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Abstract.This paper presents an IoT (Internet of Things) based smart building fire cloudmonitoring system to
enhance fire safety in smart buildings. It integrates low-cost sensors and real-time video surveillance for real-time
environmental data collection. Data are uploaded to the cloud for remote monitoring via a customweb interface.
The system features an artificial neural network model that reduces computational complexity and response
time, achieving >95% accuracy in fire prediction. It assists in planning evacuation routes based on fire location,
enhancing safety and efficiency. Laboratory and field tests confirm reliable performance, and the novel system
will find applications in smart fire detection and prevention.
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1 Introduction

With the intensification of urbanization globally, the fire
safety of high-rise buildings has become increasingly
critical. Structural fires accounted for a significant portion
of global fire incidents between 2019 and 2020. In 2020,
building fires constituted 32.2% of all building incidents in
34 countries, underscoring the necessity of accurate fire
prediction, early detection, and effective evacuation
planning. Despite the widespread installation of fire
detectors, false alarms remain common [1]. In the UK, of
the 555,795 fire service incidents in 2019, 67% were false
alarms, which not only consumed substantial resources but
also hindered rescue operations [1]. Detectors using optical
or ionization smoke detection technologies often fail in
challenging environmental conditions such as high humid-
ity or dusty environments, exacerbating the problem of
false alarms [2].

Fires are inherently unpredictable, necessitating con-
tinuous monitoring of environmental changes for early
detection [3]. During a fire, parameters such as light,
temperature, humidity, smoke density, and gas levels (such
as carbon monoxide and carbon dioxide) undergo signifi-
cant changes [3]. Effective sensors, including those
monitoring changes in light, temperature, humidity, and
gases like carbon monoxide and carbon dioxide, are crucial
for early fire detection and prediction.
nding author: qingping.yang@brunel.ac.uk

penAccess article distributed under the terms of the CreativeCom
which permits unrestricted use, distribution, and reproduction
This study introduces an IoT-based smart building fire
cloud monitoring system, integrated with artificial neural
networks [4]. The system combines temperature, humidity,
gas, and light sensors, along with real-time video
monitoring, to achieve accurate fire detection. Data from
sensors and video sources are uploaded to the cloud for
storage, analysis, and display. Artificial neural networks
enhance data analysis, predict fire likelihood, and devise
early intervention measures and optimized evacuation
routes based on real-time sensor data [4]. This approach
reduces false alarms, enhances the accuracy of fire
detection, and ensures safer and quicker evacuation
guidance for building residents.

The rest of the paper is organized as follows: Section 2
discusses the related work on early fire detection based on
sensors. Section 3 details the design of the smart fire
monitoring system. Section 4 presents experiments on fire
detection using the smart fire monitoring system design,
and training and optimization of the AI model. Section 5
discusses the experimental results using our own dataset,
system monitoring, and model prediction performance.
Section 6 concludes and outlines future work.

2 Related work

Traditional building fire monitoring methods rely on single
optical and ionization technologies, which, while effective
under specific conditions, tend to produce higher false
alarm rates in environments with high humidity or dust
[3,5]. To overcome these limitations, fire monitoring
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.

mailto:qingping.yang@brunel.ac.uk
https://www.edpsciences.org
https://doi.org/10.1051/ijmqe/2024020
https://www.metrology-journal.org
https://creativecommons.org/licenses/by/4.0


2 G. Pan et al.: Int. J. Metrol. Qual. Eng. 16, 1 (2025)
systems based on the Internet of Things (IoT) have been
widely studied. These systems connect various environ-
mental sensors into a wireless network, continuously
monitoring parameters such as temperature, humidity,
and smoke, thereby significantly improving the accuracy
and reliability of early fire detection.

The multi-sensor fire detection system developed by
Minoli et al. [6] greatly enhanced the accuracy and
efficiency of fire detection. Sarwar et al. [7] combined data
from smoke, temperature, and humidity sensors with
neuro-fuzzy logic to determine the occurrence of fires and
sent fire alerts via the Global System for Mobile
Communications (GSM). This method provides fire
monitoring systems with a stronger emergency response
capability. In comparison, Rachman et al. [8] processed
sensor data using fuzzy logic and achieved a lower false
alarm rate, while Sowah et al. [9] successfully designed a fire
detection system combining multiple sensors by utilizing
an Arduino microcontroller and fuzzy logic. Nevertheless,
relying solely on physical sensors for fire monitoring
remains limited in complex building environments. Video
surveillance, as a complementary method, not only covers
larger areas but also provides visual information about fire
scale, fire spread, and smoke direction [10]. A system
combining sensor data with real-time video analysis can
significantly enhance situational awareness and provide
better decision-making support for fire monitoring.

Additionally, the integration of IoT and cloud comput-
ing has greatly enhanced the capabilities of building fire
monitoring systems. Du et al. [11] proposed a ZigBee-based
fire detection system that uses wireless communication
protocols to achieve real-time monitoring and response to
fire events. In contrast, the study by Gangopadhyay et al.
[12] demonstrated a cloud-based wireless framework that
collects and analyzes data from various sensors in real-time
through a cloud platform, enabling remote fire monitoring
and alarm systems. Zhang et al. [13] developed a machine
learning-based fire early warning system using TinyML
and CloudML technologies, showcasing the potential for
predicting and preventing fire hazards in buildings.
Furthermore, the CloudFAS system [14], by integrating
Building Information Modeling (BIM) with a cloud
platform, achieved seamless integration of fire sensors
and real-time data sharing, further enhancing the effec-
tiveness of building fire monitoring.

At the same time, the introduction of machine learning
technology has further optimized the intelligence level of
fire monitoring systems. Machine learning not only
processes data from multiple sensors but also reduces false
alarm rates and predicts fire development trends. For
example, Salhi et al. [15] used machine learning combined
with multi-sensor data to detect gas leaks and fire hazards,
although the low sampling frequency in their study may
limit early fire detection performance. To address this
issue, we optimized the sampling frequency during data
collection, allowing for better tracking of fire character-
istics and improved early fire detection efficiency. In
studies [16] and [17], artificial neural networks (ANNs)
were used to predict heat transfer during fires and classify
risks.
In this paper we have further integrated IoT, cloud
computing, and ANNs to develop a smart building fire
monitoring system, significantly enhancing the system’s
intelligence and real-time response capabilities in fire
detection.

3 System architecture and design

3.1 Overview of the system

This study addresses the challenge of false alarms in fire
detection systems by developing a multi-parameter
monitoring system leveraging IoT technology. Integrated
with video stream data, this system employs heterogeneous
data fusion to provide a comprehensive visual monitoring
interface. Enhancing accuracy and reliability, a shallow
neural network is incorporated to analyze data and predict
fires efficiently, optimizing processing speed and reducing
hardware requirements.

Specifically, the monitoring system is divided into
following four main components:

Building State Information Collection: The
system comprises two subsystems:

–
 Controlled by Arduino, a wireless sensor network collects
environmental data (e.g. temperature, smoke density)
processed at the edge before uploading to the cloud via a
wireless network. Local indicators like buzzers and LEDs
provide immediate alerts.
–
 Controlled by Raspberry Pi, a webcam facilitates real-
time video monitoring, with processed video data also
uploaded to the cloud.

Visualization Interface: Implemented using web
technologies, the interface displays sensor readings and live
video streams from the cloud. Users can interactively
control the alarm system through the interface, adjusting
settings in real-time.

Cloud: Central to system management, the cloud
stores and preprocesses data from local sensors and video
feeds. This preprocessing optimizes data for efficient
analysis and real-time monitoring on the visualization
interface.

Neural Network Data Analysis: In the cloud, a
shallow neural network model is trained on the processed
dataset, continuously adapting to changing environmental
conditions to ensure accurate fire predictions.

The workflow of the system includes a parallel process
of sensor data processing and real-time video monitoring.
After edge processing, the data is transferred to the cloud
for storage and further analysis. The video feed is streamed
directly to the interface for instant observation by the user.
Meanwhile, the sensor data is subjected to preliminary
analysis and neural network modelling in the cloud to
improve fire detection and response.

3.2 Building status information collection
3.2.1 Wireless sensor network

Domestic natural gas flames are clean, primarily emitting
carbon dioxide and water vapor efficiently. Structural fires,
characterized by yellow or orange flames and significant



Table 1. Sensor performance.

Sensor type Factor Measurement range Precision

HTS221
Humidity 0 to 100(% RH) ±3.5, (20 to +80)(% RH)
Temperature �40 to 120(°C) ±0.5, (15 to +40) (°C)

LPS22HBTR Pressure 260 to 1260 (hPa) ±0.1 (hPa)
APDS-9960 Light 0-65535(Lux) ±15%
MQ-2 Smoke 100–10,000 ppm See Figure 2a
MQ-7 CO 10–2000 ppm See Figure 2b
MQ-135 CO2 10–1000 ppm See Figure 2c

Fig. 1. Intelligent fire cloud monitoring system overall structure diagram.

Fig. 2. (a) MQ-2 sensor sensitivity characteristics (b) MQ-7 sensor sensitivity characteristics (c) MQ-135 sensor sensitivity
characteristics. (Fig. 2a) Hanwei Electronics Co. Ltd, Technical Data MQ-2 Gas Sensor. Available at: http://www.hwsensor.com
(accessed: 21 March 2024). (Fig. 2b) Hanwei Electronics Co. Ltd, Technical Data MQ-7 Gas Sensor. Available at: http://www.
hwsensor.com, (accessed: 21 March 2024). (Fig. 2c) Hanwei Electronics Co. Ltd, Technical Data MQ-135 Gas Sensor. Available at:
http://www.hwsensor.com, (accessed: 21 March 2024).
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black smoke, indicate incomplete combustion and release
harmful gases like carbon monoxide, highlighting their
rapid spread potential. Choosing appropriate sensors for
early detection and fire type identification is crucial in
structural fire monitoring. The following sections detail the
low-cost sensor-based wireless network used to optimize
data collection, enhancing fire monitoring accuracy and
response speed.

We use the Arduino MKR WIFI 1010 with a Carrier
expansion board and low cost MQ series sensors (MQ-2,
MQ-7 and MQ-135 cost about £12.50 in total) for our
wireless sensor network. The MQ-2 sensor detects smoke,
alcohol, hydrogen, methane, and other gases with high
sensitivity. The MQ-7 sensor is highly sensitive to carbon
monoxide over a wide range, while the MQ-135 detects
gases like carbon monoxide, carbon dioxide, and ammonia.
The performance of the sensors used are shown in Table 1.

The Arduino reads data from Carrier board sensors via
I2C for stability. MQ series sensors (MQ-2, MQ-7, MQ-
135) connect to Arduino using Dupont wires (Fig. 3).

In the early stages of a fire, the temperature typically
does not exceed 80 °C. AlthoughMQ series sensors (such as
MQ-2, MQ-7, andMQ-135) perform optimally at 20 °C and
65% humidity, their sensitivity may decrease by 20–30% in
environments with temperatures around 50 °C. However,
since the system is designed for early fire detection—when
the temperature in the initial phase of a fire does not exceed
50 °C—the reduction in sensitivity will not significantly

http://www.hwsensor.com
http://www.hwsensor.com
http://www.hwsensor.com
http://www.hwsensor.com


Fig. 3. Wireless sensor network hardware connections.

Fig. 4. Real-time video monitoring hardware connections.
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impact the overall performance of the system. Additionally,
the system employs a multi-sensor data fusion strategy,
which enhances fire detection accuracy and reliability by
evaluating multiple sensor outputs, such as gas concentra-
tion and carbonmonoxide levels. Therefore, even though the
ambient temperaturemay be slightly away from the sensors’
ideal operating point, MQ series sensors can still effectively
detect fires in the early stages of fire.

The system triggers alarms based on neural network
analysis, activating local alerts via Arduino’s buzzer and
tri-color LED. It also sends text alerts to the interface and
changes indicator lights accordingly, enhancing user
interaction.

3.2.2 Real-time video monitoring

In addition to sensor data, video surveillance capabilities
can further enhance users’ understanding of the situation
and their decision-making ability. The system utilizes a
Raspberry Pi 400 and a USB camera, which offer excellent
plug-and-play functionality without the need for additional
drivers. The system supports dynamic adjustment of video
resolution and frame rate based on specific needs, making it
adaptable to various application scenarios and bandwidth
conditions. Currently, the system enables one-way data
transmission from the local devices to the cloud, processing
video data in real-time while providing scalability for
future upgrades to two-way communication systems (such
as remote control and feedback). The network connection,
based on Wi-Fi 6 technology, ensures high stability with a
latency of less than 100ms. During system testing, the
overall response time was measured to be between 500ms
and 1 s, meeting the requirements for real-time monitoring
applications.

3.3 Visualization interface

Efficient visual user interfaces (UI) are scarce in the current
market, prompting our focus on developing a user-friendly
UI that integrates clear monitoring data presentation
with interactive controls for remote operations, including
fire alarm activation. Accessible via cloud from any



Fig. 5. Sensor visual interface.

Fig. 6. Real-time video surveillance visual interface.
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Internet-connected device, our UI features real-time line
graphs, scatter plots, and numerical displays for monitor-
ing parameters. Interactive buttons allow remote control of
alarm status, while a real-time video interface enhances
fault tolerance and monitoring capabilities (Figs. 5 and 6).

3.4 Cloud

The cloud manages authorization, configuration, and
centralized management of all devices. Upon successful
local device connection, it stores sensor data and uploaded
video, preprocesses data for enhanced analysis efficiency,
and provides processed data to the visualization interface
for real-time system monitoring. Historical sensor data
undergoes neural network analysis to derive insights for
decision-making support.
3.5 Neural network model

This study utilizes an artificial neural network (ANN)
model for fire monitoring and prediction. The model
includes an input layer with five neurons for temperature,
humidity, and gas concentrations. A hidden layer with 100
neurons employs the hyperbolic tangent activation func-
tion to handle nonlinearities effectively. The output layer
features five neurons corresponding to distinct fire states,
using the softmax activation function to estimate proba-
bilities. The ANN aims to classify and predict various fire
scenarios, optimizing monitoring by learning complex
sensor-fire relationships.
4 Experiments

4.1 Experimental preparation

To simulate real-world building fire detection scenarios, we
conducted indoor combustion experiments. We used an
iron fire pan with a length of 40 cm and a width of 25 cm,
with pieces of kiln dried kindling wood weighing approxi-
mately 150 grams each and having a moisture content of
15%, to simulate fire conditions inside a building. The fire
intensity during the combustion process was controlled by
adjusting the amount of combustible materials, ensuring
the safety and repeatability of the experiments.

To collect accurate environmental data, a wireless
sensor network consisting of temperature and humidity
sensors, along with gas sensors (MQ-2, MQ-7 and
MQ-135), was positioned 1 meter away from the fire
source to monitor temperature changes and hazardous gas
concentrations during the fire.

Figure 7 illustrates the experimental setup, including
the positions of the fire pan, various sensors, and the overall
environment. The sensor devices were connected to the
cloud via a Wi-Fi 6 network, ensuring real-time data
transmission and low-latency analysis.

4.2 Experimental design

The experimental setup includes using wood combustion to
simulate fire scenarios, with household natural gas serving
as a control group to evaluate the system’s accuracy and
predictive capabilities. The experiment involves five
variable conditions: no fire, small and large household
natural gas fires, as well as small and large wood fires. The
monitored variables include temperature, humidity, smoke
particle concentration, carbon monoxide levels, and air
quality. The experimental design is shown in Table 2.
Throughout the experiment, sensor data variations were
monitored, and the combustion conditions were remotely
controlled through a network interface.

4.3 Data processing

We clean data by replacing missing values with median
sensor data and handling outliers with a Z-score cutoff
(>3). For categorical fire conditions, one-hot encoding



Fig. 7. Layout of the experimental site.

Table 2. Experimental factors and response variables.

Factor Domestic gas fire No fire Simulated building fires

Big fire Small fire Big fire Small fire

Factor Symbol F1 F2 F3 F4 F5

Response Humidity
Smoke
Temperature
CO Level
CO2 Level

Fig. 8. Video data extraction frame sequence.
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transforms labels into a binary matrix, essential for
classification tasks. To maintain unbiased categories,
sensor outputs avoid normalization; instead, continuous
data undergo min-max scaling. The dataset (2000 points)
is split 7:3 for training and testing, ensuring robust
learning and validation for effective performance on new
data.

Additionally, frames were extracted from the video
data collected during the fire simulation process and
converted into grayscale images to facilitate flame region
extraction using an optimal grayscale threshold. The
extracted frames from the video data are shown in Figure 8,
and the corresponding grayscale images are displayed in
Figure 9. The flame region extraction is based on a
dynamically determined optimal grayscale value, which is
calculated using the Otsu method.

Subsequently, the overall flame size is obtained by
weighting the flame area (number of pixels) and flame
intensity (average pixel grayscale value). To evaluate the
effectiveness of the sensors, we conducted a correlation
analysis and time response delay analysis by comparing the
time series of flame size with the time series of sensor data.
Image data were extracted at a sampling frequency of once
every 2 s.



Fig. 9. Video data extraction frame to greyscale example.

Table 3. Correlation analysis of sensor data and response time lag.

Temperature Humidity Smoke(MQ-2) CO(MQ-7) CO2 (MQ-135)

Correlation
coefficient

0.3477 �0.1889 0.4199 0.4373 0.4842

Response
time lag(s)

0 4 0 2 26
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4.4 Model training and optimization process

To enhance our fire monitoring neural network model’s
performance, we utilized an ANN architecture with 100
hidden neurons in MATLAB. We implemented a training
strategy spanning 136 epochs to prevent overfitting,
employing a Stochastic Gradient Descent (SGD) optimizer
with a learning rate set to 0.001 and a batch size of 136. The
model’s weights were initialized using a uniform distribu-
tion to expedite convergence. We limited the maximum
number of failures to 12 to avoid overtraining. Post-
training, the model evaluated classification scores to
predict fire categories accurately. Accuracy assessments
on training and test sets validated the model’s robustness
and generalization capabilities, crucial for practical
deployment in fire monitoring systems.

5 Results and analysis

5.1 Performance evaluation of sensors

Based on the correlation bar chart in Figure 10a and the
data in Table 3, there are noticeable differences in the
correlation between various sensors and flame size.
Temperature sensor shows a relatively high positive
correlation, with a correlation coefficient of 0.3477. This
is expected, as the presence of a flame leads to a significant
temperature increase, and the temperature sensor is able to
detect this change sensitively.

CO2 sensor has the highest correlation (0.4842),
indicating that the rise in CO2 concentration during the
combustion process is highly correlated with the flame size.
The CO2 sensor reacts prominently to flame changes,
especially during wood combustion, where the production
of CO2 is higher, allowing the sensor to better capture
changes in the fire scenarios.
MQ-2 smoke sensor and MQ-7 carbon monoxide sensor
have correlation coefficients of 0.4199 and 0.4373, respec-
tively, showing that they can detect the smoke and carbon
monoxide produced during the flame combustion.
These sensors perform well in monitoring combustion
by-products, particularly in wood fire scenarios.

In contrast, humidity sensor exhibits a negative
correlation (�0.1889), suggesting that the presence of a
flame leads to a decrease in ambient humidity. This is
especially true in wood combustion, where the reduction
in humidity reflects the flame’s evaporation of moisture
from the surrounding air. Although the humidity sensor
has a lower correlation, it still provides valuable
information about environmental changes following the
onset of a fire. It is interesting to note that the humidity
sensor can help distinguish between fire and boiling water
steam since the latter will be positively correlated with
humidity.

Based on the time delay analysis results shown in
Figure 10b and Table 3, different sensors exhibit varying
response times to the changes in flame size. Sensor 1
(temperature sensor) and Sensor 3 (MQ-2 smoke sensor)
have almost no time delay, allowing them to quickly respond
to changes inflame size.This indicates that temperature and
smoke sensors can effectively detect the presence of flames in
the early stages of a fire and react immediately.

In contrast, CO2 sensor shows a more significant
response delay, approximately 26 s. This suggests that the
accumulation of CO2 takes some time, resulting in a longer
response delay for this sensor. Although the correlation
between CO2 concentration and flame size is high, this
longer response time may affect its effectiveness for real-
time fire detection in practical applications.

The time delay for humidity sensor is 4 s. While the
delay is relatively short, due to its negative correlation
with flame size, the humidity sensor mainly reflects



Fig. 10. Correlation analysis between sensor and flame size.
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environmental changes after the fire has occurred, rather
than the early stages of the fire. Therefore, its practical role
in early fire detection is limited.

Overall, the experimental results show that the
temperature sensor and the CO2 sensor play key roles in
fire detection. The temperature sensor responds to changes
in flame size almost in real time, while the CO2 sensor
provides crucial information about combustion by-prod-
ucts, although its response has a certain delay. The
combined use of these sensors helps achieve comprehensive
fire monitoring, improving the overall reliability and
accuracy of the detection system.

Additionally, the performance of the smoke sensor
(MQ-2) and the carbon monoxide sensor (MQ-7) should
not be overlooked. Particularly in wood fire scenarios,
smoke and carbon monoxide are important combustion by-
products. These sensors respond relatively quickly, with
high correlations, making them suitable as complementary
sensors in the fire detection system, further enhancing its
detection capability.

In comparison, the negative correlation and delay
exhibited by the humidity sensor suggest its primary role is
in the later stages of afire or in assessing the impact of thefire.
While its direct response to flame changes is weaker, it can
provideadditional informationaboutenvironmental changes.

These results align with the design expectations. By
integrating the data from temperature, CO2, smoke, and
carbon monoxide sensors, the overall system performance is
significantly improved.Data fusionnotonly compensates for
potential response delays or accuracy limitations of
individual sensors but also enhances the robustness of fire
detection across various scenarios. This multi-sensor fusion
strategy provides a more comprehensive and accurate fire
monitoring solution, helping to reduce false alarms and
missed detections, and improving the system’s capabilities
and reliability, especially in complex fire environments.
5.2 Model performance analysis and challenges in fire
scenario detection

Figure 11a illustrates the model’s strong performance in
predicting fire scenarios, with an accuracy exceeding 95%
on the test set. It shows high precision and recall in critical
scenarios like residential gas and large wood fires. The
confusion matrix confirms high true positive rates but
reveals occasional false negatives in less frequent fires,
guiding improvements to enhance sensitivity across varied
conditions.

Upon reviewing the simulation experiment process, we
found that the occurrence of false negatives is primarily
caused by several factors. First, data imbalance is a key
issue, with the quantity of natural gas fire data being only
half that of wood fire data, leading to insufficient learning
of natural gas fire characteristics by the model and
increased classification errors. Additionally, the distance
between the sensors and the fire source also affected
detection performance. As the flames of natural gas tend to
spread upwards with minimal horizontal dispersion, the
sensors exhibited a certain response delay in capturing gas
concentration changes, further exacerbating the occur-
rence of false negatives.

Figure 11b displays Receiver Operating Characteristic
(ROC) curves for each fire scenario category, highlighting
high Areas Under the Curve (AUC). These results
demonstrate the model’s strong capability in accurately
distinguishing different fire types, ranging from minor
domestic incidents to significant wood-induced fires.

The model exhibits high training efficiency, with each
epoch completing in 1s, making it suitable for real-time fire
detection applications. Optimizing the balance between
model complexity and computational efficiency ensures
swift response times, crucial for practical deployment
where timely fire detection is critical.



Fig. 11. Confusion matrix and ROC curves. (Class 1: F1; Class 2: F2; Class 3: F3; Class 4: F4; Class 5: F5).
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Effective hyperparameter selection, including activa-
tion functions in hidden layers and output layer,
significantly impacts the model performance. The choice
of stochastic gradient descent as the optimizer proves adept
at managing sensor data’s non-linearities, enhancing the
model’s ability to generalize effectively in real-world
settings.
6 Conclusions

This study developed an IOT-based smart building fire
cloud monitoring system, addressing high costs, low
sensitivity, and false alarms in traditional systems.
Integrating cost-effective sensors and real-time video
monitoring enhances real-time data collection and
processing for faster fire detection. Key to the system
is an efficient artificial neural network, reducing
computational complexity with over 95% accuracy in
fire prediction. It facilitate to decide the optimal
evacuation routes based on fire location, improving
safety and efficiency. The experimental tests confirmed
quicker responses and reliability. Cloud integration
optimized data storage and processing, with a user-
friendly web interface enabling remote monitoring. The
novel will find applications in future smart building fire
safety management.

This study has the following limitations. Firstly, the
size of the dataset is quite small, and small data samples
may affect the generalization ability of the model.
Secondly, the experiments mainly focus on wood and
natural gas fire types, and have not yet covered
comprehensive testing of complex fire scenarios such as
electrical and chemical fires. Finally, the system relies on
a stable network connection for real-time data uploads
and remote monitoring, and any network interruption
may affect the response time and effectiveness of the
system.
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