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Depression symptom-specific genetic 
associations in clinically diagnosed and 
proxy case Alzheimer’s disease
 

Depression is a risk factor for the later development of Alzheimer’s 
disease (AD), but evidence for the genetic relationship is mixed. Assessing 
depression symptom-specific genetic associations may better clarify this 
relationship. To address this, we conducted genome-wide meta-analysis (a 
genome-wide association study, GWAS) of the nine depression symptom 
items, plus their sum score, on the Patient Health Questionnaire (PHQ-9) 
(GWAS-equivalent N: 224,535–308,421) using data from UK Biobank, the 
GLAD study and PROTECT, identifying 37 genomic risk loci. Using six AD 
GWASs with varying proportions of clinical and proxy (family history) 
case ascertainment, we identified 20 significant genetic correlations 
with depression/depression symptoms. However, only one of these was 
identified with a clinical AD GWAS. Local genetic correlations were detected 
in 14 regions. No statistical colocalization was identified in these regions. 
However, the region of the transmembrane protein 106B gene (TMEM106B) 
showed colocalization between multiple depression phenotypes and 
both clinical-only and clinical + proxy AD. Mendelian randomization and 
polygenic risk score analyses did not yield significant results after multiple 
testing correction in either direction. Our findings do not demonstrate a 
causal role of depression/depression symptoms on AD and suggest that 
previous evidence of genetic overlap between depression and AD may 
be driven by the inclusion of family history-based proxy cases/controls. 
However, colocalization at TMEM106B warrants further investigation.

Epidemiological studies suggest that a diagnosis of depression is a risk 
factor for the later development of dementia1–4, of which Alzheimer’s 
disease (AD) is the most common form, accounting for ~80% of the 
over 40 million global cases5. Establishing the underlying mechanisms 
by which depression confers increased risk for AD offers a pathway 
by which new interventions might be implemented and the global 
dementia burden reduced6.

As twin studies have demonstrated, both depression and AD are 
substantially heritable—approximately 40% and 80%, respectively7,8. 
Furthermore, large-scale genome-wide association studies (GWASs) 

have demonstrated high polygenicity, identifying over 70 genomic 
risk loci for AD and nearly 200 for depression9–15. It is therefore pos-
sible that their phenotypic association is partially due to a shared 
genetic architecture. However, results from previous investigations 
into the genetic overlap between the two disorders have been mixed. 
For example, some findings indicate non-significant genetic overlap16,17, 
others a significant—if modest—genetic correlation of ~16–17% and a 
risk-increasing causal effect of depression on AD18–20.

According to the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5), diagnosis of a major depressive episode requires 
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(Supplementary Table 2). The SNP heritability (h2
SNP) value for the 

MTAG-PHQ-9 GWAS ranged from 1.12% for suicidal thoughts to 6.78% for 
the PHQ-9 sum score. h2

SNP z-scores were all >4 (range 6.59–18.50) (Sup-
plementary Table 3), indicating sufficient heritability to obtain reliable 
genetic correlation estimates in downstream analyses39. The genomic 
inflation factors (λGC) ranged from 1.0638 to 1.2156, with linkage  
disequilibrium score regression (LDSC) intercepts ranging from 0.9997 
to 1.0007, indicating that inflation was due to the polygenic signal as 
opposed to confounding due to population stratification40. Manhattan 
and quantile–quantile (QQ) plots are presented in Fig. 2.

Genetic correlations
Of the 72 bivariate genetic correlations (rg) calculated between the 
12 depression phenotypes and the six AD GWASs, 24 were nominally 
significant and 20 remained significant after false discovery rate (FDR) 
correction (PFDR ≤ 0.05) (rg range −0.25–0.35; P-value range 1.25 × 10−2–
4.01 × 10−5; PFDR range 4.5 × 10−2–1.9 × 10−3). Of these, 19 were identified 
when the AD GWAS in the pair contained either clinical + proxy cases 
and controls, or proxy-only cases and controls (Fig. 3 and Supplemen-
tary Table 4). Only one PFDR significant association was found when 
using a clinical AD GWAS—between suicidal thoughts and Wightman 
et al. (excl. UKB) (rg = −0.25, P = 6.78 × 10−3, PFDR = 3.48 × 10−2). All depres-
sion phenotypes were significantly genetically correlated with each  
other (rg range, 0.57–0.98; P ≤ 3.71 × 10−23) (Supplementary Table 5 and 
Supplementary Material 1). Only one PHQ-9 symptom pair—concen-
tration problems and psychomotor changes—showed a genetic cor-
relation that was not statistically different from one (95% confidence 
interval (CI) included one), indicating genetic heterogeneity across 
depression symptoms.

Local genetic correlations
After univariate testing, a total of 4,271 bivariate local genetic correla-
tion tests were conducted in local analysis of [co]variant association 
(LAVA)41 across 324 genomic loci. Of these, 716 were nominally signifi-
cant and 15 remained significant at PFDR ≤ 0.05 across 14 unique genomic 
loci (local rg range −0.81–0.82; P-value range 1.48 × 10−4–4.2 × 10−6; PFDR 
range 4.22 × 10−2–1.38 × 10−2) (Supplementary Table 6). Of the 15 statisti-
cally significant tests, ten were identified when using clinical + proxy/
proxy-only AD GWASs. No depression phenotype showed a statisti-
cally significant association at the same genomic locus with more 
than one AD GWAS. However, for 10 of the 15 statistically significant 
tests, nominally significant local genetic correlation was observed 
between the depression phenotype and at least one additional AD 
GWAS at the same locus (Supplementary Table 7). Only locus 1790 
(chr12: 51769420–53039987) showed a significant PFDR local genetic 
correlation with more than one depression phenotype—concentra-
tion and sleep problems—both with the clinical-only Wightman et al.  
GWAS. The numbers of positively and negatively correlated loci  
identified between each phenotype pair are presented in Supplemen-
tary Table 8.

Colocalization
Following LAVA, 14 PFDR-significant regions of local genetic correlation 
were passed to the COLOC-reporter pipeline42 across 15 depression–AD 
phenotype pairs. A further 14 colocalization tests were conducted 
where a nominally significant local genetic correlation was observed at 
a PFDR-significant locus between the same depression phenotype and a 
different AD GWAS. As such, a total of 29 statistical colocalization tests 
were conducted to follow up the LAVA results. No 95% credible sets were 
identified by sum of single effects (SuSiE) for any phenotype pairs in 
these regions. All analyses were therefore conducted under the single 
causal variant assumption of coloc.abf. No colocalization was identified 
at any of these loci (mean posterior probability for hypothesis 4 (PP.H4 ) 
= 0.59%) (Supplementary Table 7). All but two of these tests indicated 
no causal variant present in either phenotype (PP.H0 > 0.8). The two 

the presence of at least five of a possible nine symptoms for ≥2 weeks, 
including one of the two cardinal symptoms—depressed mood or 
anhedonia21. Potentially hundreds of symptom combinations are pos-
sible to meet these diagnosis criteria22. As such, heterogeneity poses 
challenges to researchers seeking to better understand differences in 
the genetic contribution to depression and its subtypes23. However, 
the decomposition of depression into individual symptoms has pro-
vided insight into unique patterns of genome-wide significant loci and 
cross-trait genetic associations, as demonstrated in a recent GWAS of 
depression symptoms on the Patient Health Questionnaire (PHQ-9) 
by Thorp and colleagues24.

A number of studies suggest that anhedonia may be a better pre-
dictor of dementia than depressed mood25,26. Furthermore, several 
depression symptoms, including appetite changes, psychomotor 
dysfunction and sleep disruption, are commonly observed in non-
depressed patients with dementia27–29. Taking this into account along-
side the mixed nature of previous findings examining the genetic 
overlap between depression and AD, it is possible that leveraging 
depression symptom-level genetic information may offer greater 
insight into the disorders’ shared genetic architecture.

However, any association between depression and AD must also 
consider the potential influence of differences in case/control ascer-
tainment in AD GWASs. A review by Escott-Price and colleagues30 notes 
that recent large-scale AD GWASs contain a relatively small proportion 
of clinically ascertained cases/controls, with a large percentage of cases 
ascertained by proxy, that is, cases and controls are defined as individu-
als with and without a self-reported parental history of AD/dementia, 
respectively. The combination of clinical and proxy samples in AD 
GWAS meta-analyses has proved an effective way of boosting sample 
size and variant discovery13–15,31. However, evidence suggests that this 
has come at the expense of specificity in regard to genomic risk loci and 
an apparent stagnation in the percentage of variance explained by com-
mon variants30. Most importantly for cross-trait analysis, recent studies 
indicate that the direction of Mendelian randomization (MR) causal 
estimates for AD risk factors on AD can be in the opposite direction 
depending on whether the AD outcome GWAS contains both clinical 
and proxy cases/controls or is more strictly clinically ascertained32,33.

To address these points, here we report a large genome-wide meta-
analysis of PHQ-9 depression symptom items using data from the 
Genetic Links to Anxiety and Depression (GLAD) Study34, the PROTECT 
Study35 and two questionnaires from UK Biobank (UKB)36. We obtained 
summary statistics from previous large-scale GWAS for clinical9 and 
broad10 depression, and six AD GWASs (three with clinical + proxy 
case/control ascertainment13–15, one with proxy-only31 and two with 
clinical-only12,37). We used these GWASs to assess the presence, strength 
and differences in genetic overlap between depression, depression 
symptoms and AD, with the additional aim of better understanding the 
influence of different AD case ascertainment strategies on associations.

Results
For a flowchart of this study, see Fig. 1. For details on depression and 
AD GWAS summary statistics obtained for this study, see Methods. 

PHQ-9 genome-wide meta-analyses
The final genome-wide meta-analysis—conducted using multi-trait 
analysis of GWAS (MTAG)38—identified a total of 40 genomic risk loci 
between the 10 PHQ-9 phenotypes (GWAS-equivalent N range: 224,535–
308,421). Only one depression symptom—suicidal thoughts—identified 
no genome-wide significant variants. Three lead single nucleotide poly-
morphisms (SNPs) were shared with more than one PHQ-9 phenotype, 
leaving a total of 37 unique genomic risk loci (Table 1). The significance 
of each of the lead variants in each of the samples contributing to the 
meta-analysis is provided in Supplementary Table 1. Expression quan-
titative trait loci (eQTL) mapping in functional mapping and annota-
tion (FUMA) mapped lead variants at genomic risk loci to 76 genes 
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tests in locus 319 (chr2: 126754028–127895644) indicated a strong 
probability of a causal variant for the Kunkle et al.12 and Wightman  
et al.37 clinical AD GWASs (PP.H2 > 0.9). This locus contains BIN1, a known 
risk gene for AD that is involved in tau regulation43,44.

An additional 762 colocalization tests were conducted with the 
six AD GWASs using regions ±250 kb (r2 > 0.1) of lead variants from the 
MTAG-PHQ-9, broad and clinical depression GWAS. SuSiE identified evi-
dence of colocalization in regions ±250 kb of lead variants at genomic 

risk loci 14 (depressed mood), 15 (appetite change) and 16 (PHQ-9 sum 
score) and for broad depression at chr7: 12000402–12500402 (PP.H4  
range 0.79–0.85), all with the same three AD GWASs—Bellenguez et al.15,  
Wightman et al.14 and Wightman et al. (excluding the UKB)37 (Supple-
mentary Table 9). These colocalizations were all in the region of the 
transmembrane protein 106B gene (TMEM106B), which is visualized 
using LocusZoom45 in Fig. 4. Colocalization was also identified for  
the same phenotype pairs using coloc.abf (Supplementary Table 10). 

UK Biobank 
(Mental Health Questionnaire
(MHQ))

N = 143,171
Mean age (s.d.) = 63.70 (7.68)
% female = 56.38

 

UK Biobank 
(Experience of Pain (EoP) 
Questionnaire)

N = 152,932
Mean age (s.d.) = 65.95 (7.63)
% female = 56.57

 

Inverse variance weighted (IVW) meta-analysis in METAL (N = 175,692)
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Download...
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LAVA loci 
containing 
bivariate local 
genetic 
correlation
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All individuals aged ≥ 65
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calculation using MegaPRS
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Fig. 1 | Analysis flowchart for the present study. Flowchart describing the 
analyses undertaken following genetic and phenotypic quality control (see 
Methods) for each of the depression symptom items of the PHQ-9 in each of 
the four samples—UKB (the Mental Health Questionnaire and Experience of 

Pain Questionnaire), the GLAD Study and the PROTECT Study. MTAG, multi-
trait analysis of GWAS; FUMA, functional mapping and annotation; LAVA, local 
analysis of [co]variant association; ADNI, Alzheimer’s disease neuroimaging 
initiative; PC, genetic principal components.
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Fig. 2 | Manhattan and QQ plots for each of the ten MTAG-PHQ-9 GWAS 
meta-analyses. The red lines on the Manhattan plots indicate genome-wide 
significance (P ≤ 5 × 10−8) and the blue lines suggestive significance (P ≤ 1 × 10−5). 

No further study-wide multiple testing correction was applied. The P-value 
estimates are derived from a linear regression model with a two-sided test. The 
FUMA-identified nearest gene to the top variant at each locus is labeled.
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The same depression phenotypes and loci were suggestive of colocali-
zation with Jansen et al.13 (PP.H4 > 0.6).

In a follow-up analysis, we assessed statistical colocalization 
for ±250 kb TMEM106B (chr7: 12000920–12532993) between these 
four AD GWASs and all remaining depression phenotypes. Additional 
colocalization was identified at TMEM106B between both fatigue and  
psychomotor changes with the Bellenguez et al.15, Wightman et al.14 
and Wightman et al. (excluding the UKB)37 AD GWASs (Supplementary 
Table 11), and was suggestive for fatigue with Jansen et al.13 (Supple-
mentary Table 21).

SMR analysis using gene expression in the TMEM106B region
We further followed-up colocalizing regions using summary-based 
Mendelian randomization (SMR)46 to integrate eQTLs. In total, 50 
tests were conducted for prefrontal cortex and peripheral blood 
eQTL probes within chr7: 12000920–12532993 (genes TMEM1106B  
and VWDE) and the ten AD/depression phenotypes implicated in 
cross-trait colocalization. Of these, 11 associations remained sig-
nificant after Bonferroni correction (P ≤ 0.001), all with expression 
levels of TMEM106B (Supplementary Table 13). Peripheral blood 
TMEM106B expression was positively associated with broad depres-
sion (bSMR [s.e.] = 0.029 [0.004], P = 2.30 × 10−7) and showed evidence of 
colocalization (PHEIDI = 0.108). Prefrontal cortex TMEM106B expression 
was significantly associated with all ten of the AD/depression phe-
notypes. Significant associations with AD were consistently positive 
(bSMR range 0.029–0.15; P-value range 1.042 × 10−5–3.395 × 10−4). Con-
versely, significant associations with depression phenotypes were 
consistently negative (bSMR range −0.097 to −0.033; P-value range 
2.302 × 10−7–4.08 × 10−5). All brain-based associations showed evidence 
of colocalization (PHEIDI ≥ 0.05).

Mendelian randomization
We conducted 144 MR tests to assess bidirectional causal effects 
between the depression phenotypes and AD (72 in each direction). In 
our primary MR method, CAUSE47, no significant causal effects were 
identified between any of the depression items and AD in either direc-
tion, even at nominal significance (Supplementary Table 14).

F-statistics indicated that instrument strength was sufficient (FMean 
range 22.43–63.36; FMin range 20.84–31.56; FMax range 26.37–402.86). 
Measurement error, as indicated by the IGX

2 statistics, was low, indi-
cating instrument suitability for MR-Egger (IGX

2 range 0.91–0.98). 
PFDR ≤ 0.05 was applied in each of the other MR methods to correct 
for the 144 tests conducted, after which no statistically significant 
associations were observed for any method (Supplementary Table 15).

No evidence of colocalization was observed within the APOE 
region between any depression phenotype and any AD GWAS, with 
a maximum PP.H4 of 16.58% observed in the region (Supplementary 
Table 16).

Polygenic risk scores
No statistically significant associations were detected between 
any depression phenotype polygenic risk score (PRS) and AD case/ 
control status in any of the three AD target samples (PFDR ≤ 0.05, cor-
rected within each target sample). Exclusion of the APOE region had 
no effect on results. (Supplementary Table 17 and Supplementary 
Material 2).

Similarly, no significant associations were observed between any 
AD-PRS and PHQ-9 depression items within the GLAD (Supplementary 
Table 18) or PROTECT (Supplementary Table 19) samples after FDR 
correction, with or without the APOE region.

Discussion
This study presents a genome-wide meta-analysis of PHQ-9 depression 
symptom items (GWAS-equivalent N range: 224,535–308,421), iden-
tifying 37 genomic risk loci. Subsequent genetic correlation analysis 
identified 20 significant global correlations and 15 significant local 
correlations at 14 loci with AD, across six AD GWASs with varying  
proportions of clinical case/control ascertainment. Significant  
global genetic correlations were primarily found with AD GWASs 
containing proxy cases and controls. Although no colocalization was 
identified at any of the regions of local genetic correlation, strong 
evidence of colocalization was observed between several depression 
phenotypes and AD in the region of TMEM106B. MR and PRS analyses 
did not yield significant results, and no evidence of colocalization was 
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observed between depression phenotypes and any AD GWAS in the 
region of APOE.

The increased power of our PHQ-9 GWAS allowed for the identifica-
tion of 28 more genomic risk loci than the previous PHQ-9 GWAS24. Sev-
eral loci identified in this study have shown previous associations with 
related phenotypes. For example, SHISA4—identified in association 
with fatigue symptoms—was implicated as playing a role in disrupted 
sleep48 and daytime napping49. The top variant for sleep problems at 
genomic risk loci 6 (MEIS1)—rs113851554 (chr2: 66750564)—was also 
the top variant in a GWAS of insomnia and restless leg syndrome50. 
Additionally, the obesity gene FTO51 was identified as a genomic risk 
locus for appetite changes. Although the role of FTO in depression 
is inconclusive52, it has been linked to anxiety and depression symp-
toms in individuals with anorexia nervosa (AN)53. Its identification in 
association with appetite change symptoms—a phenotype relevant to 
eating behaviors—suggests that symptom-based genetic analysis can 
help identify the phenotype-relevant biology of individual depression 
symptoms.

Our findings also highlight cross-symptom genetic similarities. 
For example, TMEM106B—a gene identified in previous depression 
GWASs9,10—was the nearest gene to lead variants for three PHQ-9 items—
appetite changes (rs13234970), depressed mood (rs3807866) and the 
PHQ-9 sum score (rs12699338). TMEM106B was strongly suggested as 
a causal gene in a recent multi-ancestry depression GWAS54. Further-
more, dysregulation of TMEM106B expression has been implicated in 
association with major depressive disorder (MDD)55 as well as with the 
anxious and weight gain MDD subtypes, both of which are associated 
with treatment resistance56. TMEM106B has also been implicated in 
self-reported diagnosis of anxiety disorder57, neuroticism58 and in a 
latent factor GWAS of depressive, manic and psychotic symptoms/
disorders59, suggesting a link to psychiatric risk more generally.

The observed colocalization at TMEM106B between multiple 
depression phenotypes and both proxy + clinical and clinical-only AD 
is therefore of particular interest. Two previous studies have identified 
TMEM106B as playing a role in both depression and AD18,19. TMEM106B is 
involved in lysosomal function—particularly in motor neurons60—and is 
classically considered a frontotemporal dementia risk gene61. As well as 

being identified in recent AD GWASs14,15, it is also associated with brain 
aging, cognitive decline and neurodegeneration across other brain 
disorders, including amyotrophic lateral sclerosis, multiple sclerosis 
and Parkinson’s disease62–65. TMEM106B is also linked to higher levels 
of cerebrospinal fluid (CSF) neurofilament light (NfL) chain66—itself 
predictive of cognitive decline, brain atrophy and cortical amyloid 
burden in individuals with AD and mild cognitive impairment67. Higher 
levels of plasma NfL are also observed in individuals with depression68. 
Accordingly, colocalization between depression phenotypes and AD 
at TMEM106B indicates that depression may be genetically linked to 
overall brain health and the resulting general dementia risk. Our study 
suggests that this overlap may be driven by the genetic architecture of 
specific depression symptoms, highlighting the benefits of symptom-
level genetic analysis. However, SMR analysis indicates that levels of 
TMEM106B expression as measured in brain have directionally opposite 
effects for depression phenotypes and AD. As such, further work is 
required to better understand the role of TMEM106B in brain disorders.

Depression/depression symptom PRSs were not predictive of 
AD case/control status in three clinical samples, and we did not find 
evidence of any MR causal associations. Although in contradiction 
to the study by Harerimana et al.20, these MR findings are consistent 
with previous studies17,69. The overall lack of evidence in our analyses 
versus the relationship observed in previous epidemiological studies 
suggests the relationship is subject to unidentified confounding. The 
investigation of this is an important step for future research.

Previous studies have shown changes in the direction of MR effects 
depending on whether the outcome AD GWAS contains proxy or clinical 
cases/controls32, but this study differs in that it demonstrates a similar 
effect with genetic correlations. Of the significant genetic correlations 
we identified, 95% were identified in proxy + clinical or proxy-only AD 
GWASs. Where two previous studies18,20 identified a genetic correlation 
between depression and AD, it is noticeable that they used the Jansen 
et al. proxy + clinical AD GWAS as their primary outcome.

Exactly why depression/depression symptoms show differences 
in genetic correlation between proxy and clinical AD is a matter of 
interest, particularly as no genetic correlations were identified with the 
Bellenguez et al.15 GWAS, despite this also containing proxy + clinical 

Broad depression

0

2

4

6

8

10

12
rs3807865

0.2
0.4
0.6
0.8

r2

r2

r2

r2 r2

r2r2

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

a

b c d

e f g

Appetite changes

0

2

4

6

8

10

rs13234970
0.2
0.4
0.6
0.8

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

Bellenguez et al. 2022

0

2

4

6

8

10

rs5011432
0.2
0.4
0.6
0.8

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

Depressed mood

0

2

4

6

8

10

rs38078660.2
0.4
0.6
0.8

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

PHQ–9 sum score

0

2

4

6

8

10

rs12699338
0.2
0.4
0.6
0.8

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

Wightman et al. 2021

0

2

4

6

8

10

rs6460906 0.2
0.4
0.6
0.8

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

Wightman et al. excl. UKB

0

2

4

6

8

10

rs7785189

0.2
0.4
0.6
0.8

TMEM106B VWDE

12.1 12.2 12.3 12.4 12.5

Position on chr7 (Mb)

Plotted
SNPs

–l
og

10
(P

)

–l
og

10
(P

)
–l

og
10

(P
)

–l
og

10
(P

)

–l
og

10
(P

)
–l

og
10

(P
)

–l
og

10
(P

)

Fig. 4 | LocusZoom plots of the transmembrane protein 106B (TMEM106B) gene 
region, containing evidence of colocalization (PP.H4 ≤ 0.8). a–g, LocusZoom 
plots for broad depression (a), appetite changes (b), depressed mood (c), the 

PHQ-9 sum score (d), Bellenguez et al. (e), Wightman et al. (f) and Wightman et al. 
excluding UKB (g). The most significant variant for each phenotype is labeled in 
the respective plots.
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phenotyping. As mentioned, the Bellenguez et al.15 GWAS defines 
proxy cases/controls as a binary phenotype, whereas Wightman et al.14  
and Jansen et al.13 define proxy cases/controls as a continuous pheno
type. These phenotyping differences probably partially explain the 
differences in the genetic correlation results, given that all three GWASs 
use the same proxy cases/controls from UKB. However, genetic correla-
tions were also observed with the proxy-only Marioni et al.31 GWAS—a 
meta-analysis of maternal and paternal AD status where parental age-
at-diagnosis/age-of-death is controlled for in the GWAS model, instead 
of being used for weighting the proxy phenotype before analysis. Con-
sidering that depression is itself associated with all-cause mortality70, 
it is plausible that including age-at-diagnosis/age-of-death in proxy AD 
phenotyping induces a form of bias in later cross-trait analyses when 
the other trait is itself associated with longevity. Further investigation 
of this issue is required.

Nonetheless, conflicting results such as these pose a problem 
to researchers seeking to identify genetic relationships between AD 
and its risk factors. Large differences in the presence or direction of 
effects depending on which AD GWAS is used to assess associations 
increases the difficulty in discerning true associations. As such, a sen-
sible approach for future cross-trait genetic studies of AD would be to 
conduct primary analyses using a clinically ascertained AD phenotype, 
with different proxy/clinical ascertainment GWASs used to examine 
consistency. Although this approach would limit researchers to AD 
GWASs with smaller sample sizes for primary analyses, it would also 
ensure that the results are driven not by AD proxy phenotyping alone.

This study has several limitations. Despite it being such a large 
meta-analysis of PHQ-9 items, the ability to detect genome-wide sig-
nificant variants was probably limited by small sample sizes relative to 
other psychiatric conditions. Additionally, our analyses were restricted 
to individuals of European ancestry. The GWAS results may therefore 
have poor transferability to other ancestry groups. Furthermore, our 
study uses data from UKB, which is known to be affected by healthy 
volunteer bias and as a consequence is not fully representative of 
the wider population71. We also note that recent work by Huang and 
colleagues72 has suggested that the PHQ-9 capture does not capture 
the symptom-level genetic heterogeneity underlying depression as 
accurately as the Composite International Diagnostic Interview Short-
Form (CIDI-SF). Although the present study is better powered due to a 
larger overall sample size, we suggest that future GWAS meta-analyses  
of individual depression symptoms would benefit from utilizing  
multiple rating scales.

This study focused on depression as a risk factor for AD. However, 
there is evidence that some late-life depression represents a prodromal 
phase of dementia onset6,73, possibly related to dementia biomarker 
levels74. Therefore, dementia-related depression may be biologically 
distinct from depression as a mental health disorder. Future genomic 
studies of dementia-related depression—as undertaken with psychosis 
in AD75—could prove illuminating.

In conclusion, this study describes a genome-wide meta-analy-
sis of PHQ-9 depression symptom items (GWAS-equivalent N range: 
224,535–308,421), identifying 37 unique genomic risk loci. Genetic 
correlations between depression/depression symptoms and AD were 
primarily observed when the AD GWAS contained clinical + proxy or 
proxy-only AD case/control ascertainment. Despite null results in MR 
and PRS, colocalization in the TMEM106B region between four depres-
sion phenotypes and AD across both proxy and clinical AD GWASs 
suggests that future research is warranted into the shared biological 
mechanisms underlying the role of this locus in depression and AD.

Methods
GWAS in the UK Biobank, GLAD and PROTECT
Patient Health Questionnaire-9 phenotypes. The PHQ-9 is a well-
validated clinical screening questionnaire used to assess depression 
symptom severity on nine individual symptoms in the Diagnostic and 

Statistical Manual of Mental Disorders, fourth edition (DSM-IV)76. The 
severity of each symptom is measured by the self-reported persistence 
of that symptom over the preceding two weeks, on a scale of 0 to 3. 
Scores of 3 indicate an individual experienced that symptom nearly 
every day, 2 indicates an individual experienced that symptom on more 
than half the days, 1 indicates an individual experienced that symptom 
for several days, and 0 indicates no experience of that symptom at all. 
The sum of an individual’s scores over all nine items (sum score) ranges 
from 0 to 27. For an overview of the PHQ-9 items and response distri-
bution for each sample, see Supplementary Table 20. Supplementary 
Table 21 provides sum-score distributions.

Study population
In each GWAS sample, individuals were only retained if they had 
reported European ancestry and provided a valid response to all PHQ-9 
items. Individuals were excluded if they had reported a previous pro-
fessional diagnosis of schizophrenia, psychosis, mania, hypomania, 
bipolar or manic depression (UKB field ID 20544) or a previous prescrip-
tion of medication for a psychotic experience (UKB field ID 20466).

GWAS software
GWAS analyses were conducted using REGENIE v3.1.377. In step one of 
REGENIE, ridge regression is applied to a subset of quality-controlled 
variants to fit, combine and decompose a set of leave-one-chromo-
some-out (LOCO) predictions. Here, quality control for step one was 
undertaken using PLINK v1.978. In step two, imputed variants are tested 
for association with the phenotype. LOCO predictions from step one 
are included as covariates to control for proximal contamination. For 
all GWASs, genotyping batch, sex, age and age-squared were included 
as covariates, as were the maximum available genetic principal com-
ponents (PCs) for GLAD (10 PCs) and PROTECT (20 PCs) to control for 
population stratification. For the UKB analyses, 16 PCs were included, 
as recommended by Privé and colleagues79. Assessment center was 
also included as a covariate for UKB analyses.

A total of 40 GWASs were conducted for the meta-analyses—one 
for each of the nine PHQ-9 depression symptom phenotypes as well 
as the sum score across all nine items in each of the four samples. To 
maximize the statistical power, PHQ-9 phenotypes were treated as 
continuous (range of 0–3 for individual items and 0–27 for the sum 
score) and analyzed using linear regression. Analyses were restricted 
to the autosomes.

GWAS with UK Biobank
UKB is a large-scale biomedical database and research resource  
consisting of ~500,000 individuals with data across a broad range  
of phenotypes, including mental health outcomes36. Individuals in UKB 
have been genotyped on the custom UK Biobank Axiom or UKBiLEVE 
arrays, with imputed data available for ~90 million variants imputed 
with IMPUTE2 using the Haplotype Reference Consortium (HRC)80 and 
combined UK10K + 1000 Genomes Phase 3 reference panels81.

UKB participants completed the PHQ-9 in two online surveys. 
In total, 157,345 individuals provided responses as part of the Mental 
Health Questionnaire (UKB-MHQ) (category 136) between 2016 and 
2017, and 167,199 individuals provided responses as part of the Expe-
rience of Pain Questionnaire (UKB-EoP) (category 154) between 2019 
and 2020.

After filtering for self-reported European ancestry, valid PHQ-9 
responses and previous diagnosis/prescription exclusions, 144,630 
(UKB-MHQ) and 155,027 (UKB-EoP) individuals remained before 
genetic quality control for REGENIE. In step one, SNPs with a call rate 
of >98%, minor allele frequency (MAF) > 1% and Hardy–Weinberg equi-
librium test P > 1 × 10−8 were retained, as were individuals with variant 
missingness < 2%, no unusual levels of heterozygosity and not mis-
matched on sex. Individuals were retained if they were determined to 
be of European ancestry based on 4-means clustering on the first PCs.
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For the final GWAS analyses, 143,171 (mean age [s.d.] = 63.70 [7.68]; 
% female = 56.38%) and 152,932 (mean age [s.d.] = 65.95 [7.63]; % 
female = 56.57%) individuals proceeded from the MHQ and EoP ques-
tionnaires, respectively. Of these, 108,601 individuals had provided 
responses on both questionnaires. In step two, a total of 9,746,698 
imputed variants were retained with MAF ≥ 0.01 and imputation quality 
(INFO) score ≥ 0.7.

GWAS with the Genetic Links to Anxiety and Depression study
The GLAD study has the specific goal of recruiting a large cohort  
of recontactable individuals with anxiety or depression into the 
National Institute for Health and Care Research (NIHR) Mental Health 
BioResource, with genetic, environmental and phenotypic data  
collected34. Genotyping for GLAD was conducted using the UKB v2 
Axiom array and imputed using the TopMed imputation pipeline82.

After filtering for self-reported European ancestry, valid PHQ-9 
responses and previous diagnosis/prescription exclusions, 15,472 
individuals remained before genetic quality control for REGENIE 
step one. Genotype data were provided by the study team and had 
been filtered to retain SNPs with a genotype call rate > 95%, MAF > 1%, 
Hardy–Weinberg equilibrium test P > 1 × 10−10, and individuals with 
genotype missingness < 5%. Individuals were also excluded if they had 
unusual levels of heterozygosity, were mismatched on sex and were of 
non-European ancestry based on 4-means clustering. A total of 15,171 
individuals (mean age [s.d.] = 39.27 [14.61]; % female = 78.30%) were 
retained for the final analysis. In step two, a total of 13,979,187 imputed 
variants with MAF ≥ 0.001 and INFO ≥ 0.7 were analyzed.

GWAS with the PROTECT study
PROTECT is an online registry of ~25,000 UK-based individuals that 
aims to track cognitive health in older adults. Individuals were only 
considered eligible for inclusion in PROTECT if they were older than 
50 years, had no previous dementia diagnosis and had internet access. 
Genetic data are available alongside phenotypic data for ~10,000 of 
the participants. These individuals were genotyped on the Illumina 
Infinium Global Screening Array and imputed on the 1000 Genomes 
reference panel83 using the Michigan imputation server and genotype 
phasing using Eagle.

After filtering for self-reported European ancestry, valid PHQ-9 
responses and previous diagnosis/prescription exclusions, 7,589 indi-
viduals remained for genetic quality control for step one of REGENIE. 
Genetic data in PROTECT had been quality-controlled previously before 
imputation to only retain individuals and variants with a call rate of 
>98%, Hardy–Weinberg equilibrium test P > 0.00001 and excluding 
unusual heterozygosity35. Variants used in step one were down-sam-
pled from the imputed data using a snplist from the Illumina Infinium 

Global Screening Array provided by the PROTECT investigators. Vari-
ants were retained if they had MAF > 1%. After mismatched sex and 
4-means clustering ancestry exclusions, a total of 7,589 individuals 
(mean age [s.d.] = 61.96 [7.07]; % female = 75.13%) proceeded to step 
two. In step two, 9,388,534 imputed variants with MAF ≥ 0.001 and 
imputation INFO score ≥ 0.7 were analyzed.

GWAS summary statistics
An overview of additional summary statistics obtained for this study 
is provided in Table 2.

Clinical and broad depression
To examine potential differences in genetic overlap with AD between 
depression as a disorder compared to individual depression symptoms, 
summary statistics for two previously conducted GWASs of clinical 
and broad depression were obtained from the Psychiatric Genomics 
Consortium (PGC; https://pgc.unc.edu/for-researchers/download-
results/). For clinical depression, we used a subsample of the MDD 
GWAS by Wray et al.9 that excluded samples from the UKB and 23andMe, 
and contained only individuals for whom case ascertainment was 
defined through structured diagnostic interview or electronic health 
records. For the broad definition depression GWAS, we used a subsam-
ple of the depression GWAS by Howard et al.10, which also excluded 
samples from 23andMe. In addition to clinical cases and controls used 
by Wray et al.9, this broad depression GWAS included individuals in the 
UKB for whom case–control ascertainment was based on self-reported 
responses to the questions ‘Have you ever seen a general practitioner 
for nerves, anxiety tension or depression?’ and ‘Have you ever seen a 
psychiatrist for nerves anxiety, tension or depression?’

Alzheimer’s disease
Summary statistics were obtained from six previously conducted AD 
GWASs: three with proxy + clinical, one with proxy-only and two with 
clinical-only case ascertainment. All three of the proxy + clinical AD 
GWASs (Bellenguez et al.15, Wightman et al.14 and Jansen et al.13) and 
the proxy-only AD GWAS (Marioni et al.31) used data from the UKB for 
proxy AD samples.

There are some key differences in the way these AD GWASs define 
proxy cases and controls. Bellenguez et al.15 define proxy cases/con-
trols as a binary phenotype, whereby individuals reporting a parent 
with AD or dementia are considered cases and those reporting no 
parental history are considered controls. Wightman et al.14 and Jansen 
et al.13 instead define proxy cases/control as a continuous pheno-
type, summing the number of parents an individual has reported 
with dementia and down-weighting unaffected parents by their age 
(or age of death).

Table 2 | An overview of previously conducted GWASs for depression and AD used in this study

Phenotype (original GWAS) Excluded samples Cases (% clinical) Controls (% clinical) Total h2
SNP (s.e.)

Depression GWAS

Broad depression (Howard et al.10) 23andMe 170,756 (25.3%) 329,443 (29.0%) 500,199 0.0798 (0.003)

Clinical depression (Wray et al.9) UK Biobank; 23andMe 45,591 (100%) 97,674 (100%) 143,261 0.1012 (0.007)

Alzheimer’s disease GWAS

Clinical + proxy AD (Bellenguez et al.15 (Stage 1)) NA 85,934 (45.5%) 401,577 (14.0%) 487,511 0.0306 (0.003)

Clinical + proxy AD (Wightman et al.14) 23andMe 86,531 (46.1%) 676,386 (26.1%) 762,917 0.0237 (0.004)

Clinical + proxy AD (Jansen et al.13) NA 71,880 (33.5%) 383,378 (14.4%) 455,258 0.0234 (0.003)

Proxy-only AD (Marioni et al.31) IGAP 42,035 (0%) 272,243 (0%) 314,278 0.0165 (0.003)

Clinical-only AD (Wightman et al. (no UKB) (2021)) UK Biobank; 23andMe 39,918 (100%) 358,140 (29.1%) 398,058 0.0431 (0.008)

Clinical-only AD (Kunkle et al.12 (Stage 1)) NA 21,982 (100%) 41,944 (86.2%) 63,926 0.068 (0.011)

Heritability estimates were calculated naïvely on the liability scale from these standardized summary statistics using LDSC, taking a population prevalence of 15% for depression and 5% for AD. 
NA, not applicable; h2

SNP, SNP heritability.
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For the proxy-only Marioni et al.31 GWAS, summary statistics were 
obtained from a meta-analysis of paternal and maternal AD. Here, 
proxy phenotyping was based on the self-report of either maternal or 
paternal AD, including the parent’s age at the time of reporting/age of 
death as a covariate.

Summary statistics from a clinical-only subsample of the GWAS 
by Wightman et al. that excluded proxy cases/controls from the UKB37 
were obtained from the authors. Summary statistics for a final clinical-
only AD GWAS were obtained from stage 1 of the GWAS by Kunkle and 
colleagues12.

Summary statistic standardization
Summary statistics from all 40 depression symptom GWASs, the  
two depression GWASs and the six AD GWASs were standardized  
using MungeSumstats84 in R version 4.2.1. Using dbSNP 141 and the 
BSgenome.Hsapiens.1000genomes.hs37d5 reference genome, missing 
rsIDs were corrected, duplicates and multi-allelic variants removed, 
effect alleles and the direction of their effects aligned to the reference 
genome, and variants filtered at an INFO score of ≥0.7 and MAF ≥ 0.01. 
The GLAD Study and Bellenguez et al.15 summary statistics were lifted 
over from GRCh38 to GRCh37.

SNP heritability
SNP heritability (h2

SNP) estimates were calculated using LDSC39. Briefly, 
LDSC calculates h2

SNP by regressing the effect sizes from GWAS sum-
mary statistics on their LD score as computed in a reference panel—in 
this case HapMap3 variants contained within the European sample 
of 1000 Genomes Phase 3. Liability scale h2

SNP was calculated naïvely 
from the standardized depression GWAS and AD GWAS using a 15% 
and 5% population prevalence, respectively9,14. Heritability z-scores 
were calculated for all phenotypes by dividing the h2

SNP estimates by 
their standard error.

GWAS meta-analysis of depression symptoms
To leverage the maximum genetic information available controlling 
for the sample overlap between the UKB-MHQ and UKB-EoP sam-
ples, the REGENIE output for each PHQ-9 phenotype from the UKB-
EoP, GLAD Study and PROTECT were first subject to inverse variance 
weighted (IVW) meta-analysis using METAL85. All available variants 
were included, for a total of 8,425,618 (N = 175,692). Multi-trait analysis 
of GWAS (MTAG)38 v1.0.8 was then used to meta-analyze the METAL 
output with the UKB-MHQ sample. Although MTAG is commonly 
used for the joint genetic analysis of multiple traits or multiple meas-
urements of the same trait, by assuming the heritability of included 
phenotypes are equal (--equal-h2) and their genetic correlation is 
one (--perfect-gencov), MTAG performs an IVW meta-analysis of the 
same measures of the same trait, accounting for sample overlap using 
the cross-trait intercept from LDSC39,40. Heritability estimates for all 
samples, plus the METAL meta-analysis, are shown in Supplementary 
Table 22. Genetic correlations between the UKB-MHQ and METAL 
GWAS are provided in Supplementary Table 23. For greater detail 
on the IVW function of MTAG, see the online methods of the original 
MTAG paper38. A total of 8,196,874 SNPs with MAF > 0.01 were avail-
able for MTAG analysis.

This MTAG function provides one set of summary statistics and two 
GWAS-equivalent sample sizes—one for each original sample included. 
A single, weighted GWAS-equivalent N was obtained for each PHQ-9-
MTAG GWAS, using the following formula:

N (final) = (N1 (pre) × N1 (post)) + (N2 (pre) × N2 (post))
N1 (pre) + N2(pre)

where N1 and N2 represents the UKB-MHQ and METAL GWASs, respec-
tively, pre is the mean sample size prior to inclusion in MTAG, and post 
is the GWAS-equivalent sample estimated by MTAG following analysis.

Genomic risk loci and gene annotation
The GWAS meta-analysis results were annotated using FUMA GWAS86 
v3.1.6a. Genome-wide significance was set at P ≤ 5 × 10−8. Lead variants 
at genomic risk loci were defined by clumping all variants correlated at 
r2 > 0.1, 250 kb either side, performed using the European sample of the 
1000 Genomes Phase 3 reference panel. Lead variants were mapped to 
genes within 10 kb using positional mapping and eQTLs from four brain 
(BrainSeq87, PsychENCODE88, CommonMind89 and BRAINEAC90) and 
five blood (BloodeQTL91, BIOS92, eQTLGen cis and trans93, Twins UK94 
and xQTLServer95) eQTL datasets, alongside all 54 tissue-type eQTLs 
from GTEx v8 (https://gtexportal.org/home/tissueSummaryPage).

Genetic correlations
Genetic correlation can be understood as the genome-wide correlation 
of genetic effects between two phenotypes, and as such can be viewed 
as an estimate of pleiotropy39.

Genetic correlations were calculated between each depression 
phenotype and the six AD GWASs using High Definition Likelihood v1.4.1 
(HDL)96. HDL extends the LDSC framework by leveraging LD information 
from across the entire LD reference panel through eigen decomposition, 
thus shrinking standard errors and improving precision. A pre-com-
puted eigenvector/value LD reference panel calculated from 335,265 
individuals of European ancestry in the UKB was obtained via the HDL  
GitHub entry (https://github.com/zhenin/HDL/wiki/Reference-panels).  
This reference panel was calculated using 1,029,876 imputed, auto-
somal HapMap3 SNPs, with bi-allelic SNPs outside the major histo-
compatibility (MHC) region, MAF > 5%, call rate > 95% and INFO > 0.9 
retained.

Local genetic correlations
Local genetic correlation assesses the correlation of genetic effects 
between two phenotypes in a specific region of the genome. It pro-
vides a more refined examination of genetic overlap, allowing for the 
identification of key regions driving a shared genetic architecture.

LAVA41 was used to assess regions of local genetic correlation 
between each depression phenotype and the six AD GWASs across 
2,495 semi-independent, predefined LD blocks of at least 2,500 base 
pairs (https://github.com/josefin-werme/LAVA). Loci-specific herit-
ability estimates were calculated for each phenotype for each block. 
If both a depression phenotype and an AD GWAS showed significant 
local heritability at a specific locus (Bonferroni-corrected P ≤ 2 × 10−5 
(0.05/2,495)), bivariate local genetic correlation was tested. Bivariate 
results were considered significant at PFDR ≤ 0.05, correcting for the 
total number of bivariate tests. Sample overlap was accounted for using 
an LDSC intercept matrix. Analysis was restricted to the 5,531,969 non-
strand-ambiguous variants shared across all GWAS summary statistics 
and on the European ancestry 1000 Genomes Phase 3 reference panel.

Colocalization
Colocalization using COLOC is a Bayesian statistical method to assess 
the probability of two phenotypes sharing a causal variant in a prede-
fined genomic region. Within the colocalization framework, posterior 
probability is assessed for five hypotheses:

H0: there is no causal variant in the region for either phenotype
H1: there is a causal variant in the region for the first phenotype
H2: there is a causal variant in the region for the second phenotype
H3: there are distinct causal variants for each trait in the region
H4: both traits share a causal variant.

Colocalization analysis was conducted using the COLOC-reporter 
pipeline42 (https://github.com/ThomasPSpargo/COLOC-reporter). 
COLOC-reporter extracts variants in user-defined genomic regions  
and calculates the LD matrix for this region from a user-defined refe
rence panel. In this study, this panel is the European ancestry sample 
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of 1000 Genomes Phase 3 (N = 503). It then harmonizes the summary 
statistics to match the allele order of the reference panel, flipping 
effect directions accordingly. Observed versus expected z-scores are 
assessed using the diagnostic tools provided in the susieR R package97. 
The z-score outliers are omitted. Following this quality control, SuSiE 
fine-mapping97 is conducted to identify 95% credible sets in these 
regions for each phenotype. Identification of credible sets in both phe-
notypes allows for relaxation of the single causal variant assumption. 
All possible credible sets are then assessed pairwise for a shared signal 
between phenotypes, improving the resolution for colocalization infer-
ence in regions containing multiple signals98. Should no 95% credible 
set be identified or only identified for one phenotype, colocalization 
under the single causal variant assumption is performed using coloc.
abf99. A posterior probability of ≥80% for H4 was considered evidence of 
colocalization between two phenotypes (PP.H4 ≥ 0.8). The SuSiE model 
assumed at most ten causal variants (L = 10) per credible set. We used 
default priors (P1 = 1 × 10−4, P2 = 1 × 10−4, P12 = 5 × 10−6).

Trait pairs with LAVA correlations significant at PFDR ≤ 0.05 were 
passed to COLOC-reporter. Where the same depression phenotype 
showed nominally significant local genetic correlation at the same 
locus but with different AD GWASs, these phenotype pairs were 
included as a sensitivity analysis. Regions ±250 kb (r2 ≥ 0.1) from lead 
variants at genome-wide significant loci from the MTAG-PHQ-9, broad 
and clinical depression GWASs were also examined for evidence of 
colocalization with the six AD GWASs.

Follow-up SMR analysis at TMEM106B
Identified cross-trait colocalization between multiple depression phe-
notypes and AD (both clinical only and clinical + proxy) at 12,000,920–
12,532,993 was followed up using SMR46 software v1.3.1. SMR integrates 
eQTL and GWAS summary data within an MR framework to identify 
genes with expression levels linked to a phenotype of interest through 
pleiotropy. Resulting associations can be interpreted as assessing 
whether the effect of a variant on a phenotype is mediated through 
gene expression. In our analysis, only probes for genes in colocali
zing region chr7: 12000920–12532993 (TMEM106B and VWDE) were 
assessed. We used eQTL summary data for gene expression in peri
pheral blood from ref. 100 (N = 2,765) and prefrontal cortex from  
PsychENCODE101 (N = 1,387) (https://yanglab.westlake.edu.cn/software/ 
smr/#eQTLsummarydata). We included only probes for which there 
was ≥1 cis-eQTL significant at P ≤ 5 × 10−8. We used the heterogeneity 
in dependent instruments (HEIDI) test to identify association driven 
by LD as opposed to pleiotropy (PHEIDI ≥ 0.05 genuine pleiotropy). The 
HEIDI test is in essence a test of colocalization.

Mendelian randomization
MR is a statistical method that uses genetic variants associated with an 
exposure as instrumental variables to assess the causal effect of that 
exposure on an outcome of interest102. The two-sample MR framework 
estimates the causal relationships between an exposure and outcome 
using GWAS summary statistics. Valid MR instruments are defined by 
three key assumptions: (1) relevance—instrumental variables (IVs) 
are strongly associated with the exposure of interest; (2) independ-
ence—there are no confounders in the association between IVs and 
the outcome of interest; and (3) exclusion restriction—instruments are 
not associated to the outcome other than via exposure, for example, 
through horizontal pleiotropy102.

Sample overlap is a known source of bias in TwoSampleMR103. 
Given the likelihood of sample overlap between the depression pheno-
types and the AD GWASs containing proxy cases/controls due to partici-
pants from the UKB, MR analysis was primarily conducted using ‘causal 
analysis using summary effect’ estimates (CAUSE)47 v1.2.0. CAUSE is 
a Bayesian MR method robust to sample overlap and correlated and 
uncorrelated pleiotropy. As such, it is robust to exclusion restriction 
assumption violations104. CAUSE uses a larger set of instruments than 

traditional MR methods. As such, clumping was performed with the 
default setting at r2 ≥ 0.01 and P ≤ 0.001 within a 10,000-kb window.

Causal estimates were also calculated using the traditional IVW 
method. IVW estimates are biased by the presence of horizontal pleio
tropy105. Sensitivity analyses were therefore conducted using MR-Egger, 
weighted-median and weighted-mode MR. These methods allow for 
varying degrees of pleiotropy while providing unbiased causal esti-
mates106–108. MR-PRESSO109 was also implemented. MR-PRESSO iden-
tifies and excludes outlying instruments based on their contribution 
to heterogeneity and provides a corrected causal estimate. For these 
tests, instruments were clumped at r2 ≥ 0.001 and P ≤ 5 × 10−8 within 
10,000 kb. Where no or fewer than five instruments were available 
at P ≤ 5 × 10−8, a P ≤ 5 × 10−6 threshold was used. These analyses were 
conducted using the TwoSampleMR package v0.5.6

Pleiotropy was assessed using the MR-Egger intercept test110 (sig-
nificant pleiotropy, P ≤ 0.05). Heterogeneity tests were also conducted 
for IVW and MR-Egger estimates using Cochran’s Q tests111 (significant 
heterogeneity, P ≤ 0.05). Instrument strength was calculated via the 
F-statistic (recommended F-statistic ≥ 10)112 (β2/s.e.2). IGX

2 was calcu-
lated to ensure that the measurement error was sufficiently low so 
as to ensure the validity of results from MR-Egger (recommended 
IGX

2 ≥ 0.90)113. For all analyses, instruments were clumped using data 
from individuals of European ancestry in 1000 Genomes Phase 3.

The APOE gene is known to be associated with non-AD pheno-
types such as type 2 diabetes114, which has been linked to depression 
in previous MR analyses115. As such, the inclusion of APOE violates MR’s 
independence assumption. All MR analyses were therefore conducted 
excluding variants in the APOE region (chr19: 45020859–45844508 
(GRCh37)) as per ref. 116. To investigate the involvement of the APOE 
region in both depression/depression symptoms and AD, we perform a 
separate cross-trait colocalization analysis in the same manner detailed 
above across all depression and AD phenotype trait-pairs at chr19: 
45020859–45844508.

Polygenic risk scores
PRSs describe the sum of an individual’s risk alleles, weighted by their 
effect size117. The ten PHQ-9-MTAG, clinical depression and broad defi-
nition depression GWASs were processed for PRSs using the BayesR-
SS function of MegaPRS, implemented in LDAK v5.2.1118. BayesR-SS 
assumes the BLD-LDAK heritability model, incorporating 65 genome 
annotations such as whether the variants are in coding regions or highly 
conserved118. Annotation files were obtained from the LDAK website 
(http://dougspeed.com/bldldak/). PRS calculation was restricted to 
the 1,217,311 HapMap3 SNPs, with strand-ambiguous SNPs excluded.

The predictive utility of PRSs for AD case/control status was 
assessed using logistic regression in three clinically ascertained 
AD cohorts: AddNeuroMed and Dementia Case Register Studies 
(ANM)119 (Ncases = 564; Ncontrols = 345) (mean age [s.e.] = 78.8 [6.92], 
% female = 58.65%), the Alzheimer’s Disease Neuroimaging Initi
ative (ADNI; https://adni.loni.usc.edu) (Ncases = 356; Ncontrols = 360) 
(mean age [s.e.] = 78.6 [6.55], % female = 44.55%) and the Genetic 
and Environmental Risk in Alzheimer’s Disease (GERAD1) Consor-
tium (https://portal.dementiasplatform.uk/CohortDirectory/Item? 
fingerPrintID=GERAD) (Ncases = 2,661; Ncontrols = 1,124) (mean age [s.e.] =  
76.6 [6.77], % female = 65.01%) (Supplementary Table 24). All analyses  
controlled for age, sex and ten PCs, and were restricted to indivi
duals aged ≥65 years to provide clean controls. As a sensitivity analysis,  
PRSs were also calculated in these cohorts excluding the APOE  
region. Genetic quality control and imputation steps for these cohorts 
can be viewed in detail in the study by Lord and colleagues120.

We also assessed the predictive utility of AD PRSs on all ten PHQ-9 
outcomes using linear regression, controlling for the same covariates. 
We used all six AD summary statistics to calculate scores including  
and excluding the APOE region. To avoid sample overlap between base 
and target datasets, we use the GLAD and PROTECT samples as the 
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target dataset. We further filtered GLAD to exclude genetically related 
individuals up to third degree using a pi_hat cutoff value of 0.1875.  
The final GLAD PRS target sample contained 14,900 individuals (mean 
age [s.d.] = 39.20 [14.56], % female = 78.22). No such further exclusions 
were required for PROTECT.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
All GWAS summary statistics generated in the process of conducting 
this study have been deposited on Zenodo at https://doi.org/10.5281/
zenodo.13828101 (ref. 121). Individual-level data from UK Biobank, 
GLAD and PROTECT are subject to restrictions. Data are available on 
reasonable request from UK Biobank (https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/contact-us) through application to the 
NIHR BioResource for GLAD (https://bioresource.nihr.ac.uk/using-
our-bioresource/academic-and-clinical-researchers/apply-for-bio
resource-data/) and through the PROTECT data team (https://medicine.
exeter.ac.uk/clinical-biomedical/research/protect/). The Alzheimer’s 
disease GWAS summary statistics used in this study are publically avail-
able through the GWAS catalog (https://www.ebi.ac.uk/gwas/efotraits/
MONDO_0004975). GWAS summary statistics for the Wightman et al.  
GWAS excluding the UK Biobank are available at https://vu.data. 
surfsara.nl/index.php/s/LGjeIk6phQ6zw8I. For clinical and broad 
depression, summary statistics are available through the Psychiatric 
Genomic Consortium (https://pgc.unc.edu). eQTL summary datasets 
used in SMR analysis from Lloyd-Jones et al.100 and PsychENCODE101 can 
be obtained from the website of the Yang laboratory (https://yanglab.
westlake.edu.cn/software/smr/#eQTLsummarydata). This study has 
been pre-registered on the Open Science Framework (https://osf.
io/94q35/?view_only=e77f72d4100d47eea7f3ef07dfa9c059).

Code availability
Code for performing these analyses has been deposited on GitHub 
(https://github.com/lpgilchrist/PHQ-9_AD_genetic_overlap_project). 
This study made use of the following publicly available analysis soft-
ware: CAUSE (https://jean997.github.io/cause/index.html); coloc 
(https://chr1swallace.github.io/coloc/); COLOC-reporter (https://
github.com/ThomasPSpargo/COLOC-reporter); FUMA GWAS (https://
fuma.ctglab.nl); HDL (https://github.com/zhenin/HDL); LAVA (https://
github.com/josefin-werme/LAVA); LDSC (https://github.com/bulik/
ldsc); MegaPRS (https://dougspeed.com/megaprs/); METAL (https://
genome.sph.umich.edu/wiki/METAL_Documentation); MTAG (https://
github.com/JonJala/mtag); MungeSumstats (https://github.com/ 
Al-Murphy/MungeSumstats); REGENIE (https://rgcgithub.github.
io/regenie/); SMR (https://yanglab.westlake.edu.cn/software/smr/); 
susieR (https://stephenslab.github.io/susieR/index.html); TwoSam-
pleMR (https://mrcieu.github.io/TwoSampleMR/).
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