identified for each profile, demonstrating that identification rates 
consistently exceeded 98 % across all scans. For XRD scans, the proposed 
method was implemented in the ATEX software to calculate the volume 
fractions based on the discretised orientation list. As shown in Table 6, 
consistent grain orientation identification was achieved. This novel 
texture analysis method provides a comprehensive and structured rep-
resentation of crystallographic orientations in a simplified format, 
making it well-suited suited for machine learning applications.

3.1.2. Analysis results of EBSD
The EBSD scan of the half cross-section of the medium round bar was 

segmented into 13 strips to analyse texture variation using the Crystal 
Orientation Map in OIM, which have been included in Appendix A. The 
analysis focused on the texture distribution of the five groups. Fig. 7
compares the volume fraction of each group at the centre and the edge of 
the medium round bar. Two distinctive distribution patterns were 
observed: group 3 is the dominant feature at the bar centre followed by 

Group 1, while Group 4 is predominant at the edge of the profile. Group 
2 and 5 are absent at the bar centre and show minimal presence at the 
edge (0.02 for Group 2 and 0.03 for Group 5).

Figure 8Figure 8a and b compare the distribution of volume fractions 
of Groups 1, 3 and 4 in the cross section of the flat and medium round 
bar. The EBSD scan of the flat bar was divided into small strips and 
analysed in OIM using Crystal Orientation map as included in Appendix 
A. Groups 2 & 5 were not included in this comparison due to negligible 
volume fractions observed. The combined volume fraction of Group 1 
and 3 is also analysed for reference. In the flat bar, the group distribu-
tions remain nearly uniform across the thickness with Group 4 as the 
dominant feature, exhibiting an average volume fraction above 0.6. The 
sum of Groups 1 and 3 is highest at the centre and decreases slightly 
towards the edge. In the medium round bar, it is interestingly observed 
that the sum of the volume fraction of Group 1 and 3 is close to 1.0 at the 
centre; and the two groups exhibiting an inverse relationship until both 
start to decline towards the edge. This phenomenon is analogous to the 
deformation texture commonly observed in copper wire drawing, where 
〈111〉 and 〈100〉 fibre are found to be parallel to the drawing direction 
[24]. Group 4 is nearly absent at the centre of the round bar, while 
increased to more than 0.6 at the edge.

Fig. 8b, c and d present a comparative analysis of the spatial distri-
bution of volume fractions for Groups 1, 3 and 4 in the cross-sections of 
small, medium and big round bars. All samples display similar patterns; 
however, in the small bar, the sum of Groups 1 and 3 decreases at an 
earlier stage, whereas the big bar exhibits an extended region in which 
this sum remains close to unity. Furthermore, the inverse relationship 
between Group 1 and 3 is most prominent in the region where their sum 
approaches unity.

There has been a long-standing conversation in the literature 
regarding the source of cube texture component in deformed high- 
stacking fault energy metals (Al and Cu), particularly regarding its 
relationship with Copper and S textures [25–30]. The analysis in Fig. 8
suggests that Group 3 can transform into Group 1 during axial tensile 
deformation, supporting the literature that Copper texture leads to Cube 
formation.

3.1.3. Analysis results of XRD
The volume fraction of the five groups obtained from XRD scans is 

compared with that from EBSD scans in Fig. 9. Similar distributions for 
thin profiles, such as the flat bar and hollow rectangle, as shown in 
Fig. 9a and b. For the round bar (Fig. 9c), the XRD scan in the longitu-
dinal direction closely matches the EBSD results at the centre, while the 
XRD transverse direction aligns with the EBSD edge results. In the 
townut profile (Fig. 9d), XRD measurements show comparable volume 

Table 4 
List with proposed grain orientation identification.

Group Group (hkl)[uvw] Euler angles Texture 
component

1 〈100〉 (001)[100] (0.0, 0.0, 0.0) Cube
(011)[1 0 0] (0.0, 45.0, 0.0) Goss
(021)[1 0 0] (0.0, 63.4, 0.0)

2 〈1− 11〉 (0 0 1)[1− 10] (45.0, 0.0, 0.0)
(111)[1–1 0] (0.0, 54.7, 45.0)

3 <− 1–1 1> (101)[− 1− 11] (54.7, 45.0, 
90.0)

(112)[− 1–1 1] (90.0, 35.3, 
45.0)

Copper

(1 2 3)[− 1–1 
1]

(105.0, 36.7, 
26.6)

4 <2–1 1> (0 1 1)[2–1 1] (35.3, 45.0, 0.0) Brass
(10− 2)[2–1 1] (65.9, 153.4, 

90.0)
(23− 1)[2–1 1] (25.1, 105.5, 

33.7)
(− 1 2 4)[2–1 

1]
(56.8, 29.2, 

333.4)
S

5 Higher 
order

(2 1–4)[3− 21] (33.2, 150.8, 
63.4)

(231)[5–4 2] (18.0, 74.5, 
33.7)

Table 5 
Grain orientations identified in the EBSD scan using the proposed method.

Profile No. EBSD scans Avg % orientations identified

Small bar 14 98.00 %
Medium bar 13 97.80 %

Big bar 20 97.80 %
Flat bar 12 99.30 %
Townut 3 96.00 %
Hollow 2 99.30 %

Table 6 
Grain orientations identified in the XRD scan using the proposed method.

Profile No. EBSD scans Avg % orientations identified

Small bar 14 98.00 %
Medium bar 13 97.80 %
Big bar 20 97.80 %
Flat bar 12 99.30 %
Townut 3 88.00 %
Hollow 2 99.30 %
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Fig. 7. Volume fraction of each orientation group at the centre and edge of the medium round bar.

Fig. 8. Spatial distribution of volume fractions of Group 1, 3 & 4 in the cross section of a) flat bar b) medium round bar, c) small round bar, d) big round bar.

M. Zhou et al.                                                                                                                                                                                                                                   



Materials Characterization 223 (2025) 114859

8

fractions across regions A, B, C, with high fractions of Group 1 and 3. 
Compared to XRD, EBSD results exhibit a higher volume fraction of 
Group 3 and lower Group 4. Both XRD and EBSD results show that the 
central region has a lower fraction of Group 1 and a higher fraction of 
Group 4 texture components. The observed discrepancy is attributed to 
differences in the measurement areas used for EBSD and XRD, as illus-
trated in Fig. 6a.

Overall, for thin profiles EBSD and XRD measurements provide 
comparable results, however, for bulky profiles, noticeable discrep-
ancies are observed, as XRD captures bulk texture. Nevertheless, texture 
analysis of XRD scans also reveals two distinct texture distribution 
patterns: thin profiles are predominantly characterised by Group 4, 

whereas bulky profiles exhibit a high volume fraction of Group 3. This 
comparative analysis demonstrates that the novel texture analysis 
method is applicable to both EBSD and XRD scan data and can signifi-
cantly improve the reliability of comparative analyses.

3.2. Effect of deformation modes on texture

The FE results in Fig. 4 reveal the complexity of extrusion defor-
mation, highlighting cross-sectional inhomogeneity and its dependence 
on profile shape. By correlating the plastic strain with the texture vari-
ation in the cross-section analysed using EBSD, valuable insights are 
gained into how deformation modes influence texture development.

Fig. 9. Distribution of volume fractions of five groups from XRD scan compared to EBSD scans a) flat bar b) Hollow rectangle and c) Medium round bar d) Townut.
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The normal strain results at the centre of the round bar centre suggest 
a uniaxial tensile deformation mode that is analogous to axisymmetric 
tensile deformation. The observed combination of Group 1 (<100>// 
ED) and Group 3 (<111>//ED) texture components at the bar centre 
aligns with the <111> and < 100> fibre components reported for ideal 
axisymmetric tension deformation obtained through viscoplastic self- 
consistent modelling [31]. Towards the bar edge, the deformation 
mode shifts to shear dominance, with shear strain exceeding axial strains 
by more than four times. Correspondingly as shown in Fig. 7, the volume 
fraction of Group 3 drops substantially from 0.64 at the centre to 0.1 at 
the edge, while Group 1 decreases from 0.35 to 0.13. The most signifi-
cant development is the appearance of Group 4 textures (<211>//ED), 
from 0.01 at the centre to 0.67 at the edge. Thus, shear deformation at 
the bar edge produces a strong <211>//ED with weak <100> and <
111>//ED components. The gradual transition from uniaxial tensile to 
shear deformation-dominant leads to a corresponding variation in 
texture distribution. In regions of the round bar centre where uniaxial 
tension prevails, <100> and < 111> //ED components account for 

nearly 100 % of the crystal orientations, with <111> being more 
prominent, as seen in Fig. 8b, c and d. In the transitional regions, as 
tensile deformation wanes, the combined volume fraction of <100>
and < 111> decreases, yet the <100>//ED component becomes rela-
tively stronger.

The deformation mode of the flat bar displays minimal variation 
across the thickness and resembles that of the edge of round bars: 
characterised by high shear deformation with minor axial deformation. 
This complex deformation mode is unique to extrusion and different 
from rolling. The texture distribution in the flat bar is dominated by 
Group 4, with a volume fraction exceeding 0.6, while Groups 1 and 3 
together constitute the remaining fraction. Further analysis reveals that 
Group 4 primarily is contributed from Brass and S components. In other 
words, the flat bar exhibits strong Brass and S texture components 
combined with weak <100> and < 111>//ED components. This texture 
distribution differs from typical rolling textures, as it lacks the signifi-
cant Copper component characteristic of copper-type rolling textures 
and the Goss component commonly found in brass-type rolling textures.

Fig. 9. (continued).
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The FE plastic strain results for the flat bar and the edge of the round 
bar, along with their similar texture distributions, indicate a strong 
correlation between shear strain and < 211>//ED texture components, 
while the duplex <100> and < 111> fibre textures are associated with 
axial tensile strain. Although in-plane axial strains are compressive, they 
are relatively low compared to the shear strain at the same location. This 
explains the absence of 〈110〉 fibre texture components, which are 
typically observed for uniaxial compression and plane strain compres-
sion [23] but not in the extruded profiles.

The analysis of FE results and texture distribution reveals that fric-
tion plays a key role in forming extruded texture. Friction between billet 
and tooling significantly slows the material flow in the peripheral re-
gions, subsequently resulting in tension in the extrusion direction at the 
centre. At the high temperature of extrusion, friction-induced shear 
deformation can dominate the entire cross-section of thin profiles, while 
bulky profiles exhibit a transition from shear deformation at the edge to 
uniaxial tension at the centre. Shear deformation induces <211>//ED 
texture components whereas uniaxial tension produces a combination of 
<111> and < 100>//ED texture components. In the tension dominated 
region, the combined volume fraction of <111> and < 100> groups 
remain 1.0, though each group fluctuates inversely.

As seen in Fig. 8c, Group 4 texture components (<211>//ED) begin 
to increase steadily within 1 mm from the centre of the small round bar, 
indicating a shear-dominated deformation region extending over 5 mm 
from the edge. Similarly, shear-dominated regions of approximately 6 
mm are observed for the medium and big round bars (Fig. 8b and d). 
These findings suggest an upper boundary for the friction-induced shear 
deformation zone, further explaining the predominance of shear defor-
mation in thin profiles, such as the 6 mm thick flat bar and 2.5 mm thick 
hollow rectangle.

3.3. Application of novel texture data in an ANN model for deformation 
mode prediction

The digitised texture data obtained using the new texture analysis 
method was applied in the development of an artificial neural network 
(ANN) model. Constructed in the TensorFlow [32] framework within 
Python, the ANN model aims to predict deformation modes in complex 
profiles used in the automobile industry, bypassing the need for time- 
consuming finite element analysis. The ANN model classifies the 
investigated region as either axial tensile-dominant or shear-dominant, 
offering insights into the deformation mechanisms during extrusion 
and contributing to a comprehensive understanding of the extrusion 
conditions. This approach paves the way for automated material opti-
mization on the processing line.

3.3.1. Training data acquisition
Texture data, calibrated using the method outline in Section 3.1 were 

acquired for model training. The input of each data point comprises the 
texture distribution of the five proposed groups derived from EBSD or 
XRD scans as shown in Appendix A. The two output classes, axial tensile 
and shear, are labelled as 1 and 0, respectively, based on the cross- 
sectional strain output of the finite element analysis. Specifically, the 
central regions of round bars are classified as axial tensile while the thin 
flat profiles (flat bar &hollow rectangle) and the edge regions of round 
bars are classified as shear-dominant. A total of 51 labelled data points 
were collected for training. The labelled data points were partitioned 
into a training set (70 %) and a cross-validation set (30 %). Additionally, 
22 unlabelled data points, collected from the transitional regions of the 
round bars and the townut profile, were used as the test set.

3.3.2. Designing the ANN
Detailed information about artificial neural networks, how they are 

built, trained, and used are available in the literature [33,34]. In brief, 
ANNs are composed of interconnected artificial neurons. Each neuron 
receives numerical inputs, either raw data or outputs from other 

neurons, applies associated weights and biases to the input and subse-
quently processes them through a mathematical function. The resulting 
outputs are then transimitted along to other neurons. During training, 
these weights and biases are adjusted to improve the predictive accuracy 
of the ANN.

There are many types of ANN, we selected the multilayer perceptron 
ANN with two hidden layers, trained with the backpropagation algo-
rithm, based on several experimental trials. Machine learning algo-
rithms have two types of variables that affect the performance of the 
model, parameters and hyperparameters. Parameters are model vari-
ables whose values can change during the training, such as weights and 
biases. On the other hand, hyperparameters, including the number of 
neurons in each hidden layer, are set prior to training. We used grid 
search to determine the optimal combination of the number of neurons 
in the first and second layers. Different combinations were evaluated 
based on their classification error which is defined as the number of 
misclassified examples over the total number of examples. The optimal 
ANN architecture is comprised of 10 neurons in the first hidden layer 
and 2 neurons in the second hidden layer. A misclassification error of 
less than 0.1 % was achieved for both the training and cross-validation 
sets. Other hyperparameters of the ANN were set following the con-
ventional practice. The input features consist of the texture distribution 
of the five proposed groups, which were not normalised because the 
volume fraction inherently lies within the range of [01]. The rectified 
linear unit (ReLu) activation function was adopted. We used the Sparse 
Categorial Crossentropy loss function combined with the softmax 
function to compute the probability of the classification. Adaptive 
moment estimation (Adam) optimisation algorithm [35] was used.

3.3.3. Predictions and discussions
The ANN model was first adopted to predict the deformation mode in 

the transitional region between the centre and edge of the three round 
bars, where the mode is unclear. Fig. 10 shows the predicted probability 
of axial tension across this region, with the large bar displaying the 
widest axial tension zone, while the small bar shows the narrowest zone 
and exhibits several fluctuations rather than a smooth transition. These 
results suggest that material flow is fastest at the centre of round bar 
profiles, with more uniform cross-sectional flow velocity in the large 
bar. Friction at the billet-die interface causes the deformation mode to 
shift from axial tension at the centre to shear at the edge. As the bar 
diameter decreases, the shear region occupies a larger portion of the 
cross-section, leading to stronger internal shear forces and increased 
sliding between the centre and edge of the material flow as observed in 
the small round bar.

The ANN was also used to predict the deformation modes in the 
townut profile based on both EBSD and XRD scans. Table 7 summarises 
the predicted probabilities of axial tension/shear for the investigated 
regions as illustrated in Fig. 6a. Differences in predictions were observed 
between the two data sources. The EBSD data suggest the investigated 
area under axial tension, whereas the XRD data indicate a mix of axial 
tension and shear in region A and B and primarily tension in region C. 
These discrepancies are attributed to the fact that XRD measured bulk 
texture of larger regions compared to the middle area examined by EBSD 
(Fig. 6a). Consequently, XRD captured Group 4 textures linked to shear 
deformation near the edge, highlighting the inhomogeneous plastic 
strain distribution across the cross-section. The predicted deformation 
modes in townut profile is similar to that in the round bar, further 
contributing to the understanding of extrusion deformation of bulky 
profiles.

4. Conclusions

This paper investigated the extruded texture of 6xxx aluminium al-
loys produced on an industrial scale press using a combination of 
physics-based modelling and machine learning supported by experi-
mental investigation using EBSD and XRD. Finite element analysis of the 
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extrusion deformation of a typically thin (flat bar) and a typically bulky 
profile (medium sized round bar), revealed distinct deformation modes 
for the two types of profiles and inhomogeneous deformation in the 
cross-section.

A novel texture analysis method was developed in this study for 
identifying and categorising texture distributions in EBSD and XRD 
scans. The method was successfully implemented in OIM for EBSD and 
ATEX for XRD analysis, enabling consistent digitization of texture data 
and enhancing the training dataset for machine learning applications. 
The texture analysis discovered that the thin extruded profiles are 
dominated by <211>//ED texture components, and is different from 
typical rolling textures, as it lacks the significant Copper component 
characteristic of copper-type rolling textures and the Goss component 
commonly found in brass-type rolling textures. In round bars, the 
texture transitioned from a combination of <111> and < 100>//ED 
components at the centre to <211>//ED textures towards the edge. 
Additionally, it was observed that the duplex <111> and < 100> fibber 
components in the axial tension-dominated region exhibit an inverse 
transformation relationship.

Correlating the FE plastic strain results with the texture analysis 
revealed that in extrusion, the friction-induced shear deformation in-
duces <211>//ED texture components whereas tensile deformation at 
the centre of profiles produces a combination of <111> and < 100>// 
ED texture components. The analysis of FE results and texture distri-
bution highlighted friction as a key factor in extruded texture formation. 
High friction between billet and tooling at industrial scale induces large 
shear deformation zone that can prevail the entire cross-section of thin 
profiles, or result in a notable transition from shear at surface to uniaxial 
tension at the centre in the bulky profiles.

The texture distribution of the five proposed groups were adopted as 
input features in an ANN model developed to predict the deformation 
modes based on experimental texture data. The ANN model, successfully 
validated, was applied to predict the extrusion deformation of a complex 

townut profile, revealing that the material flow velocity is higher in the 
middle region and decreases towards edge, consistent with observations 
in other bulky profile shapes.
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