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Abstract—The following three factors restrict the application
of existing low-light image enhancement methods: corruptions
induced by the light-up process, color distortion, and a restricted
generalization capacity due to limited paired training data.
To address these limitations, we first combine HSV theory
and Transformer, proposing a robust unsupervised low-light
image enhancement framework, named HSVFormer. Secondly,
we introduce brightness disturbance and design an unsuper-
vised value enhancement network, which estimates brightness
information and restores degraded brightness information to
obtain enhanced reflectance. Finally, we utilize the V-subspace
and devise a value-guided multi-head channel self-attention
to capture brightness representations of regions with differ-
ent brightness conditions and guide the modeling of non-local
interactions. Experiment results on publicly available datasets
demonstrate that HSVFormer can achieve superior performance
compared with state-of-the-art approaches. The code is available
at https://github.com/m0fig/HSVFormer.

Index Terms—Unsupervised learning, Low-light image en-
hancement, Transformer, Retinex

I. INTRODUCTION

Low-light images are captured in environments with low-
light or poor lighting conditions, and these images tend to
have quality issues such as low contrast, color distortion, and
missing details. Low-light image enhancement is the process
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of transforming a low-light image into a normal-light image
with complete structure and detail, and a natural visual effect.

In recent years, with the continuous progress in the field of
computer vision, scholars have proposed many low-light image
enhancement methods. Compared with traditional methods,
deep learning-based methods have received extensive attention
due to good accuracy and efficiency. Depending on whether
labeling is required or not, these methods are mainly divided
into two categories: supervised learning-based methods and
unsupervised learning-based methods.

Supervised learning-based methods are used for image
enhancement by training from a large number of samples
(pairs of low-light and normal-light images) to obtain prior
knowledge. For example, Wei et al. [1] proposed RetinexNet,
which includes a decomposition module and a light adjustment
module and utilizes BM3D denoising for the reflectance.
However, the images enhanced by RetinexNet exhibit global
color bias. To address this issue, Zhang et al. proposed KinD
[2] and KinD++ [3], respectively. KinD [2] has a similar
structure to RetinexNet and can effectively correct color bias.
While KinD++ [3] designs a multiscale illumination attention
module to improve the visual defects such as overexposure
and halo that appear in the enhancement results of KinD.
However, the above methods rely on handcraft priors and are
time-consuming for optimization. To address these issues, Fu
et al. [4] proposed regularizer-free Retinex network (RFR),
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Fig. 1. The overall framework of HSVFormer.

which implicitly extracts reflectance and illuminance features
and employs contrastive learning and a progressive learning
strategy for self-knowledge distillation to impose constraints
on Retinex decomposition. To summarized, the above methods
require a large amount of paired data for training, However,
real paired datasets are difficult to obtain, and collecting paired
low-light images is tedious and labor-intensive. In addition,
if synthetic datasets are used for training, this can result in
limited model generalization capacity.

Unsupervised learning-based methods have quickly become
a current research hotspot because they do not require paired
labeled data and exhibit good generalization capacity. For
example, Jiang et al. [5] proposed EnlightenGAN, which
improves the overall and local brightness of an image through
global and local discriminators. However, EnlightenGAN has
strict requirements for training data and the generalization
capacity is still not strong enough. To further enhance the
generalization capacity, Guo et al. proposed Zero DCE [6]
and Zero DCE++ [7], respectively. Zero DCE [6] is a deep
curve estimation method that uses non-reference loss functions
for regularization, and its accelerated and lightweight version,
called Zero DCE++ [7]. However, these two methods suffer
from color bias. In response to challenges related to color bias,
Yang et al. [8] proposed NeRCo, which introduces semantic-
oriented supervision with priors from the pretrained vision-
language model to ensure the realism of the generated images
at the color and detail level.

In addition to the issues mentioned above, deep learning-
based low-light image enhancement methods mostly rely
on convolutional neural networks, which have limitations in
capturing long distance dependencies and modeling non-local
self-similarity. To overcome these deficiencies, scholars have
turned to Transformer-based methods for low-light image
enhancement, such as Retinexformer [9], IAT [10], SNR-Net
[11] and LLFormer [12] etc. However, images enhanced by
these methods suffer from uneven brightness enhancement,
checkerboard effect and color bias. Besides, the above methods
rely typically on paired images for training.

To cope with the above problems, we propose a robust un-

supervised low-light image enhancement framework, namely
HSVFormer. In this work, our contributions can be summa-
rized as follows:

• To our best knowledge, we first combine HSV theory
with Transformer to propose a robust unsupervised low-
light image enhancement framework. This framework
is superior to popular methods since it can effectively
removes hidden noise in dark areas while maintaining
color information and enhancing the brightness of dark
areas in an image.

• We introduce brightness disturbance into V-subspace and
design an Unsupervised Value Enhancement Network
(UVENet) to simulate the corruptions of the V-subspace,
avoiding artifacts caused by a single target brightness
value, enhancing the interpretability of the model and
making it more suitable for real low-light scenes.

• We combine the V-subspace with the multi-head chan-
nel self-attention and design a Value-Guided Multi-head
Channel Self-Attention (VG-MCSA). VG-MCSA uses
brightness encoding information from different regions
in the V-subspace to guide long-distance dependency
modeling, which is helpful for the noise removal and the
restoration of image details and brightness in dark areas.

II. METHOD

A. The Overall Framework of HSVFormer

The overall framework of HSVFormer is shown in Fig. 1.
Firstly, HSVFormer converts the input image from RGB space
to HSV space, preserving the color space (Hue, Saturation)
and enhancing the V-subspace (Value), so as to maintain
color information and avoid color bias in the enhanced image.
Secondly, for the V-subspace, we design the UVENet, which is
consisted of two core sub-networks: Value Estimation Network
(VEN) and Value-Guided Transformer (VGT). VEN simulates
corruptions in real low-light images and estimates brightness
information, while VGT enhances the estimated brightness in-
formation, removes noise and restores brightness information
in dark areas. Thirdly, we design the VG-MCSA to further
denoise and recover image details in dark areas. Additionally,
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Fig. 2. Unsupervised value enhancement network.

in the absence of paired images, we train HSVFormer in
an unsupervised manner. We introduce a random disturbed
form of the brightness (V′), and loss functions are consisted
of illumination smoothness loss (Lis ), reflectance consistency
loss (Lrc), exposure control loss (Lec), and spatial structure
loss (Lss ) [13]. Finally, the H and S subspaces are recombined
with the enhanced V-subspace to generate the enhanced image.

Fig. 3. Value-guided multi-head channel self-attention.

B. UVENet

Different from those low-light image enhancement methods
based on deep learning and Retinex [1] [2], HSVFormer
transforms the decomposition process into a generative pro-
cess, and treats reflectance as enhanced brightness. Therefore,
HSVFormer can adapt to various lighting conditions and has
strong robustness.

Inspired by Jiang et al. [13], we combine the V-subspace
with Retinex theory [14] to avoid color bias. The V-subspace
can be denoted as:

V = R⊙ I, (1)

where R ∈ RH×W×1 and I ∈ RH×W×1 are the reflectance
and illuminance, respectively, and ⊙ denotes element-wise

multiplication. With V ∈ RH×W×1 as the input and R as
the output, R can be rewritten as [13]:

R = V ⊙ L, (2)

where L ∈ RH×W×1 is the inverse of I. However, this variant
model is designed under ideal state and is inconsistent with
real low-light image scenes. To better emulate low-light scenes
in the real world and avoid artifacts caused by a single target
brightness value, disturbance terms for V and L are introduced
to simulate corruptions in real low-light images. Therefore, R
can be denoted as:

R = (V + Ṽ)⊙ (L + L̃)

= V ⊙ L + V ⊙ L̃ + Ṽ ⊙ (L + L̃), (3)

where Ṽ ∈ RH×W×1 and L̃ ∈ RH×W×1 represent disturbance
terms, V ⊙ L̃ represents underexposure or overexposure, and
Ṽ ⊙ (L + L̃) represents the noise and artifacts adhering to the
dark corners of the V-subspace. Subsequently, we design the
UVENet, which can be represented as:

(Mv−up ,Fv−up) = D(V,Vmean), (4)

R = V ⊙ G(Mv−up ,Fv−up). (5)

Where D and G denote VEN and VGT, respectively.
UVENet is illustrated in Fig. 2. Firstly, the disturbance map

V − up ∈ RH×W×2 is initially constructed by concatenating
V ∈ RH×W×1 and the average pixel value of the V-subspace
(Vmean ∈ RH×W×1), which is aimed at simulating the
corruptions of the V-subspace and avoiding artifacts caused
by a single target brightness value. Secondly, the brightness
encoding information of different regions in the brightness
feature map Fv−up ∈ RH×W×C is estimated by a 5 × 5
depth-wise separable convolution. Then, the brightness map
Mv−up ∈ RH×W×3 is obtained through a 1× 1 convolution.
Finally, the brightness map Mv−up ∈ RH×W×3 and brightness
feature map Fv−up ∈ RH×W×C are passed into VGT.
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Fig. 4. Visualization results generated by different methods on the SICE dataset.

VGT is a three-scale encoder-decoder Transformer struc-
ture. The Value-Guided Attention Block (VGAB) is an im-
portant unit of VGT. Firstly, the brightness map Mv−up ∈
RH×W×3 is used as input, and then undergoes two downsam-
pling operations for scale reduction, followed by upsampling,
which is symmetrically structured with the downsampling
operations. Additionally, the estimated brightness feature map
Fv−up ∈ RH×W×C is input into each VGAB, contributing
to denoising in dark areas, as well as the restoration of
detailed information and brightness. Finally, the inverse L
of the illuminance is output, and it is multiplied pixel-wise
with the V-subspace in a stepwise manner to obtain the final
enhancement result R.

C. VG-MCSA

The structure of the VG-MCSA is illustrated in Fig. 3.
Firstly, the input feature map Input ∈ RH×W×C is reshaped
into tokens A ∈ RHW×C , and then A is divided into k heads
along the feature channel dimension (A = [A1,A2, ...,Ak ],
where Ai ∈ RHW×dk , dk = C

k , i = 1, 2..., k ). Next, for each
head, we use Fully Connected layers (FC) to obtain linear
projections for query element Q, key element K, and value
element V of each head Ai [15]. Considering that different
regions in the V-subspace may contain different brightness
information, inspired by Retinexformer [9], we utilize the
brightness information encoded in the brightness feature map
to guide the self-attention calculation for dark areas. To ensure
consistency with the shape of A, the size of the brightness
feature map Fv−up ∈ RH×W×C is reshaped into tokens
B ∈ RHW×C and divided into k heads.

Retinexformer obtains brightness feature map from the
input RGB image, which is a three-channel tensor. Unlike
Retinexformer, HSVFormer retains color space after HSV
transformation and solely encodes the brightness information
of the V-subspace, which is a single-channel tensor. Addi-
tionally, Retinexformer stacks multiple Transformer blocks at
different scales, respectively, with each block containing 8
attention heads, and the input dimension of each head is 64.
In contrast, HSVFormer stacks single Transformer block at
different scales, respectively, with each block containing 4
attention heads, and the input dimension of each head is 24. In
terms of multi-head channel self-attention, HSVFormer con-
sumes fewer computational resources and reduces parameters
for self-attention computation compared to Retinexformer.

III. EXPERIMENTS

A. Datasets

The experiments are conducted on the SICE dataset [16],
comprising a total of 4413 images. The training dataset
contains 2661 images, and the validation dataset contains
720 images. Besides, the test dataset contains 755 images.
In addition, to evaluate the generalization and robustness of
HSVFormer across datasets, we test 257 low-light images from
five popular datasets: DarkFace [17], DICM [18], LIME [19],
MEF [20], and VV [21]. Notably, these datasets lack reference
images with normal lighting conditions.

TABLE I
FULL REFERENCE IMAGE QUALITY EVALUATION SCORES ON THE SICE

DATASET. RED IS THE BEST AND BLUE IS THE SECOND.

Methods PSNR↑ SSIM↑ LPIPS↓
LIME [19] 14.666 0.503 0.245

Jiang et al. [13] 16.741 0.527 0.252
RUAS [22] 11.780 0.462 0.379

SCI [23] 14.740 0.505 0.293
IAT [10] 13.577 0.499 0.463

LLFormer [12] 14.785 0.528 0.332
HSVFormer 17.245 0.535 0.248

B. Experimental Setup

HSVFormer is implemented using the PyTorch framework
and conducted training on a single NVIDIA Tesla A30 GPU.
During the training process of HSVFormer, the batch size is
set to 1 and the initial learning rate is 0.0001. HSVFormer
employs the Adam optimizer for training. The maximum
number of training epochs is set to 100, with evaluations
conducted every 10 epochs.

C. Comparative Experiments

HSVFormer is compared with six popular methods, includ-
ing LIME [19], Jiang et al. [13], RUAS [22], SCI [23], IAT
[10] and LLFormer [12].

For the test dataset of SICE, we use Peak Signal to Noise
Ratio (PSNR), Structural Similarity (SSIM) [24], and Learned
Perceptual Image Patch Similarity (LPIPS) [25] as evalua-
tion metrics for full-reference image quality assessment. The
quantitative results are presented in Table 1. The PSNR and
SSIM score of HSVFormer are 17.245 and 0.535, respectively.
In terms of suppressing noise and restoring image details,
HSVFormer is superior to other popular models on the SICE
dataset. Fig. 4 presents the visualization results generated
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TABLE II
BRISQUE AND PIQE EVALUATION SCORES FOR SEVEN METHODS ON FIVE DATASETS. RED IS THE BEST AND BLUE IS THE SECOND.

Methods DarkFace [16] DICM [17] LIME [18] MEF [19] VV [20] Mean
BRISQUE↓ PIQE↓ BRISQUE↓ PIQE↓ BRISQUE↓ PIQE↓ BRISQUE↓ PIQE↓ BRISQUE↓ PIQE↓ BRISQUE↓ PIQE↓

LIME [19] 0.493 10.142 0.554 9.386 0.523 10.859 0.523 9.967 0.494 10.389 0.517 10.149
Jiang et al. [13] 0.490 9.421 0.551 8.176 0.457 11.050 0.515 9.261 0.598 9.292 0.522 9.440

RUAS [22] 0.491 9.887 0.492 14.336 0.494 11.928 0.495 11.869 0.492 11.869 0.493 11.978
SCI [23] 0.495 9.323 0.535 8.417 0.501 11.550 0.514 12.145 0.485 7.181 0.506 9.723
IAT [10] 0.504 13.758 0.499 16.813 0.541 16.153 0.510 19.332 0.553 12.828 0.521 15.777

LLFormer [12] 0.507 10.813 0.507 4.350 0.512 8.941 0.522 14.611 0.500 8.751 0.511 9.493
HSVFormer 0.486 9.218 0.490 7.696 0.458 10.981 0.495 9.046 0.472 9.834 0.480 9.355

Fig. 5. Visualization results generated by different methods on the DarkFace dataset.

by seven methods on the SICE dataset. Fig. 4 reveals that
HSVFormer can achieve better visualization effects, especially
brightness and colors than other popular methods.

For the remaining five reference-free image test datasets,
we employ Blind/Reference-Free Image Spatial Quality Eval-
uator (BRISQUE) [26] and Perception-based Image Quality
Evaluator (PIQE) [27] as evaluation metrics for no-reference
image quality assessment. The results on five no-reference
datasets are reported in Table 2. It is evident that HSVFormer
achieves preferably score on the DarkFace, DICM, MEF,
and VV datasets. Notably, average scores across the five
datasets, HSVFormer attains the first in terms of BRISQUE
and PIQE, demonstrating the robust generalization capac-
ity of HSVFormer across diverse datasets. Fig. 5 presents
the visualization results generated by seven methods on the
DarkFace dataset. Fig. 5 reveals that HSVFormer is good
at restoring smooth illumination. Furthermore, HSVFormer
demonstrates superior capabilities in denoising and recovering
intricate details in dark areas.

D. Ablation Study

We perform an ablation study on the SICE dataset to
quantitatively evaluate the effectiveness of our contributions.
Jiang et al. [13] is chosen as the baseline, and the performance
is evaluated through PSNR, SSIM and LPIPS. The results are
summarized in Table 4. In Table 4, it can be seen that our
contributions can effectively remove noise in dark areas and
help restore detailed information.

IV. CONCLUSION

In this work, we have investigated an unsupervised deep
learning method for low-light image enhancement. Firstly, we

TABLE III
RESULTS OF THE ABLATION STUDY. RED IS THE BEST AND BLUE IS THE

SECOND.

Methods PSNR↑ SSIM↑ LPIPS↓
Jiang et al. (CNN based) [13] 10.665 0.288 0.431

Jiang et al. (Transformer based) 16.164 0.514 0.266
+V-up 16.589 0.526 0.250

+V-up Map 16.736 0.527 0.249
+V-up Feature (HSVFormer) 17.245 0.535 0.248

propose HSVFormer, which decouples the image into two sub-
spaces, preserving color information and adaptively enhancing
the brightness. Secondly, we design the UVENet to estimate
and recover brightness. Thirdly, we devise the VG-MCSA to
further remove the noise and restore the brightness and detail
information of the dark areas. Finally, the color and brightness
are recombined to generate an enhanced image. Experimental
results demonstrate that HSVFormer can effectively remove
noise and artifacts, retain details and color information, and
achieve the better visual effects than other popular methods.
In the future, we will focus on reducing the computational
complexity of HSVFormer while preserving generalization
capacity.
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