
1

Cascaded Frequency-Encoded Multi-Scale
Neural Fields for Sparse-View CT
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Abstract— Sparse-view Computed Tomography (CT) re-
construction has attracted considerable attention as a
method for reducing radiation exposure and acquisition
time in CT imaging. However, the ill-posed nature of
the sparse-view reconstruction problem poses challenges
for image quality and computational efficiency. In this
study, we propose a novel cascaded framework for sparse-
view CT reconstruction, designated Cascaded Frequency-
encoded Multi-scale Neural Field (Ca-FMNF). This frame-
work combines an iterative unfolding network based on
state space models (SSMs) with a frequency-encoded
multi-scale neural field (FMNF) representation. The SSM-
based iterative unfolding network generates an effective
initial reconstruction, which is subsequently refined by the
FMNF network through a continuous optimization process
in the image space. The FMNF network utilizes a multi-
scale grid structure for spatial decomposition and asso-
ciates each scale with specific frequency bands through
Fourier feature encoding, enabling efficient and precise
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local feature modeling. Additionally, a hybrid loss function,
incorporating data fidelity, wavelet sparsity, and total varia-
tion regularization, is implemented to enhance the stability
and robustness of the reconstruction process. Extensive
experiments on the AAPM dataset demonstrate that our Ca-
FMNF method outperforms state-of-the-art approaches in
terms of both quantitative metrics and visual quality, yield-
ing superior reconstruction results with preserved edges
and structural features.

Index Terms— Sparse-View CT Reconstruction, Iterative
Unfolding, State Space Models, Neural Fields, Multi-Scale
Representation

I. INTRODUCTION

Computed Tomography (CT) is an essential imaging tool

widely employed in medical and industrial fields for non-

destructive, non-invasive internal examinations. CT imaging

involves capturing 2D X-ray projections from various an-

gles, which are subsequently reconstructed into a 3D volume

utilizing algorithms such as Filtered Back Projection (FBP)

or Feldkamp-Davis-Kress (FDK) [1], [2]. Although a higher

quantity and optimal angular distribution of projections can

enhance image accuracy, they also increase radiation exposure,

presenting significant risks, particularly for frequent CT users.

To address this issue, sparse-view CT has been developed,

which reduces the number of projection angles to decrease

radiation doses. However, this reduction results in an ill-posed

problem, substantially compromising the efficacy of traditional

algorithms like FBP and resulting in images with significant

noise and artifacts.
Model-based optimization methods address the ill-posed

problem of sparse-view CT reconstruction by incorporating

nonlinear regularizers (priors) to account for the missing infor-

mation [3]. These approaches have demonstrated adaptability

and produce high-quality reconstructions by leveraging prior

knowledge about the underlying image structure. Examples

of such methods include Total Variation (TV) [4], dictionary

learning [5], nonlocal means filtering [6], tight wavelet frames

[7], low-rank models [8], transform learning [9], and convolu-

tional sparse coding [10]. By incorporating prior knowledge,

these methods effectively mitigate the artifacts and noise

typically associated with under-sampled data. However, the

high-quality reconstructions achieved by these methods often

come at the expense of computational efficiency. Moreover,
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the performance of these methods relies on the choice of

modeling assumptions and regularization parameters, which

can be challenging to optimize.

Deep learning techniques have significantly enhanced CT

image reconstruction, utilizing large-scale data to achieve

notable improvements. Instead of directly addressing the

ill-posed inverse problem, deep learning approaches utilize

convolutional neural networks (CNNs) trained on extensive

datasets to learn the end-to-end mapping from raw measure-

ment data to reconstructed images [11]–[14]. This data-driven

training process unveils the complex transformation patterns

inherent in the data. Further innovations have enhanced deep

learning reconstruction by incorporating priors, such as plug-

and-play (PnP) [15] and regularization by denoising (RED)

[16], which incorporate additional prior knowledge to re-

fine the output. Additionally, generative adversarial networks

(GANs) [17], diffusion score models [18]–[20], and geometric

deep learning frameworks [21] have emerged, expanding the

model’s ability to generalize across various imaging scenarios.

Hybrid approaches, combining model-driven and data-driven

paradigms, have also been developed in the form of deep

iterative unrolling models [22], [23]. These models interpret

iterative steps of model-based optimization as CNN layers,

facilitating end-to-end training in a supervised manner. Despite

the clear superiority of deep learning in CT image recon-

struction, challenges persist, especially in acquiring large-

scale training datasets and handling variability across different

datasets. These challenges can impact the robustness of recon-

structions, particularly when dealing with subtle but critical

anatomical changes, such as tumor growth. Moreover, trained

models may encounter difficulties in adapting to patients

with varying anatomical structures, highlighting the need for

models that generalize effectively across different patient scans

[24].

Neural fields [25] represent a significant development in

computational modeling, employing coordinate-based neural

networks to parameterize physical attributes across spatial and

temporal dimensions. Unlike traditional CNNs that rely on

discrete data representations, neural fields define a continuous

function, offering a detailed and continuous representation

of the scene’s dynamics. This continuous nature enables the

precise modeling of complex and intricate patterns while also

enhancing the representation of high-frequency details, thereby

overcoming the ’spectral bias’ that is commonly encountered

in CNNs. As a result, neural fields demonstrate exceptional

performance across various visual tasks, such as surface recon-

struction [26], view synthesis [27], and image super-resolution

[28]. The ability of neural fields to capture and represent

detailed information makes them a promising candidate for

addressing the challenges faced by deep learning methods in

CT image reconstruction.

In the sparse-view CT imaging, the potential of neural fields

has gained increasing recognition. Early explorations, like

those by Tancik et al. [29], showcased the capability of neural

fields to reconstruct CT images from sparse data sets without

relying on extensive external inputs. Building on these initial

findings, a variety of neural field-based approaches have been

developed for CT reconstruction. These methods, such as those

implemented in the CoIL framework by Sun et al. [30], utilize

the continuous modeling capability of neural fields to predict

dense-view sinograms from sparse observations. However, the

discord between the coordinate space of sinograms and the in-

herently continuous neural field models can affect the efficacy

of CoIL. To address these complexities, newer methodologies,

such as NeRP and IntroTomo, proposed by Shen et al. [24] and

Zang et al. [1], respectively, were developed. These approaches

combine longitudinal scan data and neural field modeling to

refine CT image reconstruction. They demonstrate the power

of neural fields in enhancing image quality through iterative

and prior-integrated training processes. Further advancing the

field, Wu et al. [31] introduced SCOPE, which employs neural

field principles and a novel re-projection strategy to enhance

the solution space and stability of the CT image reconstruction

process. However, methods like CoIL, IntroTomo, and SCOPE

primarily focus on using multi-layer perceptron (MLP) to

represent the measurement field rather than directly recon-

structing the image. They subsequently rely on other existing

methods for the final image reconstruction. This indirect

approach can propagate measurement inaccuracies, potentially

leading to secondary artifacts in the reconstructed images.

For instance, CoIL’s performance might be compromised by

the misalignment between the measured sinogram’s coordinate

space and the neural field’s continuous model. In particular,

the IntroTomo method integrates explicit priors such as TV

and non-local means within an optimization framework to

refine CT images. This approach can improve reconstruction

fidelity but at the cost of extended reconstruction times. While

methods like NeRF can directly yield reconstructed images,

their effectiveness heavily depends on the accuracy of the prior

image. A significant disparity between the prior and the target

can impede optimal reconstruction results.

To leverage the strengths of neural fields while addressing

their limitations, we propose a cascaded method that integrates

a pre-trained iterative unfolding network with a neural field

technique. Our framework initially employs an iterative un-

folding network to quickly generate an initial reconstruction,

providing an efficient starting point and effectively narrowing

the solution space. Subsequently, we introduce a neural field

technique to enhance the reconstruction, leveraging its superior

continuous representation capabilities to capture and optimize

fine image details. This neural field approach incorporates the

forward model of the CT imaging system into the network

architecture, transforming the image reconstruction challenge

into a network optimization problem. This strategy maintains

computational efficiency while leveraging the advantages of

neural fields in precise modeling. It also enables accurate re-

construction from highly sparse sinograms while significantly

reducing computational time.

In the initial phase of our hybrid framework, we utilize

an iterative unfolding network based on State Space Mod-

els (SSMs) [32]–[34]. This network employs Vision SSM

(VSSM) to construct feature extractors within each submodule,

improving its capacity to learn concurrently from projection

data and image priors, thereby effectively capturing long-

range dependencies. We explicitly incorporate measurement

fidelity terms into each submodule to maintain consistency
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between reconstructed results and measured data. Compared

to traditional iterative unfolding networks, this architecture

reduces the required number of sub-blocks, shortens inference

times for initial image intensity prediction, and effectively

narrows the search space for subsequent optimization. Build-

ing upon the iterative unfolding network, we introduce a

neural field-based method to refine the reconstruction results.

This approach encodes the entire image as a continuous

implicit representation within the neural network’s weights,

aiming to capture the complete image space. Inspired by

Neural Fourier Filter Banks [35], we encode coordinate signals

simultaneously in both spatial and frequency domains. We

implement a multi-scale grid structure and apply Fourier

feature encoding to the grid features before network input.

This method effectively transforms linear variations of grid

features into learnable frequencies at each scale level. An

MLP with sinusoidal activation functions then processes these

Fourier-encoded features, forming a pipeline that progressively

accumulates high-frequency information. The summation of

all intermediate outputs generates the final estimated intensity

values, specifically optimizing residual intensity information.

To summarize, our contributions are as follows:

• We present an implicit neural representation approach for

sparse-view CT reconstruction, utilizing a neural field to

encode the CT image as a continuous function. Employ-

ing a multi-scale grid structure for spatial decomposition

and Fourier feature encoding for frequency correlation,

our method optimizes a continuous CT intensity field.

• We propose a cascading framework that integrates a

learning-based method with implicit neural fields. Ini-

tially, we train an iterative unfolding network based on

SSMs to predict the initial CT image. Subsequently,

implicit neural fields are employed to refine the residual

intensity values, optimizing a continuous CT intensity

field for higher-quality reconstruction outcomes.

• Experiments on AAPM datasets show that our proposed

method achieves state-of-the-art performance while pre-

serving the edges and structural features of the CT

images.

The remainder of this paper is organized as follows. Sec-

tion II introduces the CT imaging problem and details our

proposed Ca-FMNF framework, including the SSM-based

iterative unfolding network and the frequency-encoded multi-

scale neural field representation. Section III presents our exper-

imental results, including simulated and real data evaluations,

comparisons with state-of-the-art methods, and an ablation

study. Section IV concludes the paper with a summary of our

findings. It also discusses potential future directions.

II. METHOD

A. CT Imaging Problem and Ca-FMNF Framework

The CT imaging system is modeled as y = Ax + ε,
where x ∈ R

N represents the target image, y ∈ R
M is

the sampled sensor measurement of the projection sinogram,

ε ∈ R
M represents the measurement noise or error, and

A ∈ R
M×N denotes the system’s projection matrix. The

aim of CT reconstruction is to recover the target CT im-

age x given the projection sinogram y. In sparse-view CT,

under-sampling in the projection domain reduces radiation

exposure but results in an ill-posed problem. Coordinate-

based neural networks have emerged as a promising approach

to address ill-posed problems in image reconstruction [24].

These implicit neural representations offer continuous pa-

rameterization of image properties, with sinusoidal activation

functions being particularly effective in modeling 2D images.

In CT reconstruction, these networks can be optimized to

map spatial coordinates to image intensities, incorporating data

consistency constraints from projection measurements [30].

However, applying implicit neural networks to sparse-view CT

reconstruction presents significant challenges. The presence

of noise ε and the incompleteness of y in sparse sampling

scenarios can lead to overfitting of the implicit neural field to

the projection data, potentially compromising the accuracy of

the reconstructed images.

To address these limitations and enhance reconstruction

quality in sparse-view CT, we propose Ca-FMNF, as illustrated

in Fig. 1. Our method integrates a learning-based iterative

unfolding network with Frequency-Encoded Multi-Scale Neu-

ral Fields (FMNF) to achieve high-quality image reconstruc-

tion. Initially, we pre-train an iterative unfolding network

to predict an initial CT image. This pre-training provides

a well-defined starting point and narrows the search space

for the optimal solution in subsequent steps. We then shift

our focus to learning the neural representation of the target

reconstruction image from sparse projection measurements. By

integrating a differentiable forward model (Radon transform),

the FMNF network constructs a projection loss between the

image space and the measurement space, thereby refining the

continuous CT image intensity field. To enable precise and

efficient modeling of local features, we employ a multi-scale

grid structure for spatial decomposition and Fourier feature

encoding at each scale to model specific frequency bands. By

optimizing within a continuous functional space of parameters,

constrained by sparse projection measurements, the network

effectively enhances the quality of the reconstruction. Finally,

the trained network’s CT intensity field is inferred across all

spatial coordinates to produce the final reconstructed image.

B. SSM-based Iterative Unfolding Network

In our cascaded framework, we introduce an iterative un-

folding network based on SSMs. SSMs, originating from

classical control theory, have recently gained prominence in

deep learning due to their ability to efficiently model long-

range dependencies [33], [34]. We utilize Mamba [32] as

the underlying SSM implementation, enhancing the network’s

capacity to capture complex temporal and spatial relationships

in the data.

Fig. 2 illustrates the network architecture. Given sparse

projections y and an initial reconstruction x0, the network

learns a mapping function that estimates the CT image,

effectively transforming data from the measurement domain to

the image domain. The network consists of multiple cascaded

iteration blocks, each comprising a Measurement Consistency
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Fig. 1. The proposed cascaded Ca-FMNF framework for sparse-view CT reconstruction. The framework consists of two main stages: (1) a pre-
trained iterative unfolding network based on SSM for initial CT image prediction, and (2) a FMNF network for refining the continuous CT intensity
field.

Fidelity Block (MCFB) and a Residual State Space Block

(RSSB). The fidelity module ensures consistency between

the reconstructed image and the measured sinogram data.

Meanwhile, the RSSB captures long-range dependencies and

high-frequency details by integrating Mamba SSMs with local

convolutional operations.

Our proposed iterative unfolding network adopts LEARN

[23] as its backbone, integrating SSM principles to enhance

its feature extraction and representation capabilities. We refor-

mulate the reconstruction process as:

xt+1 = xt −Ψ
(
AT

(
Axt − y

))
+M (

xt
)
, (1)

where Ψ represents a three-layer CNN module that, in con-

junction with the CNN spatial module, adaptively refines

the image reconstruction process by balancing contributions

from both data fidelity and feature extraction mechanisms. M
denotes the RSSB, which emphasizes the capture of detailed

image features and long-range dependencies.

Inspired by the success of Mamba [32] in long-range

modeling with linear complexity, we introduce the RSSB as

an implicit regularization term M. Fig. 2 illustrates the RSSB,

which combines the Visual State Space Model (VSSM) with

local convolutional operations to effectively model both global

and local image features [33]. Given input features X ∈
R

B×H×W×1, we first process them through a convolutional

layer with a Switch activation function to extract feature

embeddings X ∈ R
B×H×W×C , where C represents the

dimensionality of the feature embeddings. These features are

then layer-normalized to obtainY = LN(Switch(Conv(X))).
The normalized features Y are input into the VSSM to

model long-range dependencies among features. To effectively

combine the original input information with the long-range

dependencies captured by the VSSM, we employ a learnable

skip connection. This allows the network to maintain a balance

between preserving low-level details and incorporating global

context. The output is expressed as Z = sl �Y+VSSM(Y),
where sl represents the learnable parameter. Finally, Z is

processed through additional convolutional layers, followed by

a Switch activation function and another layer normalization

to generate the final feature representation:

Xout = LN(Switch(Conv(Z))) . (2)

As illustrated in Fig. 2d, the VSSM comprises a linear

layer, depthwise convolutions, a 2D Selective Scan Module

(2D-SSM), and additional depthwise convolutions. The input

features Y ∈ R
B×H×W×C are initially processed through

a projection layer, expanding their dimensionality to Yproj ∈
R

B×H×W×Dinner , where Dinner represents the expanded feature

dimension.

Yproj is reshaped to R
B×Dinner×L, where L = H ×W , and

then subjected to a two-dimensional depthwise convolution

followed by a SiLU activation function. To enhance the

capture of spatial relationships, we incorporate the 2D-SSM as

proposed by [33]. The resulting features are then expanded into

four orientations: the original, transposed, and their respective

spatially reversed counterparts.
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Fig. 2. The architecture and key components of the proposed SSM-
based Iterative Unfolding Network. (a) The overall structure of the
network, consisting of multiple cascaded iteration blocks. Each itera-
tion comprises two main components: the MCFB and the RSSB. The
equation at the bottom describes the iterative process. (b) The detailed
structure of the MCFB, which enforces consistency between the recon-
structed image and the measured sinogram data. (c) The architecture
of the RSSB, which integrates the VSSM with local convolutional oper-
ations to capture long-range dependencies and high-frequency details.
(d) The internal structure of the VSSM, highlighting the 2D-SSM that
enables adaptive feature extraction from various directions, enhancing
the overall representation of the input data.

For each orientation, the module applies state space equa-

tions. Let uk ∈ R
B×Dinner denote the k-th slice along the spatial

dimension. The state space equations are:

ĥk = F̂� ĥk−1 + Ĝ� uk

ĉk = Ĥ� ĥk + Î� uk,
(3)

where ĥk ∈ R
B×Dinner×J is the hidden state, ĉk ∈ R

B×Dinner is

the output at position k, and J is the state size.

The parameters F̂, Ĝ, Ĥ, and Î are derived from learnable

components, enabling adaptive processing. Specifically: F̂ =
eΔF, Ĝ = ΔG, Ĥ = H, and Î = I, where F ∈ R

Dinner×J

represents state transition,G ∈ R
B×1×J×L is input projection,

H ∈ R
B×1×J×L is output projection, I ∈ R

B×Dinner×Dinner

is the skip connection, and Δ ∈ R
B×Dinner×L is the learned

time step. The Δ parameter is dynamically computed based

on input features using the following equation:

Δ = S(Wδ · SiLU(Conv(Yproj)) + bδ), (4)

where Wδ and bδ are learnable parameters, and S is the soft-

plus activation function. This formulation allows Δ to adapt

to input content, dynamically adjusting temporal dynamics for

different input regions.

After completing state space computations across all

four orientations (original, transposed, and their spatially

reversed counterparts), the module aggregates the outputs

through element-wise addition and reshapes the result to

R
B×H×W×Dinner . Finally, the module projects these features

back to the original input dimension C. This multi-orientation
processing and aggregation effectively captures long-range

dependencies in various spatial directions while maintaining

computational efficiency, significantly enhancing the model’s

capacity to analyze complex spatial relationships and global

context in the input data.

To train the iterative unfolding network, we use the DeepLe-

sion [36] dataset with paired data {yn, xn
gt}Nn=1, where yn

represents sparse-view projection and xn
gt represents corre-

sponding ground truth image of size 256 × 256. The sparse-
view projections are obtained through simulated fan-beam ge-

ometry using the Operator Discretization Library (ODL) [37].

The network Ew, parameterized by weights w, is trained to

optimize the mapping from sparse projections to ground truth

images using the Mean Squared Error (MSE) loss function:

Lw =
1

N

N∑

n=1

Lmse(Ew(y
n, xn

o ), x
n
gt), (5)

where Ew(y
n, xn

o ) is the estimated image from the network

for the n-th sample, with xn
o representing the input FBP

reconstruction.

In the subsequent reconstruction process, we employ the

trained network E∗
w to generate an initial reconstruction for

each sample, defined as xn
init = E∗

w(y
n, xn

o ). This initial

reconstruction serves as an efficient starting point, effectively

narrowing the solution space for subsequent FMNF optimiza-

tion. Moreover, it accelerates convergence in the FMNF by

providing a robust initial estimate of the image intensity

distribution.

C. Frequency-Encoded Multi-Scale Neural Field
Representation
Building upon the initial reconstruction from the iterative

unfolding network, our FMNF combines the advantages of

learning-based methods and neural field representation to

optimize the residual image and ensure data consistency.

Inspired by the Neural Fourier Filter Bank [35], the FMNF

employs a multi-scale grid structure that captures distinct

frequency bands of the residual CT image field, effectively

addressing both low and high-frequency information. This

approach distinguishes itself from previous methods [1], [30],

[31] by offering a more comprehensive representation of the

residual components, rather than encoding coordinates directly

in spatial or frequency domains.

As illustrated in Fig. 1, the FMNF architecture comprises

a multi-scale grid structure with neural Fourier feature repre-

sentations and a three-layer CNN for final signal construction.

This structure enables the mapping of spatial 2D points to

their corresponding intensity values in the residual CT image.

By optimizing this neural field through a projection-based

loss function, we maintain consistency with the observed data

while leveraging the learning capabilities of neural networks,

thus synergizing the strengths of data-driven and model-based

approaches.

1) Neural Fourier Feature Representations: Inspired by the

Neural Fourier Filter Bank [35], we propose a multi-scale

grid feature extraction method that maps two-dimensional

coordinates to a high-dimensional feature space. Our approach

defines a grid feature function κi : R2 → R
M at each level

i, where input coordinates are mapped to an M -dimensional

feature space. Following [35], we implement the lookup table
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Φi using a trainable hash table, facilitating efficient storage

and retrieval of feature vectors associated with grid vertices

at the i-th level. The resolution of this grid at each level is

determined by a base resolution P0 and a per-level scaling

factor s. In our implementation, we set the base resolution to
64 × 64 and the per-level scale s to 2. This scaling strategy

progressively increases the resolution across levels, enabling

the capture of features at various scales. We utilize three levels

(i = 1, 2, 3), effectively encompassing a range from coarse to

fine details.

In our feature extraction process, we begin with an input

coordinate p. To determine the appropriate grid features, we

first identify the four grid vertices that encompass this point.

These vertices are determined by computing the floor and

ceiling functions of the input coordinate. Specifically, we

define the lower bound vertex as plower = �p� and the upper

bound vertex as pupper = �p�. This procedure yields a set of
four vertices {pj}4j=1, which form the corners of the grid cell

containing p.
To map each vertex to an index in the hash table Φi, we

employ a spatial hashing function. This mapping is achieved

through the following equation:

h(pj) = (
2⊕

k=1

(pj,k ·Πk)) mod Ti, (6)

where pj,k denotes the k-th component (x or y coordinate) of
the j-th vertex coordinate. The

⊕
symbol denotes the bitwise

XOR operation, applied cumulatively over both dimensions.

Πk represents predefined large prime numbers, one for each

dimension. Specifically, we choose Π1 = 1 and Π2 =
2654435761 [35]. Finally, Ti is the size of the hash table for

the i-th level of our multi-scale grid structure.

Utilizing this hashing mechanism, we retrieve the corre-

sponding feature vectors from Φi for each of the four vertices.

This results in a set of vectors {qj}4j=1, each encapsulating

the local characteristics of the grid at the respective vertex.

To complete the feature extraction process, we calculate the

relative position of p within the grid cell, denoted as w =
p − plower. This relative position is then used to perform

bilinear interpolation on the retrieved vertex features, yielding

the final feature vector:

vi = φ(p;Φi) =(1− wx)(1− wy)q1 + wx(1− wy)q2

+ (1− wx)wyq3 + wxwyq4 (7)

where wx and wy are the components of w, representing the

relative position of p within the grid cell along the x and y

axes, respectively.

To enhance the learning of high-frequency functions, pro-

mote faster convergence, and improve generalization capabil-

ities, we incorporate frequency information into our feature

representation. Specifically, we apply Fourier feature encoding

to the interpolated grid features. This encoding is achieved

through the following equation:

γi(vi) =
[
sin

(
2π ·Bi · v�

i

)]�
, (8)

where γi(vi) represents the encoded features for level i, and
Bi denotes a learnable frequency transform matrix specific to

that level. The elements of Bi are initialized using a normal

distribution N (0, σ2
i ), where the standard deviation σi for the

i-th level is calculated as σi = 5.0 × 2i. This exponential

scaling of the standard deviation across levels allows for the

capture of features at progressively higher frequencies as i
increases.

The Fourier-encoded features are subsequently processed

by an MLP incorporating sinusoidal activation functions, as

depicted in Fig. 1. This MLP architecture employs a multi-

scale approach, with each layer operating on features derived

from different spatial resolutions. Specifically, the i-th layer,

denoted as Li, takes as input the output gi−1 from the preced-

ing layer, except for the first layer which directly processes the

input position p. The output of each layer is then combined

with the corresponding Fourier-encoded features γi(vi) to

produce an updated feature representation gi, as formalized

in the following equations:

fi = sin (Li(gi−1)) , gi = fi + γi(vi), (9)

where sin(·) is applied element-wise to the output of Li.

Our network comprises multiple hidden layers, each consist-

ing of 128 units. This hierarchical structure generates a set of

intermediate outputs G = {g1,g2,g3}, effectively integrating

information across different spatial scales.

2) Multi-scale Feature Integration: The multi-scale features

obtained through Fourier feature representations are integrated

to form a comprehensive representation of the intensity field.

This integration is achieved by summing the intermediate

outputs from each scale:

F(p) =
3∑

i=1

gi, (10)

where F(p) represents the integrated multi-scale feature at

position p.
To further refine this multi-scale representation, we employ

a three-layer CNN with ReLU activations. This CNN structure

is designed to efficiently process and integrate the information

captured in F(p):

Eθ(p) = Conv3 (ReLU (Conv2 (ReLU (Conv1(F(p)))))) ,
(11)

where Eθ(p) is the final output of our FMNF at position p.
Each convolutional layer uses a 3× 3 kernel and maintains

the spatial dimensions of the input, with 64 channels in the

intermediate layers (Conv1 and Conv2) and a single-channel

output in the final layer (Conv3). This architecture facilitates
adaptive refinement of the multi-scale features, enhancing the

overall reconstruction quality by leveraging complementary

information present at different resolutions.

3) Network Training: Leveraging the pre-trained iterative

unfolding network (Section II-B), we train the FMNF network

Eθ to learn a neural representation of the residual image

given sparse-view projections. This process incorporates the

initial estimate xinit derived from the sparse projections y. The
FMNF network is optimized to refine the residual image xres,
effectively shifting the optimization from the image domain to

the parameter space of the FMNF.
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Training of Eθ is performed by minimizing a composite

loss function:

Lθ =Lmse(A(Eθ(p) + xn
init), y

n)

+ λ (αLwave(Eθ(p)) + (1− α)LTV(Eθ(p))) ,
(12)

where xn
init represents the initial reconstruction image slice

obtained from the iterative unfolding network, yn denotes the

corresponding sparse-view projection, λ is a regularization

parameter, and α ∈ [0, 1] balances the contributions of wavelet
and TV regularization.

This loss function comprises three components: a data

fidelity loss (Lmse), a wavelet domain sparsity regularization

loss (Lwave), and a total variation (TV) regularization loss

(LTV). The TV regularization, based on the anisotropic TV

norm, encourages piecewise smoothness in the reconstructed

image while preserving important edge details [38].

We define the wavelet loss (Lwave) using a two-level wavelet

transform, implemented with the ”pytorch wavelets” library

[39]:

Lwave(Eθ(p)) = ‖DWTh(Eθ(p))‖1, (13)

where DWTh represents the high-frequency components of the

discrete wavelet transform. This formulation promotes sparsity

specifically in the high-frequency coefficients of the wavelet

domain.

Once the network is trained, the reconstructed image is

generated by performing inference over all spatial coordinates.

The final reconstructed image is obtained as:

x∗,n = Ew∗(yn, xn
0 ) + Eθ∗(p), (14)

where x∗,n represents the final reconstructed image slice

corresponding to the sparse-view projection yn, Ew∗ and Eθ∗

represent the optimized mappings learned by the iterative

unfolding network and the FMNF network, respectively. xn
0

refers to the reconstruction image slice obtained via FBP from

yn.

III. EXPERIMENTS AND RESULTS

This section presents a comprehensive evaluation of the pro-

posed Ca-FMNF method using both simulated and real clinical

datasets. Our assessment includes qualitative visual analysis

and quantitative measurements. For quantitative evaluation,

we employ two widely recognized metrics: Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index Measure

(SSIM). These metrics are calculated for all slices in the test

sets, with the average scores reported as the final results.

To benchmark our method, we compare it against five

state-of-the-art approaches: FBP, FBPConvNet [39], LEARN

[23], SCOPE [31], and NeRF [24]. FBP serves as a baseline,

illustrating the extent of artifacts in sparse-view reconstruction.

FBPConvNet represents a supervised deep learning approach

that applies convolutional neural networks to enhance FBP

reconstructions. LEARN exemplifies an iterative unfolding

model that integrates deep learning into traditional iterative

reconstruction frameworks. SCOPE utilizes implicit neural

fields to generate full-projection sinograms through a re-

projection strategy. NeRF, another neural field-based method,

incorporates prior image information into MLP weights for

image reconstruction.

We conducted our experiments using Python and PyTorch

libraries on two NVIDIA Tesla V100 GPUs, each equipped

with 32GB of memory. Our evaluation encompasses various

sparse-view scenarios to thoroughly assess the performance of

each method.

A. Simulated Numerical Experiments

1) AAPM Simulated Dataset: This study utilized the AAPM
Low-Dose CT Grand Challenge dataset from 2016, com-

prising CT scans from 10 patients with a total of 2,378

slices. We simulated a fan-beam X-ray setup with a 120kV

scan voltage, 600mm source-to-rotation center distance, and

590mm detector-to-rotation center distance. The detector array

consisted of 624 elements. We employed the ODL to project

original CT slices, generating sparse sinograms at 20 and

60 angles. ODL’s FBP algorithm subsequently reconstructed

these sinograms into initial CT images. The original slices

served as ground truth, while the sparse sinograms and their

reconstructed images constituted the network’s input data. The

dataset was divided into training and testing sets. CT slices

from 8 patients (1,943 slices) were used to train supervised

baseline methods, while 435 slices from the remaining 2

patients formed the test dataset. All images were standardized

to a 256× 256 pixel matrix.

2) Parameter Settings: For the proposed Ca-FMNF method,

we pre-trained the SSM-based iterative unfolding network on

2,880 slices from the DeepLesion dataset. Training parameters

included a batch size of 1, 50 iterations, and an initial learning

rate of 1 × 10−4 with cosine annealing to 1 × 10−5. We

employed the Adam optimizer with β1 = 0.9 and β2 = 0.999.
The FMNF network training used a fixed learning rate of

1 × 10−4 for 2000 iterations, with regularization parameters

λ = 0.01 and α = 0.1.
For the compared methods, FBPConvNet and LEARN were

trained on the AAPM training dataset (1,943 slices) for 50

epochs. Their learning rate was initially set to 1 × 10−4 and

gradually decayed to 1× 10−5 using a cosine annealing strat-

egy. We employed the Adam optimizer with default settings

for both methods. SCOPE was trained on sparse projection

sinograms from the test set using the Adam optimizer. The

training process involved 1000 iterations with a fixed learning

rate of 1 × 10−4. After training, the model estimated full-

projection sinograms through a re-projection strategy. These

estimated full-projection sinograms were then used to recon-

struct the final CT images via the FBP algorithm.

For NeRF, we first pre-trained the network using adjacent

slices as prior for 2000 iterations with a learning rate of 5×
10−4. Subsequently, the neural field training was conducted

for 2000 iterations with a learning rate of 5× 10−5.

3) Simulated Reconstruction Results: Fig. 3 presents the re-
construction results of lungs and abdomen under 60 views. The

supervised methods, FBPConvNet and LEARN, demonstrated

satisfactory performance in suppressing noise and artifacts.

However, examination of the ROI reveals a degree of over-

smoothing in both methods, particularly in FBPConvNet.
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Fig. 3. Compares reconstruction algorithms using 60 views for two
cases on AAPM simulated dataset. Each case includes reconstructed
images, ROIs, and difference images. The display windows are set to
[-1000, 1000] for Case 1 and [-160, 240]for Case 2. For NeRF, the prior
image selected for pre-training is presented.

This over-smoothing can be attributed to the lack of data-

driven constraints in FBPConvNet’s reconstruction process,

which essentially performs denoising on the initial FBP image,

resulting in suboptimal structure preservation. The neural field-

based SCOPE method exhibited significant noise and blurred

edges in the reconstructed images. In contrast, NeRF, another

neural field-based approach, achieved better clarity compared

to SCOPE. However, NeRF’s performance relies heavily on

prior images, and its noise suppression capabilities remain

inferior to the supervised LEARN method. Our proposed Ca-

FMNF method, which integrates data-driven and neural rep-

resentation approaches, achieved the most visually appealing

results. By capturing data priors from the data-driven model

and cascading neural field representation to optimize the resid-

ual images, our method successfully reconstructed artifact-free

CT images while preserving fine anatomical structures. This

superior performance is further corroborated by the difference

images, which demonstrate the smallest deviation between our

method’s results and the ground truth.

Fig. 4 displays the reconstruction outcomes from a mere

20 views projection series. The FBPConvNet method exhibits

pronounced streaking artifacts, while LEARN demonstrates

superior performance in mitigating noise and artifacts com-

pared to FBPConvNet. However, LEARN still suffers from

considerable edge erosion, as evidenced in the difference

images. SCOPE’s ability to attenuate noise and artifacts re-

mains limited in this highly sparse scenario. In contrast, NeRF

achieves notably superior results, preserving finer details. This

performance can be attributed to the utilization of priors that

closely align with the reconstruction targets. However, it is im-

portant to note that obtaining such closely matched priors may

not always be feasible in practical applications, potentially

limiting NeRF’s efficacy when there is significant divergence

Fig. 4. Compares reconstruction algorithms using 20 views for two
cases on AAPM simulated dataset. The display windows are set to [-
1000, 1000] for Case 1 and [-160, 240]for Case 2. For NeRF, the prior
image selected for pre-training is presented.

between the prior and the target. Under the constraints of

highly sparse 20-view projections, our proposed Ca-FMNF

method consistently demonstrates reduced noise and artifacts.

It also captures anatomical details more effectively than the

LEARN model. Nevertheless, it is not entirely immune to mild

over-smoothing effects.

Table I presents the quantitative evaluation results on the

AAPM dataset. Our proposed method, Ca-FMNF, demon-

strates superior performance in terms of PSNR and SSIM

for both 20 and 60 projections. Notably, Ca-FMNF, when

pre-trained on an external dataset (DeepLesion) and further

refined with cascaded neural fields, outperforms the supervised

training on an internal dataset (AAPM) against the deep

iterative unfolding baseline model, LEARN, achieving higher

SSIM values. This result underscores the effectiveness of our

approach in leveraging external data and advanced neural

architectures. In comparison with NeRF, our method shows

comparable results with 20 projections but exhibits superior

performance with 60 projections. It is important to note that

the quality of NeRF’s reconstructions is largely dependent

on the variance between the prior and target image data

distributions, with reconstructions being less constrained by

projection data. In our approach to pre-training NeRF, we

carefully selected prior images to align closely with the target

data distribution, as evidenced by the prior images in the third

row of Fig. 3 and 4. Conversely, the SCOPE method did

not surpass the performance of the supervised FBPConvNet.

This outcome may be attributed to our experimental approach

of using FBP to reconstruct the full-projection sinogram

without additional denoising steps. Overall, this quantitative

assessment highlights the superior performance of our Ca-

FMNF method on the AAPM simulated dataset. The results

demonstrate the potential of combining external pre-training,

cascaded neural fields, and careful consideration of data dis-

Page 8 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TCI.2025.3536078, IEEE Transactions on Computational Imaging

Copyright © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this 
material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



9

tributions in improving sparse-view CT reconstruction quality.

TABLE I
QUANTITATIVE EVALUATIONS OF ALL THE COMPARED METHODS ON

DIFFERENT VIEWS

Methods
12 views 20 views 60 views

SSIM PSNR SSIM PSNR SSIM PSNR

FBP 0.196 15.955 0.367 20.170 0.531 25.590
FBPConvNet 0.834 27.950 0.856 30.267 0.919 34.922
LEARN 0.833 27.682 0.903 32.752 0.959 38.152
SCOPE 0.401 19.089 0.786 29.325 0.878 31.872
NeRF 0.827 30.052 0.919 35.825 0.967 40.020
Our 0.882 33.084 0.953 37.265 0.983 43.347

B. Ablation Study

To rigorously assess the efficacy of our proposed Ca-

FMNF method, we conducted a comprehensive series of

ablation studies. These experiments were designed to validate

the effectiveness of key components within our framework,

specifically:

1) The cascaded SSM-based iterative model

2) The frequency-encoded multi-scale neural field repre-

sentation

3) The hybrid loss function

Through these ablation studies, we aim to provide a de-

tailed understanding of how each component contributes to

the overall performance of our method in sparse-view CT

reconstruction.

1) Effectiveness of the Cascaded SSM-Based Iterative
Model: In our framework, the initial CT image prediction

is obtained through an iterative unfolding network based on

SSBs. The subsequent stage involves the FMNF network,

which specifically targets the optimization of the residual

image, refining the initial prediction by integrating the Radon

transform into its loss function for enhanced joint optimization

in both image and projection domains. To validate the efficacy

of this cascaded approach, we conducted experiments using the

60-view data, comparing the reconstruction results of using

FMNF (without the iterative unfolding network) and those

obtained with the cascaded approach. The results, shown in

Fig.5, demonstrate the reconstructed images for three samples

using the proposed Ca-FMNF algorithm. For comparison,

reconstructions without the cascaded approach, labeled as

FMNF, were obtained by training the FMNF network with-

out the prior image from the pre-trained iterative unfolding

network. The Ca-FMNF reconstructions exhibit high-quality

images with clear anatomical structures and well-defined organ

boundaries. The comparison between the two indicates that

embedding the initial prior image from iterative reconstruction

into the subsequent FMNF optimization significantly enhances

the reconstruction quality. The difference images further il-

lustrate that the Ca-FMNF, when compared to FMNF alone,

yields a smaller discrepancy with the ground truth. Thus,

we conclude that the cascaded iterative unfolding network

effectively provides valuable prior knowledge, and the targeted

Fig. 5. Display of CT reconstruction results from 60 views on AAPM
simulated dataset. The first row presents the GT images for reference.
The second row displays the results reconstructed using only the FMNF
algorithm, where the FMNF network was trained without the iterative
unfolding network. The third row depicts the enhanced reconstructions
achieved by employing the complete Ca-FMNF framework, which in-
cludes the iterative unfolding network followed by FMNF refinement.
Each image has its corresponding SSIM and PSNR values below. The
display window for the lung set at [-1000, 1000], and for the abdomen at
[-160, 240].

optimization of the residual image by FMNF is effective for

accurately reconstructing sparse-view CT images, enhancing

the representation of high-frequency features and capturing

fine details of patient anatomy.

2) Effectiveness of the Frequency-Encoded Multi-Scale Neu-
ral Field Representation: To ascertain the effectiveness of our

FMNF representation, we conducted a comparative analysis

using the 60-view data, employing two different neural field

approaches: our FMNF and a neural field using a MLP with

position encoding [25]. Fig. 6 presents a comparison of the two

methods, with Ca-NeRF depicting the MLP-based neural field

reconstruction. It is evident that the Ca-NeRF approach yields

images with more noise compared to our Ca-FMNF. Moreover,

the enlarged ROIs demonstrate that, despite some smoothing

by our method, it maintains superior clarity in edge and

structural detail than the Ca-NeRF approach, which is further

corroborated by the difference images indicating a smaller

deviation from the ground truth with our method. Fig. 6(B)

tracks the progression of evaluation metrics through iterations,

showing our FMNF’s quicker convergence and higher perfor-

mance across all metrics compared to the Ca-NeRF approach.

This evidences that our Ca-FMNF, by integrating multi-scale

spatial decomposition and frequency encoding, effectively

models high-frequency details and improves reconstruction

efficiency.

3) Validating the Efficacy of the Hybrid Loss Function in
FMNF Training: To assess the efficacy of the hybrid loss

function (Eq. 12) in training the Ca-FMNF model, we con-

ducted a comparative analysis using three distinct training loss

configurations. The first configuration, denoted as Ca-FMNF-

D, was trained using only the data fidelity loss, focusing on

minimizing the mean squared error between the reconstructed

and actual CT images. The second variant, Ca-FMNF-T,

incorporated both data fidelity loss and TV regularization

loss, aiming to constrain the data with the smoothness of the

residual image. The third and most comprehensive model, Ca-

FMNF (Hybrid), employed a combination of data fidelity loss,

TV regularization, and wavelet sparsity loss.
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Fig. 6. Performance comparison between the proposed Ca-FMNF
method and Ca-NeRF. The first column displays the ground truth CT
images, the second column shows reconstructions by Ca-FMNF, and
the third column shows those by Ca-NeRF. The insets within the red
boxes magnify regions of interest. Difference images at the bottom row
emphasize the disparity in reconstruction fidelity. The display window at
[-160, 240]. The graphs on the right plot the MSE, SSIM, and PSNR
across iterations.

Fig. 7. Quantitative evaluation of the different Ca-FMNF model vari-
ations. The graphs depict the change in reconstruction accuracy over
iterations as measured by three different metrics. A show the MSE, B
illustrates the SSIM, and C represents the PSNR.

For the experimental setup, the parameters of the hybrid loss

function, as detailed in Eq. 12, were set with λ = 0.01 and

α = 0.2. Fig.7 demonstrates the performance metrics—MSE,

SSIM, and PSNR—over 1000 iterations for each of the three

models, trained on a single slice from the 60-view data. The

results revealed that the Ca-FMNF-T model outperformed the

other models in terms of higher metric values and demon-

strated a more stable convergence behavior, avoiding the

pitfall of overfitting. The inclusion of the TV loss in Ca-

FMNF-T contributed to its superior convergence properties

compared to the Ca-FMNF-D model, which only utilized the

data fidelity loss. The superior performance of Ca-FMNF-T

suggests that the regularization, particularly TV regularization,

effectively enhances the smoothness of the residual image,

thereby increasing the overall stability and robustness of

the reconstruction process. Moreover, the hybrid Ca-FMNF

model, incorporating both TV and wavelet losses, showed

a nuanced balance between data fidelity and regularization,

leading to high-quality reconstructions with fewer artifacts and

improved stability across iterations.

Fig. 8. Compares reconstruction algorithms using 12 views for three
cases on AAPM simulated dataset. Each case includes reconstructed
images, and ROIs. The display windows are set to [-160, 240]. For NeRF,
the prior image selected for pre-training is presented.

C. Reconstruction Using Extremely Sparse Views

In this section, we examine the performance of various

methods under extreme sparse-view configurations. To isolate

the effects of reconstruction algorithms, we utilized the AAPM

simulated dataset, specifically evaluating image reconstruction

from 12-view projection data. To ensure fair comparison, all

methods were retrained to achieve optimal performance under

these conditions.

Fig.8 presents the visual results of different reconstruction

methods. As evident from Fig.8, images reconstructed us-

ing FBP exhibit severe streak artifacts under such extreme

sparse-view conditions. The ill-posed nature of ultra-sparse-

view reconstruction poses significant challenges for supervised

methods like FBPConvNet and LEARN, which fail to pro-

vide reliable image reconstructions. This limitation is further

confirmed in the extracted ROIs. SCOPE shows markedly re-

duced effectiveness under these conditions, failing to produce

discernible images.

In contrast, NeRF demonstrates improved performance in

artifact suppression and structural preservation, as indicated by

the ROIs highlighted. However, NeRF’s reconstruction quality

is notably influenced by the prior images used in training.

Case 3 yields better results compared to Case 2, attributable

to the closer alignment between pre-training data and target

reconstruction distributions. The red-circled area in Case 1

reveals erroneous structural details, underscoring the impact

of prior image selection.

Under severe under-sampling (12 projection angles), our

proposed method achieves relatively better reconstruction

quality. While the results exhibit some noise, artifacts, and

loss of fine details due to over-smoothing, they demonstrate

superior preservation of textural details compared to other

examined approaches. The difference images provide clear
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Fig. 9. Compares reconstruction algorithms using 60 views for four cases on AAPM rebinned dataset. Each case includes reconstructed images,
and ROIs. The display windows are set to [-160, 240].

Fig. 10. Intensity profiles along the designated red lines in the ROIs of
AAPM rebinned dataset.

evidence that our method’s reconstructions show the least

deviation from the ground truth.

To provide a comprehensive evaluation, quantitative analysis

was conducted, with results presented in Table I.

D. Real Numerical Experiments

1) AAPM Rebinned Dataset: To evaluate our method’s per-

formance under realistic clinical conditions, we utilized raw

data from the AAPM Low Dose CT Grand Challenge. The

dataset was acquired using a Siemens Somatom Definition CT

scanner. The scanning parameters included a tube voltage of

120 kV and tube current ranging from 200 mA to 500 mA. A

helical scanning mode with flying focal spot was employed,

with a rotation time of 500 ms and 2304 projections per

rotation.

For computational efficiency, we converted the original

helical scan geometry to fan-beam geometry [40]. Full-angle

projection data were then rearranged and reconstructed using

the FBP algorithm to generate reference images. In our eval-

uation setup, we selected 64 out of the 2304 original angular

projections. Slices of 256×256 pixels were reconstructed using
the FBP algorithm, with a voxel size of 1.7 mm. The dataset

was divided into training and testing sets to ensure a robust

evaluation of our method. We selected six patients, comprising

3573 slices, for training purposes. For testing, we used data

from a separate patient, consisting of 703 slices.

The reconstruction parameters for the original helical geom-

etry included a detector resolution of 736× 64 and a detector
pixel size of 1.2858 mm × 1.0947 mm, with a pitch range of

0.6 to 0.8. For the rearranged fan-beam geometry, the detector

resolution was 736 per slice, with a detector pixel size of

1.2858 mm × 1.0 mm. The pitch parameter was not applicable

in this case. Common to both geometries were the source-

to-center distance of 595.0 mm and the source-to-detector

distance of 1085.6 mm.

2) Parameter Settings: For the rebinned AAPM dataset, we

employed the same comparative methods as in our simulation

experiments. All supervised deep learning methods, including

FBPConvNet and LEARN, were retrained to align with the

imaging geometry of the rearranged data. The parameter

settings for these methods remained consistent with those used
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in the simulation experiments. For neural field-based methods,

we directly applied them to the test set without retraining,

maintaining the same parameter configurations as in the sim-

ulation experiments. In the case of NeRF, we maintained our

strategy of pre-training the model using adjacent slices with

minimal data distribution differences from the target images.

3) Real Reconstruction Results: The reconstruction results

with 64 projections are illustrated in Fig. 9. It’s evident

that FBP reconstructions suffer from excessive diffusion of

artifacts, resulting in poor clarity and inability to discern

structural details. While FBPConvNet improves image quality

over FBP, it exhibits oversmoothing, failing to capture fine

anatomical details accurately. LEARN, applying data con-

straints, mitigates oversmoothing to a degree, more clearly

delineating structural details and tissue edges. However, ex-

amining enlarged ROIs reveals some inaccuracies.

In contrast, the SCOPE method, utilizing a neural field

and re-projection strategy, shows suboptimal results compared

to supervised deep learning methods, with evident artifacts

and noise, albeit surpassing traditional FBP reconstruction. A

closer inspection of specific ROIs indicates a noticeable blurri-

ness in its outcomes. Conversely, NeRF demonstrates superior

performance, with effective noise and artifact suppression and

introduction of details and features, though the choice of prior

images significantly impacts quality. Ultimately, our method

achieves the best clarity in reconstructed images, accurately

capturing structural details and edges. Additionally, quanti-

tative reconstruction results in terms of PSNR and SSIM, as

shown in the figure, affirm our method’s superior performance.

Profile analyses conducted on the regions of interest across

all reconstruction algorithms, as illustrated in Fig. 10, indicate

that our method’s reconstructed profiles align closely with

the reference. The comparative plots showcase the perfor-

mance of various algorithms, including FBP, FBPConvNet,

LEARN, SCOPE, and NERF, alongside the reference data.

Our proposed method demonstrates good agreement with the

reference across the examined pixel range. Other methods

exhibit varying degrees of deviation from the reference profile.

The FBP reconstruction, for instance, shows more pronounced

differences, particularly in areas of rapid intensity change.

IV. CONCLUSION

In this paper, we have presented a novel cascaded frame-

work, Ca-FMNF, for sparse-view CT reconstruction. The

proposed method integrates an iterative unfolding network

based on SSMs with a FMNF representation. The SSM-

based iterative unfolding network provides an effective initial

reconstruction, which is further refined by the FMNF network

through a continuous optimization process in the image space.

The FMNF network employs a multi-scale grid structure for

spatial decomposition and associates each scale with specific

frequency bands through Fourier feature encoding, enabling

efficient and precise modeling of local features.

Extensive experiments on the AAPM and clinical datasets

demonstrate that our Ca-FMNF method outperforms state-of-

the-art approaches in terms of both quantitative metrics and

visual quality. The cascaded framework effectively leverages

the strengths of both data-driven and model-based approaches,

achieving superior reconstruction results with preserved edges

and structural features. Furthermore, the hybrid loss function,

incorporating data fidelity, wavelet sparsity, and total variation

regularization, enhances the stability and robustness of the

reconstruction process.

In the future, we plan to extend our Ca-FMNF framework to

3D CT reconstruction, which will enable more comprehensive

and accurate visualization of anatomical structures. This exten-

sion will provide essential volumetric information for clinical

applications, such as tumor detection and treatment planning.
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