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Thermal protection materials are widely used in the aerospace field, where detecting internal defects 
is crucial for ensuring spacecraft structural integrity and safety in extreme temperature environments. 
Existing detection models struggle with these materials due to challenges like defect-background 
similarity, tiny size, and multi-scale characteristics. Besides, there is a lack of defect datasets in 
real-world scenarios. To address these issues, we first construct a thermal protection material digital 
radiographic (DR) image dataset (TPMDR-dataset), which contains 670 images from actual production 
and 6,269 defect instances annotated under expert guidance. And we propose an innovative texture-
enhanced attention defect detection (TADD) model that enables accurate, efficient, and real-time 
defect detection. To implement the TADD model, we design a texture enhancement module that 
can enhance the concealed defect textures and features. Then we develop a non-local dual attention 
module to address the issue of severe feature loss in tiny defects. Moreover, we improve the model’s 
ability to detect multi-scale defects through a path aggregation network. The evaluation on the 
TPMDR-dataset and public dataset shows that the TADD model achieves a higher mean Average 
Precision (mAP) compared to other methods while maintaining 25 frames per second, exceeding the 
baseline model by 11.05%.
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Thermal protection materials have become an essential material of selection for solid rocket motors or special 
thermal insulation components with the advantages of light weight, high temperature resistance, ablation 
resistance, and scouring resistance1. Common thermal protection materials2include carbon fiber reinforced 
composites3, ceramic matrix composites4, and silicone rubber composites5. However, because of the multiple 
press curing between different materials is needed to form the whole, bottleneck problems such as cracking, 
delamination, and deformation occur frequently, which seriously affects the quality of the material. To avoid 
damage to the structure of special parts due to breakage of thermal protection materials, it is needed to perform 
efficient and real-time automatic monitoring of the structural state of the materials.

However, it is still lacking for real-time thermal protection materials defect detection. Currently, the 
detection methods are mainly carried out by a digital radiography (DR) system to capture the internal structure 
of the material6,7, and then specialized and experienced operators are required to detect and judge the captured 
images, which is a time-consuming and labor-intensive process. Hence, it is very important to execute high-
performance, fast, and automated defect detection of thermal protection materials.

Based on a large amount of labeled training data, data-driven supervised learning has played an important 
role in many fields such as defect recognition, fault diagnosis, and industrial manufacturing in recent years8–11. 
Thus, it becomes crucial to construct a high-quality dataset in order to promote the development of detection 
methods. We construct a thermal protection material DR image dataset (TPMDR-dataset), which collects 670 
DR images originated from the real scenarios of thermal protection material inspection, and we annotate 6,269 
defect instances under the guidance of experienced experts, consisting of 6 defect categories, including lamination 
(LA), uneven layer thickness (TH), crazing (CR), internal metal inclusions (IN), transverse wrinkle (TW), and 
longitudinal wrinkle (LW), as illustrated in Figure 1. Lamination defects often have no distinct boundaries, and 
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present low significance appearance features; uneven layer thickness defects do not have common characteristics, 
and the layer can be too thick, or too thin; crazing defects are with longitudinal or oblique black dendritic lines, 
and the fiber texture details can be unclear; internal metal inclusions defects present an irregular distribution of 
dots; wrinkle defects are multiscale stripes, with different directions.

Based on the TPMDR-dataset, we construct our defect detection model by developing region-based and 
regression-based object detection methods. Region-based methods, such as Faster R-CNN12, predict object 
categories and locations by generating proposal regions. Compared to regression-based methods, region-based 
methods achieve higher detection accuracy but are more time consuming. Regression-based methods, such as 
YOLO13and SSD14, directly extract features to predict object classifications and locations, which can save a lot 
of time compared to region-based methods. However, to meet the detection time requirement, there are three 
major challenges to applying regression-based methods for defect detection in thermal protection materials:

• Defects are concealed in the background, defects and material fibers have similar texture characteristics and 
blurred edges between them;

• Some defects are tiny, making it difficult for the deep network to search the tiny defects, such as the metal 
inclusions defects shown in Figure 1(e);

• The different shapes and sizes of the same type of defects make it hard to characterize them.The above issues 
result in that the predicted bounding boxes could fail to accurately enclose the defect areas, causing missed 
detections or false positives.

To respond to the increasingly demand for high accuracy, automation, and real-time performance in thermal 
protection material defect detection, we develop a texture-enhanced attention detection model for thermal 
protection materials. To address the issue that the defect texture is similar to the background and is not easy 
to distinguish, we develop the feature texture enhancement module to enhance the object boundary texture 
features. To tackle the issue of tiny defects, we design a novel non-local dual-attention (NDA) module that 
combines spatial and channel information with non-local attention operations, integrating global information 
to enhance the model’s ability to represent small targets and reduce feature loss. Finally, the path aggregation 
network (PAN)15 combined with NDA (named NDA-PAN) is developed to improve the robustness in detecting 
defects with different shapes and sizes.

In summary, the main contributions of our work are as follows:

• We construct a thermal protection material DR image dataset (TPMDR-dataset) from real-world produc-
tion scenarios. It provides high-quality data in the field of thermal protection material quality monitoring, 
including six defect categories with a total of 670 images and 6,269 defect instances annotated under expert 
guidance;

• We propose a texture-enhanced attention defect detection (TADD) model for thermal protection materials, 
which improves the model’s ability to detect concealed and tiny defects through a texture enhancement mod-
ule and a non-local dual attention (NDA) module. Additionally, we develop the PAN module to enhance the 
model’s performance in detecting defects with various shapes and sizes;

• We conduct comprehensive experiments to verify the effectiveness and robustness of our proposed method. 
The results show that our method achieves accurate non-destructive online defect detection at 54.74% mean 
average precision at 0.5 intersection over union threshold (mAP@0.5) with 25 frames per second (FPS) on 
TPMDR-dataset, with the capability of detecting concealed defects in complex backgrounds. Furthermore, 
the method is validated on the public concealed defect industrial dataset, which outperforms other related 
algorithms.This paper is organized as follows. Section “Related works” presents an overview of the related 
works. Section “Methodology” gives the details of the proposed methods. Section “Experimental results” 
presents extensive experiments and ablation studies. Finally, Section “Conclusion” concludes this paper.

Fig. 1. DR images (slices) of six types of defects in thermal protection materials.
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Related works
Defect detection methods for thermal protection materials
Thermal protection materials are widely used as a composite material in aerospace field, and non-destructive 
testing of thermal protection materials has become very important. Traditional techniques such as microwave16, 
X-ray17, thermal imaging18, and terahertz imaging19 provide the essential imaging capabilities, followed by 
manual detection of defects. Deep learning acquires a specific feature representation of the dataset through 
learning from a large number of samples, which can perform precise and automated defect detection in complex 
material structures. Bang et al.20 used the inception model to identify defects in composite materials imaging, 
overcoming the reliance on expert experience for detection results. Gong et al.21proposed a transfer learning 
detection model that utilizes the domain-adaptive Faster R-CNN and feature pyramid network (FPN)22 to 
localize small-size void and inclusion defects in composite X-ray images. Meanwhile, Dai et al.23in aerospace 
constructed an automated defect analysis system through YOLOv424 to automatically discriminate defects in 
solid rocket motor images under industrial computerized tomography imaging, addressing the issues of low 
efficiency in manual identification and data utilization. The above method provides a new solution direction for 
defect detection of thermal protection materials. Additionally, researchers in related fields have also explored 
strategies for detecting tiny defects and processing multi-scale features. Yu et al.25 proposed a single-stage 
perceptual network to solve the problem of ineffectiveness of aggregated feature guidance module for industrial 
tiny defect detection. Guo et al.26 proposed an improved YOLO model that incorporates a multi-scale feature 
fusion structure to enhance the dynamic adaptation of the detector to defects at different scales. However, there are 
still limitations in the application of these methods for thermal protection material detection, such as the lack of 
accurate detection of very tiny defects under texture interference and the lack of adaptability performance under 
multi-scale variations. Building on the aforementioned works, we proposed an improved model and innovative 
feature module design for thermal protection materials, including a non-local dual attention mechanism and an 
improved path aggregation network, to further optimize the detection accuracy and efficiency.

Concealed object detection method
Concealed object detection27is an extensive and challenging task, aiming at identifying objects that seamlessly 
blend into complex backgrounds. However, existing concealed object detection methods focus on natural 
scenes27–31, lacking adaptability to industrial environments, yet approaches in natural scenarios offer valuable 
insights for industrial applications.

Firstly, it is crucial to enhance the concealed object features to improve the effectiveness of concealed object 
detection. Liu et al.32 proposed a novel receptive field block (RFB) module inspired from the structure of the 
receptive field in the human visual system. The RFB takes into account the relationship between the receptive 
field size and the eccentricity to enhance the discriminability of features. Yuan et al.33 proposed a receptive 
field block with a novel multi-feature pyramid network where asymmetric convolutional kernel is introduced 
in the network to enhance feature attraction by adding nonlinear transformations. Fan et al.27 proposed texture 
enhancement module (TEM) to expand the receptive field by adding branches with larger expansion rate which 
enhances the concealed target features.

Secondly, neighbor connection as a strategy can effectively fuse the enhanced feature map information, 
which has already achieved better results in a variety of concealed object detection, e.g., Zhang et al.31 proposed 
the neighbor connection operation to enable the aggregation of feature maps from neighboring layers to reduce 
the computational burden and weaken the phenomenon of long term context passing. Fan et al.27 proposed the 
neighbor connection decoder (NCD), the NCD aggregates high-level features, bridges contextual information 
across layers, and maintains semantic consistency within layers. In addition, Wang et al.34 proposed an 
efficient cross-modal fusion network that utilizes RGB intensity and linear polarization cues to generate scene 
representations with high contrast to detect polarization-based concealed objects. Wang et al.35 aggregated 
multilevel features and expanded the receptive field by dense concatenation, which combined the peer layer 
features and dual-branch features to improve the performance of concealed object detection. Liu et al.36 designed 
the dense interactive decoder module to output rough localization maps, modulate the cross-scale feature fusion 
module to achieve concealed object detection.

In summary, while existing concealed object detection methods have made significant progress in 
natural scenes, their adaptation to industrial scenarios remains unknown. Our work addresses these gaps by 
incorporating an improved texture enhancement module and an adjacent decoder, specifically designed to meet 
the challenges of detecting concealed defects in thermal protection materials.

Methodology
Overview
Figure 2 illustrates the overall framework of our proposed TADD model, which consists of feature extraction, 
feature enhancement, feature fusion, and detection head modules. The features are extracted from the input 
image by the backbone network. Next, the feature enhancement module enhances the low saliency features and 
fuses them in the feature fusion module. Then the prediction bounding box is obtained by the detection head 
after generating anchor filters for each grid.

Furthermore, we elaborate the details of the three main modules, including (a) improved TEM, which is used 
to capture fine-grained textures through a larger receptive field and enhance the discriminative ability of the 
model to concealed defect boundaries; (b) NDA module, where non-local attention with position and channel 
information to synergistically optimize the prediction results of tiny targets in the deep network; (c) NDA-PAN, 
a bidirectional cross-scale connection to improve the network’s ability to detect multi-scale targets.
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Feature extraction and enhancement
Feature Extraction. For the input image X ∈ RH×W ×C  (H, W, and Crepresent the height, width, and number 
of channels of the input image), the output size of the three last layers of the backbone network CSPDarkNet5337 
is H

8 × W
8 × 256, H

16 × W
16 × 384 and H

32 × W
32 × 512, which covers shallow features with small receptive fields 

and much fine-grained feature information, and strong semantic, deep features with much global information. 
Significantly, the operational processing of the three-layer feature map is the key to our research.

Feature enhancement.Due to the high similarity between defect and background textures in the image, 
the defect features are confused with the background, which causes the model to be incapable of accurate 
discrimination. To address this issue, we develop an improved TEM that shares semantic features between 
layers via skip connections, while atrous convolution38,39 expands the module’s receptive field, and adaptive 
average pooling branching is employed to address defect shape bias to generate more discriminative feature 
representations for concealed defects.

As shown in Figure  3, each improved TEM consists of four parallel residual branches, in each of which 
the first convolutional layer utilizes a 1 × 1 convolutional operation to reduce the channels to 32. Next, two 
additional layers are applied, including a convolutional layer with (2i − 1) × (2i − 1) kernels and an atrous 
convolutional layer with a specific dilation rate when i > 1. The parallel operation of atrous convolution with 
four different scale dilatation rates expands the receptive field and captures more contextual information. In 
particular, skip connections connect neighbors, and then the input on the branch with i > 1 is the original 
input skip connecting the output of the previous branch. Next, the first four branches are concatenated and the 
channel size is recovered to C by a 1 × 1 convolution operation. After that, we add a parallel pooling upsampling 
residual branch, in which the adaptive mean pooling layer performs a global feature information extraction on 
the image. and then the input feature image size is recovered by a 1 × 1 convolution and upsampling. Finally, 
the whole module is fed into the ReLU function to obtain the output feature foutput. In addition, the depthwise 
separable convolutions40 used in the module are able to reduce the computational burden without reducing the 
expressive power.

Fig. 2. The structure of the proposed TADD model.
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Non-local dual attention
Deep neural networks can acquire richer and deeper semantic information through multiple convolutions on the 
feature maps41, but the features of tiny defects tend to weaken or even vanish during the convolution process25. 
Meanwhile, low-level features contain more detailed information such as edges and textures, which can be used 
to refine the object42. To solve this problem, we design the NDA module to fuse low-level features with high-level 
features, which employs non-local attention43 to handle with local and global dependencies and strengthens the 
model’s ability to detect tiny defects in deep neural networks. It consists of two parts, Pearson product-moment 
correlation coefficient (PPMCC)-based position attention module and efficient channel attention module. As 
shown in Figure 4, the non-local dual attention for each layer fuses the input feature x is defined as:

 x = fW −NCD
i + fF P N

i + fP AN
i−1  (1)

where i represents the number of layers of attention insertion, fW −NCD
i  denotes the i-th layer weighted 

neighbour connection decoder (W-NCD) module output, fF P N
i  denotes the top-down FPN i-th layer feature 

branch, and fP AN
i−1  denotes the bottom-up PAN low-layer feature branch.

Weighted neighbor connection decoder
The neighbor connection decoder27,31 achieves more efficient learning by aggregating the enhanced three layers 
of features. However, it incorporates each layer’s features homogeneously and does not express the current layer 
features saliently. Therefore, we propose the weighted neighbor connection decoder, which through weighting 
implements a salient representation of the current layer’s features in the feature fusion process, which is part 
of the non-local dual attention input. As shown in Figure 5, the improved TEM enhanced three layer feature 
space f ′

3, f ′
4, and f ′

5 is inputted into the W-NCD, and pα, pβ , and pγ  are used as the weighting coefficients for 
reweighting the different output layers.

Fig. 3. The structure of the improved texture enhancement module.
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PPMCC-based position attention module
The PPMCC-based positional attention module relies on the PPMCC similarity matrix multiplying with the 
original input features to achieve useful feature saliency and interfering feature suppression. The input feature 
x ∈ RH×W ×C  will be reshaped as RN×C , where (N = H × W ) represents the total number of positions in 

Fig. 5. The structure of the weighted neighbour connection decoder.

 

Fig. 4. The structure of the non-local dual attention.
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the feature map. Subsequently, the transpose of x is multiplied by itself to compute the dot product similarity 
map f. The similarity calculation in the original position attention module is defined as:

 f(xj , xk) = xT
j xk  (2)

where j and k represent the position indices of the input feature x ∈ RH×W ×C , xT
j xk  denotes the dot product 

similarity. The original position attention module is subject to a softmax layer to compute the position attention 
map S ∈ RN×N :

 
Skj = ef(xj ,xk)

∑N

j=1 ef(xj ,xk)  (3)

Skj  represents the influence of the j-th position on the k-th position. The more similar the feature representations 
of the two positions, the larger the numerator, indicating a higher correlation. Additionally, due to the properties 
of the exponential function, small changes in similarity on the feature map will be mapped to larger differences, 
enhancing the discrimination between targets and backgrounds.

There are two problems in the above similarity calculation process. First, when a large number of large values 
exist in the numerator ef(xj ,xk), the denominator 

∑N

j=1 ef(xj ,xk) will become a very large value with respect 
to the numerator, resulting in the value of the mapping Skj  to become very small, which results in the spatial 
attention features that have a minimal impact on the input features. Second, when in the numerator ef(xj ,xk) 
there are values with large differences, even if these values are very few, it will cause the positional attention 
mapping Skj  of these values to overflow and cannot participate in the subsequent gradient computation. To 
solve the above problem, the dot product similarity is replaced by the PPMCC, which will limit all elements 
f(xj , xk) to [−1,1]. After softmax normalization, these elements are suitable to keep their differences. The 
PPMCC matrix is defined as:

 
fP P MCC(xj , xk) = (xj − x̄j)T (xk − x̄k)

∥xj − x̄j∥ ∥xk − x̄k∥
 (4)

where (xj − x̄j)T (xk − x̄k) denotes the covariance of the vectors xj  and xk  to measure the degree of deviation 
of each dimension from its mean, ∥xj − x̄j∥ and ∥xk − x̄k∥ represent respectively the standard deviation of 
the vectors xj  and xk , while x̄j  and x̄k  denote the sample mean values of vectors xj  and xk . The PPMCC 
similarity map is normalized using the softmax function, and multiplied with the reshaped feature RN×C  to 
obtain the positional attention information of size RH×W ×C , which represents the feature information of all 
positions. Finally, the weighted sum of all features with the original input feature x is obtained by element-
wise sum operation. As a result, the PPMCC-based positional attention module enhances the detection model’s 
non-local contextual view and selectively aggregates contexts according to similarity map, which improves the 
model’s ability to recognize tiny defect features, suppresses complex background features, and improves intra-
class compactness and semantic consistency.

Efficient channel attention module
The channel attention module (CAM)44exploits the interdependencies between channel maps to improve the 
feature representation of specific semantics, but the original channel attention module is computationally 
intensive and consumes more computational resources. ECA-Net45employs adaptive selection of 1d 
convolutional kernel sizes to maintain performance while significantly reducing model complexity through a 
strategy of avoiding dimensionality reduction and interacting appropriately across channels. Inspired by45, we 
integrate this attention mechanism into our NDA module, improving channel attention efficiency and aligning 
with our design principles.

First, a global average pooling operation is applied to the input feature x ∈ RH×W ×C  to produce a feature 
vector of size R1×1×C , which is then passed through a 1D convolution operation with a kernel size k is defined 
as:

 
k =

∣∣∣∣
log2 C

γ
+ b

γ

∣∣∣∣
odd

 (5)

By calculating the adaptive 1d convolution kernel size, which determines the coverage of local cross-channel 
interactions. Then, 1d convolution is used instead of fully connected layers to achieve cross-channel information 
interaction, avoiding dimensionality reduction and obtaining the weight for each channel of the feature map. It is 
less computationally intensive than the original channel attention, which significantly reduces the computational 
cost, especially for high-dimensional feature maps. Finally, the normalized weights are multiplied channel-wise 
with the original input feature map to generate the weighted feature map. The ECA module strengthens the 
inter-channel dependencies in the TADD model while maintaining feature integrity and improving the model 
detection efficiency.
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Non-local dual attention path aggregation network
In order to obtain finer fusion features and enhance the network’s robustness to scale changes. Inspired by 
the work of BiFPN46, a novel NDA-PAN is designed by integrating the NDA with bidirectional cross-scale 
connections into the top-down and bottom-up PAN.

As shown in Figure 6, the NDA-PAN module aggregates multi-scale features at different resolutions. Formally, 
given a list of multiscale features (f2, f ′

3, f ′
4, f ′

5), the goal of the NDA-PAN module is to find a transform 
function that can efficiently aggregate different features and output a new refined feature list. The top-down and 
bottom-up feature fusion processes are defined as follows:

 

P 4 = Concat(up(f ′
5), Conv(f ′

4))
P 3 = Concat(up(P 4), Conv(f ′

3))
P 2 = Concat(up(P 3), Conv(f2))

 (6)

 

B3 = NDA(down(P 2), Conv(P 3), W_NCD(f ′
3))

B4 = NDA(down(B3), Conv(P 4), W_NCD(f ′
4))

B5 = Concat(down(B4), W_NCD(f ′
5))

 (7)

where down(·) denotes downsampling, NDA(·) denotes the operation of the proposed NDA module, and 
W_NCD(·) denotes the output of the W-NCD. Through bottom-up path enhancement, the rich texture 
features in the lower layers shorten the information path between the lower and topmost features. In addition, 
the outputs of the middle two layers (B3 and B4) are refined by the attention mechanism, which will emphasize 
the defect features and suppress the complex background features in the tiny defect detection task. Through the 
above computation, the outputs are four-scale fused features, which satisfy the detection capability of different 
defect sizes, improve the robustness to target scale differences, and enable all layers of NDA-PAN to share similar 
semantic features.

Detection layer and loss function
The detection layer is the part that further processes the output of the feature fusion to generate the predicted 
bounding boxes. Specifically, the detection layer adjusts the number of channels in the last dimension of NDA-
PAN to 3 × (x, y, w, h, Eobj , [E1

cls, E2
cls...En

cls]), where 3 is the number of anchors in each grid, x, y, w, h 
means the coordinates and the width and height of the prediction box, Eobj  represents the confidence score of 
the prediction box, the [E1

cls, E2
cls...En

cls] stands for the probability of each category, and the size is the number 
of categories n.

The detection head first filters out prediction bounding boxes with confidence score Eobj  below a preset 
confidence value, treating them as negative samples for initial screening. Next, it calculates the comprehensive 
confidence score Ecomp for the remaining samples. The equation for calculating the comprehensive confidence 
score is as follows:

 Ecomp = Eobj × max([E1
cls, E2

cls...En
cls]) (8)

For prediction boxes with lower comprehensive confidence score Ecomp, their priority is reduced in the 
subsequent non-maximal suppression (NMS) operation, and those with confidence below the target threshold 
are further filtered out. Finally, the detection head applies NMS: when the intersection over union (IOU) 
score IoU between prediction boxes exceeds the IOU threshold, it is considered as an overlap and the lower 
priority prediction box is removed. The final output from the detection head consists of high-confidence, non-
overlapping prediction bounding boxes.

Fig. 6. Comparison of the connection between the FPN, PAN, BiFPN and NDA-PAN.
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The loss function consists of three components: bounding box loss, confidence loss, and classification loss, 
denoted as follows:

 Lloss = Lbbox + Lobj + Lcls (9)

The calculation of bounding box loss is performed using the method of complete intersection over union 
(CIoU)47,48, which takes into account the area ratio, distance ratio, and aspect ratio between the predicted box 
and the ground truth box. CIoU accelerates model convergence and is described as follows:

 
Lbbox = LCIoU = 1 − IoU + ρ2(pred, gt)

c2(pred, gt) + pα · pυ  (10)

 
IoU = Spred ∩ Sgt

Spred ∪ Sgt
 (11)

 
pα = pυ

(1 − IoU) + pυ
 (12)

 
pυ = 4

π2 (arctan wgt

hgt
− arctan wpred

hpred
)2  (13)

where Spred represents the area of the detected defect bounding box predicted by the detector, while Sgt stands 
for the area of the manually annotated ground truth defect box. ρ(pred, gt) denotes the Euclidean distance 
between the center points of the predicted and ground truth boxes, and c(pred,  gt) represents the diagonal 
length of the predicted and ground truth boxes. The distance between the predicted and ground truth boxes is 
effectively narrowed by minimizing the ratio. pα is the parameter used to do trade-off, when the IoU is larger, 
then pα is larger, which prioritizes the aspect ratio and vice versa for the distance ratio. pυ  is a parameter used 
to measure aspect ratio consistency. wgt and hgt represent the width and height of the ground truth defect box, 
while wpred and hpred represent the width and height of the predicted defect box.

Both target confidence loss and classification loss employ binary cross-entropy loss. First, the confidence loss is 
calculated from the sample pairs obtained from positive sample matching, which includes the confidence score 
in the prediction box (Eobj  as the predicted value) and the IoU value of the prediction box with the ground truth 
box (IoU as the ground truth). These two components are used in the binary cross-entropy loss to compute the 
final confidence loss. Nb is the training batch size and pobj  is a hyperparameter to solve the positive-negative 
sample imbalance issue. The equation for calculating the confidence loss is as follows:

 
Lobj = LBCE = − 1

Nb

Nb∑
(pobj · IoU · log(Eobj) + (1 − IoU) · log(1 − Eobj)) (14)

Similarly, the classification loss is computed by comparing the predicted class scores of the bounding boxes 
with the one-hot values of the target class. The predicted class scores are passed through a sigmoid activation 
function before being calculated using the cross-entropy loss function. The sigmoid function maps the logits 
to probabilities in the range (0,1). The cross-entropy loss then measures the difference between the model’s 
predictions and the ground truth labels, yielding the classification loss. The equation for calculating the 
classification loss is as follows:

 
Lcls = LCE = − 1

Nb

Nb∑ n∑
c=1

(
pcls · log exp (Ecls)∑n

c=1 exp (Ecls)
· Êcls

)
 (15)

where Ecls is the predicted class score by the model. Êcls is the ground truth class value. pcls is a hyperparameter 
to solve the category imbalance issue.

Experimental results
This section provides an experimental evaluation of the proposed TADD model. First, our assembled dataset and 
its details are introduced. Next, the experimental configurations and evaluation metrics are described. Third, the 
proposed model is compared with state-of-the-art methods. Finally, ablation studies are conducted to verify the 
effectiveness of the proposed module.

Dataset
Thermal protection material DR image dataset (TPMDR)
The emergence of new tasks and datasets has not only accelerated progress across various areas of computer 
vision but also driven significant advancements in industrial quality monitoring, as seen with datasets like PCB 
defect49and steel surface defect50. Our assembled TMPDR-dataset aims to address specific challenges in real 
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engineering applications. We collected 670 DR defect images of thermal protection materials with original 
resolution distributions of 4320 × 3556, and classified the defects into six categories based on characteristics 
under the guidance of experienced experts, and carefully labeled the location information and classification 
of each defect, resulting in 6,269 instances in total. Table 1 shows the distribution of the TPMDR dataset for 
training, validation, and testing in the experiments and the average size of the defects.

Concealed defect segmentation 2K dataset (CDS2K)
As shown in Figure 7, CDS2K51 is a high-quality industrial scene concealed defect dataset, including images from 
pills, screws, leather, fabrics, steel surfaces, and other industrial scenes, containing a total of 1,330 defect images. 
These defects are selected from well-known industrial defect datasets such as MVTecAD, KolektorSDD, and 
CrackForest. The defects in the images of this dataset are “seamlessly” embedded in their material environment, 
which poses a great challenge for defect detection. Because of the limitation of the number of defects in a single 
scene, we chose a larger sample (the number of defects in a single scene > 50) of industrial scene images as the 
evaluation dataset to evaluate the detection effect of our proposed TADD model, which consists of 9 categories, 
877 images, and 1,239 defect samples, with an average size of 727 × 712. Table 2 shows the distribution of the 
original dataset scenes for the training and test data.

Experimental configurations
Experiments were conducted on a server equipped with Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz and 
NVIDIA TU102. The pre-trained model on the COCO dataset was used to initialize the backbone network 
CSPDarknet53 and accelerate the convergence of the network by using a transfer learning strategy. The initial 
learning rate was set to 0.001, the number of iteration rounds was set to 300, and an early stopping mechanism 
was set to prevent overfitting. On the TMPDR-dataset, the input training image size was adjusted to 1280 × 1280 
pixels, and the batch size was set to 4 due to the limitation of the GPU memory. On the CDS2K dataset, the input 
training image size was adjusted to 640 × 640 pixels, and the batch size was set to 16. In addition, the factors pα

, pβ , and pγ  were used to balance the importance of the three inputs in the W-NCD input. For example, on the 
input of the W-NCD corresponding to the B4 layer, the weight pβ  of the input f ′

4 was adjusted to 0.7, indicating 
that this input has a high impact on the decoder, and the rest of the inputs were weighted with pα = pγ = 0.5 
when performing the multiscale feature summation.

Fig. 7. Concealed defects in industrial scenes from the CDS2K dataset.

 

TMPDR-dataset Defective image

Number of defects

LA TH CR IN TW LW

Train set 468 1042 140 312 225 846 1755

Validation set 67 173 17 43 40 115 298

Test set 135 369 40 73 46 229 506

Total 670 1584 197 428 311 1190 2559

Average size 
(pixels) 4320 × 3556 64 × 173 101 × 375 87 × 227 21 × 24 757 × 248 70 × 647

Table 1. TMPDR-dataset distribution.
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For each grid in the four feature maps (sizes 1
4 , 1

8 , 1
16  and 1

32  of the input size), we generate three different 
sizes of anchors by the K-means algorithm by adjusting the center coordinates, length, and width, the detection 
layer modifies the anchors into the final predicted bounding boxes. The a priori anchor settings for different 
datasets and other parameter settings are shown in Table 3:

Evaluation metrics
We select the CIoU threshold of the prediction bounding boxes to the ground truth bounding boxes larger than 
0.5 as the criterion for determining target detection, and the mean average precision (mAP) as the evaluation 
metric. P is the precision, which represents the proportion of correctly predicted samples to all detected targets, 
and R is the recall, which represents the proportion of correctly predicted samples to all targets. AP is the area 
enclosed by the P-R curve and the coordinate axis. In addition, the number of parameters and FPS are the 
metrics used to evaluate the time efficiency. These metrics are defined as follows:

 
AP =

∫ 1

0
P (R)dR  (16)

 
mAP =

∑
AP

ncls

 (17)

 
P = T P

T P + F P
 (18)

 
R = T P

T P + F N
 (19)

where ncls is the number of sample defect categories; TP and FN are the number of defective samples predicted 
correctly or incorrectly, and FP represents the number of non-defective samples that are misclassified as defects.

Evaluation
Under the same environment configuration, we compare the performance of our model with the state-of-the-art 
object detection models, including the region-based network Faster RCNN12, the regression-based networks 
baseline model (YOLOv424, CSPDarknet53 integrated with PAN), YOLO X52, YOLOv853, and SSD14. We 
compare the performance on the TMPDR-dataset and the publicly available CDS2K dataset, separately. The 
results are shown in Table 4 and Table 5.

The results conducted on TMPDR are shown in Table  4. In terms of comprehensive metric mAP@0.5, 
our TADD model exhibits the best performance of 54.74%, which is 11.05% higher than the baseline model. 
Compared to Faster R-CNN, YOLO X, YOLO v8, and SSD, the mAP@0.5 of our TADD model is higher than 
with 8.24%, 9.25%, 3.66, and 3.81%, respectively. The higher accuracy is also obtained on the CDS2K dataset, as 
shown in Table 5. In terms of mAP@0.5, our TADD model also exhibits the best performance of 73.34%, which 

Training

Weight_decay Warmup_epochs Warmup_momentum Warmup_bias_lr

0.0005 30 0.8 0.1

Momentum Anchors_list(CDS2K dataset) Anchors_list(TMPDR-dataset)

0.937
[19, 19], [41, 41], [70, 76], 
[133, 54], [94, 127], [118, 187], 
[206, 129], [466, 66], [607, 117], 
[159, 747], [343, 382], [549, 297]

[6, 7], [17, 29], [19, 41], 
[15, 88], [21, 76], [23, 119], 
[19, 176], [18, 314], [25, 261], 
[35, 320], [219, 53], [222, 134]

Testing
Confidence threshold NMS IoU threshold

0.001 0.5

Table 3. Hyperparameter during TADD model training and testing.

 

CDS2K dataset Defective image

Number of defects

RoadCrack Blowhole Break Uneven Pill Screw Zipper Carpet Leather

Train set 610 230 84 92 75 79 53 126 63 69

Validation set 83 29 11 14 9 9 8 17 8 9

Test set 184 64 24 28 25 27 15 34 19 20

Total 877 323 119 134 109 115 76 177 90 98

Average size 
(pixels) 727 × 712 178 × 62 58 × 43 57 × 76 313 × 123 126 × 116 75 × 77 139 × 173 184 × 215 128 × 107

Table 2. CDS2K dataset distribution.
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is 10.22% higher than the baseline. Compared to Faster R-CNN, YOLO X, YOLO v8, and SSD, the mAP@0.5 is 
higher with the amount of 12.22%, 2.96%, 2.02% and 10.69%, respectively.

The FPS results are averaged over 135 TMPDR images and 184 CDS2K images tested with the same 
configuration. Our TADD model achieves 25 FPS and 45 FPS, respectively, showing the fast computation in 
inference. In summary, our TADD model has a better detection accuracy than other detectors, and it is very fast 
for practical use.

Figure 8 shows the results of baseline model and our TADD model on the test images of the TMPDR-dataset. 
The two LW defects are closely spaced and have similar textures in group (a), the baseline model recognizes 
the two LW defects as one defect, while the TADD model correctly distinguishes the close textured defects. In 
group (b), the baseline model misses one TH defect and misclassifies one TH defect as an LA defect, while the 
TADD model performs correctly in the classification of TH and LA defects. In group (c), the baseline model 
fails to detect the hidden CR defects in TH defects, while our model does it correctly. Meanwhile, in TH defect 
recognition, the prediction frame formed by the TADD model wraps the defects more accurately than the 
baseline model. There are tiny defects IN in group (d), the TADD model correctly finds them, however, there are 
misses in the baseline model, which indicates that the TADD model maintains a high accuracy to cope with tiny 
defects. At last, on the multi-scale CR defect discrimination in group (e), our method detects more accurately 
and possesses a higher confidence level.

Figure 9 shows the results of baseline model and the proposed TADD model on the test images of the CDS2K 
dataset. It can be seen that the prediction frames generated by the proposed TADD model are the closest to the 
location and size distribution of the actual defects with high confidence. Moreover, The original algorithm has 
missed detection in group (b) and (g), and misdetection in (d), while the proposed TADD model can locate the 
concealed defects more accurately, as shown in (a) and (e).

Ablation studies
To evaluate the effectiveness of the improved TEM, NDA, and NDA-PAN modules in the proposed model, we 
conduct ablation experiments on the TMPDR and CDS2K datasets. By sequentially removing these modules 
from the network or replacing them with similar modules, we verify and compare the impact of each module.

Effectiveness of the improved TEM
To evaluate the effectiveness of the improved TEM module, we first removed it from the model. By comparing 
the results of Group 3 and Group 4 in Table 6 and Table 7, we observe a decrease in detection accuracy for 
the LA and CR concealed defect categories in the TMPDR-dataset, as well as for the Blowhole, Uneven, and 
Pill concealed defect categories in the CDS2K dataset, after the module was removed. This indicates that the 
improved TEM module plays a key role in addressing the issue of background texture similarity with defects.

Next, we replace our improved TEM with the texture enhancement methods proposed in32and27, inserting 
them at the same position in the baseline model. We then compare the module parameters, maximum receptive 
field, and evaluation results on the CDS2K dataset, as shown in Table 8. The method for calculating the maximum 
receptive field is as follows:

Detectors

mAP@0.5/%

Parameters FPS.RoadCrack Blowhole Break Uneven Pill Screw Zipper Carpet Lrather ALL

Faster RCNN 33.74 66.71 50.82 30.70 66.25 73.29 84.71 87.28 56.55 61.12 260.50M 25

baseline model 34.77 64.61 50.92 39.15 64.26 84.84 87.47 72.28 69.81 63.12 240.47M 62

YOLO X 40.11 75.43 63.64 43.77 68.14 90.36 85.56 89.13 77.27 70.38 202.80M 39

YOLO v8 43.82 77.65 66.86 41.82 70.67 89.37 91.22 87.12 73.35 71.32 88.26M 91

SSD 36.52 60.16 52.83 42.97 59.87 83.50 87.66 71.02 69.32 62.65 198.56M 33

TADD model 40.73 78.94 67.91 42.43 72.53 93.71 94.61 93.44 75.80 73.34 255.78M 45

Table 5. Experimental results of different detectors on CDS2K dataset (640 × 640).

 

Detectors

mAP@0.5/%

Parameters FPSLA TH CR IN TW LW ALL

Faster RCNN 49.32 30.47 36.51 23.08 76.25 63.37 46.50 260.50M 6

baseline model 48.92 34.16 27.16 23.29 73.93 54.68 43.69 240.47M 28

YOLO X 50.61 23.01 29.16 23.03 81.71 65.41 45.49 202.80M 22

YOLOv8 55.68 34.47 31.27 28.49 86.22 70.34 51.08 88.26M 49

SSD 63.53 33.24 33.70 29.57 77.92 67.64 50.93 198.56M 19

TADD model 59.31 35.38 42.34 30.33 88.29 72.81 54.74 255.78M 25

Table 4. Experimental results of different detectors on TMPDR-dataset (1280 × 1280).

 

Scientific Reports |         (2025) 15:4864 12| https://doi.org/10.1038/s41598-025-89376-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 9. Comparison of TADD model and baseline model (CSPDarkNet53+PAN) detection results and 
visualization of fused features by attention heat map.

 

Fig. 8. Comparisons of detection results of our TADD model and the baseline (CSPDarkNet53+PAN) on 
TMPDR-dataset.
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lm = lm−1 + (fm − 1) ×

m−1∏
i=1

Si (20)

where lm represents the receptive field of the m-th layer and lm−1 represents the sensory field of the m − 1-th 
layer. The initial value l0 has a receptive field of 1, fm represents the convolutional kernel size of the m-th layer, 
and Si represents the step size of the i-th layer.

The results in Table 8 show that our improved TEM module achieves a larger maximum receptive field and a 
higher mean Average Precision with fewer parameters, demonstrating the superiority of our improved TEM 
module for the detection.

Effectiveness of the NDA module
To evaluate the effectiveness of the NDA module, we remove it in the ablation experiment. By comparing Group 
1 and Group 2 in Table 6 and Table 7, we observe that after removing the NDA module, the detection accuracy 
of tiny defects such as IN in the TMPDR-dataset and small-sized defects like Break, Screw, and Leather in the 
CDS2K dataset decreased. This indicates that the NDA module effectively enhances the model’s ability to detect 
tiny objects.

We utilize attention heat maps to compare the effects of PPMCC similarity and dot product similarity on 
defect features in non-local dual attention. As shown in Figure 9, In groups (c), (f), and (i), the features produced 
by the PPMCC similarity have a higher degree of heat mapping in the defect region, which better highlights 
the tiny defects and more closely resembles the actual defect distribution. In groups (b), (e), and (f), the noise 
in the background region is significantly suppressed compared to the dot product similarity. Overall, PPMCC 
similarity in non-local dual attention outperforms dot product similarity, which is more capable of highlighting 
tiny defect features and suppressing complex background features.

In addition, the results shown in Table  9indicate that the NDA module outperforms the dual attention 
network44 under different feature fusion methods. Moreover, the number of parameters of the NDA module is 
less due to the integration of effective channel attention.

Effectiveness of the NDA-PAN
Finally, regarding the effectiveness of the NDA-PAN structure, we compare the impact of the proposed NDA-
PAN structure and the original PAN structure. As shown in Table  9, the mAP of the NDA-PAN model is 
higher than that of the PAN model by 3.38% and 4.92% on the TMPDR and CDS2K datasets, respectively. This 

Module name Parameters Max receptive field mAP@0.5/%

None - - 63.12

RFB 1,183,232 60×60 65.20(+2.08)

TEM 1,855,232 108×108 67.89(+4.77)

Improved TEM 1,577,984 200×200 68.31(+5.19)

Table 8. Performance comparison of different texture enhancement modules on baseline model.

 

Group

Strategy mAP@0.5/%

Parameters FPSImproved TEM W-NCD NDA RoadCrack Blowhole Break Uneven Pill Screw Zipper Carpet Leather ALL

1 ✓ ✓ ✓ 40.73 78.94 67.91 42.43 72.53 93.71 94.61 93.44 75.80 73.34 255.78M 45

2 ✓ ✓ 38.47 76.09 53.47 43.67 69.55 86.92 92.67 89.25 69.92 68.89 246.78M 52

3 ✓ 37.56 75.34 51.69 42.83 71.64 86.33 92.58 87.04 69.78 68.31 245.06M 54

4 34.77 64.61 50.92 39.15 64.26 84.84 87.47 72.28 69.81 63.12 240.47M 62

Table 7. Effect of each component on CDS2K dataset (640 × 640).

 

Group

Strategy mAP@0.5/%

Parameters FPSImproved TEM W-NCD NDA LA TH CR IN TW LW ALL

1 ✓ ✓ ✓ 59.31 35.38 42.34 30.33 88.29 72.81 54.74 255.78M 25

2 ✓ ✓ 57.11 34.47 39.22 25.36 80.56 62.50 49.87 246.78M 27

3 ✓ 55.81 34.88 38.96 24.51 79.04 59.95 48.86 245.06M 27

4 48.92 34.16 27.16 23.29 73.93 54.68 43.69 240.47M 28

Table 6. Effect of each component on TMPDR-dataset (1280 × 1280).
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indicates that the proposed NDA-PAN structure can better integrate target features, resulting in higher detection 
accuracies.

In addition, the effectiveness of the NDA-PAN structure is evaluated by changing the structure of the 
feature fusion stage (e.g., FPN22, PAN15). Comparing the proposed NDA-PAN with other structures, we find 
that NDAPAN outperforms the other models in the table. Furthermore, the top-down + bottom-up PAN 
outperforms the top-down FPN under the condition of consistent attention modules. From the mAP results 
in the table, the top-down + bottom-up PAN has accuracies higher than the top-down FPN by 2.12%, 2.51%, 
and 2.03%, respectively. This verifies that bidirectional feature fusion is superior to the unidirectional approach.

Conclusion
In this paper, we have constructed a dedicated defect dataset of thermal protection materials and developed a 
defect detection model to address the challenges in detecting defects. We collected and annotated a thermal 
protection materials DR image defect detection dataset from real production scenarios, named TMPDR-dataset. 
This dataset contains six common yet challenging defect detection scenarios. We localized the concealed, tiny, 
and multi-scale characteristics of defects in the dataset to develop and verify the detection model. To enhance the 
texture and discrimination of concealed defects, an improved texture enhancement module has been proposed 
to strengthen the defect edge features. To retain tiny defect features in deeper network layers, a novel non-local 
dual-attention has been developed that fuses defect location and channel information to reduce feature loss and 
enhance the model’s capture of tiny defects. Then, in order to adapt to various scale variations of defect, path 
aggregation network is utilized to increase the robustness of the model to multi-scale variations. Experimental 
results have demonstrated that the proposed model not only achieves higher detection accuracy than other 
models on both the TMPDR-dataset and the CDS2K dataset. The TADD model can also run at a high frame 
rate, achieving a processing speed of 25 FPS on an NVIDIA TU102. Our proposed detection model meets 
the quality monitoring requirements in real industrial production lines, providing a practical solution for DR 
nondestructive testing of thermal protection materials.

Data availability 
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
 The code for our module can be found at our Github or can be requested from the corresponding author.
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