

Abstract—VSLAM is one of the key technologies for indoor

mobile robots, used to perceive the surrounding environment,
achieve accurate positioning and mapping. However,
traditional VSLAM algorithms based on the assumption of a
static environment still face certain challenges. The movement,
occlusion, and appearance changes of dynamic objects can
lead to feature point-matching errors, making data association
difficult and causing biases in motion estimation. In order to
address this challenge, this paper proposes a dynamic feature
point removal method and a closed-loop detection method for
high dynamic scenes, aiming to effectively improve the
robustness and positioning accuracy in dynamic environments.
First, the YOLOv7-tiny object detection network and LK
optical flow algorithm are combined to detect the dynamic
area, and the adaptive threshold keyframe selection method is
adopted to solve the problem of poor quality of keyframe
caused by the existing heuristic threshold selection method.
Then, this paper proposes a dynamic keyframe sequence
creation method based on the angle difference between
keyframes, which reduces the workload of loop back detection
and accelerates the efficiency of loop back detection in the
system. Next, the ParC_NetVLAD image matching algorithm
is proposed. In this paper, ConvNeXt-Tiny network is used for
feature extraction of images, and ParC-Net network and
CBAM attention mechanism are added to the feature
extraction network. Finally, NetVLAD is used to cluster the
extracted local features to obtain global features that can
represent images. Experiments are conducted on public TUM
RGB-D datasets and in real-world situations. The proposed
algorithm reduces the ATE (Absolute Trajectory Error) by
96.4% and the RPE (Relative Trajectory Error) by 82.8% on
average in highly dynamic scenarios. In the Pittsburgh30k
dataset, the average accuracy of loop closure detection has
been improved by 2.6%.

Index Terms—Visual SLAM, Dynamic scene, ORB-SLAM3,
YOLOv7-tiny, Keyframe sequences, ParC_NetVLAD
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I. INTRODUCTION

I. Introduction
Nowadays, the technologies of Simultaneous

Localization and Mapping (SLAM) have been widely
studied because it allows for the instant creation of pose
estimation of maps and sensors in unknown environments.
Visual SLAM technology plays an important role in this
area, for which the camera sensor has the advantages of low
cost and rich image information. It has become a research
hotspot [1]. However, the assumption that traditional visual
SLAM is based on static environments limits its application
scenarios. Although the RANSAC (Random Sample
Consensus) algorithm can identify the feature points on
dynamic objects as outliers and filter them, it is limited to
low-dynamic scenes with fewer dynamic elements [2]. In
highly dynamic scenes, when dynamic objects occupy a
large area of the image, the feature points extracted by
traditional visual SLAM (VSLAM) may be distributed on
dynamic objects, resulting in a significant decrease in
accuracy. The estimated trajectory will no longer be
available. To solve this problem, the study of VSLAM in
dynamic scenes has attracted widespread attention and has
become a frontier topic in current research[3-4].
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Fig. 1. Roadmap of dynamic SLAM.

II. Related Work

A. Research Motivation
In 1986, SmithSelf and Cheeseman first proposed

SLAM technology, which has been developed for more
than 30 years. In 2017, ORB-SLAM2 [5] was proposed as a
comprehensive SLAM solution that supports multiple types
of cameras and includes features such as map fusion, loop
closing, and repositioning. In 2021, Campos [6] et al.
proposed ORB-SLAM3, which is a visual SLAM algorithm
that supports multiple cameras. This algorithm optimized
many aspects, such as map initialization, repositioning,
loop detection, keyframe selection, map construction, and
sensor support, and has excellent performance in terms of
running speed, tracking results, and mapping accuracy.

The above SLAM algorithms assume that the
environment where the robot is located is stationary.
Therefore, they cannot recognize complex and changing
real scenes, especially when moving objects appear in the
scene, and the accuracy and precision of positioning and
mapping will be greatly reduced. First, motion
segmentation methods based on the assumption of
stationary image foreground mainly rely on the hypothesis
that most of the features in the image are static and
differentiate between static and moving feature points in the
image sequence based on the geometric constraints of
feature points. Kim et al. [7] constructed a static
background based on the initial depth change between
images and filtered out moving objects that were
inconsistent with the static background in subsequent image
sequences, but it was incomplete in filtering out pedestrians.
Then, Sun et al. [8] proposed a motion removal method
based on RGB-D data as a preprocessing module for
filtering moving objects, which is one of the pioneering
works in the field of dynamic simultaneous localization and
mapping. The GMSK-SLAM system proposed by Wei et al.

[9] combines grid-based motion statistical feature matching
method and K-means clustering method to detect dynamic
regions.

With the significant progress in deep learning for
image processing in recent years, motion segmentation
methods based on prior semantic information have been
applied in dynamic SLAM systems. First, DS-SLAM [10]
combines the SegNet [11] semantic segmentation network
with conventional SLAM to remove the influence of
individual movement in the environment. However, this
framework significantly increases the computational
pressure of the system by performing semantic
segmentation for each frame of the image and cannot
achieve real-time performance. Then, the DynaSLAM [12]
algorithm combines the MaskRCNN [13] semantic
segmentation network with multi-view geometry and uses
the consistency of depth information to remove dynamic
feature points caused by moving objects. However, this
system does not optimize segmentation efficiency. Shao et
al. [14] proposed a convolutional network with an improved
Faster R-CNN to act as a semantic filter, which filters out
patches with low-level semantic labels. The remaining
high-level semantic information is then used for exact
matching. To address the poor real-time performance of
semantic methods in dynamic scenes, Gaurav et al. [15]
proposed an approach that utilizes only keyframes to
extract semantics, thereby reducing computational overhead.
Specifically, the authors extracted semantics only on
keyframes where the image content changed significantly.
The evolution of SLAM algorithms based on dynamic
scenes is shown in Figure 1.

In summary, most existing visual SLAM systems
generally suffer from poor robustness or real-time
performance in highly dynamic environments. Previous
research has focused on improving the accuracy of
localization in visual SLAM algorithms, and the processing
speed of these algorithms is constrained by the
computational demands of their models. There has been
little research on improving the real-time performance of
visual SLAM systems in depth. Therefore, simultaneously
improving the robustness and real-time performance of
visual SLAM in indoor high-dynamic scenes is currently a
hot issue.

B.Key Contributions
The main contributions of this paper are summarized

below:
1. In the front-end part, the innovative use of

lightweight target detection network YOLOv7-tiny
combined with LK optical flow algorithm to remove the
dynamic feature points in the detection frame, and based on
the camera observation model, an adaptive threshold
algorithm is added to solve the problems of poor keyframe
quality of the original heuristic threshold selection and
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ensure that the number of keyframe feature points selected
by the algorithm is sufficient and evenly distributed.

2. Based on the bag-of-words model in the back-end
part, we dynamically create image sequences according to
the angle differences between keyframes, replace the
previous method of calculating a single BoW vector with
the method of calculating the entire sequence's BoW vector,
and then match the sequence. This reduces the workload
and time consumption of loop detection in SLAM.

3. The ParC_NetVLAD image matching algorithm is
proposed, which uses the ConvNeXt-Tiny network to
extract features from images, and adds the ParC-Net
network to the feature extraction network. Then, in order to
extract the channel and spatial information of the feature
map, the CBAM attention mechanism is added to the
feature extraction network. Finally, NetVLAD is used to
cluster the extracted local features to obtain the global
features that can represent the image.

4. By verifying the innovative idea, the experimental
results show that in the TUM dynamic scene dataset,
compared with ORB-SLAM3, the positioning accuracy of
our system is improved. The ATE of the proposed
algorithm is reduced by 96.4% on average, and the RPE is
reduced by 82.8% on average. The Pittsburgh dataset is
tested, and the comparison experiments are carried out with
NetVLAD, ResNet50, and other neural networks. The
experimental results show that the image-matching
algorithm proposed in this paper has a higher accuracy. At
the same time, the depth camera Astra Pro is tested on the
actual dynamic scene, and the running trajectory of our
system is more accurate compared with ORB-SLAM3. The
algorithm in this paper has been improved in terms of
positioning accuracy and real-time performance.

C.Paper Organization
The arrangement of this article is as follows. The

opening section of this paper outlines the significance of the
research work, related work, and challenges, as well as the
main contributions of this paper. Section 2 introduces a
visual SLAM system based on YOLOv7-tiny and
NetVLAD. Section 3 provides experimental verification of
the proposed technical scheme and analyses and discusses
the experimental results. Section 4 concludes the whole
paper and further points out future directions.

III. Proposed Methods
In dynamic environments, the ORB-SLAM3 algorithm

is affected by moving objects, leading to a decrease in
positioning accuracy and poor robustness [16-17]. To
address this issue, we introduce the YOLOv7-tiny object
detection algorithm into the front-end of the ORB-SLAM3
system to simultaneously detect targets in the input image
and extract feature points [18]. After obtaining the semantic
information in the image, the LK optical flow algorithm is
used to determine the dynamic objects present in the image.

Based on the target detection results, the dynamic ORB
feature points are removed, and only static feature points
are retained for pose calculation, thus improving the
positioning accuracy of the visual SLAM system [19]. At
the same time, an adaptive threshold method is used to
optimize keyframe selection for higher quality keyframes.
Then, we introduce a serialization process for keyframes
before loop detection, combining the BoWs of several
consecutive frames into one complete BoW. Based on this
sequence (several consecutive frames), we perform loop
closure detection to reduce the time required for SLAM
loop detection. Next, the improved ConvNeXt network is
used to extract features from the image,and the ParC-Net
network and CBAM attention mechanism are added to the
feature extraction network. Then,NetVLAD is used to
cluster the extracted local features to obtain global features
that can represent the image. The overall flowchart of the
system is shown in Fig. 2, where the blue boxes are
improved in this paper.

Fig. 2. Overview of our algorithm.

A. Dynamic feature point culling based on YOLOv7-tiny
YOLOv7 [20] is a deep learning-based object

detection algorithm with high speed, accuracy, and
efficiency, making it suitable for various object detection
tasks in different scenarios. In this paper, YOLOv7-tiny is
used as the detection model, which mainly consists of four
parts: Input, Backbone, Neck, and Prediction. Figure 3
shows the front-end feature point optimization process.
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Fig. 3. Flowchart of front-end feature point optimization.

Elimination of dynamic feature points using
YOLOv7-tiny. In the dynamic object prediction box
generated based on object detection, the dynamic feature
points are determined by a priori knowledge, and the
elimination process is described as follows:

In the tracking thread of ORB-SLAM3, the feature
points are denoted as Fk, and k denotes the k-th frame
processed by the system. After being processed by
YOLOv7-tiny and the dynamic recognition algorithm, the
recognized dynamic objects are denoted as Dk. Removing
the dynamic feature points from all the feature points
extracted by the ORB-SLAM3 algorithm gives the static
feature points Pk.

To cull dynamic objects, this study introduces the
YOLOv7-tiny target detection algorithm at the front end of
the system to detect targets in the input image. The LK
optical flow algorithm is then utilized to determine the
dynamic objects in the target detection frame [21-24]. The
ORB feature point located at (x, y) in the image at time t
can be expressed as I(x, y, t). Based on the grayscale
invariance assumption of the optical flow method, [25]
derives that:

2, 1, ,x y t kk

u
I I I k w

v
 

       
 

(1)

where u and Ix are the velocity and gradient of the motion
of the feature point on the X-axis, respectively. v and Iy are
the velocity and gradient on the Y-axis, respectively. It is
the amount of variation of the feature point's grayscale
against time. The symbol w represents the size of the
window being set. If the optical flow of a feature point is
greater than the threshold εth, the point is considered a
dynamic point.

The static feature points are optimized for keyframes
using the camera observation model proposed by Azimi et
al. [26]. The adaptive threshold is determined based on the
number of points where the line of sight changes, allowing

for an accurate modeling and selection of the current frame
as a key frame. In addition to satisfying adaptive
thresholding, the stability of the frame must also be
considered, with the center of gravity threshold used to
determine if the points are evenly distributed throughout the
image. After the image enters the SLAM system, it will be
divided into 3×3 grids, and a 3×3 matrix will be generated.
In each grid, the points with a conical area change greater
than 30 degrees are counted as effective points, and this
angle has been determined by previous experiments [27].

Suppose that the coordinates of each pixel of the
image are ix , the pixel value is ip , and the direction
coordinate of the centre of gravity is denoted as x .
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The centre of gravity of the matrix serves as the
threshold 1T ,

2 2
1 xT y  (4)

2T Defined as:

1 2 1 2

2 2
max max max max 2

2
1

( ) ( )

2 2

c c r r *M
T

M

  
 (5)

where M1 and M2 are the two largest numbers within the
matrix, and c and r are the numbers of rows and columns,
respectively. If T2 > T1, the feature point distribution of the
current frame is considered more appropriate, and the frame
has sufficient stability.

B. The dynamic creation method of keyframe
sequences for optimizing closed-loop detection

Based on the research of Bampis et al. [28], we create
a sequence of keyframes in ORB-SLAM3 to recognize
keyframes generated by the local mapping thread as a
sequence with common features. Rcw is the rotation matrix
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that describes the rotation from the world coordinate system
to the camera coordinate system. From ORB-SLAM3, we
can derive the rotation matrix ���2 of the current
keyframe �2 and the rotation matrix ���1 of the previous
keyframe �1 and then calculate the rotation matrix ���

�1

between the two frames.
1r 1

2 1( )cw cw cwR R R   (6)

From the rotation matrix, we can find the angle of
rotation between the two �1:

1

1
( ) 1arccos
2

r
cwtr R




 (7)

where tr(X) is the sum of the diagonal elements of matrix
X.

Similarly, you can find the rotation matrix ���
�2

between a keyframe �2 and its next keyframe �3:
2r 1

3 2( )cw cw cwR R R   (8)

From the rotation matrix, we can find the angle of
rotation between the two θ2:

2

2
( ) 1arccos
2

r
cwtr R




 (9)

Meanwhile, we set an angle threshold �� =0.1. If
�1>�� and �2<�� , then no new sequence will be created,
and new keyframes will continue to be added to the current
sequence. If �1<�� and �2>�� , then the current sequence
ends, and a new sequence will be created. No new sequence
will be created in all other cases. Additionally, to prevent
sequences from being too long or too short, we set a length
threshold �� =15 and a sequence length �� . No new
sequence will be created when the sequence length �� is
less than 2, and the current sequence ends and a new
sequence is created when the sequence length �� exceeds
the length threshold �� . The algorithm for creating new
sequences is shown in Algorithm 1.

Algorithm 1: Creating sequence algorithm
input: KeyFrame �� , Length of the keyframe

list �� , Length of current sequence
��

output: Results after verification of new
sequences
1 Initialization �� = 0.1 , ��=15, i=0
2 for i←0 to �� do
3 ��+1 = CalAngle(��(�) , ��(�+1) )
4 //Calculate the angle of rotation between two
keyframes
5 if LS<2 then
6 newsequence=0
7 end if

8 if LS>LT then
9 newsequence=1
10 end if
11 if ��>�� and ��+1<�� then
12 newsequence=0
13 end if
14 if �� < �� and ��+1>�� then
15 newsequence=1
16 end if
17 // For all other remaining cases,
newsequence=0
18 end for

C. Improved NetVLAD-based loop closure detection
algorithm

Although bag-of-words model-based closed-loop
detection can achieve certain results in some cases, this
method is mainly based on artificially designed features,
which are difficult to extract in complex environments.
Therefore,the bag-of-words model-based closed-loop
detection algorithm is not effective in complex
environments,which seriously limits the development of
visual SLAM [29].

The closed-loop detection based on deep learning is
essentially image re-identification [30], and the key
technology is image matching technology. Based on this
core, this paper proposes the ParC_NetVLAD
image-matching algorithm. Firstly, to extract more
representative features of the image, the ConvNeXt-Tiny
[31] network (hereinafter referred to as ConvNeXt) is used
for feature extraction of the image. Secondly, to extract the
location information features of the image, the ParC-Net
[32] network is added to the feature extraction network.
Then, to extract the channel and spatial information of the
feature map, the CBAM [33] attention mechanism is
added to the feature extraction network. Finally, NetVLAD
[34] is used to cluster the local features extracted to obtain
the global features that can represent the image.
1) IMPROVED CONVNEXT NETWORK

ConvNeXt network was first used in image
classification, and its accuracy has exceeded Swin
Transformer [35] under the same FLOPs. Its structure is
shown in Figure 4.
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(a) ConvNext-Tiny network structure

(b) ConvNext Block network structure

(c) Downsample network structure

Fig. 4. ConvNeXt-Tiny.

In order to better apply the ConvNeXt network in
closed-loop detection, this paper removes the final global
average pooling layer, regularization layer, and Liner layer.
In addition, in order to extract the location information in
image features, the ParC-Net network is introduced. In
order to ensure the advantages of the ConvNeXt Block
module and better utilize the ability of the ParC-Net module
to focus on location information, ParC-Net is added to stage
3 and stage 4 of the ConvNeXt network. ParC is added to

the last three ConvNeXt Block modules in stage 3 and the
last ConvNeXt Block module in stage 4. The structure of
the ParC-ConvNeXt Block module obtained after
replacement is shown in Figure 5.

Fig. 5. ParC_ConvNeXt Block.

At this time, the information on the features extracted
by the improved ConvNeXt network still cannot meet the
needs. In order to better extract features, this paper adds the
CBAM attention mechanism after the improved
ParC_ConvNeXt network. CBAM attention mechanism can
adjust the receptive field of the convolutional neural
network according to the image content so that the model
can better capture the important information in the image. It
can adaptively adjust the feature map at different levels so
that the model can better distinguish between important
features and noise. In addition, the CBAM attention
mechanism can also reduce overfitting and improve the
generalization ability of the model.
2) CLOSED-LOOP DETECTION ALGORITHM BASED ON
IMPROVED NETVLAD NETWORK

Deep neural networks can learn deeper features of the
image by convolution operation, and can accurately reflect
image information. It is guaranteed that accurate image
matching can still be achieved in complex environments so
that closed-loop detection can have better effects. This
paper studies the NetVLAD network, and on this basis
proposes an improved ParC_NetVLAD, which is used for
closed-loop detection. The NetVLAD network is improved
on the basis of VLAD (Vector of Locally Aggregated
Descriptors) [36]. The idea of VLAD is to gather all the
local descriptors (such as SIFT, SURF, ORB, etc.) in an
image and form a vector, which is used to represent the
global descriptor of the whole image.

The VGG19 convolution network is used in the
NetVLAD network to extract image features. Although the
extracted image features can contain a lot of information
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about the image, the image features extracted by the
VGG19 network lack position information, and the deeper
features in the image cannot be better used. In addition, the
VGG19 network has a large number of parameters in the
training process, which is easy to overfit the training data,
resulting in the decline of model performance. In this paper,
aiming at the shortcomings of VGG19 in image feature
extraction, the improved ConvNeXt network is proposed to
extract image features. Finally, the extracted features are
processed by the NetVLAD module to generate the
required K*D as features. The improved network is shown
in Figure 6.

Fig. 6. Network structure of ParC_ConvNeXtT_NetVLAD.

In the whole improved network, the input image with
dimension of 3*480*640 is input. The image is output with
feature dimension of 738*15*20 after ParC_ConvNeXt
module. The feature map is sent to CBAM module to
extract channel and space information and keep the
dimension of the feature map unchanged. Then the feature
map is sent to NetVLAD module for dimension reduction,
so that the feature map becomes the required K*D
dimension feature, i.e. 64*738.

IV. Experimental results and analysis

A. Dataset and Experimental Environment
In this experiment, we mainly used the TUM [37]

dataset, Pittsburgh30K [38] dataset, and Tokyo247 [39]
dataset. The TUM dataset is obtained by collecting RGB-D
and monocular image sequences and corresponding motion
capture live trajectories in indoor and outdoor environments.
The dataset is challenging due to the presence of dynamic
objects, changing lighting conditions, and large camera
motion, making it a good test platform for evaluating the
robustness and accuracy of SLAM algorithms.
Pittsburgh30K is a subset dataset created by the Department
of Computer Science at Carnegie Mellon University in
2012, containing more than 30,000 high-resolution
street-view images. Tokyo247 is a large-scale street-view
image dataset created by Waseda University and the
University of Tokyo, containing more than 240,000 images.
These datasets are widely used in computer vision tasks and
urban planning research and are valuable in human activity
recognition, autonomous driving, and intelligent
transportation systems.

The experimental environment is shown in Table 1:

Table 1. Experimental environment.

B. Evaluation metrics
In this paper, the trajectory accuracy is evaluated to

verify the optimization degree of our method. The pose
estimation error analysis experiment uses the evo tool, as
well as the evaluate_ate and evaluate_rpe tools on the TUM
website to test and compare the camera pose estimated by
the ORB-SLAM3 system CameraTrajectory.txt with the
real pose given by the dataset groundtruth.txt. The
evaluation parameters mainly adopt relative pose error
(RPE) and absolute trajectory error (ATE) [37].

The comparison with the error of ORB-SLAM3 and
the relative lift rate η is calculated as follows:

� =
orb����3 − ����

�������3
× 100% (10)

In the loop detection experiment, the features of each
query image are first clustered, and then the L2 distance is
compared with the features within the class. The L2
distance calculation formula is shown as follows.

2 2
2 1 2 1 2d ( ) ( )x x y y    (11)

Then select the 20 images with the highest similarity
and sort them, and finally compare whether the 20 images
contain the query image scene in order. When comparing
the similarity, we set N=[1,5,10,20]. If the first image is a
correct match, then add 1 to the counter under N=1. If the
first five images have a correct match, then add 1 to the
counter under N=5. Similarly, for N=10 and N=20, the
same operation is carried out. After all the query images are
matched, the value of the counter under each N is counted.

Hardware/Software
component

Specification

Operating system Ubuntu18.04
GPU RTX 3090(24GB)

CPU
12 vCPU Intel(R) Xeon(R) Platinum

8255C CPU@ 2.50GHz

PyTorch 1.8.0
Python 3.7
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Then divide it with the total number of query images to find
the accuracy.

C. Experimental results analysis
TUM is a dataset for indoor dynamic environments.

The results will be compared with ORB-SLAM3 [6], Dyna
SLAM [12], DS-SLAM [10], SOF-SLAM [40], and
OFM-SLAM [41]. Table 2 compares the ATE with
ORB-SLAM3, and Table 3 and Table 4 compare the RPE.
Four metrics were measured for the performance of the
VSLAM system, namely Standard Deviation (STD), Root
Mean Square Error (RMSE), Median Error (Median), and

Mean Error (Mean). In dynamic scenarios, our performance
is somewhat improved compared to most algorithms.
Visual interference can be better suppressed when the
object is moving faster, resulting in more accurate
localization and mapping. However, in the case of slowly
moving objects, the optimization strategy used in the
algorithm has only a minor impact on system accuracy,
resulting in a slight improvement over the ORB-SLAM3
algorithm. Therefore, the proposed algorithm can be
considered as a promising solution for SLAM in dynamic
environments with fast-moving objects.

Table 2. Comparison of absolute trajectory error between ORB-SLAM3 and our algorithm (ATE/unit:m).

Datasets

ORB-SLAM3 Ours Improvements%

Mean Median RMSE STD Mean Median RMSE STD Mean Median RMSE STD

walking_static 0.3256 0.3173 0.3598 0.1524 0.0057 0.0051 0.0066 0.0032 98.25% 98.39% 98.17% 97.90%

walking_xyz 0.5534 0.4824 0.6426 0.3251 0.0127 0.0109 0.0151 0.0081 97.71% 97.74% 97.65% 97.51%

walking_rpy 0.7378 0.7168 0.821 0.3558 0.0262 0.0194 0.0405 0.0309 96.45% 97.29% 95.07% 91.32%

walking_half 0.5086 0.4889 0.5466 0.194 0.0169 0.0142 0.0223 0.0145 96.68% 97.10% 95.92% 92.53%

sitting_static 0.0067 0.0060 0.0077 0.0038 0.0054 0.0046 0.0062 0.0031 19.40% 23.33% 19.48% 18.42%

Table 3. Results of translational relative pose error (RPE/unit：m).

Datasets
ORB-SLAM3 Ours Improvements%

Mean Median RMSE STD Mean Median RMSE STD Mean Median RMSE STD

walking_static 0.1021 0.0213 0.2225 0.1977 0.0099 0.0081 0.0124 0.0074 90.30% 61.97% 94.43% 96.26%
walking_xyz 0.2621 0.1643 0.3578 0.2435 0.0183 0.0158 0.0212 0.0107 93.02% 90.38% 94.07% 95.61%
walking_rpy 0.2701 0.1427 0.3903 0.2817 0.0456 0.0283 0.0828 0.0691 83.12% 80.17% 78.79% 75.47%
walking_half 0.1444 0.0556 0.2373 0.1882 0.0253 0.0215 0.0321 0.0197 82.48% 61.33% 86.47% 89.53%
sitting_static 0.0085 0.0076 0.0097 0.0046 0.0068 0.0060 0.0077 0.0037 20.00% 21.05% 20.62% 19.57%

Table 4. Results of rotational relative pose error (RPE/unit：deg).

Datasets
ORB-SLAM3 Ours Improvements%

Mean Median RMSE STD Mean Median RMSE STD Mean Median RMSE STD

walking_static 2.6563 2.9369 3.0119 1.4053 0.2571 0.2278 0.2986 0.1518 90.32% 92.24% 90.09% 89.20%
walking_xyz 4.9684 3.1978 6.7628 4.5852 0.5081 0.4164 0.644 0.3956 89.77% 86.98% 90.48% 91.37%
walking_rpy 5.2563 2.6908 7.5570 5.4278 0.6988 0.3264 4.2352 4.1771 86.71% 87.87% 43.96% 23.04%
walking_half 2.8593 1.3501 4.5654 3.5575 0.6397 0.5782 0.7276 0.3465 77.63% 57.17% 84.06% 90.26%
sitting_static 0.2646 0.2528 0.2929 0.1255 0.2390 0.2232 0.2653 0.1151 9.67% 11.71% 9.42% 8.29%

To ensure the effectiveness of each module, we
conducted ablation experiments on YOLOv7-tiny and the
adaptive threshold module. The experimental results are
shown in Table 5 (denotes the existence of this module,

and  denotes the removal of this module), and the
evaluation criterion is the RMSE value. Table 5 clearly
shows the impact of each module. From the data results, it
can be concluded that using both modules simultaneously
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achieve the minimum root mean square error for the
algorithm.

Table 5. Ablation experiment ATE.

YOLOv
7-tiny

Adaptive
threshold
s

walking
_xyz

walking_
half

walking_s
tatic

walking_
rpy

  0.0151 0.0223 0.0066 0.0405
  0.0158 0.0239 0.0113 0.0535
  0.2988 0.1930 0.0274 0.3276
  0.6426 0.5466 0.3598 0.821

In Table 6, our algorithm is compared with other
SLAM methods in dynamic environments. From Table 6, it
can be seen that the highest positioning accuracy is
achieved by DynaSLAM and our algorithm. Since
DynaSLAM uses a MaskRCNN semantic segmentation
network that performs per-pixel execution, the recognition
precision is higher. Based on YOLOV7-tiny, our visual
SLAM strategy can quickly detect and track moving objects.
Although it has slightly lower accuracy than the
DynaSLAM algorithm, it has a significant advantage in
speed, making it suitable for real-time scenarios that require
fast processing. We performed time tests on our algorithm
and DynaSLAM algorithm on the w_xyz dataset, and Table
7 lists the processing time per frame for both our algorithm
and the DynaSLAM algorithm. Compared with the
DynaSLAM algorithm, it shows superior performance in
terms of real-time processing speed.

Table 6.The absolute trajectory error of different algorithms(ATE).

Datasets
ORB-SL
AM3
[6]

DynaSL
AM[12]

DS-SL
AM
[10]

SOF-SL
AM[40]

OFM-S
LAM[4
1]

Ours

walking_
static 0.3598 0.0073 0.0081 0.0070 0.0081 0.0066

walking_
xyz 0.6426 0.0131 0.0247 0.0180 0.0168 0.0151

walking_
rpy 0.8210 0.0279 0.4442 0.0270 0.0326 0.0405

walking_
half 0.5466 0.0174 0.0303 0.0290 0.0252 0.0223

sitting_st
atic 0.0077 0.0058 0.0065 0.0100 0.0065 0.0062

Table 7.Tracking time comparison (unit ms).

Algorithm Time
Dyna-SLAM[10] 2452

Ours 29
Improvements 98.78%

Table 8 presents a comparison of the testing time for
loop closure detection between using the sequential
keyframe method in ORB-SLAM3 and ORB-SLAM3 alone.
It can be seen that in datasets with indoor loops, such as
fr1_room and fr2_desk, the total time for loop closure
detection is relatively reduced when using the sequential
keyframe method.

Table 8. Loop Closing total time comparison (unit ms).

Datasets ORB-SLAM2[5] ORB-SLAM3 Ours Improvements

fr1_room 1170 379 346 8.71%

fr2_desk 1584 571 544 4.73%

Figure 7 shows the trajectory and error distribution
estimated by ORB-SLAM3, DynaSLAM, and our
algorithm. In the figure, the black, blue, and red lines
denote the true trajectory, the estimated trajectory, and the
error between them. The graphic clearly illustrates the high
level of accuracy in the estimated pose by the algorithm
presented in this article, which closely matches the ground
truth trajectory. Figure 8 shows the error distribution and
estimated trajectory of our algorithm's RPE value, which
indicates that the algorithm has small errors and that the
trajectory is estimated to be very close to the ground truth.

(a) ORB-SLAM3_w_xyz (b) DynaSLAM_w_xyz (c) our_w_xyz
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(d) ORB-SLAM3_w_half (e) DynaSLAM_w_half (f) our_w_half

(g) ORB-SLAM3_w_rpy (h) DynaSLAM_w_rpy (i) our_w_rpy

(j) ORB-SLAM3_w_static (k) DynaSLAM_w_ static (l) our_w_ static

Fig. 7. Comparison of estimated trajectories and real trajectories in highly dynamic environments.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)

Fig. 8. Relative pose error. (a) (b) walking-xyz. (c) (d) walking-halfsphere. (e) (f) walking-rpy. (g) (h) walking-static.

(a) Pittsburgh30k dataset (b) Tokyo247 dataset
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Fig. 9. Experimental results of the dataset.
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The improved ParC_NetVLAD algorithm for loop
detection is compared with the original algorithm NetVLAD,
ResNet50_NetVLAD and other algorithms, and the
comparison results are shown in Figure 9. It can be seen from
Figure 9 that in the Pittsburgh30k dataset, the improved model
has an accuracy of 83.83% when N=1, which is 79.55% higher
than the original NetVLAD model. It is 2.15% and 2.46%
higher than the ResNet50_NetVLAD model and the
MobilenetV2_NetVLAD model, respectively. When N=5, it is
2.55% higher than the original model NetVLAD, 2.17% and
2.35% higher than the ResNet50_NetVLAD model and the
MobilenetV2_NetVLAD model, respectively. When N=10, it
is 1.69% higher than the original model NetVLAD, 1.55% and
1.55% higher than the ResNet50_NetVLAD model and the
MobilenetV2_NetVLAD model, respectively. When N=20, it
is 1.72% higher than the original model NetVLAD, 1.81% and
1.9% higher than the ResNet50_NetVLAD model and the
MobilenetV2_NetVLAD model, respectively.

(a) ParC_ConvNeXt module test

(b) CBAM module test

Fig. 10. Comparison of ablation experiments.

At the same time, in order to verify the effectiveness of
the improved ParC_ConvNeXt model. This paper will use
CBAM_NetVLAD network and ParC_ConvNeXt_NetVLAD
network to test on the Pittsburgh30k dataset, as shown in
Figure 10(a). It can be seen from Figure 10(a) that the
accuracy of the ParC_ConvNeXtT module is higher than that
without the use of the module. When N=1, it is 1.86% higher;
when N=5, it is 2.11% higher; when N=10, it is 1.53% higher;

when N=20, it is 1.55% higher. Figure 10(b) is a comparative
test to verify the effectiveness of the CBAM attention
mechanism module. It can be seen that the network with the
CBAM attention mechanism module is 1.6% higher than that
without the CBAM attention mechanism module when N=1;
when N=5, it is 1.8% higher; when N=10, it is 1.12% higher;
when N=20, it is 1.24% higher. In summary, the closed-loop
detection based on the improved NetVLAD algorithm studied
in this paper has a certain improvement in the accuracy of
image matching, which can better improve the closed-loop
detection performance of the image scene matching system.

D. Effects of the actual scene
To further validate the effectiveness of our proposed

algorithm, experiments were conducted in real-world
scenarios using a Jetson Nano mobile robot as the moving
platform and an Astra Pro RGB-D camera produced by
ORBBEC Corporation as the visual sensor. The appearance
and parameters are shown in Figure 11 and Table 9,
respectively. The depth measurement part of Astra Pro adopts
structured light technology and performs depth ranging
through the triangulation principle, showing excellent
performance in indoor environments.

Fig. 11. Mobile robot and Astra Pro camera.

Table 9 Astra Pro parameters.

Astra Pro parameter
Parameter Values

Measuring range 0.6m - 8m
Resolution of color image 1280×720@30FPS
Resolution of depth map 1280×1024@7FPS

Precision (±1-3)mm@1m
Colour FOV H66.1°and V40.2°
Depth FOV H58.4°and V45.5°
Delay ( ms ) 30-45

The experimental site is a rectangular conference room,
as depicted in Figure 12. The intelligent robot departs from
point A and moves in a clockwise direction of A, B, C, D, and
back to A. At the same time, people will walk back and forth
at points B and C during the movement, as shown in Figure 13,
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allowing for the recognition of dynamic objects in indoor
scenes.

Fig. 12. Experimental site.

(a) ORB feature extraction with ORB-SLAM3

(b) ORB feature extraction with our system

Fig. 13. Comparison of ORB-SLAM3 with ORB feature extraction in our
system. This method removes the dynamic features of the walking human

body.

Finally, after multiple evaluations in real-world
environments, the actual running trajectories of indoor
dynamic scenes based on ORB-SLAM3 and our algorithm are
displayed in Figure 14. It can be observed that the actual
trajectory based on ORB-SLAM3 has a significant deviation
under the interference of dynamic objects while the one based
on our method is much more accurate and can better close the
loop.

Fig. 14. ORB-SLAM3 compared to the actual operating trajectory of our
system.

In the office experiment, we used the camera signal and
the corresponding timestamp to determine the trajectory
calculation value of the passing point. We set the starting point
and the endpoint at the position of point A, and set one point
at the position of B, C, and D. In addition, we also added a
point in the middle of two points, forming a total of nine
passing points.

Table 10. Experimental Results of Trajectory Localization in the Office
Environment.

Ours ORB-SLAM3 Ground truth

Route 1 (-0.0003,-0.0003) (-0.0004,-0.0003) (-0.0001,-0.0005)
Route 2 (-0.0417,0.9185) (-0.0472,0.9234) (-0.0591,0.9296)
Route 3 (0.0281,2.0783) (-0.0391,2.1288) (0.0436,2.0787)
Route 4 (1.2409,2.0664) (1.1703,2.1391) (1.2366,2.0964)
Route 5 (3.0418,2.2329) (2.9859,2.3148) (2.9987,2.2875)
Route 6 (3.0636,1.3308) (2.7756,1.3489) (3.0198,1.3713)
Route 7 (2.8889,0.4121) (2.8343,0.3916) (2.9619,0.3988)
Route 8 (1.9701,0.3202) (1.9048,0.3062) (1.9807,0.3010)
Route 9 (0.0681,0.0071) (0.0384,0.0236) (0.0724,0.0060)

RMSE 0.0421 0.1056 —

In this indoor flat experimental environment, the car
moves horizontally and the coordinates change very little in
the vertical direction, so this paper only focuses on the plane
positioning accuracy. To obtain the true value of the trajectory,
the passing points of the vehicle were marked with millimeter
accuracy through manual measurement during the experiment.
In this paper, the two-dimensional coordinates are used to
represent the position of the camera and the conversion
relationship between the coordinate system where the aligned
trajectory is located and the office coordinate system is
determined through the calculation of the starting position and
direction. In this way, we can calculate the true coordinates of
the passing points. The experimental results are shown in
Table 10. According to the RMSE of the ATE of the passing
points, the positioning accuracy of the algorithm in this paper
is significantly improved, which is 60.13% higher than that of
ORB-SLAM3.

V. Conclusions
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Moving objects may introduce motion blur, occlusion,
and environmental appearance changes, which make it
difficult for VSLAM systems to maintain accurate and
consistent estimations. In this paper, an efficient deep neural
network object detection method YOLOv7-tiny algorithm is
applied to ORB-SLAM3, and the adaptive threshold method is
used to replace the heuristic threshold in ORB-SLAM3 to
ensure the quality of key frames selected by the algorithm in
dynamic scenes. By filtering dynamic objects in the
environment and extracting feature points of static regions, the
accuracy of the visual SLAM algorithm in dynamic scenes and
the robustness of the system are improved.

Then, in loop detection, keyframes are processed based
on the bag of binary features. According to the angle
difference between keyframes, the key frame sequence is
dynamically divided into key frame sequences to reduce the
time consumption of the loop detection part of SLAM. At the
same time, the NetVLAD is improved, the ParC_ConvNeXt
network is designed to focus on the location information in the
image feature map, and the CBAM attention mechanism is
added to the network to focus on the feature channel and
spatial information. Finally, the obtained image features are
sent to the NetVLAD pooling network for dimensionality
reduction.

Our algorithm reduces the average ATE by 96.4% and
the average RPE by 82.8% in high-dynamic scenes, which is
better than most dynamic visual SLAM. In addition, compared
to the localization accuracy of DynaSLAM, the time
consumption of the tracking thread in our algorithm is reduced
by more than 98%. Therefore, our algorithm significantly
improves the computational speed while enhancing the
localization precision.

However, the performance of our algorithm on the TUM
low-dynamic scenes is far inferior to the ORB-SLAM3
algorithm's localization accuracy. This is also a common
drawback of many visual SLAM algorithms based on dynamic
scenes. To improve the adaptability of algorithms in different
environments, more flexible and intelligent methods for
detecting different environmental changes need to be
developed.

The experimental results on the Pittsburgh30 dataset and
Tokyo247 dataset show that the accuracy of the improved
algorithm is up to 4.25% higher than that of the other methods
when N=1, 2.55% higher when N=5, 1.69% higher when
N=10, and 1.9% higher when N=20. In summary, this paper
improves the positioning accuracy and real-time performance
of visual SLAM in indoor high-dynamic situations.

Future research efforts should focus on optimizing the
algorithm model and improving the accuracy of indoor
dynamic scene localization. Additionally, it would be
worthwhile to explore leveraging semantic information
extracted from object detection to build semantic maps,
enabling the system to handle higher-level tasks.
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