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A B S T R A C T

This paper introduces the Square Shape Slope Index (SSSI), a novel post-optimization multi-criteria decision-
making (MCDM) approach for analyzing Pareto fronts generated from bi-objective optimization problems.
SSSI leverages multiple Utopia and Nadir points—guided by a user-defined priority scale—to form a dynamic
square region around particular segments of the Pareto front. Within this region, slope-based evaluations are
used to rank solutions based on user preferences and criteria. The method’s effectiveness is demonstrated
through empirical tests on diverse benchmark functions and real-world scenarios, such as energy distribution and
portfolio optimization, each encompassing various shapes and patterns of the Pareto front. In addition, SSSI is
compared against established decision-making approaches both geometrically and analytically using different
aggregation methods. To account for the stochastic nature of evolutionary algorithms, the Non-Dominated
Sorting Genetic Algorithm (NSGA-II) is employed to generate Pareto fronts for each test function. Results
confirm the robustness and adaptability of SSSI, offering a clear and flexible framework for balancing conflicting
objectives in multi-objective decision-making contexts.

1. Introduction

In multi-objective optimization problems, the objectives often con-
flict, making multi-objective evolutionary algorithms a common
approach. However, these algorithms do not yield a single optimal so-
lution; instead, they produce a set of optimal solutions known as the
Pareto front. The core challenge then becomes selecting the most suit-
able solution from this front, as each solution represents a distinct
compromise among objectives (Chiu et al., 2016). This selection process
is especially crucial in practical applications, such as optimizing zero-
waste food production processes to balance sustainability and effi-
ciency (Capossio et al., 2022). To address this challenge, Multi-Criteria
Decision-Makers (MCDMs) serve as essential tools in ensuring that the
chosen solution is both technically feasible and optimally aligned with
the overarching objectives and constraints (Chaudhuri & Sahu, 2021).

In general, decision-makers follow a series of structured steps. They
begin by specifying both the criteria and the alternatives that define the
decision problem. In multi-objective optimization contexts, these
criteria represent the objectives, while the alternatives correspond to
non-dominated solutions (Kaim et al., 2018). Once the decision problem
is clearly identified, the decision-maker assigns weights to each

objective to reflect its importance, a step that significantly influences the
overall outcome. Finally, decision-makers employ various methods to
rank the alternatives based on the established criteria.

Based on their decision-making approaches, MCDMs are generally
classified into three main categories: Priori, Posteriori, and interactive
methods. In the Priori approaches, the decision-maker establishes
preferences—including criteria weights—before the optimization pro-
cess begins, using these preferences to guide subsequent decisions
(Wang & Jia, 2020; Syan & Ramsoobag, 2019; Petchrompo & Parlikad,
2019). In contrast, Posteriori approaches define preferences and eval-
uate non-dominated solutions after the multi-objective optimization
process is complete (Petchrompo et al., 2022). Finally, interactive
decision-making methods serve as dynamic approaches that engage with
the optimization process directly, iteratively refining preferences and
evaluating solutions in real time (Fernandez et al., 2018; Fernandez
et al., 2020; Nebro et al., 2018).

Compared with Priori and interactive decision-making approaches,
Posteriori approaches offer several notable advantages, chiefly because
they allow for an analysis of the entire set of alternatives before any
preferences are established. Unlike Priori methods, which rely on pre-
defined preferences that may not fully capture the diversity of
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available solutions, Posteriori approaches expose decision-makers to the
actual trade-offs involved, often resulting in more refined and adaptable
preference formulation. Furthermore, Posteriori approaches typically
demand less computational time for decision-making than interactive
methods, since they do not require continuous preference adjustments
throughout the optimization process (Petchrompo et al., 2022).

Posteriori decision-making approaches vary widely, with each
employing distinct techniques to tackle multi-objective optimization
problems. Among these, Euclidean distance–based MCDM methods are
foundational, leveraging geometric principles to evaluate alternatives in
a multi-dimensional space of criteria (Soheyli et al., 2016). These
methods provide intuitive and systematic ways to rank choices. Promi-
nent examples include TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution), which measures the proximity of alterna-
tives to ideal and anti-ideal solutions, and COPRAS (Complex Propor-
tional Assessment), which calculates a proportional utility score by
incorporating both beneficial and non-beneficial criteria (Trung, 2021;
Taherdoost & Mohebi, 2024). Similarly, VIKOR (VlseKriterijumska
Optimizacija I Kompromisno Resenje) emphasizes compromise solu-
tions, ranking alternatives based on their closeness to an ideal solution
while considering both group utility and individual regret (Vaid et al.,
2022). GRA (Grey Relational Analysis) adopts a relationship-based
perspective, comparing alternatives by their closeness to a reference
sequence under conditions of uncertainty (Jana & Pal, 2021). MOORA
(Multi-Objective Optimization by Ratio Analysis) simplifies decision-
making by normalizing criteria and optimizing objectives through ad-
ditive or ratio-based approaches, enhancing its adaptability across
various decision scenarios (Başaran & Tarhan, 2022). Together, these
methods effectively address trade-offs among criteria, providing robust
and interpretable rankings.

In addition to Euclidean distance-based methods, outranking ap-
proaches like PROMETHEE (Preference Ranking Organization Method
for Enrichment Evaluation) and ELECTRE (ELimination Et Choix Tra-
duisant la REalité) offer complementary frameworks for decision-
making. PROMETHEE employs preference functions and outranking
flows to rank alternatives, making it particularly suitable for scenarios
involving nuanced preferences (Akram & Bibi, 2023). ELECTRE, on the
other hand, uses concordance and discordance indices to assess how one
alternative outranks another, accommodating mixed levels of preference
and uncertainty (Taherdoost & Madanchian, 2023). Additionally, the
Minimum Manhattan Distance (MMD) method emphasizes computa-
tional efficiency in identifying solutions closest to ideal outcomes,
further enriching the landscape of MCDM techniques (Chiu et al., 2016).
Weight determination methods like AHP (Analytic Hierarchy Process)
integrate seamlessly with these frameworks, enabling decision-makers
to tailor rankings based on specific priorities. Together, these MCDM
approaches—including VIKOR’s compromise-driven model—serve as
powerful tools for solving complex decision-making problems across
domains such as renewable energy, logistics, and strategic planning
(Doke et al., 2021).

In this paper, we introduce the Square Shape Slope Index (SSSI), a
novel Posteriori multi-criteria decision-making (MCDM) method
designed specifically for bi-objective optimization problems. The SSSI
framework distinguishes itself from existing methods by leveraging
multiple Utopia and Nadir points, dynamically adjusting these reference
points based on user-defined criteria weights and priorities. Unlike
traditional Euclidean distance-based approaches, SSSI employs slope
calculations within a dynamic square framework to evaluate and rank
alternatives, offering greater adaptability to diverse Pareto front shapes,
including convex, non-convex, and discontinuous patterns.

This paper provides a detailed conceptual framework for SSSI, out-
lining its capacity to balance computational simplicity with decision-
making accuracy. To validate its effectiveness, SSSI is compared
against well-established posteriori decision makers across various
benchmark problems and applied to two real-world case scenarios: en-
ergy distribution optimization and portfolio optimization. These

applications demonstrate SSSI’s practical relevance and ability to handle
conflicting objectives in realistic decision-making contexts. Further-
more, we analyze the influence of the stochastic nature inherent in
evolutionary algorithms on decision-making processes, showcasing
SSSI’s ability to maintain consistent performance in the face of optimi-
zation variability. These contributions position SSSI as a versatile and
innovative tool for addressing complex decision-making challenges in
multi-objective optimization.

2. Square shape slop Index (SSSI)

The Square Shape Slope Index (SSSI) is a multi-criteria decision-
maker designed for bi-objective optimization problems. It employs the
concept of multiple Utopia and Nadir points, governed by a priority
scale, to form a square shape around a specific region of the Pareto front.
In general, multi-objective optimization can be defined as follows:

minf(x)
x ∈ Ω (1)

f(x) = [ f1(x) f2(x) ⋯ fN(x) ]K (2)

Where x represents a vector of decision variables in the search space
(Ω), while f(x) denotes a set of K objective functions. When an evolu-
tionary algorithm is used to optimize the multi-objective function pre-
sented in Eq. (1), it yields a Pareto set SP. This set consists of all decision
vectors x in the feasible decision space Ω for which no other vector xʹ in
Ω dominates them, as defined in Eq. (3) (G. Cocchi et al., 2021).

SP =
{
x ∈ Ω

⃒
⃒
⃒∀xʹ ∈ Ω,∄i ∈ {1,2,⋯,K} : fi(x) < fi(xʹ) and ∀j

∈ {1,2,⋯,K}, fj(x) ≤ fj(xʹ)
}

(3)

The image of Pareto set creates the Pareto front (ZP), which consists
of the objective vectors f(x) corresponding to each decision vector x in
the Pareto set, as defined in Eq. (4) and illustrated in Fig. 1. Each
member of the Pareto front is referred to as an alternative.

ZP = {f(x)|x ∈ SP} (4)

Based on the Pareto set and Pareto front, the SSSI decision-maker
relies on the concepts of the Nadir point and the Utopia point. The
Nadir point, denoted by (znd) represents a vector in the (ZP) space that
captures the worst (maximum) values achieved by any objective vector
in (ZP) space as shown in Eq. (5). Conversely, the Utopia point, denoted
by (z*), indicates the best (minimum) values attainable for each objec-
tive function in the (ZP) space, as illustrated in Eq. (6).

Fig. 1. Convex Pareto front points and the rectangular shape.
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znd =

(

max
f(x)∈ZP

f1(x),⋯, max
f(x)∈ZP

fk(x)
)

(5)

z* =

(

min
f(x)∈ZP

f1(x),⋯, min
f(x)∈ZP

fk(x)
)

(6)

However, in the SSSI decision making approach, the nadir and
Utopia points are shown in Eq. (7) and Eq. (8) respectively.

znd =

(

max
f(x)∈ZP

f1(x), max
f(x)∈ZP

f2(x)
)

(7)

z* =

(

min
f(x)∈ZP

f1(x), min
f(x)∈ZP

f2(x)
)

(8)

In addition to the Nadir and Utopia points, two other points, points
(A1) and (A2), are introduced in Eq. (9) and Eq. (10), respectively,
representing the two extremities of (ZP).

A1 =

(

min
f(x)∈ZP

f1(x), max
f(x)∈ZP

f2(x)
)

(9)

A2 =

(

max
f(x)∈ZP

f1(x), min
f(x)∈ZP

f2(x)
)

(10)

These four points (znd, z*, A1, and A2) create a rectangular shape has
four sides (S1, S2, S3, and S4) as shown in Fig. 1.

However, to apply the SSSI method effectively, the rectangle must be
transformed into a square by using a normalization technique. In this
paper, the Max-Min approach is employed—a common method in multi-
objective optimization for scaling objective function values to a uniform
range. Eq. (11) presents the Max-Min normalization formula for all fk(x)
values, where x ∈ SP (Mazziotta & Pareto, 2022).

fk, norm (x) =
fk(x) − min

f(x)∈ZP
fk(x)

max
f(x)∈ZP

fk(x) − min
f(x)∈ZP

fk(x)
(11)

In the resulting square shape, each side has the same length (a). The
SSSI method considers a line connecting the Nadir and Utopia
points—one of the two diagonals in this square, as illustrated in Fig. 2.
This diagonal represents the slope (NUslop) between the Nadir and Uto-
pia points, as shown in Eq. (12).

NUslop =

max
f(x)∈ZP

f1(x) − min
f(x)∈ZP

f1(x)

max
f(x)∈ZP

f2(x) − min
f(x)∈ZP

f2(x)
(12)

Next, two perpendicular lines are drawn from point (P) on the

diagonal (NUslop). The first line meets side S1 at point (Q), and the
second line meets side S2 at point (R). his construction creates two right-
angled triangles, ΔPQz* and ΔPRz*, with right angles at points (Q) and
(R), respectively, as shown in Fig. 2. Both triangles share the same hy-
potenuse Pz* , which has length (d). The value of (d) can be computed
for ΔPQz* using Eq. (13) and for ΔPRz* using Eq. (14).

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PQ)
2
+ (Qz*)

2
√

(13)

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PR)2
+ (Rz*)

2
√

(14)

From Eq. (13) and Eq. (14)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PQ)
2
+ (Qz*)

2
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PR)2
+ (Rz*)

2
√

(15)

Because the diagonal (NUslop) bisects the right angle at z* into two
45◦ angles, the triangles ΔPQz* and ΔPRz* are isosceles right triangles,
meaning their legs are equal in length. As a result, Eq. (15) can be
rewritten as shown in Eq. (16).
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PQ)
2
+ (PQ)

2
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(PR)2
+ (PR)2

√

(16)

From Eq. (16), it follows that the leg PQ in ΔPQz* is equal to the leg
PR in ΔPRz*. Because these legs represent the distances from point P to
sides S1 and S2 respectively—and are thus equal—point P on (NUslop) is
equidistant from both sides. Since sides S1 and S2 represent the scales of
the first and second objective functions, respectively, any point on
(NUslop) maintains an equal distance from both objective functions. See
(Fig. 3).

Based on the earlier proof, the SSSI method calculates two slopes for
each alternative in the Pareto front. The first slope is between alternative
(m) and the Nadir point, denoted as (N(m)slop), and the second slope is
between the same alternative and the Utopia point, denoted as (U(m)slop)
as shown in Fi. 3 and calculated in Eq. (17) and Eq. (18), respectively.
The method then determines the average of these two slopes, Avg(m)slop,
as shown in Eq. (19).

N(m)slop =

f1(m)(x) − min
f(x)∈ZP

f1(x)

f2(m)(x) − min
f(x)∈ZP

f2(x)
(17)

U(m)slop =

max
f(x)∈ZP

f1(x) − f1(m)(x)

max
f(x)∈ZP

f2(x) − f2(m)(x)
(18)

Fig. 2. The main slop (NUslop). Fig. 3. SSSI slops.
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Avg(m)slop =
N(m)slop + U(m)slop

2
(19)

Subsequently, the SSSI value for each alternative (m) is found by
taking the absolute difference between (Avg(m)slop) and (NUslop) as given
in Eq. (20).

SSSI(m) =

⃒
⃒
⃒Avg(m)slop − NUslop

⃒
⃒
⃒ (20)

A lower SSSI value indicates that the alternative (m) is closer to
(NUslop), and hence closer to the region representing the most balanced
trade-off between the two objective functions on the Pareto front. The
SSSI method ranks all alternatives accordingly.

The SSSI decision-maker incorporates a criteria scale that allows
controlling the priority ratio between two objective functions when
ranking alternatives. This scale employs multiple Utopia and Nadir
points to preserve the square shape used in SSSI calculations.

The priority scale for the first objective is (α), and for the second
objective is (β), both ranging from 0 to 1. By default, α = β = 0, which
yields a solution reflecting an equally balanced trade-off between the
two objectives on the Pareto front. Increasing one of these scales by a
certain amount elevates the priority of its corresponding objective by the
same percentage; after updating the Nadir and Utopia points accord-
ingly, the square shape shifts to emphasize a specific region of the Pareto
front.

Using the values of α and β along with the original Nadir and Utopia
points defined in Eq. (7) and Eq. (8), the modified Nadir point (zndʹ) and
the modified Utopia point (z*ʹ) are given in Eq. (21) and Eq. (22),
respectively.

zndʹ = (F1(N) , F2(N)) (21)

z*ʹ = (F1(U) , F2(U)) (22)

Where F1(N), F2(N), F1(U), and F2(U) are calculated in equations (23) to
(26).

F1(N) = max
f(x)∈ZP

f1(x) − β ( max
f(x)∈ZP

f1(x) − min
f(x)∈ZP

f1(x)) (23)

F2(N) = max
f(x)∈ZP

f2(x) − α ( max
f(x)∈ZP

f2(x) − min
f(x)∈ZP

f2(x)) (24)

F1(U) = min
f(x)∈ZP

f1(x)+ α ( max
f(x)∈ZP

f1(x) − min
f(x)∈ZP

f1(x)) (25)

F2(U) = min
f(x)∈ZP

f2(x)+ β ( max
f(x)∈ZP

f2(x) − min
f(x)∈ZP

f2(x)) (26)

These updated points subsequently generate new points (A1) and
(A2) , as shown in Eq. (27) and Eq. (28), respectively.

A1
ʹ = (F1(U) , F2(N)) (27)

A2
ʹ = (F1(N) , F2(U)) (28)

However, when the priority scale for the first objective (α) is modi-
fied, A1 does not change, as illustrated by the dotted square in Fig. 4.
Likewise, adjusting the priority scale for the second objective (β) leaves
A2 unaffected, as shown by the dashed square. After defining the square
shape based on the selected priority scale values, the SSSI method uses
slope calculations to rank the alternatives within the resulting square.

The priority scale parameters α and β are independent from each
other and range from 0 to 1. These parameters allow decision-makers to
assign flexible and dynamic weights to each objective without being
constrained by a fixed sum. This independence ensures that decision-
makers can explore a wide range of trade-offs and customize their
preferences without being limited by a predefined ratio between the
objectives. Fig. 5 shows the flowchart of the proposed SSSI decision-
making process.

3. Methodology

The methodology in this paper aims to validate the performance of
the SSSI method and assess its reliability for decision-making. To do so,
the SSSI method is applied to various patterns and shapes of Pareto
fronts from different bi-objective benchmarks. In addition, SSSI is
compared with several other MCDM methods using two distinct com-
parison approaches to evaluate its effectiveness. The comparison also
accounts for the stochastic nature of evolutionary algorithms by using
NSGA-II for optimization and Pareto front generation.

3.1. Benchmarks

To evaluate the reliability of the SSSI method, it is tested on various
2D Pareto fronts to rank the alternatives. To accomplish this, different
test functions from multiple benchmarks are optimized using the NSGA-
II algorithm, producing diverse Pareto fronts. In this paper, the primary
benchmark is ZDT, considered a standard for bi-objective optimization
problems (Zitzler et al., 2000). ZDT allows the SSSI method to be
examined on convex, non-convex, and discrete Pareto front shapes.

In addition to the ZDT benchmark, test functions from several others
are employed to cover an array of Pareto front patterns. From the DTLZ
benchmark, two test functions (DTLZ1 and DTLZ2) are used to explore
linear and “discounted” Pareto front shapes (Deb et al., 2005). Because
ZDT and DTLZ benchmarks are unconstrained, the CF benchmark from
the Congress on Evolutionary Computation (CEC) is also included, as its
functions are constrained (Zhang et al., 2009). Furthermore, the IMOP
benchmark is incorporated to cover non-uniform Pareto fronts, where
test functions generate non-uniformly distributed alternatives (Tian
et al. 2019). The detailed characteristics of all benchmark datasets used
in this study are provided in Appendix A.

3.2. The MCDM methods set

To assess the efficiency of the SSSI method, its performance is
compared with a set of well-known Posteriori MCDM methods (Petrović
et al., 2018). The first is VIKOR (Yu, 1973), which focuses on identifying
a compromise solution based on proximity to an ideal solution,
emphasizing trade-offs. The second is COPRAS (Zavadskas et al., 1994),
which evaluates alternatives through normalized values and criteria
weights to determine their relative effectiveness.

The third method in the comparison is TOPSIS (Trung, 2021), which
locates the option closest to the ideal solution and farthest from the
worst alternative based on geometric distances. Finally, GRA (Jana &
Pal, 2021) measures alternatives by assessing the degree of similarity or

Fig. 4. The square shape and the main slope at different priority scale settings.
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connection among different sequences.
These four methods were chosen for comparison with SSSI because

they represent distinct and widely recognized approaches in multi-
criteria decision-making, covering various perspectives—from compro-
mise solutions and proximity-based assessments to proportional ana-
lyses and handling of uncertainty. Moreover, like SSSI, these methods
are well-suited to the Min-Max normalization technique, ensuring a
uniform basis for comparing diverse decision-making scenarios in bi-
objective optimization. To ensure a fair and unbiased comparison, we
intentionally used the basic forms of VIKOR, TOPSIS, COPRAS, and
GRA, without incorporating advanced variations such as fuzzy logic or
hybrid approaches. This decision allows for a transparent evaluation of
the core methodologies and highlights the unique contributions of SSSI,
such as its dynamic square framework and robustness in handling
discontinuous Pareto fronts. These methods were chosen because they
comprehensively represent key paradigms in decision-making, enabling
a thorough and meaningful comparison.

3.3. Comparison analysis

The comparison between the SSSI method and the MCDM methods
introduced in Section 3.2 is conducted using two approaches: a geo-
metric approach and an analytical approach. The geometric approach
visualizes the Pareto fronts from various benchmarks, highlighting the

alternatives selected by each decision-maker and enabling a direct visual
comparison. Meanwhile, the analytical approach utilizes two aggrega-
tion methods to compare the full ranking of alternatives generated by
each decision-maker.

The first aggregation method in the analytical comparison is the
Mean Absolute Deviation (MAD). This statistical measure quantifies the
average absolute deviation of data points from their mean. In this paper,
MAD assesses the consistency of the rankings produced by different
decision-makers. When multiple decision-makers rank a set of alterna-
tives, each ranking can be viewed as a data series. By calculating the
MAD for each decision-maker’s ranking, the degree of variability in their
preferences can be evaluated. For a ranking with (n) alternatives, the
mean value for alternative (io) is calculated using Eq. (25), while the
absolute deviation for the same alternative is determined using Eq. (30).
Finally, these absolute deviation values are used to compute the MAD
value via Eq. (31) (Pham-Gia & Hung, 2001).

Mean =

∑n
io=1Atio
n

(29)

Absolute Deviation = |Atio − Mean | (30)

MAD =

∑n
io=1

⃒
⃒Atio − Mean

⃒
⃒

n
(31)

Lower MAD values indicate that a decision-maker’s rankings are

Fig. 5. Flowchart of the proposed SSSI decision-making process.
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more consistent or closer to their average ranking, implying a clearer
preference pattern. By contrast, higher MAD values suggest greater
variability and less definitive preferences. Comparing MAD values
across decision-makers thus helps identify which ones exhibit more
stable or consistent ranking patterns.

The second aggregation method in the analytical comparison
approach is the Spearman’s rank correlation coefficient, a non-
parametric measure of the strength and direction of association be-
tween two ranked variables. A shown in Eq. (32), the Spearman’s rank
correlation coefficient was calculated using the sum of the squared dif-
ferences between the ranks (Li et al., 2022). Where (rho) is the Spear-
man’s rank correlation coefficient, (Σdf2) is the squared differences
between the ranks, and (rt) is the number of rank

rho = 1 −
6 × Σdf2

rt(rt2 − 1)
(32)

where (rho) is the Spearman’s rank correlation coefficient, (Σdf2) is the
squared differences between the ranks, and (rt) is the number of ranks.
This coefficient reflects how closely the rankings align: values near + 1
indicate a strong positive correlation, suggesting that the decision-
makers generally agree on the rankings; values near –1 imply a strong
negative correlation, indicating a fundamental disagreement; and values
close to zero signify no correlation, pointing to independent or unrelated
ranking preferences. In this paper, the Spearman’s rank correlation co-
efficient will be used to evaluate how SSSI’s performance compares to
each of the MCDM methods listed in Section 3.2.

3.4. Real case scenarios

To validate the applicability of the proposed decision maker, two
real-world scenarios were selected. These scenarios demonstrate the
framework’s ability to handle complex multi-objective optimization
problems involving practical constraints and competing objectives. The
first scenario focuses on energy distribution optimization, highlighting
the trade-off between minimizing costs and reducing carbon emissions.
The second scenario addresses investment portfolio optimization, where
the objectives are to minimize risk and maximize returns.

3.4.1. Energy distribution optimization
The first real-world scenario addresses the optimization of energy

distribution among six key sources: Solar, Wind, Nuclear, Fossil (Coal),
Natural Gas, and Hydropower. In this scenario, the aim is to allocate
energy generation from these sources to meet a total demand of 100
MWh, while minimizing the total energy cost ($) and the total carbon
emissions (kg CO2) (Lazard, 2021). Each energy source has unique
characteristics, including cost per unit of energy produced, carbon
emissions, and maximum capacity (International Energy Agency &
Centre for Climate Finance & Investment, 2020). However, the total
energy cost is calculated based on the per-unit cost of energy production
for each source and the amount of energy allocated. These costs include
factors such as fuel costs, operation and maintenance expenses, and
capital recovery costs. This scenario is representative of real-world en-
ergy policy decisions, where affordability and sustainability often
conflict.

In this optimization, the decision variables xmi represent the energy
allocated from each source, and the two objectives are minimizing the
total energy cost f1(x)E, and the total carbon emissions f2(x)E as shown
in Eq. (33) and Eq. (34) respectively.

f1(x)E =
∑6

i=1
ci⋅xmi (33)

f2(x)E =
∑6

i=1
ei⋅xmi (34)

where ci and ei are the cost and emissions per MWh for source i. This
optimization is subject to constraints that ensure that the total energy
allocation equals the demand, remains non-negative, and does not
exceed each source’s maximum capacity.

The optimization of energy distribution often involves managing
conflicting objectives under dynamic and uncertain conditions. Recent
advancements in robust modeling and adaptive decision-making
frameworks, such as those applied in battery lifecycle estimation and
predictive maintenance, highlight the value of such methods (Wang
et al., 2023). Inspired by these approaches, the SSSI framework facili-
tates effective trade-off analysis between minimizing energy costs and
reducing emissions, enabling practical and adaptable solutions for real-
world applications.

3.4.2. Investment portfolio optimization
This portfolio optimization scenario addresses the challenge of

allocating a fixed budget across three well-known stocks—Amazon,
Apple, and Tesla—using historical stock price data obtained from
(Yahoo Finance, n.d.). The decision variables are the allocation weights,
wi, for each stock i, representing the proportion of the total budget
invested in that stock. These weights must satisfy the constraints in Eq.
(35) and Eq. (36) where the first ensures the entire budget is allocated,
and the second limits overexposure to any single stock.

∑3

i=1
wi = 1 (35)

0 ≤ wi ≤ 0.5 (36)

In this optimization, the two objectives are maximizing the total
portfolio expected daily return by minimizing f1(x)P, and minimizing the
total portfolio risk f2(x)P measured using Conditional Value at Risk
(CVaR), as shown in equations (37), (38), and (39) respectively (Chen&
Zhou, 2022).

f1(x)P =
∑3

i=1
− wid⋅rid (37)

f2(x)P =
∑3

i=1
wid⋅CVaRid (38)

CVaRα =
1
Nα

∑

id∈{rid≤VaRa}

rid (39)

Where ri is the expected return of stock i based on the historical price
data, and CVaRi is a measure of risk that quantifies the average loss in
the worst-case scenarios beyond the confidence level (α) of stock (id),
VaR is the return threshold below which a certain percentage of the
worst losses occur, and Nα is the number of returns below the VaR
threshold. In this study, the confidence level is 95 %, and VaR corre-
sponds to the 5th percentile of the sorted daily returns (Chen & Zhou,
2022).

These objectives are inherently conflicting because stocks with
higher expected returns, such as Tesla, often come with greater risks, as
reflected by higher CVaR values in extreme market conditions. This
conflict highlights the need for a robust decision-making approach to
navigate the trade-offs between maximizing returns and minimizing
risks. The optimization algorithm addresses this challenge by generating
a Pareto front, which provides a range of optimal solutions representing
different risk-return balances. The proposed decision maker plays a
crucial role in this scenario by selecting the most suitable solution from
the Pareto front, effectively tailoring the portfolio to align with specific
risk tolerance and return expectations. This demonstrates the decision
maker’s importance in achieving well-informed, balanced investment
strategies in complex financial environments.
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3.5. Evolutionary algorithm

In this paper, the stochastic nature of evolutionary algorithms is
incorporated into the comparison analysis. To this end, the NSGA-II
(Non-dominated Sorting Genetic Algorithm II) was chosen to generate
Pareto fronts for evaluation by the SSSI method and the MCDM methods
introduced in Section 3.2.

NSGA-II is a widely adopted evolutionary algorithm for multi-
objective optimization. It simulates natural selection by iteratively
evolving a population of solutions through selection, crossover, and
mutation. Three core features enable NSGA-II to achieve its objectives:
(1) Fast Non-Dominated Sorting, which categorizes solutions into Pareto
fronts based on dominance; (2) Crowding Distance, preserving diversity
by favoring solutions in less crowded regions; and (3) Elitism, which
maintains the best solutions across generations by merging parent and
offspring populations (Deb et al., 2002). These characteristics make
NSGA-II ideal for producing diverse, well-distributed Pareto fronts, as
required in this study.

Here, the mutation rate, mutation strength, and crossover rate for
NSGA-II were fixed at 0.05, 0.5, and 0.9, respectively, while population
size and the number of generations varied depending on the test function
and the specific comparison analysis. However, because NSGA-II is
inherently stochastic, each run may yield a different Pareto front due to
random initialization and genetic operations. To account for this vari-
ability, NSGA-II was executed 100 times for each test function. At each
run, the comparison method was applied, and the mean values across
the 100 iterations were used to ensure robust, reliable comparisons
between the SSSI method and the other MCDM approaches.

4. Results and discussion

4.1. Benchmarks

Using NSGA-II to minimize the bi-objective function ZDT1 from the
ZDT benchmark yields a set of optimal, non-dominated solutions—each
referred to as an alternative (At). These alternatives form a convex
Pareto front, as illustrated in Fig. 6.

From the Pareto front in Fig. 5, the decision matrix for the ZDT1
function is presented in Table 1, along with the ranking of alternatives
based on their SSSI values at the default priority scale.

The results indicate that alternatives 4, 5, 6, 7, and 8, representing
the “knee” region of the analyzed Pareto front, have lower SSSI values
compared to the other alternatives. Notably, alternative 5 exhibits the
lowest SSSI value, making it the optimal solution to minimize the ZDT1

bi-objective function under an equally balanced trade-off between the
two objectives, both of which have equal priority. Additionally, the two
least-favored alternatives in the SSSI ranking share the same SSSI value,
which is infinite. These alternatives correspond to points A1 and A2,
which—together with the Nadir and Utopia points—form the SSSI
rectangle.

However, Table 2 presents the optimal alternative selected by the
SSSI method under various priority scale settings. The first two settings
adjust the priority scale for the first objective (α) to 0.2 and 0.7,
respectively, while the last two settings modify the priority scale for the
second objective (β) to 0.35 and 0.9, respectively.

From Table 2, it is evident that the SSSI value of the optimal alter-
native at each scale setting differs from its SSSI value at the default
settings shown in Table 1. Meanwhile, Table 3 provides the complete
alternative rankings from different decision-makers, allowing a direct
comparison with the SSSI ranking when all methods are applied to the
same decision matrix in Table 1.

Table 3 reveals that each decision-maker produces a distinct ranking
for the same set of alternatives. Comparing these rankings with the SSSI
ranking shows that VIKOR is the only method matching SSSI’s rank for
alternative 5, while TOPSIS is the only method aligning with SSSI’s rank
for alternative 3. Furthermore, the positions of alternatives 1, 10, and 11
remain the same across all rankings. To evaluate these rankings
analytically, Table 4 presents the Spearman’s rank correlation coeffi-
cient values, indicating how closely each method’s ranking aligns with
SSSI.

Notably, VIKOR has the rho value closest to 1, making it the most
similar to SSSI, whereas COPRAS shows the least similarity. While
Table 4 provides a method-by-method comparison with SSSI, Table 5
reports the Mean Absolute Deviation (MAD) values for all rankings
together, offering an overall view of their consistency and variability.

Since lower MAD values indicate that a decision-maker’s ranking is
more consistent or closer to its average ranking, Table 5 shows that SSSI
and VIKOR are the most consistent in this comparison, followed by
TOPSIS, then GRA, and finally COPRAS, which proves to be the least
consistent of all the rankings.

It is important to note that the decision matrix in Table 1 and the
alternative rankings in Table 3 correspond to the deterministic Pareto
front generated by NSGA-II in Fig. 6. However, due to the stochastic
nature of evolutionary algorithms such as NSGA-II, subsequent runs may
produce different Pareto fronts even with the same test function and
identical algorithm settings. Fig. 7 illustrates how the number of

Fig. 6. Pareto front of the Non-Dominate Solutions for Optimizing ZDT1
Function using NSGA-II.

Table 1
Decision Matrix and SSSI Ranking for the ZDT1 Pareto front.

Decision Matrix SSSI Ranking (α = 0, β = 0)

Alternative 1st Objective 2nd objective Alternative Rank SSSI Value

At1 0 1 11 INFINITY

At2 0.0712 0.7331 8 5.0045
At3 0.1869 0.5677 6 1.2529
At4 0.3893 0.4485 2 0.1245
At5 0.39 0.3755 1 0.030475
At6 0.473 0.3526 3 0.2415
At7 0.4891 0.3007 4 0.37698
At8 0.559 0.2523 5 0.62206
At9 0.7877 0.1125 7 2.0188
At10 0.9681 0.0313 9 15.167
At11 1 0 11 INFINITY

Table 2
Optimal alternative chosen by SSSI at different priority scale settings.

Setting Number Priority Scale Optimal Alternative SSSI Value

1 α = 0.2 β = 0 At7 0.031415
2 α = 0.7 β = 0 At9 0.1998
3 α = 0 β = 0.35 At4 0.4817
4 α = 0 β = 0.6 At2 0.52882
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alternatives varies across 100 runs of NSGA-II when optimizing the
ZDT1 test function under fixed conditions.

Fig. 7 shows that the number of alternatives varies between 5 and 13
across different iterations, with changes in both the values and locations
of the alternatives on the Pareto front. This variability results in a
different decision matrix for each iteration, leading to different rankings
of alternatives. Consequently, this variation impacts the MAD and rho

values in the comparison analysis. Fig. 8 illustrates the variations in the
MAD value for SSSI over 100 iterations, as it is compared with the
rankings of other decision-makers at each iteration.

As shown in Fig. 8, the MAD value for the SSSI method fluctuates
between 0 and 2. A MAD value of 0 for SSSI at a specific iteration in-
dicates that all decision-makers produced identical rankings during that
iteration, resulting in zero MAD values for all methods. This situation is
more likely to occur when the number of alternatives is lower, as smaller
sets of alternatives increase the likelihood of identical rankings, as evi-
denced in Figs. 7 and 8.

Fig. 9 illustrates the rho values between the SSSI rankings and the
rankings from other decision-makers over 100 iterations, highlighting
the variability caused by changes in the Pareto front. The results indicate
that TOPSIS rankings are the closest to SSSI rankings, with the majority
of rho values near + 1, followed by GRA rankings, then VIKOR rankings.
Conversely, COPRAS rankings are the least similar to SSSI rankings, as
they exhibit the lowest number of rho values close to + 1. It is also
notable that, while Table 4 shows VIKOR rankings as the closest to SSSI
rankings for a deterministic Pareto front, this may not hold true when
accounting for multiple runs of the algorithm under identical settings.
To address the stochastic nature of NSGA-II, Table 6 presents the mean
values of MAD and rho for each decision-maker across the 100
iterations.

According to the rho values in Table 6, the TOPSIS ranking is the
closest to the SSSI ranking over 100 iterations of optimizing the ZDT1
test function, followed by GRA and VIKOR rankings. COPRAS rankings
show the lowest similarity with SSSI rankings. Additionally, the SSSI
ranking has the lowest average MAD value (0.773), indicating that it
provides the most consistent rankings, remaining closer to the average
ranking across the 100 iterations.

The results in Tables 5 and 6 also demonstrate that a decision-maker
with a better MAD value at a single iteration does not necessarily
maintain this advantage when considering the average MAD value over
multiple iterations. The same applies to rho values, as seen when
comparing Tables 4 and 6. Furthermore, the comparison in Table 6 has
been expanded in Table 7, which presents the average MAD and rho
values for each decision-maker across 100 iterations of optimizing
several test functions from four benchmarks (ZDT, DTLZ, CF, and IMOP)
using NSGA-II.

The results in Table 7 highlight SSSI’s exemplary performance in the
ZDT benchmark functions, particularly ZDT1, ZDT2, and ZDT3, where it
achieved the lowest MAD values, demonstrating superior consistency in
ranking solutions. This stands in contrast to other decision-makers, such
as VIKOR and TOPSIS, which, while competitive, did not consistently
achieve comparably low MAD values in these tests.

Table 3
Complete ranking of ZDT1 decision matrix alternatives from different decision
makers.

Alternative Number (At) Rankings

SSSI VIKOR TOPSIS COPRAS GRA

At1 11 11 11 11 11
At2 8 7 8 4 7
At3 6 2 6 1 3
At4 2 5 1 7 2
At5 1 1 3 2 5
At6 3 4 2 6 4
At7 4 3 4 3 1
At8 5 6 5 5 6
At9 7 8 7 8 8
At10 9 9 9 9 9
At11 11 11 11 11 11

Table 4
Spearman’s rank correlation coefficients values
between SSSI ranking and other rankings for ZDT1
decision matrix alternatives.

Decision Maker rho

VIKOR 0.8455
TOPSIS 0.8273
COPRAS 0.3364
GRA 0.5909

Table 5
Mean Absolute Deviation (MAD) values for deci-
sion maker rankings (ZDT1).

Decision Maker MAD

SSSI 1.05
VIKOR 1.05
TOPSIS 1.3
COPRAS 1.78
GRA 1.49

Fig. 7. Variation in the Number of Pareto Front Alternatives Over 100 Iterations (ZDT1).
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Fig. 8. Variation of MAD Value for SSSI Over 100 Iterations (ZDT1).

Fig. 9. Spearman’s Rank Correlation Coefficients Between SSSI Rankings and Other Methods for ZDT1 Decision Matrix Alternatives Over 100 Iterations: (a) VIKOR,
(b) TOPSIS, (c) COPRAS, and (d) GRA.
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In the IMOP benchmark, specifically IMOP1 and IMOP2, SSSI
excelled again, showcasing its capability in handling non-uniform
convex and non-convex Pareto fronts. However, its performance in the
CF benchmark was more mixed; while SSSI performed strongly in some
cases, it was outperformed by decision-makers like COPRAS and VIKOR
in the CF6 function, indicating variability in constrained environments.
In the DTLZ benchmarks, SSSI demonstrated further strength, particu-
larly in DTLZ1, where its performance was on par with or exceeded that
of other decision-makers.

For Spearman’s rho values, SSSI’s ranking approach demonstrated
the highest correlation with TOPSIS in the ZDT benchmark, indicating a
similar evaluation of solutions in these scenarios. In the IMOP bench-
marks, SSSI’s rankings exhibited a strong correlation with models like
GRA, reflecting a shared prioritization strategy for managing complex
Pareto front shapes. In contrast, the CF benchmark showed varying
levels of correlation, with no single decision-maker consistently aligning
with SSSI’s rankings, highlighting the unique nature of SSSI’s approach
in constrained scenarios. The DTLZ benchmarks also revealed varying
degrees of correlation, further emphasizing the distinctiveness of SSSI’s
decision-making methodology.

Overall, when comparing decision-makers based on the frequency of
achieving the lowest MAD values, SSSI emerges as the most consistent
performer, achieving the lowest MAD values in 12 out of the 15 test
functions. This significant achievement underscores SSSI’s robustness

and reliability across a wide range of multi-objective optimization sce-
narios. Its consistency in performance surpasses that of other decision-
makers, establishing SSSI as a particularly strong model in situations
where stable and reliable rankings are essential.

To compare the performance of SSSI with other decision-makers
geometrically, Fig. 10 illustrates the optimal alternatives selected by
SSSI, VIKOR, TOPSIS, COPRAS, and GRA when applied to Pareto fronts
generated by NSGA-II while optimizing four test functions: ZDT1, ZDT2,
IMOP1, and IMOP2.

Fig. 10 depicts two convex Pareto fronts (ZDT1 and IMOP1) and two
non-convex Pareto fronts (ZDT2 and IMOP2). While the points on the
ZDT1 and ZDT2 Pareto fronts are uniformly distributed, those on the
IMOP1 and IMOP2 Pareto fronts are non-uniformly distributed. From
Fig. 10, it is evident that SSSI demonstrates consistent performance
across both uniform and non-uniform Pareto fronts, highlighting its
robust decision-making methodology, which relies on the scale of the
Pareto front itself. This contrasts with other decision-making models,
such as GRA, which may be influenced by the distribution of points on
the Pareto front. Notably, VIKOR closely mirrors SSSI’s performance,
demonstrating a similar level of proficiency and adaptability, followed
by TOPSIS as the next closest in performance. Fig. 11 provides another
geometric analysis of the decision-makers’ performance on test func-
tions that generate more complex and discontinuous Pareto fronts.

The discontinuity in the ZDT3 and DTLZ7 Pareto fronts has minimal
impact on the performance of SSSI and other decision-makers, as their
results remain close to one another. This is primarily because most of the
knee region does not lie within the discontinuous portions of the Pareto
front, as shown in Fig. 11(a) for the ZDT3 function, and to a slightly
lesser extent for DTLZ7 in Fig. 11(b). Conversely, for the IMOP3 and CF2
Pareto fronts in Fig. 11(c) and 11(d), respectively, decision-making
becomes more challenging as the knee region is more prominently
located within the discontinuous parts of the Pareto front. This results in
greater variability among the outcomes of the decision-makers.

The SSSI framework was evaluated on a diverse set of Pareto front
shapes, including convex, non-convex, and discontinuous fronts,

Table 6
Average MAD and rho values for each decision maker over the 100 iterations of
optimizing ZDT1 function using NSGA-II.

Decision Maker MAD rho

SSSI 0.773 −

VIKOR 0.907 0.62
TOPSIS 0.825 0.884
COPRAS 1.153 0.41
GRA 0.893 0.75

Table 7
Average MAD and rho values for each decision maker over 100 iterations across different test functions.

Benchmark Function Aggregation Method Decision Maker

SSSI VIKOR TOPSIS COPRAS GRA

ZDT ZDT1 MAD 0.66 0.77 0.67 1 0.76
rho − 0.61 0.88 0.4 0.78

ZDT2 MAD 0.41 0.44 0.49 0.69 0.64
rho − 0.91 0.89 0.66 0.73

ZDT3 MAD 0.83 1.29 0.91 1.54 1.84
rho − 0.23 0.85 − 0.011 0.85

ZDT4 MAD 0.39 0.37 0.36 0.51 0.44
rho − 0.78 0.97 0.67 0.77

ZDT6 MAD 0.31 0.31 0.35 0.56 0.42
rho − 0.91 0.89 0.69 0.86

DTLZ DTLZ1 MAD 0.65 0.94 0.75 1.4 0.67
rho − 0.45 0.84 − 0.1 0.92

DTLZ7 MAD 0.31 0.35 0.34 0.51 0.35
rho − 0.75 0.88 0.52 0.89

CF CF1 MAD 0.51 0.55 0.77 0.68 0.6
rho − 0.75 0.59 0.6 0.77

CF2 MAD 1.27 1.29 1.95 1.46 1.35
rho − 0.48 0.13 0.28 0.55

CF3 MAD 1.09 1.11 1.72 1.23 1.17
rho − 0.46 0.14 0.3 0.6

CF5 MAD 1 1.73 1 2 1.02
rho − 0.1 0.96 − 0.1 0.9

CF6 MAD 1.1 1 1.1 0.99 1.13
rho − 0.55 0.4 0.41 0.58

IMOP IMOP1 MAD 0.91 0.8 1.3 0.8 1.02
rho − 0.77 0.4 0.7 0.67

IMOP2 MAD 0.6 0.6 0.8 0.78 0.98
rho − 0.9 0.76 0.75 0.63

IMOP3 MAD 0.95 1.3 0.96 1.6 0.98
rho  0.25 0.77 − 0.017 0.78
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demonstrating its adaptability in multi-objective optimization. For
example, in the ZDT1 benchmark (convex front), SSSI effectively iden-
tified knee region solutions. On non-convex fronts such as those in the
IMOP and DTLZ benchmarks, it maintained consistent rankings, while
on discontinuous fronts like ZDT3 and CF2, it exhibited robust perfor-
mance despite the fragmented regions. These results underscore SSSI’s
flexibility and reliability across varied optimization scenarios.

4.2. Case studies

Fig. 12 shows the Pareto front generated from the energy distribution
optimization scenario, demonstrating the trade-offs between mini-
mizing total energy cost ($) and total carbon emissions (kg CO2). Each
point on the Pareto front represents a potential energy allocation strat-
egy, highlighting the inherent complexity of balancing economic effi-
ciency with environmental sustainability.

To evaluate the effectiveness of the proposed decision maker, SSSI,
the Pareto front was analyzed under different Priority Scale settings.
Table 8 summarizes the results of applying SSSI to the Pareto front under
seven distinct Priority Scale settings where each setting adjusts the
relative priority given to the two objectives.

When equal priority is given to both objectives as shown in setting 1,
SSSI selects a balanced solution with moderate cost ($2907.7) and
emissions (2969.4 kg CO2). As the priority for cost increases in setting 4,
the total cost drops significantly to $528.8, but this comes at the expense
of drastically higher emissions (5169.9 kg CO2). Conversely, when the
focus shifts to reducing emissions (setting 7), emissions are minimized to
729.57 kg CO2, but the cost rises substantially to $4988. The chart in
Fig. 13 provides a visual representation of the energy allocations across

the six sources for each Priority Scale setting. The stacked bar chart
highlights how the SSSI decision maker adjusts the energy mix based on
the relative importance of minimizing cost or emissions.

The second case study involves investment portfolio optimization,
where the goal is to balance two competing objectives: minimizing total
portfolio risk, measured as Conditional Value at Risk (CVaR), and
maximizing the expected daily return. The Pareto front, shown in
Fig. 14, consists of 188 solutions, each representing a trade-off between
these two objectives.

The SSSI decision maker is applied to the normalized version of the
Pareto front in Fig. 14 to validate its capability in identifying optimal
portfolios that align with varying risk and return priorities. Table 9
summarizes the results of applying SSSI to the Pareto front under seven
distinct Priority Scale settings where each setting adjusts the relative
priority given to the two objectives.

Notably, the sensitivity of the SSSI Priority Scale is evident in Setting
2, where even a slight adjustment in the priority scale results in a
noticeable shift in the selected optimal portfolio. This indicates the
responsiveness of the decision maker to fine-tuned preference changes.
In settings prioritizing expected return, the portfolio achieves a higher
return (0.608 %) but with greater associated risk (CVaR = 1.6947) as
shown in Setting 4. Conversely, in settings prioritizing risk reduction,
the portfolio achieves the lowest risk (CVaR = 1.2053) but at the
expense of lower expected returns 0.335 % as shown in Setting 7. The
chart in Fig. 15 provides a visual representation of the budget allocation
for the three assets (Amazon, Apple, and Tesla) under the seven SSSI
Priority Scale settings.

The chart highlights how the allocation adjusts based on the relative
priorities assigned to minimizing risk (CVaR) or maximizing expected

Fig. 10. Decision maker choices for the optimal alternative on different Pareto fronts from various test functions ((a) ZDT1, (b) ZDT2, (c) IMOP1, (d) IMOP2).
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return. For example, in Setting 7, which emphasizes minimizing risk,
Amazon receives a substantial portion of the budget due to its lower
volatility. Conversely, in settings prioritizing expected return, such as
Setting 4, Tesla gains a larger share of the allocation due to its higher
return potential. Apple, on the other hand, maintains a relatively stable
allocation across all settings, suggesting that its return-risk profile is

well-balanced and consistently valuable regardless of the priority scale.
These results demonstrate the SSSI framework’s adaptability in

identifying optimal solutions that align with varying priorities, offering
decision-makers the flexibility to address specific goals. This capability
is essential for balancing competing objectives, such as affordability and
sustainability in energy systems or risk and return in financial portfolios,
making the SSSI framework a valuable tool for real-world applications in
diverse and dynamic decision-making environments.

Fig. 11. Decision maker choices for the optimal alternative on different Pareto fronts from different test functions ((a) ZDT3, (b) DTLZ7, (c) IMOP3, (d) CF2).

Fig. 12. Pareto Front Representing Energy Cost and Carbon Emissions
Trade-offs.

Table 8
Energy Allocation Across Different SSSI Priority Scale Settings.

Setting
Number

SSSI Priority Scale Optimal Alternative

1st Objective
Priority (α)

2nd
Objective
Priority (β)

1st Objective:
Total Energy
Cost ($)

2nd Objective:
Total Carbon
Emissions (kg
CO2)

1 0 0 2907.7 2969.4
2 0.01 0 2751 3138.3
3 0.08 0 2597.4 3192.1
4 0.6 0 528.8 5169.9
5 0 0.07 3145.2 2751.6
6 0 0.15 3307.2 2593.3
7 0 0.8 4988 729.57
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5. Conclusion

This paper introduced the Square Shape Slope Index (SSSI) as a novel
multi-criteria decision-making method for bi-objective optimization
Pareto fronts. The conceptual framework and operational methodology
of SSSI, grounded in the use of multiple Utopia and Nadir points gov-
erned by a priority scale, were detailed to emphasize its unique and
straightforward approach, which leverages the geometric properties of
the Pareto front.

The performance of SSSI was compared against other decision-
making methods across a range of Pareto front shapes and patterns,

including convex, non-convex, uniform, non-uniform, and discontin-
uous fronts. These fronts were generated by optimizing constrained and
non-constrained test functions using NSGA-II. The results validated
SSSI’s reliability and effectiveness across diverse Pareto front configu-
rations. Analytical comparisons using the MAD approach highlighted
SSSI’s superiority in decision-making, while geometric comparisons
demonstrated its consistent performance, further reinforcing its
reliability.

In conclusion, the findings presented in this paper confirm the
uniqueness and effectiveness of SSSI, establishing it as a robust and
reliable tool for bi-objective optimization problems. Future work will

Fig. 13. Energy Allocations (MWh) Across Sources for Each Priority Scale Setting.

Fig. 14. Pareto Front Representing (CVaR) and (− Expected Daily Return) Trade-offs.

Table 9
Portfolio Allocation Across Different SSSI Priority Scale Settings.

Setting
Number

SSSI Priority Scale Optimal Alternative

1st Objective
Priority (α)

2nd Objective
Priority (β)

1st Objective 2nd Objective: Total
Portfolio Risk (CVaR)

f1(x)P
Value

Total Portfolio Expected Daily
Return (I f1(x)P I%)

1 0 0 − 0.492 0. 492 % 1.4857
2 0.007 0 − 0.494 0. 494 % 1.4892
3 0.2 0 − 0.5312 0. 531 % 1.5561
4 0.6 0 − 0.608 0. 608 % 1.6947
5 0 0.01 − 0.481 0.481 % 1.4664
6 0 0.4 − 0.413 0.413 % 1.3441
7 0 0.8 − 0.335 0.335 % 1.2053
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focus on extending the SSSI framework and methodology to accommo-
date multi-objective optimization involving more than two objectives.
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Appendix A

Table A1
Characteristics of ZDT, DTLZ, CF, and IMOP benchmarks.

Benchmark Test
Function

Objectives (f1 and f2) Constraints and Boundaries

IMOP IMOP 1
f1(x) = g(x) + cos

(
y1

π
2

)8
f2(x) = g(x) + sin

(
y1

π
2

)8
y1 =

(
1
5
∑5

i=1
xi

)a1

g(x) =
∑10

i=K+1
(xi − 0.5)2

,x1:5

0 ≤ xi ≤ 1

IMOP 2
f1(x) = g(x) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cos(y1π/2)

√
f2(x) = g(x) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin(y1π/2)

√
y1 =

(
1
5
∑5

i=1
xi

)0.05

g(x) =

∑10
i=5+1

(xi − 0.5)2

0 ≤ xi ≤ 1

IMOP3
f1(x) =

∑10
i=5+1

(xi − 0.5)2
+

[

1+
cos(10πy1)

5
− y1

]

f2(x) =
∑10

i=5+1
(xi − 0.5)2

+ y1y1 =

(
1
5
∑5

j=1
xj

)0.05

0 ≤ xi ≤ 1

CF CF1 f1(x) = x1 + 2⋅
1
|J1|

∑

j∈J1

(
xj − x

pj
1

)2
f2(x) = (1 − x1) + 2⋅

1
|J2|

∑

j∈J2

(
xj − x

pj
1

)2
pj =

0.5
(

1+3
j − 2
D − 2

)

g(x) = 1 − f1(x) − f2(x) + |sin(10π[f1(x) − f2(x) + 1] ) |

g(x) ≤ 00 ≤ xi ≤ 1J1 = {3, 5, 7,⋯}J2 = {2,
4,6,⋯}

CF2
f1(x) = x1 +

2
|J1|

∑

j∈J1

(

xj − sin
(

6πx1 +
jπ
D

))2
f2(x) = 1 −

̅̅̅̅̅x1
√

+

2
|J2|

∑

j∈J2

(
xj − cos(6πx1 + jπ/D)

)2t(x) = f2(x) +
̅̅̅̅̅̅̅̅̅̅̅
f1(x)

√
− sin

(
2π
[ ̅̅̅̅̅̅̅̅̅̅̅

f1(x)
√

− f2(x) + 1
] )

− 1

t(x) ≥ 00 ≤ x1 ≤ 1J1 = {3,5, 7,⋯,D}J2 = {

2,4,6,⋯,D} − 1 ≤ xi ≤ 1(i = 2,⋯,D)

CF3
f1(x) = x1 +

2
|J1|

[

4
∑

j∈J1

(
Yj
)2

− 2
∏
j∈J1

cos

(
20πYj

̅̅
j

√

)

+2

]

f2(x) = 1 − (x1)
2
+

2
|J2|

[

4
∑

j∈J2

(
Yj
)2

− 2
∏
j∈J2

cos

(
20πYj

̅̅
j

√

)

+2

]

Yj = xj − sin
(

6πx1 +
jπ
D

)

g(x) = 1 − f2(x) − [f1(x)]2 +

sin
(

2π
{
[f1(x)]2 − f2(x) + 1

})

g(x) ≤ 0x1 ∈ [0,1] x2..D ∈ [− 2,2]

(continued on next page)

Fig. 15. Budget Allocations for Each Priority Scale Setting.
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Table A1 (continued )

Benchmark Test
Function

Objectives (f1 and f2) Constraints and Boundaries

CF5
f1(x) = x1 +

∑

j∈J1
hj f2(x) = (1 − x1) +

∑

j∈J2
hjYj =

{
xj − 0.8x1cos(6πx1 + jπ/D), j ∈ J1,

xj − 0.8x1sin(6πx1 + jπ/D), j ∈ J2,
g(x) =

− x2 + 0.8x1sin
(

6πx1 +
2π
D

)

+ 0.5x1 − 0.25hj = 2
(
Yj
)2

− cos
(
4πYj

)
+ 1

g(x) ≤ 0x1 ∈ [0,1] x2..D ∈ [− 2,2]

CF6

f1(x) = x1 +
∑

j∈J1

(
Yj
)2f2(x) = (1 − x1)

2
+
∑

j∈J2

(
Yj
)2Yj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xj − 0.8x1cos
(

6πx1 +
jπ
D

)

, j ∈ J1,

xj − 0.8x1sin
(

6πx1 +
jπ
D

)

, j ∈ J2

g1(x) = − x2 + 0.8x1sin
(

6πx1 +
2π
D

)

+

sign
(

0.5(1 − x1) − (1 − x1)
2
) ⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

⃒
⃒0.5(1 − x1) − (1 − x1)

2
⃒
⃒
⃒

√

g2(x) = − x4 + 0.8x1sin
(

6πx1 +
4π
D

)

+

sign
(
0.25

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − x1

√
− 0.5(1 − x1)

) ⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒0.25

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − x1

√
− 0.5(1 − x1)

⃒
⃒

√

g1(x) ≤ 0g2(x) ≤ 0x1 ∈ [0,1] x2..D ∈ [− 2,2]

DTLZ DTLZ1 f1(x) =
1
2
(1+ g(x))x1f2(x) =

1
2
(1+ g(x))(1 − x1)g(x) =

100
(

5+
∑6

i=2

[
(xi − 0.5)2

− cos(20π(xi − 0.5) )
] )

xi ∈ [0,1]

DTLZ7 f1(x) = x1f2(x) = 2(1+ g(x)) − x1(1+sin(3πx1) )g(x) = 1 +
9
20
∑21

i=2
xi

0 ≤ xi ≤ 1

ZDT ZDT1
f1(x) = x1f2(x) = g(x)

[

1 −

̅̅̅̅̅̅̅̅̅x1

g(x)

√ ]

g(x) = 1 + 9⋅mean(x2,⋯, x30)
0 ≤ xi ≤ 1

ZDT2
f1(x) = x1f2(x) = g(x)

(

1 −

[
x1

g(x)

]2
)

= g(x) −
x2

1
g(x)

g(x) = 1 + 9⋅mean(x2,⋯, x30)
0 ≤ xi ≤ 1

ZDT3
f1(x) = x1f2(x) = g(x)

[

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x1/g(x)

√
−
x1

g(x)
sin(10πx1)

]

g(x) = 1 + 9⋅mean(x2,⋯, x30)
0 ≤ xi ≤ 1

ZDT4
f1(x) = x1f2(x) = g(x)

[

1 −

̅̅̅̅̅̅̅̅̅x1

g(x)

√ ]

(x) = 1 + 10(D − 1) +
∑D

i=2

[
x2
i − 10cos(4πxi)

] 0 ≤ xi ≤ 1

ZDT6
f1(x) = 1 − exp( − 4x1)sin(6πx1)

6f2(x) = g(x)

[

1 −

(
f1(x)
g(x)

)2
]

g(x) = 1 + 9

(
1

D − 1
∑D

i=2
xi

)0.25 0 ≤ xi ≤ 1

Data availability
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