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Abstract
Stiffness modeling is an essential subject for the composition of robot control. Accurate stiffness modeling is helpful for 
improving the control accuracy of industrial robots, particularly under dynamic load circumstances. The classic virtual joint 
modeling (VJM) method is challenging in predicting the deformation of the end-effector throughout the full workspace due 
to the nonlinear deformation of the robot joint and its serial articulated structure. This paper proposes a full-space stiffness 
modeling method for robots based on the integration of a multi-layer perceptual (MLP) model and VJM. To provide enough 
training data for the MLP model, VJM is used to build a stiffness model with a small set of experimental data to generate 
106,400 training data. A model-based transfer learning approach is proposed to improve the model’s accuracy and generali-
zation regarding the difference between generated training data and actual experimental data. The VJM stiffness model is 
compared with the MLP stiffness model and the existing CNN-based transfer learning model based on the same experimental 
data. Considering the deformation prediction in the three directions in Cartesian space, the mean absolute error, standard 
deviation, and maximum error of the MLP model are decreased by at least 24.90%, 14.20%, and 8.50%, respectively, than the 
VJM. These prediction results demonstrate that the proposed modeling technique can significantly increase the accuracy of 
robot stiffness modeling, which is essential for position compensation in precise motion control of robots under dynamic load.
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1  Introduction

Robots are constantly being used in a wide variety of indus-
trial sectors due to their operational flexibility and low eco-
nomic costs [1, 2]. Industrial robots (IRs) are generally con-
sidered to have lower static stiffness compared to machine 
tools, due to their tandem articulated structures [3, 4]. The 
stiffness deformation of IRs is an important factor limiting 
machining efficiency and quality [5, 6]. The stiffness of IRs 
varies with position, making the stiffness prediction more 
complex than machine tools. Therefore, constructing an 
accurate stiffness prediction model to optimize the machin-
ing trajectory of IRs is crucial to improving the machining 
quality and efficiency [7, 8].

The virtual joint modeling (VJM) method is a common 
theoretical approach for the stiffness modeling of serial 
industrial robots, which has the advantages of simplicity 
and low computational effort [9, 10]. Many researchers 
have contributed to the application and optimization of the 
VJM. Dumas et al. contributed a new method to identify 
the joint stiffness of industrial robots. The external torque 
was applied to each joint separately, where the rotational 
deformation was measured, and the joint stiffness was calcu-
lated. Meanwhile, the influence of the VJM’s supplementary 
matrix on the overall matrix was analyzed and displayed. 
The results showed that this method can approach the joint 
stiffness value well with a certain robustness [11]. Schnei-
der et al. analyzed the joint torque of joint deformation and 
found that the joint torque affected the stiffness of each joint. 
The method of multi-segment curve fitting was proposed to 
optimize the fixed joint stiffness in the VJM, which improves 
the fitting accuracy of the model to a certain extent [12, 13]. 
As more factors are considered in the VJM, the accuracy is 
limited by the difficulty of modeling factors and the accuracy 
of parameter identification.
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Artificial neural networks (ANNs) are capable of learning 
complex mapping relationships between inputs and outputs, 
which have been shown to be well adapted to nonlinear prob-
lems [14, 15]. Through the network structure and parameter 
tuning of ANNs, relatively favorable results are achieved in 
the field of [16, 17]. In robotics research, ANNs have been 
applied in path planning [18, 19], joint stiffness identifica-
tion [20], and robot eigenfrequency prediction [21, 22]. To 
get effective model predictions, neural network models must 
be trained on a substantial amount of data. However, for 
industrial robots, whose stiffness varies with the dynamic 
characteristics of the position, there is a great challenge in 
acquiring a large amount of training data.

As a new machine learning framework, transfer learn-
ing (TL) can be applied to solve less labeled target domain 
problems by transferring existing source domain knowl-
edge. TL provides an effective way to address the reliance 
on large amounts of experimental data in neural network 
models [23]. From the perspective of the mechanisms used 
to bridge the generalization error between the target and 
source domains using TL techniques, the TL approaches 
are classified into three groups: instance-based TL, model-
based TL, and feature-based TL [24]. The model-based TL 
approach takes the neural network model as an object for 
cross-domain transfer and is suitable for scenarios where 
the source domain data is sufficient, and the target domain 
labels are scarce [25]. The multi-layer perceptron (MLP) 
as a typical deep neural network with simple structure and 
easy training has achieved favorable performance in classi-
fication and regression issues, which is particularly suitable 
for regression fitting of serial data and structured data [26]. 
The convolutional neural networks (CNN) and its deformed 
residual network (Resnet) network also have been applied by 
researchers to numerical regression tasks like remaining use-
ful life prediction [27, 28]. The variability of these network 
structures makes a difference in performance, such as con-
vergence and precision in fitting regression tasks. Li et al. 
used the transfer learning approach based on CNN and MLP 
to achieve fault diagnosis in target domains with different 
levels of variability, the results showed that the model with 
transfer learning achieved better results than the model with-
out no-transfer learning, and the CNN-based model transfer 
learning is more effective compared to the MLP model [29]. 
Fu et al. achieved cycle capacity estimation of different types 
of batteries under various working conditions using an MLP-
based transfer learning approach [30]. Wu et al. combined 
transfer learning with deep learning models (including MLP, 
recurrent neural network (RNN), long short-term memory 
(LSTM), and gated recurrent unit (GRU)) to predict stock 
prices, and the results showed that MLP has better prediction 
accuracy [31]. Ye et al. designed an adaptive domain adver-
sarial neural network with dual regressions (ADANN-2R) 
for robot deformation prediction. The experimental results 

show that the proposed ADANN-2R model can obtain 
higher prediction accuracy with less actual data than the 
traditional stiffness model [32]. Maqsood et al. used TL 
to classify images of patients with Alzheimer’s disease by 
fine-tuning the pre-trained convolutional network AlexNet. 
The algorithm gives the best overall accuracy of 92.85% for 
multi-class classification of unsegmented images [33]. In 
the field of intelligent fault diagnosis, Zhao et al. established 
a standard open-source framework based on deep transfer 
learning (DTL), which has been applied by other researchers 
for regression fitting task training [34].

Based on the above literature review, the common theo-
retical method of VJM has significant complexity in param-
eter identification, and ANNs rely on extensive data in the 
robot stiffness modeling process, which is impractical for 
accurate and efficient robot stiffness modeling. Besides, it 
is challenging to realize stiffness prediction using small sets 
of position data due to the nature of robot stiffness variation 
with position. In this paper, a sequential training approach 
in model-based TL is used to solve the stiffness fitting pre-
diction issue for a small set of data of the target domain. 
The VJM stiffness model of the robot is constructed by a 
small set of experimental data. A significant set of simula-
tion data as the source domain data for the transfer learning 
process is generated by the VJM stiffness model and used 
for pre-training of the neural network models. The partial 
experimental positional posture data are used to fine-tune 
the pre-trained models. The stiffness deformation is also 
predicted using the deep transfer learning method based on 
CNN networks established in [34]. Moreover, the predic-
tion results based on VJM, MLP, and CNN are analyzed 
for errors. The accuracy and efficiency of the robot stiffness 
model have been significantly improved, and the depend-
ence on experimental data has been reduced by using a 
transfer learning approach to modeling. The effectiveness 
of the transfer learning approach to robot stiffness modeling 
is demonstrated, and an efficient and accurate approach for 
robot stiffness modeling is presented, which is a key part of 
perfecting the theory of industrial robots and improving their 
practical processing capabilities.

The main theoretical and practical contributions made in 
this paper to the study of the robot stiffness modeling issue 
are as follows:

1)	 A deformation prediction approach for the end-effector 
of robots using deep learning networks is proposed. The 
robotic VJM is established using end-effector deforma-
tion data at different postures with varying loads. Com-
bining the VJM and variable loads in cartesian space 
and joint space to generate a massive source domain 
dataset with physical feature meanings that address the 
dependence of traditional network model training on 
large volumes of experimental data.
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2)	 A model-based transfer learning approach is proposed to 
improve the model’s accuracy and generalization regard-
ing the difference between generated training data and 
actual experimental data. Based on the transfer learning 
approach, the pre-trained model in the source domain is 
fine-tuned with a small set of experimental data, which 
improves the model prediction capability at a small cost. 
A dynamic learning rate adjustment strategy is used 
in the optimization process of neural network model 
parameter training.

The contents of this paper are as follows: Sect. 2 mainly 
introduces the modeling methodology and related theories. 
Section 3 plans the experiments and generates robot stiff-
ness modeling data, while Sect. 4 establishes an MLP neu-
ral network stiffness model using the simulation data. In 
Sect. 5, the fine-tuning approach is applied to optimize the 
pre-training MLP model, and the prediction accuracy of dif-
ferent stiffness models is compared and analyzed. The last 
section summarizes the research.

2 � Stiffness modeling methodology

The proposed modeling methodology is illustrated in Fig. 1. 
To build the stiffness model, experiments are first planned 
to obtain the robot deformation data under different loads. 
Then, the experimental data is processed to establish the 
VJM stiffness model, which is used to generate enormous 
simulation data for the robot deformation under different 
robot poses and external loads. A common MLP network is 
designed to build the pre-training model with this simulation 
data. Although there are errors between the simulation data 
and the actual experimental data, the structure of the MLP 
model can be designed in good coherence to fit the nonlinear 
distribution characteristics of the stiffness in the entire work-
space. Thus, the fine-tuning approach is adopted to adjust the 
parameters of the pre-trained MLP stiffness model based on 
actual experimental data to improve its prediction accuracy. 
The deep transfer learning method based on the framework 
of the CNN networks was also used to compare the reliabil-
ity of the results of this approach.

2.1 � MLP and CNN model structure

The MLP and CNN are used as the base model of transfer 
learning in this paper. Their fitting prediction and transfer 

Fig. 1   Illustration of the 
proposed methodology of robot 
stiffness modeling using VJM 
and transfer learning model
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learning capabilities are evaluated. The MLP is used as a 
base model for fine-tuning transfer learning as it achieves 
relatively favorable results in the numerical fitting. The CNN 
network, which has four convolutional layers and a multidi-
mensional input and output layer, is used as a base model for 
deep transfer learning, and its structure is described in detail 
in [34]. The size of the convolution kernel is one times one. 
We have modified the output layer of their network so that it 
can be used to fit multidimensional features. The structures 
of MLP and CNN neural networks can be seen in Fig. 2, b. 
We will use the MLP model as a case study to demonstrate 
the transfer learning process, while the CNN model will only 
be used as a comparison. The MLP network is formed by 
arranging multiple neurons in an organized way. The pri-
mary artificial neural network model has an input layer, sev-
eral hidden layers, and an output layer. In this study, the joint 
angles qi and the end-effector force Fi, Ti are defined as the 
input layers, and the three-dimensional deformations (Δx, 
Δy, Δz) of the end-effector are defined as the output layers. 
The neurons between different layers use full connectivity. 
Let x and y be the input vector and output vector of neural 
networks. The hidden vector is denoted as hi. Then, the for-
ward propagation process of MLP is as follows:

where �(·) is the activation function, wi is the weight 
matrix, bi is the bias vector, and func (·) means linear out-
put function. CNN is more complicated than MLP which has 

(1)

⎧⎪⎨⎪⎩

h1 = �
�
w1x + b1

�
…

hi = �
�
wihi−1 + bi

�
y = func

�
wi+1hi + bi+1

�

convolutional layers, pooling layers, and fully connected lay-
ers. The forward propagation process of CNN is as follows:

where ∗ is the convolution operation and down (·) is the pool-
ing operation.

The loss function is a mean squared error (Mse) function 
for both MLP and CNN, which is as follows.

where n is the number of training samples, yi is one of the 
truth values, and ŷi is one of the prediction values. The train-
ing method of MLP and CNN is a back propagation (BP) 
algorithm based on a gradient descent strategy. The purpose 
of training is to constantly update parameters θ = w, b to 
minimize the loss function. The updating rule is as follows.

where � is the learning rate and w and b are the parameters 
that need to be updated. Learning rate α is a parameter that 
needs to be set appropriately. A large α may cause a gradient 
explosion or fail to converge to an optimal value. However, a 
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Fig. 2   Structure of MLP network (a) and CNN network (b) for robot stiffness modeling
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small α will make training slow. The essence of the training 
network is to continuously update the weight w and bias b of 
the network through the algorithm. In robot stiffness mod-
eling, the network’s structure and parameters determine the 
fitting effect on the training data. Selecting network struc-
tures requires hyperparameter tuning and continuous testing 
for different training sets. The scale and parameter setting 
of the network are then determined according to the fitting 
effect. The periodic problem will occur when the angle value 
is adopted [22], affecting the modeling accuracy. Therefore, 
the sine and cosine functions are used to process the angles 
(Eq. 5).

2.2 � Transfer learning

In this study, the model-based transfer learning approach 
was used to realize stiffness prediction modeling. The MLP 
network was used as the base model to demonstrate the 
entire methodology flow of pre-training and fine-tuning. 
Besides, the theory of network-based deep transfer learning 
as a complementary approach has been explained in detail 
in Ref. 34, whose open-source network structure is applied 
to the prediction of target domain data. Stiffness predictions 
for the robot in different positions are considered as different 
domains. The MLP model is pre-trained using the source 
domain data generated by the VJM, and then, the model is 
fine-tuned with a small set of experimental data. The source 
domain data Ds =

{(
xs
i
, ys

i

)}ns

i=1
 is the simulation data from 

the VJM, and the target domain data Dt =
{(

xt
i
, yt

i

)}nt

i=1
 is 

experimental data. The source domain and target domain 
consist of ns and nt examples, respectively, where xs

i
, xt

i
∈ Rd 

are d-dimensional input vectors, ys
i
∈ Rds is a ds – dimen-

sional source label vector, and yt
i
∈ Rdt is a dt – dimensional 

target label vector. The source domains have enough data, 
but the target domains have only a small amount of data. 
The task aims to improve stiffness prediction accuracy under 
different poses. The input vector contains a total of twelve 
input features, including the six-dimensional force data at 
the robot’s end-effector and the joint angle variable. The 
output labels of the source and target domains are the three-
dimensional deformations of the robot’s end-effector. The 
knowledge of the source domain training task Ts (“pre-train” 
MLP network) is obtained to help improve the efficiency and 
effectiveness of the network parameter Tt (“fine-tune” MLP 
network) of the training target domain.

This transfer learning approach is proposed to optimize 
the pre-trained MLP network, where “fine-tune” can be 
called frozen layer fine-tuning. The frozen layer refers to 
freezing the specified layer parameters of the network, not 

(5)
{

xi = sin
(
qi
)

yi = cos
(
qi
)

participating in training, and only modifying the parameters 
of the unfreezing layer. Fine-tuning refers to setting a lower 
learning rate and reducing the step size of training. The prior 
knowledge of the network is reflected in the network struc-
ture and parameters. We can regard the learned parameters 
as an initialization that is close to the optimal solution and 
then fine-tune them. The difficulty of transfer learning is 
determining the location of the second training of the net-
work and optimizing the training method.

3 � Stiffness modeling data generation

3.1 � Experiments design

A six-axis industrial robot (KUKA KR10 R1100-2) is 
selected for the stiffness modeling evaluation. Its maximum 
payload is 10 kg, and position repeatability is 0.02 mm. To 
show the stiffness characteristics of each joint to the great-
est extent, the robot poses in this study are divided into two 
groups: one group is planned in joint space, where the defor-
mation of each joint is recorded after being stressed at differ-
ent joint angles; the another is the distribution of the robot 
end-effector in Cartesian space (Table 1).

For joint space poses, the influence of each joint of the 
robot on the overall posture is different, and the critical joints 
Axis-2 (A2) and Axis-3 (A3) need to be planned in detail. 
Based on the measuring range of the 3D optical metrology 
device, joint angles are planned as follows (Table 1). The 
Axis-4 (A4) has been set to 0°, and the Axis-5 (A5) and 
Axis-6 (A6) are adjusted according to the measurement 

Table 1   Two kinds of space design schemes

Designed space A1 A2 A3

Joint space angle (◦) 0  − 90 ~ 0 0
 − 120 to − 30 30
 − 150 to − 30 60
 − 150 to − 60 90
 − 180 to − 60 120
 − 180 to − 60 150

 − 15/ − 30 0 0
 − 30 30
 − 30 60
 − 60 90
 − 60 120
 − 60 150

Cartesian space 
posture

Direc-
tion

Range (mm) Interval 
(mm)

Num-
ber

X 300 ~ 800 100 6
Y  − 300 ~ 300 150 5
Z 300 ~ 800 300 3
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requirements. The total number of planned poses in this 
group is 61.

For cartesian space poses, a cuboid workspace is selected. 
Measuring positions are planned evenly distributed in the 
space. There are 90 poses in this group. In joint and Car-
tesian space, a total of 151 robot poses are planned for the 
experimental measurement.

3.2 � Experimental setup

As shown in Fig. 3, the experimental setup contains a KUKA 
industrial robot, a loading device, a force/torque (F/T) sen-
sor, and a 3D optical metrology device. The ATI company’s 
axia80-M8 F/T sensor is installed on the robot’s flange. Its 
measurement accuracy can achieve 0.04 N and 0.002 Nm. The 
C-Track is a 3D optical dynamic tracking system for multiple 
objects in space. In the volume of 9.1 m3, its volumetric accu-
racy is 0.05 mm, and repeatability is 0.01 mm. An aluminum 
profile and pulley block construct the loading device. Differ-
ent weights can be added to the hook of the rope.

Each link of the robot is stuck with the round marks, 
which are tracked by the C-Track. 3D coordinate values 
referring to the C-Track coordinate system will be recorded 
when the robot moves to planned positions. All the robot 
poses are measured.

with the end-effector under unloaded and loaded and the 
translational deformation can be calculated under different 
loads.

3.3 � VJM stiffness modeling

Based on the experimental data, the corresponding joint 
stiffness can be calculated. Here, the stiffness of the 

joint is assumed as a linear spring, and the least square 
method is adopted to identify the joint stiffness K� [11, 
12]. Based on the following equation, the Cartesian 
stiffness KX  can be obtained, where the J(q) is robot 
Jacobian matrix.

The regression diagram is applied to the experimental 
data and the model fitting data, which is displayed from 
three directions of XYZ, as shown in Fig. 4. The transverse 
axis represents the actual value of the deformation, and 
the longitudinal axis represents the model fitting value of 
the deformation.

To evaluate the fitting effect, the mean absolute error 
(MAE), standard deviation of error (STDE), and maximum 
error (ME) are defined by Eqs. (7)–(9). The fitting results 
of the three directions are shown in Table 2 according to 
the above evaluation indexes.

where ei is the absolute value of the error between the 
model fitting value and the experimental value in a sin-
gle direction. The results of joint stiffness are shown in 
Table 3.

(6)KX = J(q)−TK�J(q)
−1

(7)MAE =
1

n

n∑
i=1

ei

(8)STDE =

�∑n

i=1

�
ei − e

�2
n

(9)ME = max
1≤i≤n

ei

Fig. 3   a–c Experiments setup 
for obtaining translational 
deformation under specific 
loads of the robot
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4 � Pre‑trained MLP stiffness model

4.1 � Model input data processing

The input model variables are the six-dimensional joint angle 
value and the six-dimensional force data, so the input layer 
contains twelve neurons. The output is the three-dimensional 
deformation of the robot’s end-effector, and the output layer 
contains three neurons. We use the joint angle space to plan 
the robot variable pose and apply different loading to generate 
the source domain dataset.

For joint angle planning, the joint angles have a wide range 
of motion. Based on the spatial location of the robot’s experi-
mental poses, as many robot poses as possible are designed 
for simulation data generation. The distribution of each joint 
is shown in the Table 4. Through the pre-modeling simulation 
analysis, the A4 and A6 are set to 0° to be close to the angle 
distribution of the experimental data. The planned angles are 
combined to create a total of 21,280 poses.

For loading force planning, KUKA KR1100-2 is a light-
duty robot with a global maximum load of 10 kg. The selected 
range of the force is designed as shown in Table 5. Five groups 
of forces are planned to consider the influence of the force in 
each direction on the end-effector deformation. Then, 106,400 

sets of data (including robot poses, loads, and deformations) 
generated by the VJM simulation are the source domain data 
for the transfer learning process.

4.2 � MLP stiffness modeling

To obtain an optimum model, the main parameters, which 
are the hidden layers, the layer nodes, and the activation 
function, are simulated under different settings. This training 
process sets a variable dynamic learning rate that gradu-
ally decreases according to the iteration cycle. The learning 
rate was set as a dynamic adjustment. Randomly selected 
70% of the simulated data was set as the training set and the 
remaining 30% as the test set. The MLP stiffness modeling 
and the subsequent transfer learning processes are imple-
mented in PyCharm, and PyTorch is used to build the model 
training framework. For the number of hidden layers, 2 to 
6 layers are selected as the scope of the study. The number 
of nodes in each layer is set to 100, and the iterative times 
are 100,000 times. The simulation results indicate that the 
MLP network with four hidden layers has the best-fitting 
performance (Table 6).

For the number of nodes, due to the coupling relationship 
between the number of layers and the number of nodes, 3, 

Fig. 4   The VJM fitting effect in different directions

Table 2   Evaluation of fitting results

Direction MAE (mm) STDE (mm) ME (mm)

X 0.074 0.108 0.628
Y 0.066 0.076 0.435
Z 0.062 0.075 0.581

Table 3   Identification results Joint A1 A2 A3 A4 A5 A6

Stiffness ( 103 Nm/rad) 50.90 63.36 50.34 2.27 8.89 1.39

Table 4   The range and indexing value of joint angle

Joint Begin (°) End (°) Interval (°)

A1  − 45 45 15
A2  − 180 0 10
A3 0 156 10
A5 0 90 10
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4, and 5 layers are selected as the basic network structure 
for the node test. The selection range of nodes is selected 
from 40 to 400, with an interval of 20. The fitting effect is 
shown in Fig. 5a, b.

It indicates that the model fitting ability is gradually 
improved with the increase in the number of nodes, and a 
structure with 380 nodes is selected for further training. As 
shown in Fig. 5c, the loss value of the model is constantly 
decreasing and tends to stabilize with the number of training 
iterations, which indicates that the model is converging well.

The activation function performs a nonlinear transfor-
mation of the model inputs, thus improving the model 
expression. To evaluate the effect of the activation func-
tion, Sigmoid, Tanh, and ReLU functions are selected and 
trained in the network with four hidden layers and 380 
nodes. These activation functions are commonly used in 
fitting regression problems, but further comparative analy-
sis is needed in this case. Generally, the Tanh function 

is used when the features of the input data differ signifi-
cantly, and the Sigmoid function is used when the fea-
tures of the input data do not vary significantly. The ReLu 
function enables the output of neurons less than 0 to be 
zeroed to achieve the effect of a sparse network to fit the 
function. The fitting results in Table 7 show that the ReLU 
activation function has better performance than the other 
two functions under the same training setting. According 
to the above analysis, further study is based on the MLP 
networks with settings of 4 hidden layers, 380 nodes, and 
the ReLU activation function.

5 � Transfer learning–based MLP network

To improve the fitting ability and solve the distribution dif-
ference between the simulation data and the experimental 
data, the “fine-tune” transfer learning method is used to 
optimize the pre-train MLP model.

Table 5   The planning of the 
end-effector force

Groups Fx (N) Fy (N) Fz (N) Ta (Nm) Tb (Nm) Tc (Nm)

1 100 40  − 20 10 10 2
2 80 30  − 40 8 8 1
3 60 20  − 60 6 6 0
4 40 10  − 80 4 4  − 1
5 20 5  − 100 2 2  − 2

Table 6   Fitting results of different hidden layers

Number Training Set Testing Set

MAE (mm) STDE (mm) MAE (mm) STDE (mm)

2 0.2469 0.1365 0.2501 0.1382
3 0.2164 0.1223 0.2186 0.1230
4 0.2070 0.1178 0.2090 0.1195
5 0.2349 0.1213 0.2375 0.1229
6 0.2381 0.1286 0.2399 0.1318

Fig. 5   The influence of hidden layer nodes (a, b) and the model convergence (c)

Table 7   The effect of different activation functions

Activation 
function

Training set Testing set

MAE (mm) STDE (mm) MAE (mm) STDE (mm)

Sigmoid 0.9656 0.5924 0.9692 0.5936
Tanh 0.3353 0.1959 0.3349 0.1944
ReLU 0.1180 0.0694 0.1199 0.0709
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5.1 � Transfer learning of hidden layers

For the MLP network, the number and location of the 
unfreezing hidden layers must be tested separately from 
the input and output layers.

To unfreeze the hidden layers, the experimental data 
were all brought into the network for full training to 
explore the fitting effect of the network on the data. The 
strategy of unfreezing the layer is unfreezing one layer 
only and unfreezing the adjacent two layers. We compare 
the prediction performance of unfreezing the first and sec-
ond hidden layers, the second and third hidden layers, the 
third and third hidden layers, and the output layer of the 
MLP network. The results of unfreezing one layer were 
poor compared to unfreezing two layers. Figure 6 shows 
the regression effects. The results indicate that the train-
ing effect after unfreezing two layers is much better than 
that of one, and it can meet the accuracy requirements. 
More layers are not apparent for the improvement of the 
results. Considering all combinations of two layers, the fit-
ting errors of different conditions are presented in Table 8. 
The results show that the training results of unfreezing the 
first and second hidden layers are the best. This ufreezing 
strategy is used to realize subsequent predictions.

5.2 � Fine‑tuned stiffness model

For training method optimization, the structure of the model 
is determined in the above research. The following discusses 
how to fine-tune the network parameters appropriately to 
improve the generalization and prediction ability of the 
network.

Theoretically, the learning rate (LR) needs to be set low 
when fine-tuning. However, the lower LR will lead to lower 
convergence speed. Besides, the network has a good perfor-
mance fit for the training set, but it does not mean the data 
prediction ability for the whole set is strong. A coupling 
of multiple influencing factors exists in this problem. The 
normal training process will stop after reaching the set con-
vergence standard, adopting a fixed LR and iterations. In this 

Fig. 6   Comparison of unfreezing different layers in fine-tuned MLP (FT-MLP) process

Table 8   Unfreezing training results of two layers

Unfreezing Layers MAE (mm) STDE (mm)

Hidden layers 1 & hidden layers 2 0.0345 0.0246
Hidden layers 2 & hidden layers 3 0.0564 0.0695
Hidden layers 3 & hidden layers 4 0.0952 0.0326
Output layers 0.1356 0.0772
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study, a training strategy is proposed to reduce this effect 
(Fig. 7). The appropriate network is selected by the fitting 
effect of the model on the validation set data. Set LR = 0.03, 
Epochs = 50,000. Twenty percent of the experimental data 
will be used as a validation set for parameter optimization. 
Each epoch records and compares the fitting effect of the 
model validation set, records the best network parameters 
M in the training process, and outputs the optimal network 
results after completing the training of all epochs.

The modified training method and MAE are used as the 
loss function to unfreeze the first-layer and second-layer 
parameters for training. The regression results of the trained 
model are shown in Table 9. The model’s prediction ability 
is improved based on the proposed training strategy com-
pared to the normal training process. In the testing set, MAE 
is reduced by 19.70%, and STDE is reduced by 12.00%.

5.3 � Different model result comparison

For comparison of modeling results, the VJM stiffness model 
and a deep transfer learning approach are used to evaluate 
the performance of the fine-tuned transfer learning stiffness 
model. In the experiment, 151 robot poses are planned to 
measure the modeling data. Both models are established by 

the same data, which is 80% of the experimental data, and 
the results are evaluated from three aspects, i.e., ME, STDE, 
and MAE. The prediction results between the three models 
are shown in Table 10. The prediction results of the deep 
transfer learning approach based on the CNN network model 
(DT-CNN) are shown in Fig. 8. The prediction results of the 
DT-CNN are close to those of VJM, with better prediction 
results in the X-direction. Among them, the prediction results 
of fine-tuning transfer learning approach based on the MLP 
model (FT-MLP) are much more favorable than the other two 
models. The CNN network can extract more advanced and 
prosperous features through convolutional operations, but the 
transfer approach does not achieve better results by directly 
predicting the target domain after training in the source 
domain. Thus, it is indicated that it is necessary to use the 
prior knowledge of the source domain and the target domain 
to fine-tune the pre-trained network model for a better fitting 
effect. The difference in features between the target and source 
domains will also have an impact on the fine-tuned effect.

The comparison of the prediction results of FT-MLP and 
VJM is shown in Fig. 9. It indicates that the accuracy of the 
FT-MLP is improved in the three aspects compared with 
the VJM stiffness model. In the XYZ directions, the MAE is 
decreased by 41.40%, 43.10%, and 24.90%, respectively. The 
STDE decreased by 31.80%, 39.20%, and 14.20%, respec-
tively, and the ME decreased by 8.50%, 21.70%, and 44.20%. 
The reduction of the STDE and MAE manifest improved 
prediction generalization ability. The FT-MLP model 
enhances predictive ability by gaining prior knowledge of 

Fig. 7   Training strategy for improving the generalization and predic-
tion ability of the network

Table 9   Comparison of training method

Training 
method

Training set Validation set

MAE (mm) STDE (mm) MAE (mm) STDE (mm)

Normal 0.0746 0.0584 0.1997 0.1471
Optimized 0.0792 0.0375 0.1604 0.1295

Table 10   Predictive performance of different approaches

Direction Error (mm) Approach

VJM FT-MLP DT-CNN

X MAE 0.0777 0.0451 0.0729
STDE 0.1123 0.0766 0.0875
ME 0.6500 0.6000 0.7700

Y MAE 0.0657 0.0374 0.0765
STDE 0.0762 0.0463 0.0928
ME 0.4300 0.3400 0.5200

Z MAE 0.0595 0.0447 0.0628
STDE 0.0717 0.0615 0.0832
ME 0.5700 0.3200 0.6200
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the massive source domain data generated by VJM and by 
fine-tuning it through experimental data.

6 � Conclusion

This paper investigates a model-based fine-tuning trans-
fer learning approach to establish a stiffness model of 
industrial robots, improving the modeling accuracy 
and generalization. The VJM is obtained by fitting the 
experimental data, and a massive set of simulation source 
domain data is obtained using the VJM. A pre-training 
model is obtained based on the source domain data, and 
the pre-training model is fine-tuned using a small set of 
experimental data.

The predictive ability of the MLP model through fine-tuning 
is significantly improved compared to the pre-trained model, 
demonstrating the effectiveness of the transfer fine-tuning strat-
egy. The prediction performance of the proposed approach was 
compared with the VJM and a deep transfer learning approach 
based on the CNN network. Results indicate our approach has 
better performance in improving stiffness modeling accuracy. 

The mean absolute error, maximum error, and corresponding 
standard deviation are significantly reduced. The proposed 
model also provides much better predictive ability than a direct 
approach using deep transfer learning, demonstrating that utiliz-
ing a priori knowledge and fine-tuning the model through the 
target domain is more effective.

The “fine-tune” transfer learning approach is used for 
parameter adjustment of the pre-trained network. Many 
factors need to be considered in the parameter adjustment 
process. Thus, the model needs to be optimized further for 
real time and convenience. The subsequent research would 
exploit an automatic learning approach to optimize the mod-
eling process and improve the model performance. Besides, 
the next step in the research could be to apply the approach 
to robot path planning to verify its effectiveness in improv-
ing robot machining accuracy. Moreover, the generalization 
performance of the proposed approach between different 
robots needs to be validated and refined in future research.

The proposed approach is essential for position compen-
sation in precise motion control of robots under dynamic 
load. For example, dynamic compensation for robot end-
effector deformation is valuable for position control accuracy 

Fig. 8   a–c The deep transfer learning prediction results based on the CNN network

Fig. 9   a–c Performance comparison of the FT-MLP model and the VJM
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in high-load tasks such as machining and picking. However, 
the effectiveness of the proposed approach relies on accurate 
online sensing of force signals, which deserves more inten-
sive investigation in the future.
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