This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

Domain Tailored Large Language Models for Log
Mask Prediction in Cellular Network Diagnostics

Sayed Taheri*, Achintha Thalage*, Prateek Mishra, Sean Coaker, Faris Muhammad, Hamed Al-Raweshidy

Abstract—Software logs generated by dedicated network test-
ing hardware are often complex and bear minimal similarity
to natural language, requiring the expertise of engineers to
understand and capture defects recorded in these logs. This
manual process is inefficient and expensive for both service
providers and their clients. In this study, we demonstrate the
transformative potential of Artificial Intelligence (AI), specifically
through domain-tailoring of Large Language Models (LLMs)
like RoOBERTa, BigBird, and Flan-T5, to streamline the process
of defect diagnostics. Particularly, we pre-train these models
ground up on a real industrial telecommunications log corpus,
and perform finetuning on a multi-label classification objective.
This facilitates identifying a correct set of log points to be enabled
for rapid detection of defects that arise during network testing.
Despite encountering several challenges such as intricate text
structures, heavily skewed label distribution, and inconsistencies
in historical data labelling, our tailored LLMs achieve commend-
able performance on previously unseen defect cases, significantly
reducing the turnaround times. This research not only serves as
an exemplar for adapting LLMs in telecommunications industry
for automated defect diagnostics, but also has wide implications
for software log analysis across various industries.

Index Terms—telecommunications, machine learning, LLM,
log analysis, network diagnostics

I. INTRODUCTION

The ever-evolving landscape of telecommunications indus-
try demands thorough network testing and diagnostics that
encompass the entire network protocol stack, ensuring the
network reliability, performance and compliance with industry
standards before real-world deployment. These testing solu-
tions inevitably involve sophisticated hardware and massive
software codebases for granular emulation of diverse net-
work infrastructures and user equipment, closely replicating
practical conditions. It becomes crucial for network opera-
tors to capture any defects or unexpected behaviour in their
network under these dynamic environments and rectify them
promptly to improve the overall quality of service. Software
logs generated by a network testing platform, although highly

Sayed Taheri, is with the Department of Electronic and Electrical En-
gineering (EEE), College of Engineering, Design and Physical Sciences,
Brunel University of London, London, United Kingdom. Since 2022,
he has also been with VIAVI Solutions Inc., United Kingdom. (e-mail:
Sayed.Taheri @Brunel.ac.uk, and, Sayed.Taheri@viavisolutions.com).

Achintha Thalage, Prateek Mishra, Sean Coaker, and Faris Muham-
mad are with the Wireless Business Unit of VIAVI Solutions Inc.,
United Kingdom. (e-mail: {achintha.ihalage, prateek.mishra, sean.coaker, and
faris.muhammad } @viavisolutions.com).

Hamed Al-Raweshidy (Corresponding author) is with the Wireless Net-
works and Communications Group, Department of Electronics and Electrical
Engineering, Brunel University of London, London, United Kingdom. (e-mail:
Hamed.Al-Raweshidy @Brunel.ac.uk).

*These authors contributed equally.

complicated and barely related to natural language, are pivotal
in identifying and troubleshooting issues occurred in a network
test run. Nevertheless, this is generally a tedious manual
process that demands the expertise of engineers with vast ex-
perience in the field. Undoubtedly, manual analysis of software
logs for defect detection, whether performed internally by the
service provider, or in the field by field application engineers
hired by the clients, incurs substantial costs to both parties.
Despite these costs, it is imperative not to underestimate the
significance of defect resolution. Overlooking or delaying this
process could have detrimental effects on business relation-
ships and potentially lead to customer attrition.

While log classification and anomaly detection has been
extensively studied especially in domains such as cyberse-
curity and system monitoring, the applications of machine
learning (ML) algorithms for classifying logs generated by ad-
vanced testing hardware in telecommunications industry, such
as VIAVI TM500, remains largely uncharted. Exploring this
domain poses unique challenges owing to the voluminous and
intricate nature of telecom logs. For instance, logs generated
by VIAVI TM500 contain information related to hardware
configuration, network and user equipment (UE) interactions
across all protocol layers, running commands and responses
among other details, all recorded with a precision down to
the microsecond level. Inevitably, this results in software
logs often spanning tens of thousands of lines of text and
sometimes several millions of text lines for complicated test
cases. When issues do occur in a network simulation, capturing
only the errors or assert indications is typically insufficient
to locate the defective component for debugging purposes.
One must acquire a combination of log messages relating to
system configuration, dynamic parameters, errors, warnings
and asserts for isolating the defect. Furthermore, the default
log points (commonly referred to as log bases (LBs)) enabled
in a test script that gets executed on the TM500 may write
limited number of log messages, sometimes resulting in the
failure to record critical incidents. In such cases, engineers rely
on other information specified above to commence the defect
resolution process.

Dedicated network testers like VIAVI TMS500 support over
thousand log bases for testing very specific individual com-
ponents in a network infrastructure. However, enabling all
of these LBs in a test script may lead to catastrophic con-
sequences, such as generating logs in Terabyte (TB) range,
message buffer overflow and system crash. Therefore, it is
crucial to activate only a small subset of log bases that are
most likely to assist in pinpointing the issue. A hexadecimal
representation of a relevant set of LBs is known as a log mask

For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

or a log filter which makes the transfer and application of a set
of LBs to the customer easier. Selecting the correct set of LBs
is a challenging task. Service providers (e.g., VIAVI) and their
clients (e.g., cellular network operators and network equipment
manufacturers) often find themselves in a time-consuming
cycle of re-executing tests with new logging points in hopes
of capturing the elusive but necessary data. On average, about
eight iterations of re-running the tests with modified LBs, col-
lecting new sets of logs and sending them back to the service
provider for further analysis are required before the logs are
deemed sufficient for debugging the defects. Understandably,
this manual inefficient process adversely affect the turnaround
times, service level agreements, and ultimately, revenue.

In this paper, we focus on applying ML to select a more
accurate set of LBs from the outset, with the goal of reducing
turnaround time and improving efficiency of VIAVI TMS500
based 4G, 5G and beyond network diagnostics. The challenge
of this task stems from the vast array of LBs to choose from,
and the need for multi-label classification (MLC) as opposed
to multi-class classification. In particular, we apply recent
LLMs, domain-adapted from scratch for telecom software log
understanding, to perform massive MLC of software logs into
their corresponding set of LBs. Furthermore, to circumvent
the problem of hugely skewed LB distribution, we propose
an independent binary classification of logs into individual
LBs by extracting software log embeddings from various
domain-adapted LL.Ms, including RoBERTa [36], BigBird [37]
and Flan-T5 [39]. Classical ML binary classifiers are applied
on top of these embeddings to evaluate the applicability of
individual LBs for a given piece of log text. Furthermore, we
utilize a term frequency-inverse document frequency (TF-IDF)
based embeddings paired with ML models as a baseline. The
former strategy of end-to-end (E2E) finetuning of LLMs for
MLC is benchmarked against the latter binary classification
approach.

Off-the-shelf LLMs are primarily trained on natural lan-
guage. Their applicability in specialised domains such as
telecom log classification is rather limited, particularly when
dealing with text formats that substantially deviate from any
known natural language. While LLMs have been trained
ground up for various disciplines, including biomedical [40],
finance [41], climate [42] and law [43], no prior peer-reviewed
studies have depicted the process of building domain-tailored
LLMs pre-trained on intricate and voluminous software logs
in telecommunications industry for downstream log classifi-
cation. In fact, the corpora in the aforementioned industries
still consist of natural language, predominantly, English. On
the other hand, the text data prevalent in telecommunications
logs has minimal similarity to both natural language and code.
Consequently, the need arises to undertake domain-specific
data pre-processing, along with the training of tokenizers
and models de novo, in order to attain optimal performance
in the downstream log classification task. In particular, here
the LLMs and classical ML models are trained to predict
a successful set of LBs (i.e., log mask) aimed at capturing
only the essential information required for diagnosis, based
on limited information available in software logs generated
through default LBs.

Novel contributions in this research are summarized below.

1) We pre-train recent LLMs, namely RoBERTa and Big-
Bird on our own industrial software log corpus to
develop a deep understanding of the syntactic, semantic
and contextual aspects within log data structures. More-
over, Flan-T5 is domain adapted on the same corpus
using the low-rank adaptation (LoRA) technique [44].
Model-specific tokenizers are also individually trained
to construct a software log vocabulary of appropriate
size. Present study serves as an exemplar showcasing
the process of building LLMs tailored for telecommuni-
cations network testing solutions, with wide applicability
for software log understanding across various industries.
The pre-trained LLMs are finetuned on a downstream
multi-label classification task for identifying a correct
set of log bases to pinpoint the defects happened in
a network emulation. The models are trained on real
industrial customer-reported data from past three years,
achieving acceptable performance given the sheer num-
ber of labels and human bias in the historical label
sets. The best performing model is productionized and
currently estimated to reduce the turnaround time (TAT)
by ~80% in defect resolution.

We extract embedddings of software log samples from
several pre-trained LLMs and train independent binary
classifiers on these embeddings to predict the presence
of individual LBs. These predictions are aggregated over
all the LBs and are used as the baseline for comparison
against the performance of end-to-end finetuned LLMs.

2)

3)

Next, we discuss related work in the field of log classifica-
tion and log anomaly detection including their strengths and
weaknesses. We then illustrate our data acquisition, data pre-
processing and model training pipelines in detail in section III.
Section IV presents the results of LLM-finetuning and classical
ML model training with a comparative analysis and discussion.
In Section V, we delve into the specifics of our experiments,
including model parameter settings, software packages em-
ployed, and the underlying computing infrastructure. Finally,
this article is concluded in Section VI.

II. RELATED WORK

The analysis of software logs has been extensively studied
across various industries [1], [2], [4], [3], [5], [12], [13],
including telecommunications [14], with applications ranging
from failure diagnosis to anomaly detection. These tasks often
leverage both supervised and unsupervised learning methods.
Various ML architectures including classical models, deep
learning approaches, and more recently, Transformer-based
language models have been utilized for automated log analysis.

In the supervised learning domain, traditional machine
learning (ML) techniques have been widely applied to soft-
ware log classification. Decision trees (DT), support vector
machines (SVM), and rule-based classifiers have long been
utilized due to their interpretability and straightforward ap-
plicability. For instance, Chen et al. [6] used DTs to diag-
nose failures in large-scale internet services, showing that
these methods can successfully identify the true causes of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

failure in production environments. Similarly, Liang et al.
[7] developed a methodology to predict failures in the IBM
BlueGene/L supercomputer using event logs. Their customized
nearest-neighbor approach outperformed other classical ML
techniques in precision and coverage, indicating its robustness
for large-scale systems.

The rise of deep learning has brought more advanced
architectures into log analysis. Recurrent neural networks
(RNNs), particularly LSTM-based models, have shown great
promise in capturing the sequential nature of log data. Du et
al. [8] proposed DeepLog, an LSTM-based model that detects
anomalies by predicting future log sequences and flagging
deviations. This model highlights the capacity of LSTM to
model long-term dependencies in log sequences, making it
suitable for systems where log events occur in sequences
over time. On the other hand, convolutional neural networks
(CNNs) have also been explored for log anomaly detection,
particularly when the relationships between log entries are
not sequential but involve detecting specific critical events.
Lu et al. [19] demonstrated that a one-dimensional CNN can
outperform general multi-layer perceptrons (MLP) and LSTM-
based models for Hadoop Distributed File System (HDFS)
log analysis, providing a faster and computationally efficient
alternative. Fotiadou et al. [20] compared LSTM-based and
1D-CNN architectures for log event classification and network
traffic anomaly detection. Both architectures demonstrated
similar performance.

With the advent of attention mechanism, Transformer-based
architectures have revolutionized many NLP tasks, including
log analysis. Several recent studies have adopted transformer
models to classify logs or detect anomalies. Lee et al. [28]
proposed using BERT [29] for unsupervised log anomaly
detection, leveraging the model’s masked language modeling
(MLM) pretraining objective to detect anomalies based on the
probability distributions of masked log tokens. They operate
on the assumption that the context of a normal system log
significantly differs from that of an abnormal one. Based
on this, a normal log is expected to have a low prediction
error and a high probability for masked tokens, while an
abnormal log is likely to show a higher error and a more
uniform probability distribution, enabling the identification of
anomalies.

Further expanding on this approach, Almodovar et al. [11]
presented LogFiT, a finetuned BERT model specifically for
log anomaly detection. By training on normal logs with
a masked sentence prediction objective, LogFiT effectively
distinguishes anomalous logs from normal ones based on top-k
token prediction accuracy. Other transformer models, such as
LogBERT [30] and Cross-attention-based Transformers (CCT)
[31], have also been proposed, emphasizing the growing
relevance of self-attention and large language models (LLMs)
in log analysis.

While general log anomaly detection and classification are
well-studied, specific research focusing on telecommunica-
tions logs remains sparse. However, as telecommunications
networks generate vast amounts of log data across various
layers of the protocol stack, identifying relevant logging points
that facilitates defect diagnosis becomes crucial. Ulku et al.

[14] provided one of the few comprehensive studies on log
classification within the telecommunications industry, demon-
strating the applicability of ML approaches for detecting
anomalies in network operations. Log analysis in the context
of multi-label classification (MLC) is not explored extensively
in literature. Dhakal K. [38] proposed a MLC approach for
anomaly detection from real world system logs generated
in industrial settings. They train custom word and sub-word
based tokenizers and obtain token embeddings using static
embedding approaches such as Word2Vec as well as contextual
embedding methods based on LLMs such as pretrained BERT
and DistilBERT models. These embeddings are then sent
through a separate LSTM-based classifier. They achieve a high
accuracy of 99% and a macro Fl-score of 0.94 for multi-
label classification of logs generated from patient monitoring
devices.

In this study, we propose a ground-up approach for multi-
label classification of complex log files for defect diagnosis in
telecommunications industry. We pretrain and finetune LLMs
end-to-end for log text understanding and logging point de-
tection, respectively. Additionally, we benchmark our end-to-
end finetuning approach of LLMs for MLC against extracting
LLM-based embeddings and applying separate classifiers, sim-
ilar to the technique proposed in [38]. For our use case, directly
finetuning LLMs for MLC demonstrated higher performance.

III. METHODS

Fig. 1 demonstrates the full-scale workflow of log mask pre-
diction using LLMs, encompassing four integral components:
data extraction and processing, pre-training, fine-tuning, and
inference. This section provides a comprehensive overview of
the methodologies employed in the data processing and pre-
training phases of the entire pipeline.

A. Data Extraction and Processing

The essential interactions between the customer and service
provider’s triage and engineering teams for identifying the
source of the issues and then resolving the defects, are
raised, conducted, and systematically documented under a
defect ticketing system. Most often, this record-keeping and
communication take place on platforms such as Microsoft
Dynamics (MSD) and ClearQuest (CQ) which are widely used
for tracking and managing such issues. First, we navigate to
the case stores of these platforms and extract all relevant
cases. Each case is tagged with a unique sample identifier,
and contains the log attachment generated through the default
LBs along with other information as shown in Fig. 2. We
then employ a parser script to extract related information,
such as the network tester configuration (which we refer to
as config), and any errors, warnings, asserts and other critical
information (e.g., captured via keywords such as fail, exceed,
invalid, violate, discard, timed out, etc.) recorded in the log
file. We use the term err_warn to describe information that
signifies errors, warnings, or failures. For every defect case,
we then retrieve the associated final set of LBs recommended
by engineers before the case was closed. This set serves as

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management
Pre-training
Data Extraction & Processing LLM Ncgitecture
Tokenizer Selection
Software Log T ¢T -
Data Acquisition Data Preprocessing . Corpus » o enlzeé raining
Software Log o
BT ST Tokenization of Corpus
/__‘""\-\ _J,/’-_-‘\\ ¢
B ~— LLM Pre-training
(MLM, CLM, Seq2Seq)
Labelled Pre-trained Model
Dataset
Trained Tokenizer ¢
Fine-tuning
- Quantization or Adding
T["lfnbﬁfg of ____ , Adapters to the Model as
put 1e Required Inference/Deployment
|
L LLM Fine-tuning T (\]
ine-tuning for - -
Massive Multi-labsl — — NDeéf’e"gt“;t::;i' > Tokenization —rtg
Classification |]
Fine-tuned Fine-tuned Predicted
Model Model Loghases
Fig. 1. Complete workflow of LLM-based logmask prediction.

the target label, while both the config and err_warn text data
features are used as inputs to our classification models.

We then detect and remove outlier samples from the
database. All relevant lines of text in our software logs,
namely, the indications (tagged with I:) that contain data
transmitted or received by the network and confirmations
(tagged with C:) that record the execution status of system
commands, along with config and err_warn are captured
and the character length of this combined text is calculated
for every sample. Subsequently, we employ the interquartile
range (IQR) to detect outliers, particularly those featuring
excessively long text sequences. IQR is defined and computed
as the difference between the 25th and the 75th percentiles of
a data distribution, the character length distribution of samples
in this case. Detected outliers are then removed, ensuring that
the majority of text samples remain within the typical context
window of LLMs. Our final dataset contains 7958 industrial
data samples.

Next, we proceed by identifying and removing specific
custom stop words, time stamps and some very long jargon
words in our logs that are generally irrelevant for defect
resolution. The actual values of numbers, hexadecimal strings
and IP addresses in our logs are typically unrelated for root

cause analysis. Nonetheless, including a placeholder to signify
their presence can be beneficial for maintaining the syntactic
coherence of the logs. As a result, we use special tokens
like <num>, <hex>, and <ipaddr> to mask such text. It
should be noted that only distinctive numbers are masked
with <num> token, and not the numbers in some alphanu-
meric words, as they may carry information. The objective
of our data pre-processing phase is twofold: to construct an
appropriately formatted text corpus suitable for LLM pre-
training and to extract relevant text snippets and target labels
for establishing a labelled dataset for the downstream log
classification task. Before creating the corpus, we replace the
newline characters (\n) with <newline> and demarcate the
end of each software log with an <endsample> token. This
procedure enables the generation of an extensive and systemat-
ically structured text corpus through the concatenation of pre-
processed individual software logs. Furthermore, deduplication
is performed to remove recurring identical lines of text from
the software log corpus.

After performing data cleaning and incorporating the special
tokens as previously detailed, we proceed to construct our
labeled dataset. This dataset primarily consists of config and
err_warn text columns along with the LBs extracted at the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

Ve Customer Defects Y

ot

|
| [— Leziees - ~ Software Log Parser
Microsoft Dynamics s (Cazse number « Log configuration
Case Store » « Cacze fitle « Errors, warnings and
— + Description asceris
e T = Customer identity « Additional information
— « Private comments | - Labels (set of logbases) .
. « Public comments | A 4
R Log attachment /
L J
g ™ o ™ - ™ s ™y
Adding Further Special Tokens to . Removal of
Indicate New Line and End of cEE Ll bl L Ll stopwords,

with Special Tokens

Cutlier Removal

Sample } i \ timestamps and
(2.0, =newline=, =endsample=) (e.g., <num=, <hex=>, <ipaddr=} alphanumeric words
.. ..«" \. S \. ./' \. S
s) ™ Software Log
Software Log Corpus for
[, Concatenation Pre-training
Labelled &
Dataset Deduplication
'\ -_)l ' L

Fig. 2. Data extraction and processing pipeline.

Number of Logbases in Each Sample

= Mean: 24.07
== Median: 18.00

Number of Logbases

1000 2000 3000 5000 6000 7000

00
Sample Number

Fig. 3. Number of target log bases in every sample of the labelled dataset.

parsing phase for every customer defect case. However, we
observed that the total number of unique LBs in the target label
column is too large (> 1500), given the size of our dataset.
Moreover, historical data suggests that many LBs rarely need
to be enabled to identify defects. Consequently, we consider
only those LBs that have appeared over 100 times across all
defect cases reported in the past three years. This results in a
total of 257 unique LBs available for selection. Fig. 3 shows
the number of LBs associated with every defect case. As
observed, debugging different issues requires enabling diverse
number of LBs, indicating significant variability.

B. Pre-training

Once a sufficiently sized and properly structured software
log corpus is established, we progress to the LLM pre-
training stage. One of the primary factors to consider at this
point is the selection of the LLM architecture, in conjunction
with its associated tokenizer. Given that our corpus contains
approximately 4 billion tokens, the choice of model size
should align accordingly [45]. Here, we opt for RoBERTa,
BigBird and Flan-T5 architectures for domain-specific pre-
training. In particular, RoBERTa and BigBird architectures
are pre-trained from scratch, including their tokenizers, while
Flan-T5 is domain-adapted starting from publicly released
flan-t5-large checkpoint. LLMs designed for specific
objectives or trained on heterogeneous morphological text
corpora may require different tokenizers that capture relevant
linguistic features more effectively. Below we delve into the
details of tokenizer training and the creation of domain-
specific vocabularies.

Tokenization is the process of converting raw text into
a numerical representation (i.e., a sequence of tokens) that
models can interpret and learn from. Tokenizers play a pivotal
role in constructing the vocabulary of a model—a finite
set of tokens that the model recognizes. This vocabulary
includes words, subwords, or characters, depending on the
granularity of the chosen tokenization technique. The choice

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

of vocabulary size and tokenization strategy directly impacts
the model’s ability to learn and generalize across different
text structures. Subword tokenization is particularly popular
because it strikes a good balance between representing com-
mon words as they are and decomposing less common words
into understandable sub-units. As the name implies, subwords
are typically more granular than whole words but larger than
individual characters. This is an effective strategy in handling
morphologically rich text formats, out-of-vocabulary words
and optimising the model’s vocabulary size for computational
efficiency. Two tokenizing strategies that we discuss here -
byte pair encoding (BPE) and SentencePiece, both belong
to the subword tokenization category. Readers are directed
to the original studies for more details on BPE [46] and
SentencePiece [48] algorithms. Among the LLMs examined
in this study, BigBird and Flan-T5 employ the SentencePiece
tokenizer, while RoOBERTa uses the BPE tokenizer.

We then proceed in training these tokenizers specifically
on our log corpus to better represent and utilize the inherent
semantic information within these logs. Following empirical
experimentation with various vocabulary sizes, we determined
that a vocabulary size of approximately 1600 tokens is most
suitable for our specific application. This is because the
number of unique space-separated words in our logs is not
as high compared to a natural language. This conclusion was
reinforced by telecom experts who, upon examining the tokens
in the dictionary, confirmed their relevance and applicability.
Once an appropriate vocabulary size and a set of special tokens
are identified as mentioned previously, we train BPE and
SentencePiece tokenizers independently. While it is possible to
train tokenizers using only a portion of the corpus, particularly
with extremely large corpora, here, we used the full content of
our corpus for tokenizer training owing to its relatively smaller
size. This process results in the creation of a vocabulary file
for each tokenizer, mapping every token to a unique index.

The software log corpus is tokenized accordingly, enabling
the launch of LLMs. We train RoBERTa and BigBird archi-
tectures, each consisting of 6 hidden blocks and 12 attention
heads, with a masked language modelling (MLM) objective.
MLM involves randomly masking out some of the tokens in
the input text and then training the model to predict these
masked tokens based solely on their context. This allows the
model learn a deep understanding of software log structure
and context. Here, we mask about 30% of total tokens and
train the models for five epochs. Fig. 4 shows the attention
matrices of the pre-trained RoOBERTa model for a given input
text sample. As observed, the model calculates appropriate
attention weights for different tokens based on the context,
helping to construct a learned embedding of a given piece of
text.

Flan-T5 is trained with a warm start for domain adaptation
by tokenizing the corpus with its own pre-trained tokenizer.
Training our own tokenizer is infeasible here because the
embedding matrix of Flan-T5 checkpoint consists of learned
embedding vectors for tokens in its original tokenizer with a
fixed vocabulary size. Nevertheless, we add our special tokens
to the pre-trained tokenizer of Flan-T5 and extend the model
embedding matrix to accomodate these new tokens. Because

the flan-t5-1large checkpoint is relatively large (780M
parameters), and with the hope of preserving the original
checkpoint weights, we employ LoRA method for domain-
specific training of Flan-T5. LoRA focuses on updating a small
set of trainable parameters that modify the original weights in
a low-rank subspace, rather than updating all the parameters of
the model directly. Flan-T5 is an encoder-decoder architecture
and we train it with a sequence-to-sequence objective where
the target sequences are created by shifting the input sequences
by £ (>1) number of tokens. Similar to before, Flan-T5 is
trained for five epochs. All pre-trained models along with their
tokenizers are stored for further finetuning and/or text embed-
ding extraction. Note that it is crucial to maintain consistency
in the use of the tokenizer throughout the entire process. Once
the tokenizer is trained and a vocabulary is established, it is
essential to use the same tokenizer consistently during the
LLM pre-training, finetuning, and in the inference pipeline.

IV. RESULTS AND DISCUSSION

We explore the use case of telecom log classification via two
avenues: 1) E2E finetuning of pre-trained LLMs for multi-label
classification. 2) Independent binary classification to detect the
presence of individual LBs by applying classical ML models
on log text embeddings extracted from pre-trained LLMs.
In both cases, our emphasis lies in accurately identifying a
relevant set of LBs from the concatenated err_warn and
config input text features. The character length distributions
of config and err_warn across the dataset are shown in
Fig. 5.

A. E2E Finetuning

We finetune the pre-trained RoBERTa and BigBird model
for MLC on our labelled dataset. MLC approach faces several
challenges, including heavily skewed distribution of log bases
as depicted in Fig. 6, limitations in the available data, and
the overall high number of log bases. As depicted in the
finetuning block of Fig. 1, the input text is first tokenized with
the respective tokenizer. Initial dataset containing 7958 entries
is split into 80% training and 20% test sets. Both models are
trained on the training set for up to 400 epochs and their MLC
performance is evaluated on the test set. Model quantization
or the utilization of LoRA was not required in our computing
infrastructure for ROBERTa and BigBird finetuning. Likewise,
all model weights were updated during the finetuning stage.
Table I summarizes the performance metrics for RoOBERTa and
BigBird on the test set. Notably, both models display similar
performance, with BigBird performing marginally better. It is
worth noting that the performance metrics reported in Table I
refer to the micro average, where the total true positives, false
negatives and false positives across all classes are considered
when calculating the metrics.

In Fig. 7, we display the the distribution of Fl-score per
log base. As observed, there exists significant variation in
the Fl-score per LB. This may be attributed to the largely
skewed distribution of LBs in our dataset. More prominent
LBs are easily detectable whereas those with lower frequency
of occurrence are generally associated with a lower Fl-score.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

Attention Head 1 Attention Head 2 Attention Head 3
-0.7
2 2 2
9] -0.6 7} 7}
X X X
8 S =]
s -05 E s
2 2 2
£ "04 e £
— o s
o 0.3 o o
(V] Q Q
g 2 g
S 02 g S
= = =
[\ 0.1 <1J Q
(%] (%] (%]
aX%%LEEME%ULGE)EME%QV axgg‘:@m;%u‘gcm&ng
\ 3 =1 \ 3 =]
o o
[v
@ 2
sequence of input tokens sequence of input tokens sequence of input tokens
Attention Head 4 Attention Head 5 Attention Head 6
<s>
0)) X -0.30
g § § requést
¥ < < r -0.25
S = = n
5 5 s fail
2 2 2 a -0.20
£ £ £ e
kS G G ¢ 0.15
(] Q @
me
2 g g n 0.10
[} (U [a
=] =] =] m
g g g ueid 0.05
(%] (%] w e
(; 0.00
o
§*REETIeCTEeceg
\" 3 =]
o
IS
sequence of input tokens sequence of input tokens sequence of input tokens
Attention Head 7 Attention Head 8 Attention Head 9
<S>
» -0.175 « X -0.175
c c c ab
g -0150 £ g request -0.150
] o o
=l =1 = n
] S0.125 &] falal -0.125
Q Q Q w
£ -0.100 £ £ ric - 0.100
bS] kS kS ¢
0.075 r 0.075
] ¥ 3 me
s 0050 § 5] a 0.050
> > =] m
g 0025 I ueid 0.025
n w v e
(0.000
ax%‘gi—ck_@m;‘_‘jui—gcmeng
\' 3 =]
o
o
sequence of input tokens sequence of input tokens sequence of input tokens
Attention Head 10 Attention Head 11 Attention Head 12
-0.30
(%2} w %)
= c [
i -025 @ g
[e] o o
2 S S
5 -020 §]
Q Q Q
£ £ £
- 015 o =
(o] o o
] 010 9 g
c B c c
g s s
o 0.05 o o
(7] (U (U
2] wn 12
axgzhcﬁmgguhgcmgng
\ 3 =1
o
o
sequence of input tokens sequence of input tokens sequence of input tokens
Fig. 4. Visualization of the attention matrices of hidden layer block #2 of pretrained RoBERTa model for a given text sample of length 425 tokens. The

color indicates the attention score between the two associated tokens. Only a subset of tokens are shown at the corresponding tick index.

While the final performance metrics are similar in RoOBERTa
and BigBird, their training progressions exhibit unique charac-
teristics, as illustrated in Fig. 8. BigBird enters within 5% of
its optimal Fl-score in about 60 epochs whereas RoBERTa
takes about 120 epochs to accomplish the same level of
performance. It appears that the training progress of ROBERTa
is more stable than that of BigBird. Moreover, finetuning the
BigBird model on our infrastructure requires approximately 13
hours, significantly longer than the training time of RoBERTa,

which takes just under an hour. This discrepancy arises due
to the large context window size of BigBird, leading to a
quadratic increase in computational complexity. Nevertheless,
once trained, both models are capable of performing inference
without the requirement of graphics processing units (GPUs)
and are deployable on a typical personal computer.

There may be several possible reasons contributing to the
difficulty in achieving higher performance in the present
downstream task. Mainly, our labels extracted from historic

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

Distribution of Config Length Distribution of Error/Warning Length

2500 — 5000
2000 4000
9 o
€ 1500 & 3000
G) v
=] 3
o o
L 1000 D 2000
= =
s00 1000
° 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Length (Characters) Length (Characters)
Fig. 5. Distribution of the character length of configuration and errors and

warnings features.

Logbase Distribution

Number of Samples

g

g

Logbase

Fig. 6. Logbase distribution across dataset. Heavily skewed distribution of
logbases makes the multi-label classification more challenging.

data might reflect human bias - as the selection of LBs may
differ from engineer to engineer. Also, the engineers are tasked
to find the necessary set of LBs, which in most cases contain
additional LBs that may not be necessary for locating the
defects. Therefore, the target LBs are not consistent in our
dataset, and it is extremely difficult to rectify this without
manually going through each defect case with the help of a
domain expert. Furthermore, the sheer number of available
classes makes the MLC problem more challenging. As such,
we believe that our finetuned LLMs remain highly useful,
especially in generating an initial, reasonably accurate set of
log bases. This aids in minimizing turnaround times and it-
erative communications between service providers and clients
for defect identification and troubleshooting.

B. Independent Binary Classification

In this approach, we aim to mitigate the impact of imbal-
anced log base distribution on the classification performance.
To achieve this, we establish a balanced database for each log
base by randomly selecting negative class samples to match the

Model \%?Séiﬁ Precision | Recall | Fl-score I—]I)ail;:;r;::eg
RoBERTa 512 0.583 0.46 0.514 0.08
BigBird 4096 0.593 0.455 0.515 0.079
TABLE I
MULTI-LABEL CLASSIFICATION METRICS (MICRO AVERAGE) FOR THE
TEST SET.

F1-Score per LB

F1 Score
o s o o s o
b 2 & S 8

°
o

°
=

°
°

ST S T X S S SRR I S S SR
Logbase Index
Fig. 7. Fl-score per LB on the test set for BigBird.

number of positive ones. Here, the positive samples indicate
those containing the LB of interest. Consequently, individual
binary classifiers are trained for each LB to ascertain its
relevance within a given software log. Variable-length text
sequences need to be transformed into fixed-size represen-
tations for compatibility with traditional ML algorithms. We
extract fixed-length embeddings of text samples in our labelled
dataset using the pre-trained LLMs: RoBERTa, BigBird and
Flan-T5. Specifically, the err_warn and config text are
concatenated and passed through the pre-trained models and
token embeddings are capture from the final hidden layer.
These embeddings are then aggregated using a mean-pooling
function to retrieve a single vector representation for each
sample.Fig. 9 depicts the overlapping sliding window approach
of extracting embeddings of text samples longer than the
context length of the model that we proposed in our previous
study [47]. Such a strategy is required especially when the
length of the text sequence exceeds the maximum sequence
length of the model. Concretely, consider a long text document
with a total length of L tokens and a context window of
l. tokens, where [. is smaller than L. Using an adaptable
overlapping window of size w tokens, where w is less than [,
the number of overlapping chunks required to cover the entire
document, denoted by M, is given by the following formula:

= (D

In this approach, the global document embedding, E, is
calculated as follows:

N‘H

M.
ZZ TEy; 2)
€ k=1 i=1

Here, T'E), ; represents the token embedding for the ith
token in the k*" chunk. These token embeddings are extracted
from the last hidden layer of the model, with each embedding
having a dimension drg, which corresponds to the number of
units in the model’s last hidden state. To compute the chunk
embedding, a mean-pooling operation is applied across all
token embeddings in a chunk, and this process is repeated
across all chunks to obtain the final document embedding.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

Roberta

BigBird

0.6 i 0-6 T
0.5
(V) Q
30, 3
= g
O O
< 0.3- =
= 5
0.2 1
—— Test F1 —— Test F1
0.1 Test_Precision 0.11 Test_Precision
—— Test_Recall —— Test_Recall
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch
Fig. 8. Progression of performance metrics for the test set as (A) RoBERTa and (B) BigBird models are trained.

Long Text N

Chunk-wise
Mean Pooling

TE Mean

T, Poolin
2 Context 9

Window
TE TE| Mean
______________ TE, TE, Pooling

(Overiapping [T, TE Mean
‘Window TEg TE, Pooling

.............. Chunk_1
Embedding
5

T8, =
Overlapping | TE;|

.............. Windou Chunk 2
Window |TE{ Embedding
.............. =
TE,

Long-text
Embedding
.............. Chn 3
Embedding

Fig. 9. Overlapping sliding window approach to extract embeddings of long
documents using LLMs. TE; refers to the token embedding of 3" token at the
final hidden layer of the LLM. Token embedding dimension typically ranges
from 512 to 4096 for larger models.

[47

While performing this pooling, the attention mask is taken
into account, ensuring that padding tokens are ignored. The
text chunks overlap by w tokens, allowing some context and
information from previous windows to be carried forward as
the model processes the document.

With these embeddings, we then create a bespoke dataset
for each log base as specified above. Subsequently, we train
separate classical ML classifiers on an 80% randomly split
subset of this dataset and assess model performance on the
remaining 20% held-out test set. Models such as XGBoost,
Random Forest, Gaussian Process and Extra Trees are investi-
gated in this section. Please refer to the Experimental Details
section for more details on hyperparameter optimization of ML
models. Additionally, we employ TFIDF-based embeddings
as a baseline approach and compare the performance of

ML models on these embeddings against those using LLM
embeddings.

Table II presents the binary classification outcomes achieved
using various LLM embeddings and classical ML models. The
performance metrics are averaged across all LBs. Notably,
BigBird embeddings coupled with Gaussian Process classi-
fiers demonstrate the highest performance, closely followed
by ML models paired with Flan-T5 embeddings. Across all
experiments, consistent training and test datasets are utilized,
with fixed ML model states. Therefore, we may conclude that
the superior quality of LLM embeddings is what contributes to
the improved performance. Interestingly, our TFIDF baseline
approach yields results comparable to LLM-based methods.
This may suggest that the presence of particular keywords
(e.g., error or assert indicators) may be more relevant in
enabling certain LBs, rather than the actual semantics of
software logs. Nonetheless, our results suggest that the LB
classification remains a challenging task, despite employing
datasets with balanced class distributions.

In the final phase of our analysis, we focus on obtaining
a predicted set of LBs for each entry in a newly compiled
dataset, comprising 189 recently resolved defect cases previ-
ously unseen by our models. This objective is achieved by
deploying our trained binary classifiers, each dedicated to
assessing the applicability of a specific LB to the software
log samples under consideration. Through this approach, we
determine the relevance of individual LBs and acquire a
set of predicted LBs for every sample in the new dataset.
This process, however, culminated in suboptimal outcomes,
as evidenced by a micro Fl-score of 0.214. A notably low
precision rate of 0.13 was observed, primarily attributed to
an elevated incidence of false positives. This phenomenon

10

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

stems from our approach to artificially balance the dataset
for the purpose of training binary classifiers. By altering the
dataset to simulate a uniform distribution of LBs—a scenario
that contrasts with the actual, highly skewed distribution of
LBs in practice—we inadvertently influenced the model’s
tendency to make predictions based on real label distribution.
Consequently, this led to a frequent overprediction of rare LBs,
thereby inflating the rate of false positives. Therefore, based on
our findings, we assert that E2E finetuning of LLMs for multi-
label classification represents the most promising strategy for
log mask prediction.

V. EXPERIMENTAL DETAILS

The experiments conducted in this research were performed
on an Nvidia DGX server with 8xA100 80GB GPUs. We
utilized the KubeFlow user interface (UI) for managing ML
workflows, that leverages Kubernetes as its underlying plat-
form for orchestration of hardware resources and efficient
management of containerized applications across the available
hardware. MLFlow [50], coupled with the KubeFlow UI was
used for experiment tracking.

LLMs investigated in this research were adapted from
the Hugging Face ecosystem [51]. In the pre-training stage,
RoBERTa and BigBird were both trained for 5 epochs, with
a batch size of 64 and 8 respectively. The architectures of
both models consisted of six hidden layer blocks. The rest of
the hyperparameters remained consistent with default values
as provided by the transformers package. ROBERTa took
about 50 hours to (pre)-train on our hardware, whereas BigBird
was trained in 72 hours. LoRA adapters, with a rank of
16 and a scaling factor of 32 were applied to the Flan-T5
model checkpoint for domain adaptation. Flan-T5 was domain
adapted for 5 epcohs with a batch size of 8, which resulted
in about 160 hours of training time. At the finetuning stage,
both RoBERTa and BigBird were trained for up to 400 epochs,
with an initial learning rate of 10~* for multi-label classifi-
cation. Micro average of MLC metrics were calculated using
the torchmetrics package. Fine-tuning of RoOBERTa and
BigBird took approximately 1 hour and 13 hours, respectively.

All classical models examined in this work were adapted
from the scikit-learn package. ML model hyperpa-
rameters were tuned employing a 5-fold cross validation
strategy. Binary classification metrics are calculated using
the scikit—learn package and averaged across LBs. The
training of a single ML model, depending on the dataset size
and model type, ranges from less than a second up to a minute.
LLM sample embeddings were stored offline, allowing for
swift execution of the series of ML classifiers.

VI. CONCLUSION

In this paper, we presented a comprehensive end-to-end
workflow of pre-training LLMs ground up on an industrial
software log corpus, followed by the finetuning of these
models on a multi-label classification task. This downstream
task is aimed at accurately identifying the appropriate set
of log bases for defect resolution, significantly reducing the
turnaround times and the resource consumption of both service

providers and clients. Despite the formidable challenges posed
by complex and voluminous log data with little resemblance
to natural language, the imbalanced distribution of labels,
and the presence of human bias in historical data — a
scenario frequently encountered in industrial datasets — our
approach demonstrates a promising avenue for leveraging
Al to minimize manual intervention. This research lays the
groundwork for future advancements in Al-driven diagnos-
tics in telecommunications, underscoring the importance of
systematic data curation and the infusion of domain-specific
knowledge into Al models to enhance efficiency and accuracy
in defect resolution.

ACKNOWLEDGMENT

We acknowledge the support of VIAVI Solutions Inc. for
their provision of data, funding, and MLOps infrastructure,
including GPUs, which contributed significantly to the com-
pletion of this project.

REFERENCES

1

—

Aljabri, Malak, Amal A. Alahmadi, Rami Mustafa A. Mohammad,
Menna Aboulnour, Dorieh M. Alomari, and Sultan H. Almotiri. Classi-
fication of firewall log data using multiclass machine learning models.
Electronics 11, no. 12 (2022): 1851.

Candido, Jeanderson, Mauricio Aniche, and Arie van Deursen. “Log-
based software monitoring: a systematic mapping study.” PeerJ Com-
puter Science 7 (2021): e489.

Pirscoveanu, Radu S., Steven S. Hansen, Thor MT Larsen, Matija
Stevanovic, Jens Myrup Pedersen, and Alexandre Czech. ”Analysis of
malware behavior: Type classification using machine learning.” In 2015
International conference on cyber situational awareness, data analytics
and assessment (CyberSA), pp. 1-7. IEEE, 2015.

Catovic, A., Cartwright, C., Gebreyesus, Y.T. and Ferlin, S., 2021, May.
Linnaeus: A highly reusable and adaptable ML based log classification
pipeline. In 2021 IEEE/ACM 1st Workshop on Al Engineering-Software
Engineering for AI (WAIN) (pp. 11-18). IEEE.

Maxwell, Kane, Mojtaba Rajabi, and Joan Esterle. ”Automated clas-
sification of metamorphosed coal from geophysical log data using
supervised machine learning techniques.” International Journal of Coal
Geology 214 (2019): 103284.

Chen, Mike, Alice X. Zheng, Jim Lloyd, Michael 1. Jordan, and
Eric Brewer. “Failure diagnosis using decision trees.” In International
Conference on Autonomic Computing, 2004. Proceedings., pp. 36-43.
IEEE, 2004.

Liang, Yinglung, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo.
“Failure prediction in ibm bluegene/l event logs.” In Seventh IEEE
International Conference on Data Mining (ICDM 2007), pp. 583-588.
IEEE, 2007.

Du, Min, Feifei Li, Guineng Zheng, and Vivek Srikumar. “Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing.” In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pp. 1285-1298. 2017.

Lin, Qingwei, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei
Chen. ”Log clustering based problem identification for online service
systems.” In Proceedings of the 38th International Conference on Soft-
ware Engineering Companion, pp. 102-111. 2016.

Xu, Wei, Ling Huang, Armando Fox, David Patterson, and Michael 1.
Jordan. “Detecting large-scale system problems by mining console logs.”
In Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, pp. 117-132. 2009.

Almodovar, Crispin, Fariza Sabrina, Sarvnaz Karimi, and Salahuddin
Azad. "LogFiT: Log anomaly detection using fine-tuned language mod-
els.” IEEE Transactions on Network and Service Management (2024).

Malik, Varun, Ruchi Mittal, Jaiteg Singh, and Pawan Kumar Chand.
“Performance evaluation based on classification of web log data: a
machine learning approach.” In Proceedings of International Conference
on Communication, Circuits, and Systems: 1C3S 2020, pp. 363-369.
Springer Singapore, 2021.

[2

—

[3

=

[4

=

[5]

[6

=

[7

—

[8

=

[9

—

[10]

[11]

(12]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

LLM Embedding | Embedding Binary Average Metrics
Model Dimension Classifier F1-Score | Precision | Recall | AUROC
XGBoost 0.629 0.633 0.633 0.622
RoBERTa 768 Random Forest 0.623 0.636 0.621 0.621
Gaussian Process 0.640 0.619 0.671 0.616
XGBoost 0.650 0.652 0.654 0.643
BigBird 768 Random Forest 0.646 0.662 0.638 0.648
Gaussian Process 0.661 0.638 0.690 0.639
XGBoost 0.647 0.653 0.647 0.644
Flan-T5 1024 Random Forest 0.646 0.659 0.640 0.646
Gaussian Process 0.555 0.577 0.573 0.566
Classical Embedding Binary Average Metrics
Model Classifier F1-Score | Precision | Recall | AUROC
XGBoost 0.638 0.633 0.647 0.635
TFIDF Random Forest 0.638 0.642 0.640 0.640
Extra Trees 0.642 0.645 0.644 0.644

TABLE I

INDEPENDENT BINARY CLASSIFICATION RESULTS. THE AVERAGE OF PERFORMANCE METRICS PER LB IS SHOWN HERE.

Pitakrat, T., Grunert, J., Kabierschke, O., Keller, F. and Van Hoorn, A.,
2015. A framework for system event classification and prediction by
means of machine learning. EAI Endorsed Transactions on Self-Adaptive
Systems, 1(3).

Ulkii, O., Goziiagik, N., Tanberk, S., Aydin, M.A. and Zaim, A.H.,
2021, September. Software Log Classification in Telecommunication
Industry. In 2021 6th International Conference on Computer Science
and Engineering (UBMK) (pp. 348-353). IEEE.

Elmrabit, Nebrase, Feixiang Zhou, Fengyin Li, and Huiyu Zhou. “Eval-
uation of machine learning algorithms for anomaly detection.” In 2020
international conference on cyber security and protection of digital
services (cyber security), pp. 1-8. IEEE, 2020.

Bertero, Christophe, Matthieu Roy, Carla Sauvanaud, and Gilles Trédan.
“Experience report: Log mining using natural language processing and
application to anomaly detection.” In 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE), pp. 351-360.
IEEE, 2017.

Henriques, Jodo, Filipe Caldeira, Tiago Cruz, and Paulo Simdes. "Com-
bining k-means and xgboost models for anomaly detection using log
datasets.” Electronics 9, no. 7 (2020): 1164.

Catillo, Marta, Antonio Pecchia, and Umberto Villano. ”AutoLog:
Anomaly detection by deep autoencoding of system logs.” Expert
Systems with Applications 191 (2022): 116263.

Lu, Siyang, Xiang Wei, Yandong Li, and Ligiang Wang. “Detecting
anomaly in big data system logs using convolutional neural network.”
In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th
Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp.
151-158. 1IEEE, 2018.

Fotiadou, Konstantina, Terpsichori-Helen Velivassaki, Artemis
Voulkidis, Dimitrios Skias, Sofia Tsekeridou, and Theodore Zahariadis.
”Network traffic anomaly detection via deep learning.” Information 12,
no. 5 (2021): 215.

Yadav, Rakesh Bahadur, P. Santosh Kumar, and Sunita Vikrant Dhavale.
”A survey on log anomaly detection using deep learning.” In 2020
8th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions)(ICRITO), pp. 1215-1220.
IEEE, 2020.

Nedelkoski, Sasho, Jasmin Bogatinovski, Alexander Acker, Jorge Car-
doso, and Odej Kao. ”Self-attentive classification-based anomaly detec-
tion in unstructured logs.” In 2020 IEEE International Conference on
Data Mining (ICDM), pp. 1196-1201. IEEE, 2020.

Le, Van-Hoang, and Hongyu Zhang. “Log-based anomaly detection
with deep learning: How far are we?.”” In Proceedings of the 44th
international conference on software engineering, pp. 1356-1367. 2022.
Du, Min, Feifei Li, Guineng Zheng, and Vivek Srikumar. “Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing.” In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pp. 1285-1298. 2017.

Landauer, Max, Sebastian Onder, Florian Skopik, and Markus Wurzen-
berger. "Deep learning for anomaly detection in log data: A survey.”
Machine Learning with Applications 12 (2023): 100470.

Huang, Shaohan, Yi Liu, Carol Fung, Rong He, Yining Zhao, Hailong

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Yang, and Zhongzhi Luan. "Hitanomaly: Hierarchical transformers for
anomaly detection in system log.” IEEE transactions on network and
service management 17, no. 4 (2020): 2064-2076.

Almodovar, Crispin, Fariza Sabrina, Sarvnaz Karimi, and Salahuddin
Azad. "LogFiT: Log Anomaly Detection using Fine-Tuned Language
Models.” IEEE Transactions on Network and Service Management
(2024).

Lee, Yukyung, Jina Kim, and Pilsung Kang. "Lanobert: System log
anomaly detection based on bert masked language model.” Applied Soft
Computing 146 (2023): 110689.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language
understanding.” arXiv preprint arXiv:1810.04805 (2018).

Guo, Haixuan, Shuhan Yuan, and Xintao Wu. “Logbert: Log anomaly
detection via bert.” In 2021 international joint conference on neural
networks (IICNN), pp. 1-8. IEEE, 2021.

Larisch, René, Julien Vitay, and Fred H. Hamker. "Detecting anomalies
in system logs with a compact convolutional transformer.” IEEE Access
(2023).

Ott, Harold, Jasmin Bogatinovski, Alexander Acker, Sasho Nedelkoski,
and Odej Kao. "Robust and transferable anomaly detection in log data
using pre-trained language models.” In 2027 IEEE/ACM international
workshop on cloud intelligence (CloudlIntelligence), pp. 19-24. IEEE,
2021.

Chen, Song, and Hai Liao. "Bert-log: Anomaly detection for system logs
based on pre-trained language model.” Applied Artificial Intelligence 36,
no. 1 (2022): 2145642.

Farzad, Amir, and T. Aaron Gulliver. ”"Unsupervised log message
anomaly detection.” ICT Express 6, no. 3 (2020): 229-237.

Meng, Weibin, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei,
Yuqging Liu, Yihao Chen et al. "Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs.” In IJCAI,
vol. 19, no. 7, pp. 4739-4745. 2019.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Dangi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. “Roberta: A robustly optimized bert pretraining approach.”
arXiv preprint arXiv:1907.11692 (2019).

Zaheer, Manzil, Guru Guruganesh, Kumar Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham et al. "Big bird:
Transformers for longer sequences.” Advances in neural information
processing systems 33 (2020): 17283-17297.

Dhakal, Kamal, 2023. Log Analysis and Anomaly Detection in Log
Files with Natural Language Processing Techniques (Master’s thesis).
2023.

Chung, Hyung Won, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay,
William Fedus, Yunxuan Li et al. ”Scaling instruction-finetuned lan-
guage models.” arXiv preprint arXiv:2210.11416 (2022).

Lee, Jinhyuk, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu
Kim, Chan Ho So, and Jaewoo Kang. "BioBERT: a pre-trained biomed-
ical language representation model for biomedical text mining.” Bioin-
formatics 36, no. 4 (2020): 1234-1240.

‘Wu, Shijie, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze,
Sebastian Gehrmann, Prabhanjan Kambadur, David Rosenberg, and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Gideon Mann. ”"Bloomberggpt: A large language model for finance.”
arXiv preprint arXiv:2303.17564 (2023).

Webersinke, Nicolas, Mathias Kraus, Julia Anna Bingler, and Markus
Leippold. ”Climatebert: A pretrained language model for climate-related
text.” arXiv preprint arXiv:2110.12010 (2021).

Chalkidis, Ilias, Manos Fergadiotis, Prodromos Malakasiotis, Niko-
laos Aletras, and Ion Androutsopoulos. "LEGAL-BERT: The muppets
straight out of law school.” arXiv preprint arXiv:2010.02559 (2020).
Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen. “Lora: Low-rank adapta-
tion of large language models.” arXiv preprint arXiv:2106.09685 (2021).
Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena
Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas et
al. ”Training compute-optimal large language models.” arXiv preprint
arXiv:2203.15556 (2022).

Sennrich, Rico, Barry Haddow, and Alexandra Birch. ”Neural ma-
chine translation of rare words with subword units.” arXiv preprint
arXiv:1508.07909 (2015).

Achintha Thalage, Sayed Taheri, Faris Muhammad, Hamed Al-
Raweshidy, “Convolutional vs Large Language Models for Software
Log Classification in Edge-Deployable Cellular Network Testing” arXiv
preprint arXiv:2407.03759 (2024).

Kudo, Taku, and John Richardson. ”Sentencepiece: A simple and
language independent subword tokenizer and detokenizer for neural text
processing.” arXiv preprint arXiv:1808.06226 (2018).

Singhal, Karan, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei,
Hyung Won Chung, Nathan Scales et al. "Large language models encode
clinical knowledge.” Nature 620, no. 7972 (2023): 172-180.

Zaharia, Matei, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann
Hong, Andy Konwinski, Siddharth Murching et al. ”Accelerating the
machine learning lifecycle with MLflow.” IEEE Data Eng. Bull. 41, no.
4 (2018): 39-45.

Wolf, Thomas, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac et al. "Huggingface’s trans-
formers: State-of-the-art natural language processing.” arXiv preprint
arXiv:1910.03771 (2019).

[42

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

Sayed Taheri (S’09-M’12) received his PhD from
University of London, Brunel, and his Master’s
degree (with Distinction) in Electrical Engineering
- Signal Processing and Communications with Al
from The University of Edinburgh, United Kingdom.
He has over 15 years of experience in numerous
large enterprises in the Al and data science fields.
Since 2020, he has been working as a Research Fel-
low of VIAVI Solutions Inc. while holding a position
as a Doctoral Researcher at Brunel University of
London, working in cutting-edge AI/ML towards his
PhD. In 2024, Sayed won the prestigious ‘Vice Chancellor’s Prize for Doctoral
Research’ from the University of London, which is awarded yearly to the
highest-achieving PhD graduate across all fields and colleges. In the same
year, he also won the ‘Dean’s Prize for Doctoral Research Innovation and
Impact’ from the College of Engineering, Brunel University of London. Sayed
is the main inventor of 9 US patents as well as the author and co-author of two
books, one book chapter, and several peer-reviewed research papers. He was
a distinguished student in the Olympiad of Mathematics in 2004. He has won
several scholarships and was the only winner of the USA’s SPIE Education
Scholarship Award from Asia in 2013. He has been a designated reviewer for
several journals in IEEE and Springer. In January 2022, he was selected as the
joint Technical Lead and SME in VIAVI’s Centre of Excellence (COE) for Al
Sayed has been holding the position of AI/ML Solutions Architect and Team
Lead at VIAVI since July 2022, where he leads cutting-edge research AI/ML
initiatives and the productization of several PoCs in the Telecom domain.

Achintha Thalage Dr. Achintha Ihalage received
his PhD in Applied Machine Learning from Queen
Mary University of London (QMUL) in 2022. His
expertise lies in leveraging AI/ML within the an-
tenna and telecommunication industry, with specific
focus on transformer-based language models and
A | graph neural networks. Between 2022/23, he worked
as Post Doctoral Research Assistant at QMUL,
contributing to multidisciplinary research efforts on
Al-driven materials discovery for reconfigurable an-
tenna design. He delivered undergraduate modules
related to AI/ML as a Teaching Fellow at QMUL. He is the winner of the

Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

2022 Mansel Davies Award for Dielectrics by the Institute of Physics, UK.
Currently, he works in the telecommunications industry as an AI/ML Special-
ist, focusing on building generative Al systems with large language models
(LLMs) for automated root cause analysis. He also leads the integration of
Al into the Radio Access Network (RAN) infrastructure and RAN intelligent
controller (RIC).

Prateek Mishra Prateek Mishra holds a Bachelor’s
degree in Electronics Engineering in 2007 and a
Master’s degree in Artificial Intelligence from King’s
College London in 2020. With over 16 years of
experience in the telecommunications industry, he
specializes in cutting-edge Al applications. Cur-
rently focused on advancing Al in telecoms, Prateek
is dedicated to driving innovation and leveraging
technology to optimize operations and enhance cus-
tomer experiences.

Sean Coaker Sean Coaker received his MEng in
Computing from Swansea University, UK, in 2022.
With over a year of experience working in the
software industry, Sean has developed a passion for
developing cutting-edge software solutions.

Faris Muhammad Dr. Faris Muhammad received
his MSc and PhD from Strathclyde University, a
PGCE from MMU, and an MBA from Imperial
College London. He is a Chartered Engineer (CEng)
and a Fellow of the IET (F’IET). He has over 27
years of professional academic and industrial expe-
rience. Following 5 years of academic experience as
senior lecturer, Dr. Muhammad progressed his career
in the telecoms industry where he has developed
expertise in software development, telecommunica-
tions, project management, and leadership. He has
a distinguished track record in delivering complex projects, leading diverse
teams, and driving successful change initiatives. He is also a Certified SAFe
Agilist. Faris excels in Project and Programme Management, employing
both Agile and Waterfall methodologies. He is skilled in Commercial and
Customer Management, Wireless Technologies, Systems Engineering, and
Leadership and Team Management. In addition to his engineering and project
lifecycle management skills, Dr. Muhammad has directed large and complex
development programs encompassing software, systems engineering, DevOps,
testing, AI/ML, and, to a lesser extent, hardware. With a focus on customer-
facing and commercial skills, he earned his MBA from Imperial College
Business School. Dr. Muhammad has authored 1 Book, 4 Theses, 6 Patents,
and over 50 Conference and Journal Papers.

Hamed Al-Raweshidy (M’95-SM’03) HAMED S.
AL-RAWESHIDY (Senior Member, IEEE) received
the Ph.D. degree from Strathclyde University, Glas-
gow, UK., in 1991. He is currently a professor in
communications engineering. He was with the Space
and Astronomy Research Centre, Iraq, PerkinElmer,
USA, Carl Zeiss, Germany, British Telecom, U.K.,
Oxford University, Manchester Metropolitan Uni-
versity, and Kent University. He is also the Group
Leader of the Wireless Networks and Communica-
tions Group (WNCG) and the Director of PG studies
(EEE) with Brunel University London, U.K. He is the Co-Director of the
Intelligent Digital Economy and Society (IDEAS); the new research centre
which is a part of the Institute of Digital Futures (IDF). He is a course
director for the MSc Wireless Communication and Computer Networks. He
is an Editor of the first book in Radio over Fibre Technologies for Mobile
Communications Networks. He acts as a consultant and involved in projects
with several companies and operators, such as Vodafone, U.K.; Ericsson,
Sweden; Andrew, USA; NEC, Japan; Nokia, Finland; Siemens, Germany;
Franc Telecom, France; Thales, U.K. and France; and Tekmar, Italy, Three,
Samsung and VIAVI Solutions, USA and UK—actualizing several projects
and publications with them. He is a Principal Investigator for several EPSRC

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSM.2025.3541384, IEEE Transactions on Network and Service Management

projects and European Project, such as MAGNET EU Project (IP) 2004-
2008. He has published more than 500 journals and conference papers
and his current research interests include 6G with AI and Quantum and
the TIoT with Al and Quantum. He is also an External Examiner for the
Beijing University for Posts and Telecommunications (BUPT)—Queen Mary
University of London. Further, he was an External Examiner for a number of
the M.Sc. communications courses with Kings College London, from 2011
to 2016. He has also contributed to several white papers. Specifically, he
was an Editor of Communication and Networking (White Paper), which has
been utilised by the EU Commission for research. He has been invited to
give presentations at the EU workshop and delivered two presentations at
Networld2020, and being the Brunel Representative for NetWorld2020 and
WWREF (for the last 15 years).

	Introduction
	Related Work
	Methods
	Data Extraction and Processing
	Pre-training

	Results and Discussion
	E2E Finetuning
	Independent Binary Classification

	Experimental Details
	Conclusion
	
	Biographies
	Sayed Taheri
	Achintha Ihalage
	Prateek Mishra
	Sean Coaker
	Faris Muhammad
	Hamed Al-Raweshidy

