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Abstract
The COVID-19 pandemic has dramatically highlighted the importance of developing simulation systems for quickly charac-
terizing and providing spatio-temporal forecasts of infection spread dynamics that take specific accounts of the population
and spatial heterogeneities that govern pathogen transmission in real-world communities. Developing such computational
systems must also overcome the cold-start problem related to the inevitable scarce early data and extant knowledge regard-
ing a novel pathogen’s transmissibility and virulence, while addressing changing population behavior and policy options
as a pandemic evolves. Here, we describe how we have coupled advances in the construction of digital or virtual models
of real-world cities with an agile, modular, agent-based model of viral transmission and data from navigation and social
media interactions, to overcome these challenges in order to provide a new simulation tool, CitySEIRCast, that can model
viral spread at the sub-national level. Our data pipelines and workflows are designed purposefully to be flexible and scalable
so that we can implement the system on hybrid cloud/cluster systems and be agile enough to address different population
settings and indeed, diseases. Our simulation results demonstrate that CitySEIRCast can provide the timely high resolution
spatio-temporal epidemic predictions required for supporting situational awareness of the state of a pandemic as well as for
facilitating assessments of vulnerable sub-populations and locations and evaluations of the impacts of implemented interven-
tions, inclusive of the effects of population behavioral response to fluctuations in case incidence. This work arose in response
to requests from county agencies to support their work on COVID-19 monitoring, risk assessment, and planning, and using
the described workflows, we were able to provide uninterrupted bi-weekly simulations to guide their efforts for over a year
from late 2021 to 2023. We discuss future work that can significantly improve the scalability and real-time application of this
digital city-based epidemic modelling system, such that validated predictions and forecasts of the paths that may followed by
a contagion both over time and space can be used to anticipate the spread dynamics, risky groups and regions, and options
for responding effectively to a complex epidemic.
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Introduction

The ongoing COVID-19 pandemic has dramatically high-
lighted the potential that communicable diseases continue
to possess for producing highly destructive global public
health and socio-economic threats [7, 31]. The recent epi-
demics associated with influenza (H1N1) in 2009, the 2011
Escherichia coli outbreak in Germany, Ebola in West Africa
in 2014, Zika in the Americas in 2016, West Nile virus
outbreaks in Europe in 2019, dengue in South America in
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2019, and the COVID-19 pandemic that began in 2019 addi-
tionally attest to the possibility that new infectious disease
outbreaks can emerge at any time anywhere in the world
[31, 73]. This threat calls for improved understanding of
the invasion and transmission dynamics of epidemic diseases
especially in a globalized, interconnected, world, on the one
hand, and, on the other, the need for improving predictions of
the spread of novel pathogens that also take explicit account
of the localized characteristics of settings in order to support
effective policy making [15]. They show how making such
predictions require addressing the combined effects of deep
uncertainty, the impact of intrinsic biology, transmissibility
and mutability of a pathogen, the role and outcomes of social
heterogeneities and human behavior, and the effects of spa-
tial scale and variability in disease propagation [15, 48, 52,
74].

These contagions, including in the case of COVID-19,
have directed attention on the modelling paradigms that are
best able to capture the effects of these diverse factors reli-
ably [4, 15, 33, 68, 71]. They have also concentrated focus on
the computational workflows and data pipelines required to
assemble input data, learn and runmodels, and provide infor-
mation to policymakers at the lead times required formaking
decisions at various spatial scales, including for targeting
responses to different subpopulations and risky locations [2,
3, 50, 62, 64]. At its core, these challenges from a disease
modelling perspective relate to both the tasks of how best to
design dynamic in-silico models whose simulated behavior
captures the heterogenous transmission and controllability
of novel and extant infectious agents, and the correspond-
ing construction of computational and data systems agile
enough to respond to rapidly changing knowledge and policy
objectives as these pathogens establish and spread in diverse
populations. We indicate that both these challenges present
a major barrier to creating and using models for predicting
the transmission dynamics of epidemic diseases, especially
when extant knowledgeof the risk factors andpathogen trans-
missibility and virulence is limited during the early stage of
the invasion of a novel outbreak [51].

The COVID-19 pandemic has also exacerbated and
exposed societal inequities for promoting the spread of
the contagion as well as for producing variable health and
economic outcomes among different subpopulations and
geographies [35]. This calls for developing models that
are structurally sufficiently detailed for enabling reliable
simulations of the effects and outcomes of these soci-
etal heterogeneities. Indeed, understanding how interactions
between these heterogeneous components of society may
operate and affect pathogen transmission in a population will
be key to the predictability and controllability of an infec-
tious disease contagion [15, 48, 50]. It will also be critical
to assessing and managing societal resilience to large-scale
epidemic outbreaks [45]. While several complex data-driven

agent-based models (ABMs) have been developed to address
aspects of the above modelling challenges [30, 34, 43, 50],
three key features remain that impede the development of
the systemic modeling approaches required to address epi-
demic transmission in complex social systems [15]. The first
two of these concerns data for informing model develop-
ment and calibration [37]. These relate firstly to the cold
start problemwhereby when a new pathogen starts to spread,
health departments always need a long lead time to reli-
ably collect sufficient data both on risky subpopulations,
activities, and settings as well as on pathogen characteris-
tics, to generate reliable public responses [15, 37, 51]. The
second data-related issue is connected with the invariable
privacy and confidentiality problems connected with health
and population data resulting in both restricted and delayed
availability of key spatio-demographic, transmission, and
disease-related information required to construct and param-
eterize the appropriate epidemic models [37]. Finally, the
third factor impeding the discovery and construction of epi-
demiological models for new pathogens is that while there
exists a growing list of infectious disease models contributed
by independent research activities, these are often not devel-
oped for the purpose of reuse or with interoperability in mind
meaning that the potential and rapid use of these models or
even construction of newmodels based on existingmodelling
frameworks is presently severely limited [37].

In recent years, two developments in simulating reality
have emerged that may provide a means to overcome the
challenges described above for simulating the transmission
of infectious pathogens in the real world. The first is the use
of a digital twin (DT) as a simulation process for generating
a virtual representation of the city’s or community’s phys-
ical assets, population characteristics, processes and flows
that are connected to all the data related to them and their
surrounding environment [16, 17, 53]. As it aims to reflect
the whole life cycle process of the corresponding real-world
city by tight coupling of the physical and virtual entities
and the connections between them [26], such city simula-
tions can further be updated and changed as their physical
equivalents change. These attributes of a DT, particularly its
mirroring and ability to simulate factors, such as environmen-
tal conditions, population characteristics and movement, via
mapping to dynamic real-world data, means that a place DT
may not only allow more informed outbreak simulations by
appropriate epidemiological models, but may also provide
a significant solution to the cold start and privacy prob-
lems noted above that currently plagues the development of
outbreak models [51]. Basing outbreak models on the demo-
graphic and locational foundations of city or place DTs can
also further enhance the scope for repurposing such models
effectively to incorporate the characteristics of diverse places
and populations as well as provide the basis for adding new
disease models for different pathogens [43].
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Second, agent-based modelling and simulation of disease
propagation has been shown to be a natural way to accommo-
date the effects of heterogenous characteristics and behaviors
of individuals for simulating disease transmission and spread
in a given geographic space [8, 40]. In particular, in an ABM-
based disease simulation application, a disease transmission
model is built on a generative and bottom-up process that
can integrate three types of components: the agents and their
susceptibilities and behaviors, the environment in which the
agents operate by perceiving its state and acting accordingly,
and finally, the mechanisms and processes that drive agent
interactions [8, 32, 34]. Capturing the transitions involved in
these interactions can further allow more realistic simulation
of the outcomes of more specific and realistic interventions,
such as imposing restrictions on specific types of businesses
or other places, wearing of masks, and/or distribution of
vaccinations, closely resembling those considered by pub-
lic health officials.

These developments suggest that coupling disease ABM
models with place DTs could provide a key tool for improv-
ing simulation of the propagation of pathogens in complex
real-world settings [2, 5]. Here, we develop CitySEIRCast
(Fig. 1), a multidimensional, multi-resolution, multi-scale
DT simulation framework coupled with a flexible ABM and
High-Performance Computing (HPC), as a modelling tool to
more realistically simulate the transmission of a pandemic
among the diverse subpopulations and settings of an urban
locality, focusing on the COVID-19 pandemic as an exam-
ple. Given the dynamic evolution of information regarding
the epidemiology of SARS-CoV-2 and the shifting foci of
interventions and priorities of city and county officials, we
also focused on the adaptability of CitySEIRCast to produce
outputs that are better able to reflect these changes over time.
Although our co-simulation framework is applied in the con-
text of the COVID-19 pandemic in Hillsborough County,
Florida, a feature arising from our objective to make the sys-
tem interoperable is designing CitySEIRCast in such a way
as to make it easily adaptable to other cities and to other
infectious diseases of concern.

The paper proceeds as follows. In the next Section, we
present the background details of ABMs and DTs with
descriptions of their respective modelling frameworks. In
Section "Framework and methodology", we describe the
methodology, algorithms, workflows and data pipelines used
to build CitySEIRCast. In Section "Assigning attributes to
agents:",we present themain results of our coupledDT-ABM
co-simulation system. In Section "Summary and conclu-
sion", we discuss the potential impact of our work for using
coupled DT-ABMs as tools for modelling diseases in real-
world societies and highlight the next stage of work required
to leverage CitySEIRCast for co-simulating cities and urban
infectious disease transmission dynamics.

Literature review

In this section we discuss and compare existing tools and
frameworks, related to DTs for health, including for COVID-
19, and to agent-based disease modelling in general.

The digital twin

The technological advancements of Industry 4.0—smart sys-
tems, artificial intelligence and machine learning, Internet of
Things (IOT), big data management, cloud and edge com-
puting, among others [58]—have piloted the development
of the DT, a novel technology that merges the physical and
digital worlds. The DT can be defined as a virtual model
of a physical entity or process of any scale and all its inter-
acting relevant components and properties [16, 25, 65]. The
three main constituents of a DT, as established originally by
Grieves [25], are the physical entity, the virtual replica of the
physical entity, and the mutual communication between the
physical entity and the virtual replica. Tao et al. [66] devel-
oped the five-dimension DT concept that includes data and
services as two additional DT components. In this conceptual
model six two-way connections exist between all the ele-
ments of the model—between physical entity and services,
physical entity anddata, physical entity andvirtualworld, vir-
tual world and data, virtual world and services, and between
services and data.

The virtual or digital replica must copy the physical
world’s characteristics, elements, complexity, processes,
interactions, external factors, and events with high fidelity
and resolution, and to accomplish this, the DT includes
and interacts with multiple interdisciplinary technologies,
devices, and methods [16, 66]. There is thus no defined
method or platform for creating the virtual twin [65]. Never-
theless, the method or platform chosen must have the ability
to construct a virtual model of high accuracy and fine-grain
detail, which can be verified by validation methods [65]. At
the current state of DT technology, the physical entity to be
replicated can be a device or machine or a city, a biologi-
cal being (including human beings), a system, a system of
systems, an environment, or a process. In the case of DT
applications to public health, most employed thus far have
focused on improving patient management and demand [57],
although its potential for the prediction and management
of infectious disease outbreaks in populations is increas-
ingly receiving attention [2, 5, 51]. In the latter case, the
virtual world needs human behavioral models that capture
the expected actions of the inhabitants of the physical world
and predict their actions under changing patterns. One way
to do this is by adding an ABM layer [5], which generates
‘agents’ as entitieswith constraints to simulate expected real-
life behaviors of the inhabitants residing in the physicalworld

123



83 Page 4 of 29 Complex & Intelligent Systems (2025) 11 :83

Fig. 1 a A schematic representation of a digital city as a virtual twin of a physical city. b Our framework combining a digital city consisting of the
virtual environment (buildings, routes) and synthetic population with the ABM disease model

[32]. Rule-based models that drive the virtual agent’s ability
to reason may also be needed [9].

Ultimately, the DT functions to aid in decision-making for
improving the physical entity. The DT has the ability to test
and analyze the outcomes of what-if scenarios and possible
strategies to solve challenges before implementing them in
the real world. With the seamless communication and trans-
mission of data between the two worlds, the virtual space is
constantly updated with data from the physical space and the
physical space is informed with the results of what-if sce-
nario testing in the virtual space. A feedback loop is formed
(Fig. 1a), where the physical world implements decisions
based on the outcomes of different interventions in the vir-
tual space, and over time the virtual space is updated with the
outcomes of the interventions decided to be implemented in
the physical space [54].

Constructing city DTs for supporting disease outbreak
analytics and forecasting usually involves modeling the dis-
ease of interest and the heterogeneities involved, tracking
cases or other health events attributed to the disease, and
simulating individuals of the affected population as well
as the complex social dynamics between themselves, with
the surrounding environment, and with the infectious agent.
However, there are a variety of methods by which DTs for
disease have been created, which is a testament to the flexi-
bility and adaptability of such frameworks.

Thus, Deren et al. [17] proposed the Smart City Public
Epidemic Service System to integrate smart city simulation
frameworks with healthcare institutions as well as patient
health and movement data. Patient health data is used to
assess the height and severity of the epidemic curve and
movement data is used to determine the spatiotemporal trends
of the epidemic. Using smart city infrastructure, the Epi-
demic Service System tracks, locates, and follows up on

confirmed cases, and is therefore able to perform analyses
of the dynamics of disease transmission, detect areas where
risk of transmission is high, and send warnings of exposure
risk to citizen smartphones. The system relays its epidemic
analysis to government and health organizations to make in-
tandem decisions regarding the strategies to adopt to halt
disease transmission.

During theCOVID-19 pandemic, DT frameworks specific
to COVID-19 were proposed to help alleviate the impact of
the pandemic. These DTs were constructed with different
approaches and are tailored to fill gaps in the strategies to
reduce the health and economic impact of the pandemic,
but fundamentally they are all efforts to capture accurate
COVID-19 disease transmission dynamics, pandemic trends,
population behaviors during pandemic times, and the effec-
tiveness of public health prevention andmitigationmeasures.
Barat et al. [5] developed a DT framework to analyze the
effect of non-pharmaceutical interventions to halt the spread
of COVID-19 using the help of a DT of Pune City, India,
coupled to an ABM. The ABM aspect of the Pune DT cap-
tures the demographic distribution of the population, their
movements and interactions, and the strategic interventions
that can be imposed by public health authorities. The authors
program each type of agent with their own time schedule and
movement pattern; and in the case of places, the typeof agents
that frequent the place and the type of agent interactions that
can occur inside a place.

Pang et al. [51] outlined a multi-city COVID-19 project
where each city and its population, spatial, and epidemi-
ological aspects are modeled via DTs that are capable of
self-improving by learning from itself and other city DTs
through what the article calls local and global updates. Local
updates refer to the collection and storage of historical and
real-time public health data through IoT devices or relevant
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reliable sources of data. Global updates instead refer to cities
uploading their parameters to a central server for other cities
to learn and update their DTs. The federated updates are
thought to be significant for helping authorities make public
health decisions because a city that has taken a public health
measure that others have not can upload its parameters before
and after taking the measure so that other cities can conclude
whether or not to impose the said measure.

Zhao et al. [75] proposed iGather, a smart contact tracing
platform in the COVID-19 context that uses DT methods
to precisely and anonymously map individuals and their
real movement patterns through digital devices in a virtual
space. The DT creates a link between individuals, commu-
nity, workplaces, and health institutions to provide health
guidance, alert individuals of possible exposure, track cases
temporally and spatially, and identify areas of high transmis-
sion.

In contrast, and highlighting the diversity of DT construc-
tion methods, Meuser et al. [46] created a DT of a city in a
game platform called ‘Cities: Skylines’ designed to build and
manage highly detailed cities. The researchers modified the
game platform to add an infectious disease dynamic layer to
simulate COVID-19 transmission. A realistic population is
replicated in this game by assigning demographic character-
istics and movement patterns to the simulated individuals in
order to capture accurate COVID-19 disease dynamics. Their
framework may be adapted to other infectious diseases.

Pilati et al. [55] assembled a DT of COVID-19 mass vac-
cination centers to coordinate resources, reduce wait-times,
and synchronize patient walk-ins while keeping measures
to prevent COVID-19 transmission inside the facility. It
achieves these goals by dividing the process of vaccination
into phases, collecting time data of these phases at a case-
study vaccination center with smartphones, and reproducing
it in a virtual simulation of the vaccination center to digitally
test different methods in which wait times can be reduced.
With the DT tool, the researchers were able to find time-
effective strategies specific to the situation of the vaccination
center modeled.

With the cutting-edge developments of Industry 4.0 (Inter-
net of Things (IoT), 5G, big data, blockchain, artificial
intelligence, and machine learning) along with surging inter-
est and investment in concepts such as cryptocurrencies and
self-driving cars, a future of digital and smart cities may
already be materializing [16]. The DT comes hand in hand
with this trend of digitalization of city infrastructure. Given
the interconnected nature of the DT and reliance on real-time
capabilities, the smartness of a city facilitates the construc-
tion of a cityDT and, vice versa, smart cities take benefit from
city DTs for management of services. The data captured by
IoT sensors and devices spread throughout a smart city to
monitor the state and assess the needs of a city can be inte-
grated in a DT for real-time updates, and in turn the DT can

affect the smart cities through IoT broadcasting [16]. Some
major cities are starting to invest resources to move towards
a smart infrastructure and create their DT. Such is the case
of Shanghai [72], New York City, starting with its Brooklyn
Navy Yard [63], Singapore with project Virtual Singapore
[61], andHelsinkiwith projectsHelsinki 3D [11] andKalasa-
tama Digital Twins [36] for urban planning, sustainability,
development, and other city-specific management.

Agent-basedmodels

Agent-based models (ABMs) represent a computer simula-
tion framework in which instead of using a single monolithic
model, the dynamics of a system is captured through the
actions of agents interacting with each other and with
their environment [32, 41]. An agent is assigned different
attributes that characterize it, such as behavior and types of
interaction with environment components and other agents.
The actions of agents are governed by a set of rules that direct
their individual behaviors and interactions. As a result of this
heterogeneity and stochasticity embedded in their individual
behavior, ABMs can capture unexpected aggregate phenom-
ena that result from the combined individual behaviors in
a model [13]. This allows the use of ABMs for modelling
complex social systems.

ABMs have gained popularity in the study of disease
transmission due to their ability to capture complex human
behavior and risk characteristics, contact networks, spatial
hotspots, and other elements involved in disease transmis-
sion that standard mathematical models lack [32]. ABMs
are able to capture realistic social interactions at a very fine
scale by simulating attribute-dependent contact networks as
well as social interactions inside different types of locations
based on the schedule, structure, and dynamics of the loca-
tion (i.e., workplaces, schools, long-term care facilities). An
ABM designed to analyze disease transmission models indi-
vidual agents that make up the population of interest by
assigning attributes and behavior rule sets to each agent based
on population data, and by developing a compartmental dis-
ease process model for the agents to navigate through. As the
simulation progresses in this scheme, susceptible agents will
come into defined contact with infectious agents and acquire
a probability of getting infected with the disease. Infecteds
can also become diseased or recover from infection and turn
into immunes.

Similar to DTs, there is no defined methodology to follow
for building an ABM which affords high levels of flexibility
and adaptability in its construction. A variety of agent-based
simulation frameworks have been developed recently to sim-
ulate and analyze disease transmission and public health
interventions within the context of the COVID-19 pandemic
[2, 5]. Here, we describe a selection of published work that
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demonstrate how ABMs can and have been used to investi-
gate features of the complexity of COVID-19 transmission
focused on interactions between heterogeneous populations,
infection processes, contact networks, and control options.

Agrawal et al. [2] proposed an ABM to simulate and eval-
uate the effects of non-pharmaceutical interventions on the
COVID-19 pandemic before imposing them on the public.
The model features age-specific interactions, contact trac-
ing and quarantine, as well as total and partial lockdowns,
providing the means to model disease transmission dynam-
ics under the highly heterogeneous conditions that typically
govern contagion and response to epidemic spread in the
real-world.

Similarly, Alagoz et al. [3] built COVAM, anABM to ana-
lyze the impact of adherence to social distancing measures
in New York City in the context of COVID-19. Imposing
social distancingmeasures at different stages of the pandemic
and at different levels were studied using a population mod-
eled with realistic demographic attributes, contact networks,
testing scenarios, and probability of cooperating with social
distancing. The authors showed that the model was able to
replicate the number of confirmed COVID-19 cases in the
city.

Kerr et al. [34] developed Covasim, an ABM simulator
to predict future patterns of the COVID-19 pandemic, test
possible intervention strategies, and manage resources by
modeling population demographics, social and transmission
interactions that vary by types of locations (schools, hospi-
tals, long-term care institutions, households), age-dependent
patient outcomes, and disease parameters specific to a coun-
try or region. The simulator is completed with a variety
of interventions, including social distancing, mask wear-
ing, vaccination plans, testing of suspected symptomatic and
asymptomatic cases, contact tracing, quarantine and isola-
tion, among others. It is thought to achieve robust results by
the capturing of these aspects that influence the spread of
disease and control outcomes.

In the same vein, Chang et al. [10] presented an ABM to
simulate theCOVID-19pandemic and its impact inAustralia,
calibrated to replicate real COVID-19 transmission dynam-
ics. Several measures were tested with the model, including
varying levels of isolation and quarantine of confirmed cases
and contacts of cases, social distancing, closures of commu-
nity spaces, and international travel regulations.

Ozik et al. [50] developed CityCOVID, an ABM simula-
tor based on their existing social interaction computational
platform, ChiSIM, applied to the Chicago area. The synthetic
population statistically captures the demographic character-
istics of the Chicago population. The synthetic agents are
assignedhourly activities basedon certain demographic char-
acteristics, which guides movement from place to place to
reproduce age- and place-specific social interactions and
behaviors in the virtual space. The synthetic agents become

exposed to COVID-19 while interacting with infectious
agents in the simulation.

On the other hand, Singh et al. [62] adapted EpiGraph,
an existing epidemic simulator, and used it to evaluate con-
trol measures and lockdown scenarios to halt the spread of
COVID-19 in Madrid, Spain. An ABM layer was added to
capture realistic social behavior and networking dynamics of
the individuals that make up the real Madrid population as
well as to model movement within and out of the city.

Hinch et al. [30] built a COVID-19 ABM simulator called
OpenABM-Covid19 as a tool for policymakers and other
stakeholders in order to use simulations of the COVID-19
pandemic with regards to making management decisions
on optimal interventions and preventative measures. The
simulator captures region-specific demographics and age-
dependent social interactions to assess non-pharmaceutical
interventions, contact tracing, and vaccination plans.

Finally, Suryawanshi et al. [64] proposed an ABM of the
city of Kolkata, India, focusing on spatial and contact com-
ponents of COVID-19 transmission. The synthetic agents
are characterized by age, income, presence of comorbid-
ity, workplace, family, and places they frequently visit. This
model also analyzes different possible public health inter-
ventions for executing in the city across different levels and
probabilities of compliance.

Coupling city digital twin with ABMs: CitySEIRCast

The sections above indicate that coupling a City DT
with ABMs that more realistically mimic the processes
of infection transmission can allow the development of
a co-simulation system to better address the complexities
of disease transmission in an urban population [5, 16].
Thus, while the city DT can allow a faithful rendering of
the properties that characterize an urban location and its
population, the ABM can allow the simulation of disease
transmission dynamics that takes a fuller account of the
spatio-temporal multidimensional risk factors that may drive
pathogen transmission. Here, we describe the development
of CitySEIRCast, a multidimensional, multi-resolution and
multi-scale DT-ABM co-simulation framework, to evaluate
the ability of such a modelling construct to analyze and pre-
dict the dynamics of disease outbreaks, including emergence,
propagation and infection persistence, using the transmis-
sion of COVID-19 in Hillsborough County, Florida, as a case
study.

Framework andmethodology

Our DT is divided into three main modules (Fig. 1b). The
first module is the virtual environment of the setting under
study, constructed using city information data that maps and

123



Complex & Intelligent Systems (2025) 11 :83 Page 7 of 29 83

Fig. 2 Algorithm to generate the building types that make up the virtual
environment of the DT

categorizes buildings, routes between places, and environ-
mental conditions [60]. The second module is the synthetic
population, which is a statistical representation of the corre-
sponding population demographics, household information,
the daily schedules, and routes of each synthetic person. The
third module is the disease model layer, which combines
the states and the parameters and processes governing the
transmission of a disease as well as the epidemiological data
specific to the modeled region. The subsections that follow
detail the computational workflows, components, and data
pipelines of each module and their application in the context
of the spatio-temporal progression of the COVID-19 pan-
demic in Hillsborough County, Florida.

Virtual environmentmodule

The virtual environment refers to the digital reconstruction
of Hillsborough County, which involves precisely mapping
and classifying every building and location type as well as
street layouts present in the County. We applied the City
Information Modelling (CIM) paradigm [14] to collect and
weave these data from a variety of sources to create a 3-D
model of the urban environment representative of theCounty.
While CIM can combine both below and above ground struc-
tures, here we focused on above ground structures only.
We extracted and used building information contained with
the parcels data from the Hillsborough County Property
Appraiser (https://downloads.hcpafl.org/) [28] aswell as data
on zip code boundaries to perform this construction. The
parcels data come in the form of shapefiles and provide infor-
mation on several features of the buildings in the county,
including location, use type, size, built levels, and number of
rooms. The 3-Dvirtual citymodel is then constructed by inte-
grating the building information above within a geographic
information system (specifically QGIS) using the algorithm
displayed in Fig. 2. Specifically, this is performed firstly by

reading the county zip code boundaries provided in a GeoJ-
SONfile accessed from [27] into QGIS. Then, we extract and
add building location (latitude and longitude) and building
type data,

categorized into households, schools, workplaces, and
community places (which include shopping malls and retail
stores, grocery stores, places of worship, and outdoors) from
the parcels data [28]. Polygonal geometry of buildings and
street layouts/routes are then added from OpenStreetMap
(https://www.openstreetmap.org/) [12] to complete the city
modelling. Figure 3 shows a comparison of the 3-D virtual
representation of a portion of Hillsborough County created
using our algorithm against the satellite view [67] for that
portion, which indicates that the physical environment of the
area in question is replicated well by the CIM.

Synthetic populationmodule

The synthetic population module generates a population of
agents that is representative of the demographics of the region
of interest, in this case Hillsborough County and its 52 zip
codes, based on census data available from PolicyMap©
(www.policymap.org) [1]. The specific objective is to gen-
erate the individual synthetic agents and then locate them
to households according to household size. These agents are
assigned demographic attributes, including age, gender, race,
ethnicity, income, and mobility patterns, based on the pop-
ulation characteristics found for zip code (see example for
zip code number 33612 shown in Table 1) and the orig-
in–destination (OD) matrix describing movement patterns
for individuals using the algorithm shown in Fig. 4. We col-
lected data on demographic attributes at the zip code level,
and the household and school sizeswithin the county, to serve
as inputs for executing this algorithm. The module generates
the synthetic population through the following steps (Fig. 4).

(1) Generate a population of agents at the zip code level:

The first step in the module is to generate a population of
agents representing the population size for each zip code.
We used the total number of people residing in a zip code
based on the population data available from PolicyMap to
accomplish this task [1].

(2) Generate synthetic households:

Next, we create synthetic households for buildings labeled
as a house or any type of residence in the parcel data [28].
The locations of these households are mapped based on their
spatial coordinates as provided in the parcel data. Household
size distribution in a zip code is constructed based on the
number of households in a zip code, with size (single occu-
pancy, 2–6 and 7 + occupants) allocated randomly based on
the size distribution observed in each zip code.
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Fig. 3 a A portion of Hillsborough County showing 3D building locations, shapes, and sizes. b A satellite image of the same area in Hillsborough
County

Fig. 4 The synthetic population generation module. a Flowchart of the steps taken by the module to generate the synthetic population. b Details of
the synthetic population generation algorithm

(3) Assigning attributes to agents:

We perform this by first randomly distributing agents to
houses (which include single-family homes, apartments, and
other types of residential buildings) based on household size
(Fig. 4). Demographic attributes are then assigned proba-
bilistically to each agent viz. age, gender, race, ethnicity, and
income, based on their actual distributions in each zip code.A
sample of the resulting spatial distribution of races is shown
in Fig. 5. A validation of synthetic population distributions
against the available demographics data is shown in Fig. 6.
This figure indicates that the synthetic population generated

via the proposed algorithm closely mimics the real popula-
tion in the county.

Since the movement pattern of the agents are largely
determined by their age and employment, we introduce the
following categorization in the synthetic population model.
Agents aged 5 to 18 are students who go to school, whereas
agents from ages 18 to 65 are workers who go to workplaces,
with the rest assumed to be unemployed. The probability of
an agent belonging to each of these categories is in accor-
dance with the proportions of each group of individuals
residing in the zip code [1]. Each school-going agent is ran-
domly assigned a school in the zip code of residence based on
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Fig. 5 Distribution of races in the digital twin. A part of zip code 33,602 is shown. Buildings with African American, White and Mixed-Race
population are shown in red, white and green respectively

Fig. 6 Validation of the synthetic population distributions (Blue) vs. actual distributions (Red) by age, race, ethnicity, and income

the capacity of the school, which is defined using the school
size distribution of the county [1], and the number of school-
going agents residing in the zip code. For the working agents,
the zip code of theirworkplace is determined based on theOD
Matrix constructed using mobility data (see below) provided
byTomTom [70]. Essentially, thismatrix gives the proportion
ofworkersmoving to their place of employment from one zip

code to another orwithin the same zip code.Once the zip code
of theworkplace is decided for an agent, a randomworkplace
is chosen in that zip code and assigned to that agent. A similar
assignment of schools is performed for children who have to
move outside their home zip codes for schooling. These cate-
gories and respective school/workplace assignment influence
the mobility pattern of the agents, which we address next.
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Table 1 Summary statistics for the population residing in zip code
33,612 based on census data obtained from PolicyMap [1]

Population Statistics for Zip Code 33612 in Hillsborough County

Population Count

Population size 51,745

Age Percentage (%)

Persons under 18 years 21

Persons between 18 and 64 years 64

Persons above 65 years 12

Race Percentage (%)

White 36

African American 30

Asian 3

Native Hawaiian and other Pacific Islander 0.1

American Indian or Alaskan Native 0.8

Other Race 15

Two or more race 15

Ethnicity Percentage (%)

Hispanic 38

Non-Hispanic 62

Gender Percentage (%)

Male 50

Female 50

Income ($) Percentage (%)

1–24,999 53

25,000–49,999 29

50,000–74,999 9

75,000–99,999 4

100,000–199,999 4

200,000 > 1

Similar data for all zip codes were used to construct the synthetic pop-
ulation of Hillsborough County

(4) Agent Movement:

We used an OD matrix to inform the mobility patterns of
agents in our city DT. An OD matrix is a data structure
that represents the movement of people, goods, or vehicles
between different locations. It is a table that shows the num-
ber of trips between each origin and destination pair, usually,
at the minimum over a given time period. The rows represent
the origins (O), while the columns represent the destina-
tions (D). The cells in the table provide the number of trips
between each origin–destination pair [39]. OD datasets can
contain details of trips between two geographic points or,
more commonly, zones (which are often represented by a
zone centroid). The latter combined with the total number

of trips from an origin to destination zones allows calcula-
tions of the fractions of trips made by people within a county
versus the fraction of these trips made to other counties.

We used TomTom’s OD analysis engine [70] to estimate
the ODmatrix for informing themobility of agents in the DT.
TomTomOD analysis is based on real time Floating Car Data
(FCD) obtained by combining signals aggregated monthly
from anonymous GPS enabled cars and mobile phones [69].
Weprovided zip codeboundaries to theTomTomODanalysis
platform in order to output an ODmatrix representing travels
or people movements within and between zip codes. This
information is used to assign workplaces and schools to the
fractions of employed adults and school-going individuals
both within their zip codes of origin and to other destination
zip codes (see above).

We also additionally calculate the cumulative distances
travelled by individuals based on the OD distributions by
estimating the distance kernel applicable to each zip code.
This presents the typical distances people travel based on
their location of origin, and is used to model movement to
community spaces, as the movement of people to commu-
nity areas is more complicated compared to workplaces and
schools. For example, people may visit different community
areas at different points of the day, and there are awide variety
of community places to be visited. To accommodate this het-
erogeneity, we use the determined distance kernels to assign
weights for travelling to communities by an agent residing
in a zip code.

Finally, as the movement algorithm used by the ABM
simulates the motion of agents in the virtual environment
through a simulation time step of 6 h, we further divided each
day into four time-segments (morning, afternoon, evening
and night) and estimated the OD matrix/distance kernel for
each time period. This allows us to simulate the daily activity
of agents according to the time of the day as well as when
different categories of buildings are open at different times
of the day. For instance, schools are open from mornings
to afternoons. Similarly, less people go to communities and
workplaces after midnight (Fig. 7). In the ABM, we model
this feature by sending students to schools during selected
segments of the day, with similar restrictions placed on other
age categories with regard to work (as well as for pursuing
leisure activities).

Diseasemodule

The ABMmodel

The ABM disease model, illustrated in Figs. 8 and 9, follows
the synthetic agents as they move through different dis-
ease stages. Susceptible individuals are exposed and become
infected by coming in contact with infectious individuals.
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Fig. 7 Agent movement from and to different places during the 6-h time blocks. a 7 am–12 pm, b 1–6 pm, c 7 pm–12am, d 12–6 am

Exposed and infected individuals can then fall into pre-
symptomatic or asymptomatic categories. Asymptomatics
recover after a mean period of 4 days. Individuals in the pre-
symptomatic category initially do not show any symptoms
for about 2–6 days and then proceed to showmild symptoms.
After approximately 7 days, the individual either recovers
or shows severe symptoms and may require hospitalization.
Once hospitalized, individuals can recover or deteriorate fur-
ther and require critical care. Individuals in critical care
either recover or die. The risk of developing severe symp-
toms, requiring critical care, or death is age dependent (See
Table S1 in the supplementary document). Age dependence
in later stages of the infection also serves as a proxy for

comorbidities, which are also age-dependent in general. All
recovered individuals can become susceptible again after a
period ranging from 6months to 1 year.Wemodel the effects
of vaccines, along with mask-wearing and social distancing,
as control measures. The vaccination strategy at the time of
writing for COVID-19 initially consisted of two doses, the
second given within 3–4 weeks’ time after the first, followed
by a waning period of five months, and then 1st booster is
given at about the 6 months mark. Thereafter the individ-
ual can have the second booster after waiting for another
six months. Individuals with different levels of immunity
induced via vaccines can also become exposed and follow a
similar infection route as fully susceptible, albeitwith a lower
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Fig. 8 Disease progression model including variants and vaccine doses

Fig. 9 Disease transmission algorithm followed by the CitySEIRCast
simulator

chance of developing severe disease and hence requiring crit-
ical care. The effect of mask-wearing is modeled as reducing
the chance of exposure to the virus by variable degrees as
does social distancing. In ourmodel, we implemented a time-
varying mask-wearing and social distancing behavior based
on COVID-19 search patterns in Google trend data [24], as
described in Section "Google Trends and human behavior".
In the initial part of the pandemic, lockdowns with varying
levels of restrictions on workplaces, schools, and commu-
nities over a period of 3 to 4 months were also modeled to
mimic the scenario followed in Hillsborough County.

We model the spread of infection in the simulator fol-
lowing the works of Ferguson et al. [21] and Agrawal et al.

[2], extending the model to include all the variants in Hills-
borough County over time and human behavior changes as
estimated via Google trends time series data [24]. At each
time window, a force of infection is computed for each
individual n based on proximity to other individuals in dif-
ferent spaces (home, neighborhood, workplace/school, local
community, or a random community) following the time
schedules followed by individuals: as an example, schools
are active only during the first two quarters of the day. Fur-
thermore, an individual experiences force of infection from
the prevailing strains in these spaces; the individual picks up
each strain randomly with a probability of picking a strain
depending on the force of infection it produces for the indi-
vidual. Human protective behavior Hb(t) in different spaces
is modeled based onGoogle trends search data, gt(t), reflect-
ing social curiosity about COVID-19 over time [24]. An
individual is compliant and takes measures including social
distancing and mask wearing based on gt(t) and prevailing
conditions at different spaces, viz whether workplaces are
open or not. At home these measures would reflect washing
hands regularly and practicing isolations/quarantine in the
case of infected family members. At time t, each suscepti-
ble individual transits to the exposed state with probability
Prisk � 1 − e−λn(t).�t (Fig. 10), where �t is the simulation
time step taken to be 6 h, and λn(t) is the force of infec-
tion (which a function of all the rules above) experienced by
the nth individual interacting with other individuals across
different spaces (Fig. 10).
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Fig. 10 Exposure probability algorithm followed by our CitySEIRCast
simulator

The explicit form of the force of infection is given as

λn(t) �
∑

n′, b
λbn′(t) · �b(t) · Hb(t) + ζ . (1)

Here b is the set of building types that an individual vis-
its and n′ is the set of individuals the agent interacts with
during the visit. The summation term represents the force
of infection when the agent in is specific buildings (houses
h, neighbors’ houses hnbr , schools s, classrooms sc, work-
place w, or project groups w p). The exact expression for λbn′
depends on the building type:

λbn �
⎧
⎨

⎩
βbκ(t − τn′)ρn′(1 + Cn′(ω − 1))Hb(t), i f b � h, hnbr ;

βbκ(t − τn′)ρn′(1 + Cn′(ωψs(t − τn) − 1))Hb(t)i f b � s, sc, w, w p.
(2)

When the agent is in transit T , community area c, or ran-
dom community area rc, the interaction between the agents
follows a different functional form given by ζ ,

ζ �
∑

n′:T (n′)�1 An′, t∑
n′ T (n′)

∑
n′:T (n′)�T (n)

dn′,w(n′) In′βT Mn′∑
n′:T (n′)�T (n) dn′,w(n′)

· HT +
ζ (an). f

(
dn, c

)
∑

c′ f
(
dc, c′

)
∑

c′ f
(
dc, c′

)
hc, c′(t)Hc

+
ζ (an). f

(
dn, c

)
∑

rc′ f
(
dc, c′

)
∑

rc′ f
(
dc, c′

)
.ζ (an).In′(t)

βrcκ(t − τn′)ρn′(1 + Cn′(ω − 1))Hrc.

where,

hc, c′ �
⎛

⎜⎝

∑
n′:c(n′)�c′

f
(
dn′, c(n′)

)
.ζ (an).In′ (t)βcκ(t − τn′)ρn′(1 + Cn′(ω − 1))

∑
n′

f
(
dn′, c(n′)

)

⎞

⎟⎠.

Here In(t) � {0, 1} is based on whether an agent is
infectious or not, ρn reflects an individual’s variability in
relative infectiousness (coming from a gamma distribution)
and Cn � {0, 1} indicates whether an agent is severely
infected and hence more infectious by a factor of (ω − 1).
By contrast, the force of infection is reduced by a factor,(
ψs,w(t − τn)ω − 1

)
, in the case of work and school absen-

teeism due to severe infection resulting from exposure at
time τn . The severity factor and absenteeism are taken to
be ω � 2 and ψs,w(t − τn) � {0.1, 0.5} [2]. The individ-
ual sees a relative travel related contact rate ζ (an′) specific
to age, we take this to be 0.1, 0.25, 0.5, 0.75, 1, 1, 1, 1,
1,1, 1, 1, 0.75, 0.5, 0.25, and 0.1 for the various age groups
in steps of 5 years, with the last one being the 80 + cat-
egory. Infection-stage-related infectiousness is taken to be
κ(t − τn) at time t. For the disease progression described in
the previous section, κ(t−τn) is 1 in the pre-symptomatic and
asymptomatic stages, 1.5 in the symptomatic, hospitalized,
and critical stages, and 0 in the other stages. Individuals using
public transport transmit more if they travel longer distances,
while visits to communities in other zip codes contribute to
the force of infection proportional to the distance kernel func-
tion f

(
dc, c

)
(see Tables 2 and 3).

The force of infection described above along with the
transition probabilities in Table 2 and Table S1 of the supple-

mentary document are used to transition the agents through
the disease stages as described.

Arrival of new strains

We started the simulator with the original strain of COVID-
19 virus. That is, at the start of the simulation 100 percent
of infectious individuals are infected by the original strain.
Subsequently, as new variants are reported in the real world
(see Table 3 for the time of arrival of variants), we introduce
these strains in the simulation as follows. On the day of the
first reports, a small fraction of infectious agents is infected
by the new variant. In the simulation, this new variant is
represented by a new set of transmission, hospitalization,
and death rates. As time progresses the proportion of agents
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Table 2 Parameter table
Parameter Interpretation Prior

distribution/Value

βh Transmission rate in home settings U(0.1, 0.2)

βnbr
h Transmission rate in home settings U(0.1, 0.25)

βw Transmission rate in work settings U(0.2, 0.3)

βwp Transmission rate at work in project U(0.1, 0.3)

βc Transmission rate in community
settings

U(0.1, 0.25)

βrc Transmission rate in random
community

U(0.1, 0.25)

βs Transmission rate in school settings U(0.3, 0.5)

βsc Transmission rate at school in
classroom setting

U(0.1, 0.2)

βT Transmission rate in public transport U(0,0.05)

Gama distribution shape parameter θ Shape parameter for gamma
distribution for immunity

2

Mean natural Immunity period γ0 Rate of joining susceptible class after
recovering

2 years (mean)

Mean Immunity period vaccinated 1st
dose γ1

Rate of joining susceptible class after
recovering due to vaccine 1

1 month (mean)

Mean Immunity period vaccinated 1st
dose γ2

Rate of joining susceptible class after
recovering

(mean)

Mean Immunity period vaccinated 1st
dose γ3

Rate of joining susceptible class after
recovering

2 years (mean)

Mean Immunity period vaccinated 1st
dose γ4

Rate of joining susceptible class after
recovering

2 years (mean)

Immunity period (natural or vaccine
induced)

Individual agents rate of joining
susceptible class after recovering

Gamma
( γi

θ
, θ

)

Mean incubation period σ Exposed to
pre-symptomatic/symptomatic
period

4.5 days

σi Individual incubation period Gamma
(

σi
θ
, θ

)

Pre-symptomatic fraction Fraction of individuals that would
eventually be symptomatic

0.67

Hospitalization rate γ2 Uniform (0, 3)

Recovery rates Uniform (0, 3)

infected with the new strain increases until the new variant
overtakes the existing strain. This is to be expected as the
newvariant is, in general, more transmissible than its existing
counterpart. This competition between the strains is reflected
by the gradual increase in the effective force of infection
experienced by the agents from the new strain.

Google trends and human behavior

WeuseGoogle trends data [24] for COVID-19-related search
terms to model human protective behavior. This model
assumes that social media interest in a particular topic can
translate to a behavioral response by an agent. In the present
case, we consider that interest in COVID-19 related search

terms by agents would lead to higher compliance with inter-
vention measures, and hence in a reduction in the force of
infection. The degree of reduction in the force of infection λbn
in spaceb based on individuals’ compliance status is obtained
via a Bernoulli trial B(1, p), where the probability of compli-
ance is p � gt(t). Noncompliant individuals see a relatively
higher force of infection in a given space whereas compli-
ant individuals experience a reduced force of infection in
that space (Eq. 1). Additionally, during different phases of
the pandemic, the high non-compliance observed for com-
munity places (shops, malls) is implemented by ignoring
Google trend values in this space, while maintaining the lim-
ited restrictions followed in workplaces and schools. This
was specifically the case during the delta and the subsequent
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Table 3 Functional forms and miscellaneous variables

Function/variable Interpretation Functional
form/value

f (d) Distance kernel 1(
1+

(
d
a

)b)

a � 20.751, b �
3.384

T�0 Household transmission rate scales as n1−α 0.8

rα Relative transmissibility of alpha variant 1.3

rd Relative transmissibility of Delta variant 3

r� Relative transmissibility of Omicron variant 1.2

Tα Time of arrival of alpha variant in Hillsborough 30th December
2020

Td Time of arrival of Delta variant in Hillsborough 25th April 2021

T�0 Time of arrival of Omicron variant in Hillsborough 2nd Dec 2021

T�1 Time of arrival of Omicron sub-variant in Hillsborough 23rd Jan 2022

T�2 Time of arrival of Omicron sub-variant in Hillsborough 8th May 2022

T�3 Time of arrival of Omicron sub-variant in Hillsborough 8th May 2022

T�4 Time of arrival of Omicron sub-variant in Hillsborough 17th July 2022

T�5 Time of arrival of Omicron sub-variant in Hillsborough 28th Aug 2022

T�6 Time of arrival of Omicron sub-variant in Hillsborough 2nd Sep 2022

T�7 Time of arrival of Omicron sub-variant in Hillsborough 12th Sep 2022

Vaccine effectiveness 1st dose Effectiveness of vaccine in inducing immunity to individuals after 1st vaccine dose 0.75

Vaccine effectiveness 2nd dose Effectiveness of vaccine in inducing immunity to individuals after 2nd vaccine dose 0.95

Vaccine effectiveness 3rd dose Effectiveness of vaccine in inducing immunity to individuals after third vaccine dose 0.99

Vaccine effectiveness 4th dose Effectiveness of vaccine in inducing immunity to individuals after 4th vaccine dose 0.99

omicron transmission surges [19]. To allow for uncertainty
in human behavior, we consider ensembles of Google trends
data, created by adding and subtracting 10 percent to the
original data and time-shifting by two weeks. The full set of
Google trends and members of the ensemble, as described,
are shown in Fig. 11.

Lockdownmandates in Hillsborough County, Florida

The lockdown and closure mandates in the State of Florida
or by Hillsborough County authorities are implemented in
the simulator following the schedules available from Hills-
borough County mandate documents. To accurately model
the timing, span, and extent of lockdowns, we referred to
Executive Orders (EO) enacted by governing bodies where
they detail each measure [18, 19]. Guidelines regarding the
closure of schools were obtained from the Florida Depart-
ment of Education and Hillsborough County Public Schools
[22, 23]. Lockdowns were imposed in several phases, i.e.,
Phase 1, Phase 2, Phase 3, and finally the release of all lock-
downs as part of the “Safe. Smart. Step-by-Step" recovery
plan devised by [56]. Phase 0 refers to the initial measures

Fig. 11 Google trends ensemble generated through addition of 10%
variance to the original trend in the queries made. In total, we derived
100 ensembles, 50 of which sampled from the actual trends data and
another 50 by shifting the full time series to the right by two weeks. The
data are used as a proxy for mask compliance as well as determine the
degree of exposure in places/spaces where people interact, viz. home,
school, community, and workplace

taken fromMarch 9, 2020, when the State of Florida declared
COVID-19 as a public health emergency, which included
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Fig. 12 The Bayesian melding
framework for parameter
calibration using observed data.
We used daily reported cases at
the county level to calibrate the
parameters listed in Tables 2 and
3

encouraging all state residents to stay at home except for
essential services, while restaurants and public schools were
closed. Phase 1, implemented on April 29, 2020, continued
to encourage staying at home, and allowed restaurants and
retail stores to open at 25% of indoor capacity. Phase 1 was
extended onMay 15, 2020, with the modification that restau-
rants and retail stores could operate at 50%of indoor capacity.
Phase 2, implemented on June 5, 2020, allowed all non-
essential businesses, including retail stores, to fully reopen,
while restaurants remained operating at 50% indoor capac-
ity. Phase 3, implemented on September 25, 2020, continued
on Phase 2 regulations but allowed restaurants to operate
at no more than 50% indoor capacity. Essential businesses,
grocery stores, financial institutions, and places of worship
remained open throughout all phases while public schools
and universities were operated entirely remotely. On May 3,
2021, the State of Florida ordered that all COVID-19-related
orders and mandates be lifted across the state [19]. The lock-
down and phase timeline are depicted in Fig. S2 and Table
S2.

The level of closures of various spaces/buildings is incor-
porated in the simulator via the parameter �b(t) where b
corresponds to spaces categorized into schools, workplaces,
community spaces.

Vaccination schedules

We implement the same vaccination schedule as that fol-
lowed in Hillsborough County. The first doses of vaccine
were delivered in January 2021. Following thefirst dose, indi-
viduals were required to have a second dose to complete the
vaccination sequence. Subsequently, the first booster doses
were available. During the simulations, the Hillsborough-
wide daily vaccination data by dose was approximated by
polynomial curves shown in Fig. S3. Vaccine efficacy is

implemented according to dosage viz. first dose is 75% effi-
cient, while second dose has a 95% efficacy and booster has a
99% efficacy, and a waning individual has a reduced efficacy
of 90% between second dose and subsequent booster [49].
The total number of vaccines on a given day were distributed
by age and that distribution changed over time according
to vaccination guidelines [18–20, 47], see Table S3 in the
supplementary document. In addition to this baseline vacci-
nation schedule, we investigated the effect of two modified
vaccination scenarios: (1) prioritizing the low-FPL groups,
and (2) prioritizing the working individuals. For these sce-
narios, we maintain the total daily vaccination rate as before,
but vaccinate individuals in these specific classes first, before
vaccinating the general population.

Parameter calibration and sensitivity

Ševčíková et al. [59] demonstrated that Bayesian Melding
can be applicable to ABM calibration and provide a basic
quantification of parameter uncertainty, so we chose to fol-
low this approach to learn parameters and account for their
sensitivity to changing conditions. This process dynamically
adjusts parameters in response to new data, allowing the
model to adapt to changes such as new virus variants and
public health measures. Specifically, we adopt the strategy
[2, 50] in which a subset of parameters that drive rates of
transmission across different spaces are chosen based on
sensitivity analyses of the parameters influencing the basic
reproduction number, R0 [44]Based on this analysiswe iden-
tified the transmission rates, degree of social measures and
the recovery rate parameter (Fig. S1 in the Supplementary
Document) as sensitive so we fit these values over time.
Starting from a uniform prior distribution assigned to these
free parameters, we obtain a posterior distribution of param-
eters by minimizing the root mean square error between
simulated and reported daily case data [29]. As the time
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Fig. 13 High performance computational framework for achieving the full calibration of CitySEIRCast simulator

123



83 Page 18 of 29 Complex & Intelligent Systems (2025) 11 :83

Fig. 14 Daily infected cases,
hospitalizations and deaths
across Hillsborough County. The
shaded blue region indicates the
99 percent confidence interval
obtained from ensemble of
simulations using parameter
priors as in Table 1. An ensemble
of 10,000 sets of parameters
from the prior distribution were
simulated and a selection
criterion by RMSE resulted in
159 best fitting (shaded region)
curves against reported daily
infection cases (black line).
Vertical dashed lines reflect the
dates of arrival of the major virus
variants

series extended, we refined the parameters as the pandemic
unfolded and new data regarding variants and new control
measures, including mask-wearing, lockdown, and vacci-
nations became available. Specifically, when a new variant
arrives the transmission, hospitalization and death factors are
scaled according to variant properties (Table 2). Schemati-
cally the process of obtaining posterior distributions from
data is shown in Fig. 12. Additionally, we assign each agent a
natural and vaccine-induced immunity period obtained from
a gamma distribution. The details of the priors used for
estimating the transmission rates and the shape and scale
parameters of the gamma distributions associated with the
immunity states, and the other fixed parameters are given in
Table 2. The time shift for Google trends ensembles is also
treated as a parameter and is varied from 0 to 4 weeks for
the fitting procedure. The root-mean square error criterion

between observed and simulated daily cases data for identi-
fying the best fitting parameters at the county level is given
by:

(3)RMSE

�
√∑

(daily simulated cases − daily observed cases)2

Number of days

We used this procedure to identify 200 best-fitting mod-
els that exhibited the lowest RMSE values, and deployed
this ensemble to forecast the spatio-temporal propagation of
COVID-19 in Hillsborough County.
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Fig. 15 Daily infected cases by
diversity groups a age, b race
and c income

Computation

As the DT is a bottom-up simulation, it starts with sev-
eral types of input files: epidemiological data that includes
case, admission, death, and vaccination data; population data
that includes distributions of race, age, gender, income, and
employment; and spatial data that includes locational and
mobility data. These input files come together in the ABM
layer, which uses the synthetic population, movements and
disease status to simulate disease propagation. As noted
above, the synthetic population, composed of agents that are
combined with demographics and disease status, also needs
to be distributed to the zip codes of Hillsborough County
in a way that is statistically representative of the popula-
tion of each zip code. Further, we also require simulating
the detailed movement of individuals between zip codes to
capture the reality of county residents going to work, school,
stores, and other types of buildings outside of their zip code.
These operations mean that both the DT simulation as well

as the model simulations need to be computed in parallel
and managed effectively for post-processing. Our solution is
to harness the power of multiple CPU-cores and the larger
memory capabilities of HPC to efficiently carry out these
simulations on hundreds of cores.

High-performance computing architecture

To enable large-scale simulations in a distributed envi-
ronment, we created an MPI cluster on Microsoft Azure,
consisting of multiple virtual machines (VMs). The cluster
leveraged 16 Azure VM HB instances, each with 96 cores
and 384 GB RAM, resulting in a total of 1536 cores and
6.144 TB RAM across all VMs. This configuration ensured
efficient parallel processing for the simulations, allowing the
making of 1month-ahead forecasts using a calibrated ensem-
ble of 200 models to be completed over 3 days. Additionally,
aNetwork File System (NFS) file share of 10TBwas used for
data storage and sharing across the VMs. Initially, this was
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Fig. 16 Daily infected cases in
selected zip codes (see legends)
indicating the zip codes relative
position to the median cases (red
line) over time across all zip
codes in Hillsborough County.
The grey shaded region indicates
the 95% confidence interval
constructed at each time for the
combined predictions for all the
52 zip codes. The dashed black
curves correspond to the
simulated daily cases for the
selected zip code

cloud-based which was then moved off cloud for improving
speed of access to the data for visualization purposes. The
HPC architecture is summarized in Fig. 13.

Hybrid Python and C + + execution

The workflow was further designed to incorporate both
Python and C++ components for efficient parallel execu-
tion. Pythonwas used to implement theMPI functionality for
performing the ABM ensemble calibration, while the simu-
lator itself was written in C++. This hybrid approach allowed
seamless integration of Python’s high-level MPI capabilities
with the performance advantage of C++ for executing the
simulator. Each MPI process runs an instance of the C++
simulator. We split our 15,000 ensemble runs into batches of
96 × 16 (corresponding to number of cores in a single VM
and the number VM’s as described in the previous section).
This allowed for the calibration and forecasting computations
to be carried out in a time-efficient manner.

Workflow and resource management

The heterogeneous nature of our workflow, which incor-
porated Python, C + + , and MPI components, required
careful coordination and resource management. The high-
level Python MPI functionality was used to distribute
the simulation parameters across the VMs and to coor-
dinate the execution of C + + simulator instances. This
approach ensured efficient utilization of the available hard-
ware resources and allowed for rapid switching between
the different components. The overall workflow consisted
of generating parameters in Python, distributing them to the
C + + /MPI simulations, and registering progress through
database operations. This coordination was performed using
MPI and Python’s in-built functionality, without relying on
external workflow systems. The chosen approach allowed
for effective management of in-memory user libraries and
third-party packages, making it suitable for our complex sim-
ulation requirements.
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Fig. 17 Maps of infection counts across zip codes on three dates (19th April 2020, 15th August 2021, and 13th November 2022), showing spatial
asynchrony between zip codes

Simulation results

In this section, we present the simulation results for the
COVID-19 case study, focusing specifically on the spatio-
temporal propagation of cases, hospitalizations and deaths at
the county and zip code levels in Hillsborough County. We
also show results for the effects of heterogeneous transmis-
sion among sub-populations, synchronization of cases across
zip codes, and spatial patterns of immunity evolution across
the County and its impact on the future transmission of the
pandemic.

County-level analysis

We initiated the simulation of the pandemic with a seeding
of exposed cases based on the zip code level cases reported
in March 2020. We started with 10,000 sets of parameter
vectors for the ABMmodel, with the values for each param-
eter drawn randomly from the prior distributions described
in Table 2 using the Latin Hypercube sampling process.
200 best-fitting models are then selected for further simu-
lation using the Bayesian calibration approach described in
Methods. Figure 14 shows the results of the county-level sim-
ulations for daily cases, hospitalizations, and deaths) from
March 2020 to end of July 2023. The solid red, green and
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Fig. 18 Moving window
cross-correlations between the
infection time series of the zip
codes shown in the legend
indicating emergent
synchronization and
asynchronization regions
overtime

Fig. 19 Population
characteristics of low and high
transmission zip codes

grey lines in the figure depict the mean values of the daily-
cases, hospitalizations, and deaths respectively, whereas the
shaded regions show the respective the 95% confidence inter-
vals for each mean. The solid black line in each figure
panel represents the actual numbers reported for daily cases,
hospitalizations and deaths by the Department of Health,
Hillsborough County. While the model predictions are able
to capture the temporal wave-like patterns observed in the
reported data for each clinical state reasonably well, it is

apparent that the quantitative performance of the model con-
trasted with the data observed at different phases of the
pandemic, particularly in the case of hospitalizations and
deaths. We consider that this mismatch between predictions
and observed data is a function of several factors, including
parameter uncertainty that is not fully constrained by cal-
ibration to only daily case data, the consideration of only
the Hillsborough population ignoring impacts of visitors,
and problems with reporting of data, particularly in the case
of deaths. Other issues could be related with uncertainties

123



Complex & Intelligent Systems (2025) 11 :83 Page 23 of 29 83

Fig. 20 Daily infected cases
across Hillsborough County for
vaccination scenarios. The red
curve indicates the simulation
curves for baseline vaccination
while green and blue indicated
scenarios where preferential low
FPL and workers are
preferentially vaccinated before
the rest of the population. The
reported data is given by the
black curve

with regards to the actual implementation and compliance
with the various social measures mandated by the author-
ities, the arrival times of the variants, and the movement
model only approximately capturing the mobility of agents
throughout the pandemic. This indicates that further investi-
gation of parameter sensitivity, agentmovements using better
real-time data, agent compliance behavior, and inclusion of a
datamodel for addressing errors in reporting,will be required
to correct these anomalies. We are currently addressing the
resolution of these issues to improve predictive performance.

County-level analysis by population sub-groups

A feature of the DT-ABM is that it allows sub-group analysis
to be carried out for identifying and characterizing the most-
risky population categories for a disease. Figure 15 illustrates
the absolute daily case numbers predicted for the population
of Hillsborough, divided by age groups, races, ethnicity, and
income categories. These results show, on the one hand, that
working age groups are themain contributors to the predicted
daily cases across the county, whereasWhite people have the
highest number of cases among all races. Similarly, lower-
income groups contributed themost to the overall daily cases.
On the other hand, an analysis based on proportions relative
to population size did not reveal much difference in daily
cases, even though hospitalizations and deaths were dispro-
portionately high in African American and other minority
groups, including Hispanics (data not shown).

Zip code-level analysis

This was performed on a subset of 5 zip codes chosen to
represent different locations, population sizes, and infection

patterns in the county. The analysis based on these zip codes
reveals two key patterns. Firstly, some of these representa-
tive zip codes (and by extension some zip codes in the entire
county) always show higher numbers of daily cases relative
to the median cases predicted across all zip codes, while the
numbers predicted in others are always below the median,
as can be seen in Fig. 16. The grey shaded region in the
figure indicates the 95% confidence interval constructed at
each time for the combined predictions for all the 52 zip
codes modelled, while the red curves show the correspond-
ing median daily cases arising from these predictions. The
dashed black lines show the simulated daily cases in the
selected zip code and indicate each zip code’s infection levels
relative to the median cases for all zip codes. These results
demonstrate that throughout the pandemic, some of the 5
zip codes were consistently at higher risk for infection com-
pared to the rest. This pattern can also be observed in the
maps showing the spatial distribution of the cases predicted
at the zip code level (Fig. 17). As can be seen, significant het-
erogeneity or spatial asynchrony between zip codes emerged
early during the pandemic, which persisted over time (high
infection zip codes remaining relatively highly infected),
although there is also an interesting indication of changes
in spatial synchrony across the zip codes.

To further characterize the spatial synchronization in
daily cases, we assessed the pattern of temporal correla-
tions between the daily reported cases predicted for each
pair of the 5 representative zip codes. We applied a moving
60-day time-window to perform the paired correlations to
study the dynamics or evolution of zip code-level spatial syn-
chronization in the cases [6]. This time-window length was
arrived at by experimenting with different choices, which
found that a 60-day window best helped in unveiling the
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Fig. 21 a Daily cases time series
showing the time window from
pre-omicron into end of July
2023, and the period one month
ahead to the end of August 2023.
The dashed vertical lines indicate
the beginning of the
post-omicron and end of July
2023 periods respectively. b The
daily change in the proportion of
immune individuals over the
course of the pandemic

synchronization patterns shown in Fig. 18. The results from
this temporal correlation analysis highlighted the evolutionof
distinct synchronization patterns across the pairs of zip codes
investigated. Notably, during the initial and Alpha variant
waves, a low degree of synchronization was observed. This
degree of synchronization gradually increased over time until
the highest degree of synchronization was detected during
the formation of the Delta and Omicron variant waves. The
period post-Omicron, however, showed a return to lower lev-
els of synchronization between the zip code pairs (Fig. 18).
As noted above, this temporally-changing pattern of asyn-
chrony and synchrony at different phases of the pandemic
was also observed in the spatial distribution of evolving zip
code-level cases in the county (Fig. 17). Several factorsmight
interact to govern the spatial asynchrony-synchrony patterns
observed in the results; during the early phases when most
of the population is susceptible, variations in spatial case

distribution as a result of non-uniform seeding of infectious
cases, zip code-level population size, vulnerability to infec-
tion, and patterns of movements will govern the observed
asynchronous pattern in cases. As waves develop, more and
more susceptible individuals or agents come in contact with
growing numbers of infecteds within and across zip codes to
cause synchronization in the cases. During the post-omicron,
synchrony is broken by the emergence of large but variable
numbers of immunes in different zip codes (as a result of
variations in the levels of infection experienced) forming bar-
riers to transmission from lower numbers of infecteds to the
remaining susceptibles.

Figure 19 demonstrates another important utility of
employing a place DT to run a disease ABM, viz. that it
also allows investigation of the population attributes that
may underlie the spatial (zip code level in the present case)
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distribution of disease transmission. The figure plots the frac-
tions of agents exhibiting different attributes that may be
associated with COVID-19 transmission in a sample of high
incidence versus low incidence zip codes. The results show
that among the agent attributes, the higher rate of transmis-
sion observed in the high incidence zip codes is associated
with individuals belonging to > 18 year groups, the Hispanic
ethnic group, poorer income brackets and greater travel out-
side the resident zip code.

Vaccination scenarios

Another powerful feature of DT-ABMs is the ability to per-
form scenario analysis that might be helpful in policymaking
choices. To highlight this feature, we ran two hypothetical
vaccination scenarios: preferentially vaccinating 1) low FPL
groups and 2) workers. In both scenarios the preferential vac-
cination causes an initial drop in the daily cases due to the
protective effect of vaccination on those most contributing
to the transmission dynamics due to movement and mixing.
However, due to the rapid waning of vaccine induced immu-
nity relative to the waning rate of natural immunity, both
groups will lose their immunity status, and upon the release
of lockdown measures, will facilitate the earlier rise of the
subsequent delta wave. The wave created by the workers,
however, will be larger than the FPL groups since they rep-
resent a larger fraction of the population. This result, and the
fact that the differential impact on cases in the two groups
will dissipate as natural immunity in the entire population
builds up (see predictions beyond Jan 2022 in Fig. 20), indi-
cates that random vaccination may have a better outcome
than preferential vaccination.

Forecasts

We next used the model fitted to case data until end of July
2023 to generate near-future one-month ahead forecasts for
the path of COVID-19 in the county. The results of the fore-
cast shown in Fig. 21a indicates that viral transmission will
assume a low-level oscillatory pattern in the near future.
This implies that the infections will not fade away altogether
despite the growth of high levels of naturally immune and
vaccinated individuals over time (Fig. 21b). A further reason
relates to the spatial evolution of immune agents across the
county, which changes from an inhomogeneous pattern dur-
ing the earlier stages of the pandemic to a high level more
homogenous pattern by July 2023 (Fig. 22). This ensures
that no local pockets of infections arise and is able to spread
over time, thereby suppressing and maintaining infections at
low levels globally. However, there is also a suggestion that
due towaning of both natural and vaccine-induced immunity,
combined with the immune escape potential of new variants

as was reported for Omicron subvariants, there will be a con-
tinual risk of small flare-ups, as can be seen in Fig. 21a.
An interesting feature of the results depicted in Fig. 21a
is that post-omicron, our model predictions are consistently
higher than the reported case data despite fitting the omicron
wave well. We suggest that this is mostly likely because case
reporting began to become inconsistent during this stage rais-
ing important questions regarding whether the lower quality
reported data or model predictions calibrated to past higher
quality data offers a better guidance as to the later state of
the pandemic.

Summary and conclusion

We describe how we have developed HPC-oriented work-
flows to implement a city-scale DT platform for the spec-
ification and execution of the key components of an ABM
for simulating and controlling the spread of respiratory pan-
demics in complex urban settings, focusing here on the
COVID-19 epidemic in Hillsborough County, Florida. The
focus of this work was to describe the technical develop-
ment and methodology of the DT-ABM to more realistically
model disease transmission in communities during an epi-
demic. The defining feature of the developed agent-based
city DT for simulating the spread of such an epidemic is
that it facilitates the construction of a fine-grained model of
a city and its components in order to support more realis-
tic data-driven disease modelling through the capture of the
real-world factors (demographics, social behaviors and activ-
ities, locales of infections, and public interventions) that drive
the rate and spatio-temporal spread of epidemics in popula-
tions. The workflows are also unique in that they facilitate
the execution of large data-intensive steps that incorporate
daily zip code and county-level surveillance and policy data,
agent movements based on navigation/traffic data, dynamic
agent behavioral responses to fluctuations in cases, indi-
vidual agent susceptibility to the viral pathogen, and the
arrival of viral variants differing in transmission and clini-
cal characteristics. The workflows also additionally include
post-simulation analytics for facilitating projections, and the
making of sub-population and locational risk assessments.
Computational efficiency and scalability constitute major
issueswhen running large-scaleABM frameworks, andmore
so when these are embedded within a city DT. We have
sought to resolve this issue using cloud-based HPC resources
along with high parallelization of our code. Optimizing the
trade-offs between performance and the computing cost of
runningHPC-supporteddigital-twin simulations on the cloud
or on compute clusters is an ongoing challenge that needs to
be resolved if we are to replace batch scheduling with on-
demand requests of simulation runs [42, 50]; this will make
it possible to eventually bring simulations closer to real-time.
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Fig. 22 The modelled spatial distribution of immune agents in Hillsborough County in a April 2021 and b May 2023

More realistic modelling of actual movements across a city
by residents can also take advantage of new advances made
in the use of real-time data from IoT sensors that integrates
high-resolution infrastructure data and road user behaviors
and vehicle movements across a city at various timepoints
during the day [38]. This continuous synchronization of data
will enable DT models to be continuously updated based on
real-time conditions, making it an effective tool to run virtual
simulations and scenario planning. Such systems will further
increase computational complexity but will lead to a better
bi-directional mapping of the real and digital worlds, the
achievement of which will support better and smarter plan-
ning and management of health crises going forward. We are
currently addressing this functionality in the next version of
our DT-ABM framework.

This work arose in response to requests from county agen-
cies to support their work on COVID-19 monitoring, risk
assessment, and planning, and using the described work-
flows, we were able to provide uninterrupted bi-weekly
simulations to guide their efforts for over a year from late
2021 to 2023. This experience and the results described here
demonstrate that timely data-driven high resolution epidemic
simulations using a coupled place DT-ABM platform is pos-
sible, and if the data inputs we have defined in the paper and
increased compute power is made available, it is also scal-
able to larger regions. Indeed, we have already successfully
applied the described data pipeline and compute workflows
to the city of Miami (to be described in a following work),
which amply validates this possibility. Finally, we note that

whilewehave focusedon respiratory epidemics in the present
work and have validated our approach in the specific context
of COVID-19 transmission, and associated intervention sce-
narios, our data pipeline and workflows are also designed on
the principles of computational and model agility in such a
way that the framework can be easily repurposed for other
objectives and diseases [15]. We are exploring such exten-
sions, for example, for simulating vector-borne diseases in
Florida, and also as a simulation tool for aiding decision-
making and preparedness for future epidemics in different
national and global settings.
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