
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Edge Intelligence-Driven Joint Offloading and
Resource Allocation for Future 6G Industrial

Internet of Things
Yongkang Gong, Student Member, IEEE, Haipeng Yao, Senior Member, IEEE,

Jingjing Wang, Senior Member, IEEE, Maozhen Li, Member, IEEE, and Song Guo, Fellow, IEEE

Abstract—The sixth generation mobile networks (6G) will
undergo an unprecedented transformation to revolutionize the
wireless system evolution from connected things to connected
intelligence, where future 6G Industrial Internet of Things (IIoT)
covers a range of industrial nodes such as sensors, controllers,
and actuators. Additionally, data scattered around the industrial
environments can be collected for the sake of enabling intelli-
gent operations. In our work, the promising multi-access edge
computing (MEC) service is introduced into the IIoT system
to execute the task scheduling and resource allocation for the
sake of various compelling applications. Moreover, we define
the objective function as the weighted sum of delay and energy
consumption. Next, a novel deep reinforcement learning (DRL)-
based network structure is proposed to jointly optimize task
offloading and resource allocation. More specifically, the task
offloading is decomposed via the new isotone action generation
technique (2AGT) and adaptive action aggregation update strate-
gy (3AUS) based on the proposed DRL framework, and the initial
problem can be transformed into a convex optimization problem
to solve the resource allocation for each IIoT device. Additionally,
we periodically renovate the offloading policy in the DRL
framework so that our proposed DRL-based decision-making
algorithm can better accommodate time-varying environments.
Numerous experimental results demonstrate our proposed DRL-
based network structure for each IIoT device can obtain quasi-
optimal system performance compared with some conventional
baseline algorithms.

Index Terms—The sixth generation mobile networks (6G), edge
intelligence, Industrial Internet of Things (IIoT), task offloading,
resource management.

Y. Gong and H. Yao are with State Key Laboratory of Networking
and Switching Technology, Beijing University of Posts and Telecommuni-
cations, Beijing 100876, China. Email: {yongkanggong@bupt.edu.cn, yao-
haipeng@bupt.edu.cn}.

J. Wang is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China. Email: drwangjj@buaa.edu.cn.

M. Li is with the Department of Electronic and Computer Engi-
neering, Brunel University, London, Uxbridge UB8 3PH, U.K. Email:
maozhen.li@brunel.ac.uk.

S. Guo is with the Department of Computing, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong. E-mail: song.guo@polyu.edu.hk.

This work is partially supported by the National Key Research and Develop-
ment Plan under grant 2018YFB1800805, partially supported by the Director
Foundation Project of National Engineering Laboratory for Public Safety Risk
Perception and Control by Big Data (PSRPC), Future Intelligent Networking
and Intelligent Transportation Joint Laboratory (BUPT-CTTIC), National Na-
ture Science Foundation of China (Grant Nos. 61922050), General Research
Fund of the Research Grants Council of Hong Kong (PolyU 152221/19E)
and the National Natural Science Foundation of China (Grant61872310). This
work of Dr. Wang was supported by the Young Elite Scientist Sponsorship
Program by CAST (Grant No. 2020QNRC001). (Corresponding author:
Haipeng Yao)

I. INTRODUCTION

RECENTLY, the efforts and initiatives from standard bodies
have started to conceptualize the sixth generation mobile

networks (6G) [1] and 6G may become an unparalleled
transformation to revolutionize the wireless communication
systems. Furthermore, intelligent industrial Internet of things
(IIoT) in 6G [2] has received considerable attention from both
academic and industrial field. In the last decade, the industrial
standards and infrastructures have evolved substantially due to
the amalgamation of Internet of things (IoT) [3] paradigm with
some industrial units and equipment. Sometimes, IIoT is also
known as the "Internet of really important stuff, the objects,
and machines that powers our life". There may be massive
devices connected by the IoT at the end of 2020 [4]. Fur-
thermore, the connected IIoT infrastructures (e.g., actuators,
vehicles, and industrial controllers) generate a humongous
amount of data that require real-time analysis and evaluations
with heterogenous characteristics in terms of size and modes
[5]. Specifically, IIoT connects different kinds of industrial
assets in industrial environments to enable intelligent opera-
tions, such as industrial monitoring, automation and intelligent
control [6]. However, the proliferation of the number of IIoT
devices and the ever-increasing computation-intensive applica-
tions including augmented reality (AR), real-time online gam-
ing and ultra-high-definition (UHD) pose great challenges on
data processing, architecture rigidity and resource allocation.
To address the aforementioned challenges, it is important to
analyse data. Consequently, joint task offloading and resource
management have attracted the significant focus from IIoT
systems [7] - [8].

Generally, mobile cloud computing (MCC) provides a prop-
er paradigm that wireless devices execute the computation
offloading in the cloud server [9] - [10]. Thus, some wireless
devices choose to offload application tasks [11] to the remote
cloud server to ameliorate computational velocity, spectrum
efficiency and energy efficiency, which can be utilized widely
in the past decade. Nevertheless, due to remote distance
between the cloud server and local wireless devices, the long
propagation delay, limited channel capacity and task queuing
delay make it hard to process latency-critical and computation-
intensive application tasks relying on centralized methods.

To address the complex problems, the concept of edge
intelligence [12] is conceived for offering powerful compu-
tational processing and massive data acquisition at the edge

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

networks. Specifically, the edge server is closer to wireless
devices, and hence the offloading scheme for computing tasks
can enormously decrease transmission delay and save backhaul
bandwidth between cloud servers and wireless devices [13].
At the same time, artificial intelligence (AI) is a promising
trend for extracting information from large-scale data and for
making efficient resource scheduling strategies in complex
environment. By integrating AI into edge networks, the radio
networks with service and resource awareness can dynamically
adapt to the resource orchestration, which can be viewed as a
beneficial remedy for data processing and resource allocation
issues [14] in complex IIoT environment. To elaborate a little
further, multi-access edge computing (MEC) servers can help
alleviate latency, reduce energy consumption and guarantee the
quality of experience (QoE).

In this paper, we intend to solve the above problems. First of
all, we establish a novel IIoT network model which contains
multiple IIoT devices followed with the MEC server. Each
IIoT device has many application tasks to be executed. During
the executed process, each device chooses to execute the task
locally or dynamically offload to the MEC server. We propose
and solve the network model to obtain better offloading
decision and resource allocation schemes, which can enable
the whole system to obtain lower total cost of energy consump-
tion and task delay for each IIoT device receiving different
application tasks. Furthermore, we compare our proposed
deep reinforcement learning (DRL)-based network structure
with some benchmarks under the fixed offloading modes and
conventional intelligent offloading schemes. To the best of our
knowledge and belief, there are few related works considering
the IIoT model integrated with edge intelligence. With multiple
application tasks to acquire better system performance, our
works contain offloading decision and resource allocation
utilizing AI methods.

In summary, the main contributions of our paper can be
summarized as follows.

• We construct a novel IIoT system model including the
MEC server for different application tasks in 6G. Driven
by edge intelligence, we jointly optimize the offloading
decision-making and transmission resource allocation for
each device, which aims at minimizing the system’s total
cost in terms of energy consumption and delay.

• A DRL-aided algorithm is proposed for the sake of gener-
ating offloading actions under different application tasks.
Moreover, isotone action generation technique (2AGT) is
utilized to quantize the actions. To stabilize the generated
policy and reduce over-fitting, experience replay as well
as stochastic sampling are introduced for the sake of
retraining the DRL agent, followed by an adaptive action
aggregation update strategy (3AUS) for reducing the
computational complexity.

• Simulation results are shown to demonstrate the effective-
ness of our proposed DRL-based algorithm in the IIoT
system with the MEC server. Numerical results show
that our proposed approach plays a key role both in
improving convergent performance and achieving high
utility compared with other baseline schemes.

The structure of this paper is given as follows. In Section
II, the related works are reviewed. Section III discusses the
network model of our proposed IIoT system enhanced by edge
intelligence. In Section IV, we propose the DRL-based network
structure followed with 2AGT and 3AUS schemes. Extensive
simulations and experimental results are illustrated in Section
V and we compare the proposed DRL-based strategy with
some benchmarks. Finally, Conclusions are given in Section
VI.

II. RELATED WORKS

A. IIoT and Mobile Cloud System

MCC is regarded as a powerful computation server that
promotes some IIoT devices (e.g., actuators, sensors, and con-
trollers) to deliver task data to cloud providers. To adequate-
ly explore the potential of cloud servers, some researchers
propose a range of solutions about offloading schemes and
resource allocation for wireless devices. Satyanarayanan et al.
[15] proposed a virtual machine-based structure to efficiently
process task requests from wireless devices. Liu et al. [16]
considered an task scheduling and routing strategy. Further, the
authors in [17] - [18] implemented two cloud system models
and structures and gave some code offloading methods.

B. Offloading Schemes in MEC

Currently, there are still some technical challenges to be
solved. First of all, when wireless devices obtain application
tasks, whether to offload application tasks needs to be studied
carefully. When global tasks are executed in the MEC server,
this may cause huge congestion on the uplink wireless chan-
nels [19] and lead to severe delay. To substantially explore
and exploit the computation offloading in IIoT systems, we
should consider the task scheduling [20] and uplink resource
management [21] for the sake of reducing the total task delay
and energy consumption.

To elaborate a little further, Kumar et al. [22] proposed a
general rule in offloading decision for minimizing energy con-
sumption, where uplink communication links were assumed to
have a fixed transmission rate. An optimal binary offloading
scheme was proposed in [23] by Barbarossa et al. relying
on convex optimization technologies, where this defined the
power-rate function with the aid of Shannon-Hartley formulas.
At the same time, Chen et al. [24] illustrated a distributed
offloading scheme in the context of multi-user systems based
on game theory, which solved the multi-user computation
offloading on account of large iterations. Furthermore, Bi et al.
[25] proposed a novel iteration update algorithm to solve the
computation resource allocation with binary offloading. Addi-
tionally, by slacking the binary variable to real value, Zhang
et al. [26] proposed a novel joint offloading and resource
allocation optimization (JORAO) algorithm to minimize the
total cost of mobile users, which iteratively reduced the energy
consumption and completion time. Besides, a separable semi-
definite relaxing scheme was proposed in [27] by Chen et al. to
minimize overall energy consumption. However, computation-
al complexity of aforementioned algorithms is extremely high
for real-time computation offloading and resource allocation,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

SensorActuator Printer

MEC server
BS

Controller Vehicle

Computers, Cameras, Monitors...

Offloading Offloading

IIoT

Fig. 1: The service scenario for IIoT.

and it is difficult to process some latency-critical application
tasks.

C. Edge Intelligence: AI-enabled Strategy

To tackle this problem, AI-enabled strategies have been
considered as efficient solutions [28]. Specifically, Zhang et
al. [29] presented an optimal offloading algorithm in an
intermittently connected cloudlet system based on markov
decision process (MDP). Besides, Liu et al. [30] proposed a
delay-optimal task scheduling policy, where application tasks
were scheduled relying on the state of task buffer, local
processing unit and transmission unit. However, it was difficult
to construct a precise MDP model in the actual world. Without
a precise model, a reinforcement learning (RL) algorithm was
proposed in [31] by Huang et al. to replace MDP, whereas
it was complicated to store state-action value tabular in high-
dimensional space. Besides, due to the expansion of network
size and massive application tasks, the RL agent is limited for
solving high-dimensional problems, which can cause the curse
of dimensionality. Fortunately, with the development of deep
neural network (DNN) [32], [33], [34], some DRL algorithms
combining DNN with RL are regarded as efficient solutions for
real-time control decisions [35], [36], [37], [38] and they can
be performed to study characteristics from high-dimensional
data and solve the curse of dimensionality.

III. SYSTEM MODEL

Fig. 1 shows the network model that consists of multiple IIoT
devices (IIoTD) and one BS with the MEC server. In this
network model, IIoTD can be defined by N = {1, 2, ...N}.
Besides, the MEC server and the BS are connected with a
wired connection (e.g., optical fiber), in which transmission
delay between them can be ignored significantly [39]. Each
IIoTD has large numbers of application tasks to be processed
locally or offloaded to the MEC server with BS. Without loss
of generality, assuming that there are Z independent tasks,
denoted by Z = {1, 2, ...Z}, and the computation of each task
could not be split for partial offloading or partial computing.
That is to say, the task can only be computed in local IIoTD
or offloaded to the MEC server but not both. We assume that

ln,z is the task size including programming codes and general
parameters, and ln,z is the zth task of the nth IIoTD. These
parameters are related to features of the task and they can
be estimated through task types. Each IIoTD n can choose
whether to offload its own computation-intensive task z to the
MEC server or not. We define the offloading decision vector
A, which can be given by

A = [a1,1, a1,2, ...an,z, ...aN,Z] , (1)

where n ∈ {1, 2, ...N} and z ∈ {1, 2, ...Z} represent the
IIoTD and task, respectively. an,z represents the offloading
decision and it belongs to {0, 1}. In detail, an,z = 1 represents
the IIoTD n chooses to offload the task z to the MEC server,
and an,z = 0 means that IIoTD n decides to carry out the
task z locally. In this way, we can take advantage of parallel
computing of IIoTD and MEC servers, which results in a
decrease of total delay and energy consumption. We consider
Bn,z as the optimized wireless channel bandwidth of the
zth task of the nth IIoTD. Due to the fact that there only
exists one BS, so the interval interference between the BS
could be overlooked [40]. Simultaneously, we consider that
the assigned channel of application tasks from each agent
is orthogonal each other in the IIoT system model through
orthogonal frequency division multiple access (OFDMA). As
there is only one BS coverage area and nature characteristics
of OFDM, we ignore the co-channel frequency and adjacent
channel interference. In terms of Shannon’s theory [41], the
achievable uplink transmission rate for each task z of the nth

IIoTD can be obtained by

cn,z = Bn,zlog2

(
1 +

Pntran|hn,z|2

σ2

)
, (2)

where Pntran means the transmission power from the IIoTD,
and hn,z represents the channel gain which follows rayleigh
flat fading under the allocated channel bandwidth. σ2 is noise.

A. Computation Offloading Mode

The MEC server starts to process the task ln,z after it has fully
received the IIoTD’s task and feeds back information after the
entire task z is computed [27]. Because the data size of the
feedback message is small in general [42], the feedback energy
consumption and delay can be neglected. Subsequently, we
formulate transmission time and processing time. Specifically,
for the task z of the IIoTD n, the transmission time caused
by the uplink channel can be described as

Tn,ztran =
an,zln,z
cn,z

. (3)

Similarly, the transmission energy consumption for the task z
of the IIoTD n can be denoted by

En,ztran = Tn,ztranP
n
tran. (4)

The computation time at the MEC server via the BS can be
represented by

Tn,zpro =
an,zln,zen,z
F totalserver

, (5)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

where en,z represents the number of required CPU cycles, and
F totalserver denotes the computational power. At the same time,
we assume that MEC server is pretty powerful and can process
all received application tasks concurrently. Furthermore, we
model the computational processing energy consumption as
the linear function ln,z [43], and it can be written as

En,zcom = βln,z, (6)

where β can be defined as the task weight factor relative to
the computational energy consumption from the MEC server
and the unit of β is joule per bit. It depends on the application
task size and diverse MEC servers. So the total delay can be
denoted as

T sn =
Z∑
z=1

(
Tn,ztran + Tn,zpro

)
. (7)

In addition, the total energy consumption at the computation
offloading mode for each IIoTD n is formulated as

Esn =
Z∑
z=1

(En,ztran + En,zcom). (8)

B. Local Computing Mode

Next, we formulate the case that each IIoTD decides to
execute its task locally. Specifically, the processing energy
consumption bln can be represented as

bln = k
(
f ln
)2
, (9)

where f ln is the CPU-cycle frequency for each IIoTD, and k
is a constant interrelated to the hardware performance. So the
local processing energy consumption for task z of each IIoTD
n can be given by

En,zlocal = (1− an,z) ln,zbln. (10)

At the same time, the local processing time can be defined by

Tn,zlocal =
ln,zen,z(1− an,z)

f ln
. (11)

Thus, given the task offloading choice an,z , the total local
processing delay for each IIoTD n can be denoted as

T ln =
Z∑
z=1

Tn,zlocal. (12)

Meanwhile, the total local processing energy consumption can
be depicted as

Eln =
Z∑
z=1

En,zlocal. (13)

C. Problem Formulation

In this section, we formulate the joint offloading decision
and wireless transmission rate allocation for IIoT system with
MEC server as a multi-objective optimization problem. To
minimize the total delay and energy consumption, the total

cost function V (L,A,C) can be defined as the weighted
sum of the task delay and energy consumption, where L =
[l1,1, l1,2, ...ln,z, ...lN,Z] and C = [c1,1, c1,2,...cn,z, ...cN,Z].
Hence, the total cost function can be denoted as

V (L,A,C) = {λ
N∑
n=1

(T ln + T sn) +
N∑
n=1

(Eln + Esn)} , (14)

where λ represents the weight on delay relative to total
energy consumption. The unit of λ is joule per second and
we can adjust λ to attach different importance to delay and
energy consumption for various application tasks. In short, the
optimization objective can be expressed as

min
{L,A,C}

V (L,A,C), (15)

s.t. an,z ∈ {0, 1}, (16)
N∑
n=1

Z∑
z=1

cn,z ≤ Ctotal, (17)

cn,z > 0. (18)

Then, we minimize the total cost function V (L,A,C) via
choosing the optimal offloading decision vector A and allocat-
ing uplink wireless transmission rate vector C under different
application tasks L. In fact, L is one state constant vector in
the optimization problem and it is diverse in different time
slots for network environments. Furthermore, we regard it as
the input state vector in the optimization problem. At the
same time, decision vector A and transmission rate vector C
are considered as two optimized variables. Next, there exist
some constraints about minimizing the total cost function
V (L,A,C). (16) means offloading decision belongs to 0
or 1, which represents the task is executed locally or the
task is offloaded to the MEC server. As the total wireless
channel bandwidth is limited for all IIoTD, (17) means that
the sum of the achievable transmission rate allocated for each
task z must not exceed the maximum Ctotal. Additionally,
wireless transmission rate cn,z is closely related to the required
channel bandwidth Bn,z , so optimizing the transmission rate
cn,z is equivalent to solving the optimal channel bandwidth
Bn,z . (18) indicates the achievable transmission rate should
be positive since each IIoTD is supposed to access the BS
with MEC server to guarantee the QoE. In the next section,
we show an effective and efficient algorithm based on DRL
to resolve this problem. The detailed parameter settings are
described in TABLE I.

IV. SYSTEM OPTIMIZATION

In this section, we firstly introduce a novel DRL-based
framework to solve our proposed problems. Then we present
the detailed process of how to generate required offloading
policy through the DRL framework and give the 2AGT to
approximate offloading action an,z . Next, after obtaining the
initial offloading action, we transform our proposed initial
problem into a convex objective problem and calculate the
optimal offloading action by parallel computing in terms of
substantial application tasks. Besides, we provide a 3AUS

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

TABLE I: Summary of Notations

Notation Description

L application task vector

A offloading decision vector

C transmission rate vector

N the number of IIoTD

Z the number of independent application tasks for
each IIoTD

ln,z the task size for zth task of nth IIoTD

an,z the offloading decision for zth task of nth IIoTD

Bn,z the optimized wireless channel bandwidth for zth

task of nth IIoTD

Pntran transmission power from the IIoTD

hn,z channel gain

σ2 the variance of AWGN channel

cn,z uplink transmission data rate for zth task of nth

IIoTD

F totalserver MEC server computational capacity

en,z the number of cycles required to process each
task bit

β the task weight factor relative to computational
energy consumption

k a constant interrelated to the hardware perfor-
mance

f ln CPU-cycle frequency for each IIoTD

λ the delay weight factor relative to the total energy
consumption

π the DRL agent policy function

w neural network parameter

K a distance parameter related to the activation
function

M the number of action aggregations

P incremental constant in optimal action aggrega-
tions

method for setting the number of action aggregations parame-
ter. At the same time, we introduce a DRL network parameter
update policy to strengthen the network stability and reduce
the over-fitting. The detailed procedures are just shown as
follows.

A. Deep Reinforcement Learning Framework

As shown in Fig. 2, the DRL agent brings the control
strategy via interacting with the network environment (e.g., the
application tasks) without a precise transition probability and
adjusts own behavior depending on the outcomes of actions

Input

layer

Hidden

layers
Output

layer

Task: L

|L)p
w

A

DRL Agent

Fig. 3: The detailed agent internal structure.

[44] in order to maximize the discounted reward functions. So
DRL means a new exemplification through trial-and-error and
delayed incentive mechanism to achieve an optimal behavior
policy [45]. While obtaining the application tasks, our DRL
network framework contains offloading decision generation,
2AGT optimization and 3AUS parameters settings. At the
same time, the network framework can compute the convex
optimization problem in order to select current optimal action
aggregation. Each detailed part of the novel DRL agent
network framework structure can be illustrated as follows.

B. Offloading Policy Generation

(1) Offloading decision: For the proposed MINPP, our
purpose is to generate the offloading action by the DRL agent
interacting with the environment (i.e., the application tasks
from IIoTD). Specifically, given DRL agent’s initial policy
function π, we input the application task L to DRL agent, and
it can be defined as

π : πw(A|L) . (19)

The detailed internal network structure of the DRL agent
is presented in Fig. 3. In this agent network structure, the
network structure between different hidden layers employs full
connection and we can see that the offloading action depends
on the policy function πw(A|L) which is implanted DNN
parameter w, i.e., the weights that connect neural neurons
between different network layers. In addition, the output layers
generate the offloading decision A based on the current policy
function πw(A|L). Next, we describe an isotone optimization
method in terms of the generated offloading action.

(2) 2AGT optimization: Supposing that we obtain the ap-
plication task Ls in sth step. The offloading decision As can
denoted as

As = {0 ≤ asi,j ≤ 1|i ∈ [1, 2, ...N], j ∈ [1, 2, ...Z]} , (20)

Then we start to introduce an isotone action method. Inspired
by the quantitative technology from signal coding [46], we
transform the offloading decision As to massive action sets
for the sake of obtaining optimal action A∗s . The number of
action aggregations is 1 ≤M ≤ NZ +1. As1 can be derived
just as follows:

As1 = {as1ij } =
{

1, if asij ≥ K,
0, if asij < K,

(21)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

IIoT Application Task

Input

DRL Agent

A

Decision-making

2AGT

Optimization

3AUS Scheme

Dispose

Aided

Resource

Allocation

Optimal Action

Aggregation

L

L

Experience

Replay

L

L
Batch Size

Random

Sampling

L

L

Retrain

Store

*A

*A

*A
*A

*A

*A

Fig. 2: The proposed DRL network structure.

where K is equal to a discriminant value for offloading deci-
sion, and we set it as 0.5 in order to quantify the offloading de-
cision equally. Subsequently, the agent generates other M − 1
offloading aggregations respect to the distance parameter K
and reshuffle the originally generated actions, which can be
defined by |as11 − K| ≤ |as12 − K|... ≤ |asNZ − K|. Then,
the remaining M − 1 offloading aggregations are recalculated
according to 2AGT, which can be denoted as two cases.

Case 1: When asij > asm−1m−1 or asij = asm−1m−1,
am−1m−1 < K , the quantitative action value asmij can be
represented as

asmij = 1. (22)

Case 2: When asij < asm−1m−1 or asij = asm−1m−1,
am−1m−1 ≥ K, the quantitative action value asmij can be
represented as

asmij = 0. (23)

In terms of above two cases, the total quantitative action
aggregations can be calculated as

Asm = {asmij }, (24)

where m = 2, 3, 4...M , and we can see that there are NZ
offloading actions for all application tasks. In addition, we can
generate at most NZ + 1 action aggregations. Next, by solving
the convex optimization problem, the optimal offloading action
A∗sm can be denoted as:

A∗sm = argminV ∗

Asm

(Ls, Asm, C) , (25)

In the next section, we discuss how to adjust the action
aggregations parameter.

(3) 3AUS parameter setting: Intuitively, by setting more

action aggregations M , a lower total cost function can be
calculated followed with higher computational complexity.
Instead, setting a proper M may reduce the potential com-
putational complexity without losing the system performance.
According to the rolling horizon control (RHC) theory [47],
we can update the action aggregations parameter per δ steps.
Specifically, when the step s is the integer times of the δ, the
DRL agent can choose to renew the aggregations parameter.
When s=1, RHC parameters are

Ms = NZ + 1. (26)

When s mod δ=0, the update parameter is

Ms = min(max(m∗s−δ+1,m
∗
s−δ+2, ...m

∗
s−1) + P,NZ + 1) ,

(27)

where m∗s−δ+1 represents the index of optimal action aggre-
gations. P is a constant in order to allow the number of
aggregations to increase during the update period and if it
doesn’t reach the update steps δ for other steps, it can be the
same as the previous value.

(4) Convex optimization function: According to the 2AGT
and 3AUS schemes, we can transfer the initial problem into
convex objective [48], as illustrated in Fig. 2. After obtain-
ing the value of offloading action aggregations, the original
problem is

min
{L,C}

V (L,C), (28)

s.t.
N∑
n=1

Z∑
z=1

cn,z ≤ Ctotal, (29)

cn,z > 0. (30)

Evidently, it is a convex optimization problem and we can
solve the Karush-Kuhn-Tucker (KKT) conditions to obtain

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

current optimal cost function.
Proof: To demonstrate the optimization problem (30) as the

convex problem, we need to prove the V (L, C), constraint
(31), and (32) as convex function, respectively. Firstly, as L is
the time-varying state vector, so the function V (L, C) is only
related to the optimization variable C. Next, combined with

(31) and (32), as
N∑
n=1

Z∑
z=1

cn,z − Ctotal and −cn,z are affine

functions, it must be the convex function. Additionally, after
obtaining the offloading decision-making, the optimization
objective V (L, C) can be simply reformulated as

V (L, C) = λ

(
N∑
n=1

Z∑
z=1

an,zln,z
cn,z

)
+

N∑
n=1

Z∑
z=1

an,zln,zP
n
tran

cn,z
.

(31)

Lemma 1: For two convex functions f1(x) and f2(x), the
summation of f1(x) and f2(x) is still convex function.

Proof: For any convex function f(x),

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2) . (32)

Let g (x) = f1(x) + f2(x), where f1(x) and f2(x) are two
convex functions. Hence,

g (λx1 + (1− λ)x2) = f1(λx1 + (1− λ)x2) (33)
+ f2(λx1 + (1− λ)x2) (34)

≤ λf1(x1) + (1− λ)f1(x2) + λf2(x1) + (1− λ)f2(x2)
(35)

=λ(f1(x1) + f2(x1)) + (1− λ)(f1(x2) + f2(x2)) (36)
= λg(x1) + (1− λ)g(x2), (37)

which demonstrates that the summation of f1(x) and f2(x)
is still convex function. As an,z , ln,z and Pntran are known
for V (L, C), V (L, C) can be regarded as the summation
of multiple convex functions for optimization variable cn,z .
Hence, V (L, C) can be proved as a convex function in terms
of Lemma 1. Finally, the formulated optimization problem is
convex. Then, we choose an action aggregation A∗sm from
the optimal total cost function to start to update network
parameters. In the next section, we show how to update the
network parameters.

C. Network Parameters Update

After the agent obtains the optimal action aggregation
A∗sm, the agent can update the network parameters (i.e., the
offloading policy πw(A|L)). In detail, since the experience
of the DRL agent is interrelated, randomly selecting a batch
of training samples from replay memory can decrease the
interrelation among agent experience and this may help the
DRL agent utilize comprehensive experience in order to learn
better. So we adopt the experience replay technology [49] to
update the network parameters by using the stored data pairs
(Ls, A

∗
sm). Firstly, we keep an empty memory structure. Then

the structure supplies new data pairs, and once the memory
structure is full, the newly generated data pairs can displace
the old. The DRL agent randomly selects several generated

data pairs (Ls, A
∗
sm) in sth step from memory structure to

reduce the over-fitting, which can be characterized by total
steps St. We define the cross-entropy just as follows:

O(ws) = −
1

|St|
∑
s

[(A∗sm)
T
log(πws(As|Ls)

+(1−A∗sm)T log(1− (πws(As|Ls)))] ,
(38)

where |St| represents the total number of sampling steps,
and the superscript T means the transpose operator. In our
simulations, we update our network parameters each ε while
collecting enough new data pairs. Meanwhile, the DRL agent
only updates from the most recent data pairs, which are
produced by a new offloading strategy. The detailed algorithm
procedure is described in Algorithm 1, where the computa-
tional complexity of the proposed algorithm can be derived as
O
(
SL+ SMNZ + S

K

)
.

Algorithm 1 The proposed DRL algorithm

Input:
Each task Ls;
Initially the neural network parameter w;

Output:
The agent outputs A∗sm;
The cost function V (L,A,C);

1: for {1, 2, ...S} do
2: Obtain the offloading decision As via 2AGT and DRL

network structure;
3: Choose appropriate Ms in terms of 3AUS;
4: if s mod δ =0 then
5: Start to choose the new the number of action aggre-

gations from 3AUS;
6: end if
7: Extend action sets As into {As1, As2, ...Asm};
8: for {1, 2, ...|Ms|} do
9: Calculate V (Ls, As, C) for all {As1, As2, ...Asm} ;

10: Select A∗sm = argmin
{As1,As2,...Asm}

V (Ls, As, C) ;

11: end for
12: Add the action pairs {Ls, A∗sm} into buffer pool;
13: if s mod ε =0 then
14: Stochastically selecting K tuples {Ls, A∗sz} and up-

date the DRL agent.
15: end if
16: end for

V. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

A. Experimental Settings

In this section, the number of IIoTD can be denoted as
N = 10 and there are Z = 5 tasks to be performed.
Simultaneously, the channel bandwidth and transmission pow-
er are 100Mbps and 0.2W, respectively. The task size ln,z
obeys the uniform distribution between (5MB, 35MB) and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

100 200 300 400 500 600 700 800 900 1000
The number of training steps

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
L

os
s

of
 D

R
L

 A
ge

nt
DRL Agent Cost

720 740 760
0

0.1
0.2

Fig. 4: The loss function in terms of learning rate=0.01.

the CPU-cycle frequency follows the uniform distribution
between (0.6e8cycle/s, 2.5e8cycle/s) [50]. Further, en,z is
uniformly distributed between (1000cycle/bit, 3000cycle/bit)
and F totalserver is 6.5e9 cycle/s. We set σ2 = 1 ∗ 10−9. We
utilize the pycharm community edition as the programming
environment for constructing DNN with tensorflow, and the
number of hidden layers is 3 where DNN uses full connection.

B. Convergent Performance Analysis

In this simulation, we input the application tasks Ls into
the DRL agent in each step s, where the sample complexity
includes 30000 training samples and 10000 test samples. After
proper time intervals, the DRL agent is retrained again in order
to improve its convergent performance. Finally, we obtain
a quasi-optimal gain rate and total system cost subject to
enumerating actions.

(1) The DRL cost function: As shown in Fig. 4, when
the number of training steps increases, the error function of
predicted value and optimal value gradually decreases to the
minimum value. In fact, when in approximately 250 steps,
the cost of the DRL agent is close to 0, which validates that
our proposed algorithms have fast convergent speed. At the
same time, while receiving different application tasks, the DRL
agent has a stronger generalization ability and reduces over-
fitting, which demonstrates the effectiveness of buffer pool and
stochastically selecting.

(2) Gain Rate: As illustrated in Fig. 5, we can see that the
agent will not converge to optimal solutions despite enough
training steps. In other words, once more than 250 steps, the
agent can not obtain the optimal offloading action and the
gain rate is less than 0.9. It means that the system utility is
lower. Further, we have to choose proper network parameters
and achieve tradeoff between performance and computational
complexity. Next, we show the system gain rate with different
network parameters settings.

As shown in Fig. 6, we set some different learning rates to
illustrate the relationship between gain rate and training steps.
For better comparison, the contrast scheme is the optimal
solution in terms of extensive search method. Generally, if

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

The number of training steps 104

0.8

0.82

0.84

0.86

0.88

0.9

G
ai

n
 r

at
e

learning rate=0.1

1.2 1.4 1.6 1.8

104

0.84

0.86

Fig. 5: The DRL gain rate with learning rate=0.1.

1 2 3 4 5 6 7 8 9 10 11

The number of training steps

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

G
ai

n
 r

at
e

learning rate=0.001
learning rate=0.005
learning rate=0.01
learning rate=0.1

8.5 9 9.5
0.98

0.99

1

Fig. 6: The interrelation between gain rate and learning rates.

the learning rate is higher, the convergent speed of the DRL
agent can be faster. However, the figure shows that when the
learning rate is higher, the gain rate can not be optimal. If we
set a higher learning rate, the DRL agent may obtain a local
optimal policy rather than the global optimal. Accordingly,
we must select a proper learning rate in terms of a specific
network environment.

In Fig. 7, we study the effect of different batch sizes on
gain rate. In addition, we can see that a small batch size
(e.g., size=32) can not utilize all data pairs in the memory
size, which leads to slow convergent speed. However, if the
selected batch size is large enough (e.g., size=256), the agent
can frequently use the old data pairs and may reduce the
system performance. Hence, we must choose the proper batch
size according to the environment states.

Fig. 8 shows the interrelation between gain rate and different
replay experience sizes. At the same time, we set the batch
size as 128. We can see that the gain rate is close to 1 when
the number of replay experience size is 512 and 1024. Further,
as the number of replay experience size is 1024, its convergent
speed is faster than others. However, the DRL agent can not
converge to optimal solutions once the replay experience size

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

1 2 3 4 5 6 7 8 9 10 11

The number of training steps

0.75

0.8

0.85

0.9

0.95

1

G
ai

n
 r

at
e

batch size=32
batch size=64
batch size=128
batch size=256

5.4 5.6 5.8

0.985

0.99

0.995

Fig. 7: The interrelation between gain rate and batch sizes.

1 2 3 4 5 6 7 8 9 10 11

The number of training steps

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

G
ai

n
 r

at
e

replay experience size=256
replay experience size=512
replay experience size=1024
replay experience size=2048

4 5 6 7

0.9

0.95

1

Fig. 8: The interrelation between gain rate and replay
experience sizes.

is 256, since the selected training data pairs are interrelated
and lead to a local optimal solution. In addition, when the
replay experience size is 2048, the convergent speed of the
DRL agent is slow as it can not fully utilize the collected
data pairs to reduce the error loss. Hence, we are supposed to
choose the proper replay experience size in terms of different
application tasks.

C. 3AUS Parameter Interval

In Fig. 9, it shows the interrelation between gain rate and
RHC intervals. If the update interval is proper, the aggregation
parameter Ms can be renewed frequently, which means the
DRL agent decreases its computational complexity with a
small aggregation parameter. As the number of RHC interval
increases, the gain rate is gradually descendent since the big
RHC interval causes the higher computational complexity for
the total cost function, which means that the DRL agent must
renew the number of action sets with a relatively small RHC
interval instead of the big. Hence, we are supposed to choose
a proper RHC interval while maintaining system performance.

1 2 3 4 5 6 7 8 9 10 11

The number of training steps

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

G
ai

n
ra

te

RHC interval=10
RHC interval=30
RHC interval=60
RHC interval=120

6.5 7 7.5 8

0.96

0.98

Fig. 9: The interrelation between gain rate and RHC
intervals.

D. System Performance

In this section, we compare our proposed DRL-based 2AGT
method and 3AUS strategy with some benchmarks under a
variety of system settings. Simulation results demonstrate the
effectiveness of our proposed DRL-based algorithm.

(1) CPU clock speed: As illustrated in Fig. 10, it shows
the total system cost of the IIoT model considering the MEC
server’s CPU clock speed. From Fig. 10, our proposed method
is a quasi-optimal solution compared with extensive search
algorithm. Also, there is a small gap between our proposed
method and extensive search. At the same time, the full
local represents that all application tasks from IIoTD are
executed in local devices, while the full offloading indicates
that all tasks are offloaded to the MEC server to reduce
energy consumption and delay. We can see that our proposed
method outperforms the full offloading and local execution.
Further, the full local execution is not able to change with
the CPU speed clock. This is because the local execution
can not depend on the MEC server resources [51], whereas
the full offloading mode decreases the total system cost with
the increase of the CPU clock speed. More importantly, we
compare our proposed method with two conventional DRL-
based algorithms, i.e., conventional deep Q network (C-DQN)
and deep deterministic policy gradient (DDPG), which show
that our proposed method can further reduce the total system
cost in contrast with C-DQN and DDPG. Hence, we can utilize
the MEC server’s powerful computational resources to help
handle the application tasks in terms of our proposed method.

(2) Delay weight factor: In Fig. 11, we plot the total
system cost in terms of delay weight factor λ. The delay
weight factor reveals the weight on delay relative to total
energy consumption in terms of different application tasks
from IIoTD. In general, delay weight is more significant
than energy consumption for some current IIoT application
tasks [52]. Specifically, with the increase of delay weight
factor, we compare our proposed method with other offloading
strategies including extensive search, full local, full offloading,
intelligent C-DQN and DDPG for the total system cost.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

2 3 4 5 6 7 8 9 10

MEC server CPU clock speed 109

600

800

1000

1200

1400

1600

1800

2000
T

ot
al

 s
ys

te
m

 c
os

t
full local
full offload
C-DQN
DDPG
proposd method
extensive search

5.6 5.8 6 6.2 6.4

109

750

800

850

Fig. 10: The total system cost versus MEC server speed.

1 1.5 2 2.5 3 3.5 4

Delay weight factor

500

1000

1500

2000

2500

3000

3500

T
ot

al
 S

ys
te

m
 C

os
t

full local
full offload
C-DQN
DDPG
proposd method
extensive search

2.96 3 3.04

1120
1140
1160
1180
1200

Fig. 11: The total system cost versus delay weight factor λ.

Under different delay weight factors, we can observe that our
proposed method outperforms the full offloading and full local
execution schemes in terms of the system cost. Further, our
proposed method has lower total system cost than C-DQN and
DDPG, which validates the progressiveness and intelligence
of our proposed method. Finally, it is also close to extensive
search, which means our proposed method can achieve quasi-
optimal total system cost.
(3) Task weight factor: In Fig. 12, we show the interrela-

tionship between the total system cost and task weight factor
β with different strategies. In detail, the task weight factor
suggests the task size is related to the computational energy
consumption from the MEC sever. Different task weight fac-
tors mean the various application tasks from IIoTD. In general,
the larger the task size is, the larger the task weight factor is.
From Fig. 12, we can see that our proposed method is superior
to the full offloading and full local schemes in terms of the
total system cost. Further, our proposed method outperforms
C-DQN and DDPG when task weight factor increases, which
demonstrates the effectiveness and intelligence of our pro-
posed method compared with C-DQN and DDPG. In addition,
when the task weight factor increases, the total system cost
is higher for all schemes. Finally, our proposed DRL-based

2.5 3 3.5 4 4.5 5 5.5

Task weight factor 10-7

700

800

900

1000

1100

1200

1300

1400

T
ot

al
 S

ys
te

m
 C

os
t

full local
full offload
C-DQN
DDPG
proposd method
extensive search

4.4 4.5 4.6

10-7

980
1000
1020
1040

Fig. 12: The total system cost versus task weight factor of β.

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Transmission Power

600

650

700

750

800

850

900

950

1000

1050

T
ot

al
 S

ys
te

m
 C

os
t full local
full offload
C-DQN
DDPG
proposd method
extensive search0.158 0.16 0.162 0.164

680

700

Fig. 13: The total system cost versus transmission power.

algorithm is close to extensive search for total system cost,
which represents that our proposed strategy can achieve a
better sub-optimal solution and have superior intelligence.
(4) Transmission power: As shown in Fig. 13, we explore the

relationship between different transmission power and total
system cost. As DDPG only explores the optimal offloading-
decision and transmission rate, it has higher computational
cost. Additionally, C-DQN can better adapt to the network
environments compared with DDPG. However, as we pro-
pose 2AGT optimization and 3AUS scheme to help dispose
the computation offloading and resource allocation, the total
system cost is lower than C-DQN. Additionally, our proposed
DRL-based network structure is quasi-optimal compared with
extensive search, which further demonstrates the effectiveness
and reliability of our proposed method.

VI. CONCLUSIONS

In this paper, considering a large number of IIoT appli-
cation tasks, we establish a novel IIoT model with edge
intelligence service in 6G. In addition, we propose a novel
DRL-based network structure followed with the 2AGT scheme
and 3AUS strategy to jointly optimize the offloading decision
and transmission resource allocation problems in the IIoT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 11

system. Moreover, a 2AGT method is proposed to generate
the offloading decision and update the number of action ag-
gregation adaptively based on the 3AUS scheme. At the same
time, we adopt the experience replay technique and randomly
select a batch of samples in order to improve its convergent
performance and reduce over-fitting. Finally, the simulation
results validate that our proposed method can achieve better
system performance compared with other benchmarks.

REFERENCES

[1] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang,
C. Zhang, Y. Jiang, J. Wang et al., “Towards 6G wireless communication
networks: Vision, enabling technologies, and new paradigm shifts,”
Science China Information Sciences, vol. 64, no. 1, pp. 1–74, Nov. 2021.

[2] A. Mukherjee, P. Goswami, M. A. Khan, L. Manman, L. Yang, and
P. Pillai, “Energy-efficient resource allocation strategy in massive IoT
for industrial 6G applications,” IEEE Internet of Things Journal, vol. 8,
no. 7, pp. 5194–5201, Nov. 2020.

[3] Y. Gong, J. Wang, and T. Nie, “Deep reinforcement learning aided
computation offloading and resource allocation for iot,” in 2020 IEEE
Computing, Communications and IoT Applications (ComComAp), Bei-
jing, China, 2020, pp. 01–06.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
Aug. 2017.

[5] H. Yao, L. Wang, X. Wang, Z. Lu, and Y. Liu, “The space-terrestrial
integrated network: An overview,” IEEE Communications Magazine,
vol. 56, no. 9, pp. 178–185, Apr. 2018.

[6] H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, and Y. Qian, “Resource trading
in Blockchain-based industrial Internet of Things,” IEEE Transactions
on Industrial Informatics, vol. 15, no. 6, pp. 3602–3609, Mar. 2019.

[7] T. Mai, H. Yao, N. Zhang, L. Xu, M. Guizani, and S. Guo, “Cloud
mining pool aided Blockchain-enabled Internet of Things: An evolu-
tionary game approach,” IEEE Transactions on Cloud Computing, (DOI:
10.1109/TCC.2021.3110965), 2021.

[8] Y. Chen, N. Zhang, Y. Zhang, and X. Chen, “Dynamic computation
offloading in edge computing for Internet of Things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4242–4251, Oct. 2018.

[9] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, Feb. 2013.

[10] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial IoT–edge–cloud computing
environments,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 12, pp. 2759–2774, Jul. 2019.

[11] P. Si, Y. He, H. Yao, R. Yang, and Y. Zhang, “DAVE: Offloading delay-
tolerant data traffic to connected vehicle networks,” IEEE Transactions
on Vehicular Technology, vol. 65, no. 6, pp. 3941–3953, Apr. 2016.

[12] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
Jun. 2019.

[13] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 38–67, Sep. 2019.

[14] P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, and X. Shen, “Edge
coordinated query configuration for low-latency and accurate video
analytics,” IEEE Transactions on Industrial Informatics, vol. 16, no. 7,
pp. 4855–4864, Jul. 2020.

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct. 2009.

[16] B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, “Online computation
offloading and traffic routing for UAV swarms in edge-cloud computing,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8777–
8791, Aug. 2020.

[17] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services, San Francisco, CA, pp. 49–
62.

[18] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation
offloading,” IEEE Communications Letters, vol. 18, no. 10, pp. 1779–
1782, Oct. 2014.

[19] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, Mar. 2017.

[20] S. Guo, Y. Dai, S. Guo, X. Qiu, and F. Qi, “Blockchain meets edge
computing: Stackelberg game and double auction based task offloading
for mobile Blockchain,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 5, pp. 5549–5561, May 2020.

[21] C. Liang, F. R. Yu, H. Yao, and Z. Han, “Virtual resource allocation
in information-centric wireless networks with virtualization,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9902–9914,
Dec. 2016.

[22] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, Apr. 2010.

[23] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45–55,
Nov. 2014.

[24] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[25] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, Jun. 2018.

[26] J. Zhang, W. Xia, Y. Zhang, Q. Zou, B. Huang, F. Yan, and L. Shen,
“Joint offloading and resource allocation optimization for mobile edge
computing,” in IEEE Global Communications Conference (GLOBE-
COM), Singapore, 2017, pp. 1–6.

[27] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and
resource allocation for multi-user multi-task mobile cloud,” in IEEE
International Conference on Communications. (ICC), Kuala Lumpur,
Malaysia, 2016, pp. 1–6.

[28] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “QoS-aware
cooperative computation offloading for robot swarms in cloud robotics,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4027–
4041, Apr. 2019.

[29] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet
systems with intermittent connectivity,” IEEE Transactions on Mobile
Computing, vol. 14, no. 12, pp. 2516–2529, Dec. 2015.

[30] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in IEEE Interna-
tional Symposium on Information Theory (ISIT), Barcelona, Spain, 2016,
pp. 1451–1455.

[31] Y.-F. Huang, T.-H. Tan, N.-C. Wang, Y.-L. Chen, and Y.-L. Li, “Resource
allocation for D2D communications with a novel distributed Q-learning
algorithm in heterogeneous networks,” in International Conference on
Machine Learning and Cybernetics (ICMLC), vol. 2, Chengdu, China,
2018, pp. 533–537.

[32] H. Yao, T. Mai, C. Jiang, L. Kuang, and S. Guo, “AI routers & network
mind: A hybrid machine learning paradigm for packet routing,” IEEE
Computational Intelligence Magazine, vol. 14, no. 4, pp. 21–30, Nov.
2019.

[33] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intelli-
gence toward tomorrowąŕs intelligent network traffic control systems,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2432–
2455, May 2017.

[34] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo,
“Thirty years of machine learning: The road to pareto-optimal wireless
networks,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3,
pp. 1472–1514, Jan. 2020.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[36] X. He, H. Lu, H. Huang, Y. Mao, K. Wang, and S. Guo, “QoE-based
cooperative task offloading with deep reinforcement learning in mobile
edge networks,” IEEE Wireless Communications, vol. 27, no. 3, pp.
111–117, Jun. 2020.

[37] C. Qiu, H. Yao, F. R. Yu, F. Xu, and C. Zhao, “Deep Q-learning aided
networking, caching, and computing resources allocation in software-
defined satellite-terrestrial networks,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 6, pp. 5871–5883, Jun. 2019.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 12

[38] H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, and S. Yu, “Identification
of encrypted traffic through attention mechanism based long short
term memory,” IEEE Transactions on Big Data, (DOI: 10.1109/TBDA-
TA.2019.2940675), 2019.

[39] S. R. Bickham, M. A. Marro, J. A. Derick, W.-L. Kuang, X. Feng,
and Y. Hua, “Reduced cladding diameter fibers for high-density optical
interconnects,” Journal of Lightwave Technology, vol. 38, no. 2, pp.
297–302, Jan. 2019.

[40] H. Widiarti, S.-Y. Pyun, and D.-H. Cho, “Interference mitigation based
on femtocells grouping in low duty operation,” in IEEE Vehicular
Technology Conference (VTC), Ottawa, Canada, Sep, 2010, pp. 1–5.

[41] J. Phiri and T. J. Zhao, “Using Shannon’s information theory and
artificial neural networks to implement multimode authentication,” in
IEEE International Conference on Communications and Intelligence
Information Security (ICCIIS), Nanning, China, Oct, 2010, pp. 271–274.

[42] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, Mar. 2016.

[43] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Springer Mobile networks and applications, (DOI: 10.1007/s11036-018-
1177-x), Nov. 2018.

[44] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning
based offloading game in edge computing,” IEEE Transactions on
Computers, vol. 69, no. 6, pp. 883–893, Jun. 2020.

[45] C. Qiu, F. R. Yu, H. Yao, C. Jiang, F. Xu, and C. Zhao, “Blockchain-
based software-defined industrial internet of things: A dueling deep Q-
learning approach,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4627–4639, Jun. 2018.

[46] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, Nov. 2019.

[47] K. J. Åström, Introduction to stochastic control theory. Courier
Corporation, 2012.

[48] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge University Press, 2004.

[49] B. Luo, Y. Yang, and D. Liu, “Adaptive Q-learning for data-based
optimal output regulation with experience replay,” IEEE transactions
on cybernetics, vol. 48, no. 12, pp. 3337–3348, Dec. 2018.

[50] Z. Zhao, R. Zhao, J. Xia, X. Lei, D. Li, C. Yuen, and L. Fan, “A novel
framework of three-hierarchical offloading optimization for MEC in
industrial IoT networks,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 8, pp. 5424–5434, Aug. 2019.

[51] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on emerging topics in computing, vol. 9, no. 3, pp. 1529–
1541, Jul. 2019.

[52] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos,
“Software-defined Industrial Internet of Things in the context of industry
4.0,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7373–7380, Oct. 2016.

Yongkang Gong is pursuing his doctor degree
in the School of Information and Communication
Engineering, Beijing University of Posts and T-
elecommunications, Beijing. His research interests
include network artificial intelligence, multi-access
edge computing, space-air-ground integrated net-
work, and multi-agent deep reinforcement learning.

Haipeng Yao (M’16, SM’20) is a Professor in Bei-
jing University of Posts and Telecommunications.
Haipeng Yao received his Ph.D. in the Department
of Telecommunication Engineering at University of
Beijing University of Posts and Telecommunica-
tions in 2011. His research interests include future
network architecture, network artificial intelligence,
networking, space-terrestrial integrated network, net-
work resource allocation and dedicated networks. He
has published more than 100 papers in prestigious
peer-reviewed journals and conferences. Dr. Yao has

served as an Editor of IEEE Network, IEEE Access, and a Guest Editor
of IEEE Open Journal of the Computer Society and Springer Journal of
Network and Systems Management. He has also served as a member of the
technical program committee as well as the Symposium Chair for a number of
international conferences, including IWCMC 2019 Symposium Chair, ACM
TUR-C SIGSAC2020 Publication Chair.

Jingjing Wang (S’14-M’19-SM’21) received his
B.S. degree in Electronic Information Engineering
from Dalian University of Technology, Liaoning,
China in 2014 and the Ph.D. degree in Informa-
tion and Communication Engineering from Tsinghua
University, Beijing, China in 2019, both with the
highest honors. From 2017 to 2018, he visited the
Next Generation Wireless Group chaired by Prof.
Lajos Hanzo, University of Southampton, UK. Dr.
Wang is currently an associate professor at School of
Cyber Science and Technology, Beihang University.

His research interests include AI enhanced next-generation wireless networks,
swarm intelligence and confrontation. He has published over 100 IEEE
Journal/Conference papers. Dr. Wang was a recipient of the Best Journal Paper
Award of IEEE ComSoc Technical Committee on Green Communications &
Computing in 2018, the Best Paper Award of IEEE ICC and IWCMC in 2019.

Maozhen Li is currently a Professor with the
Department of Electronic and Computer Engineer-
ing, Brunel University London, London, U.K. His
current research interests include high-performance
computing, big data analytics, and knowledge and
data engineering. Mr. Li is a Fellow of the BCS and
IET.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 13

Song Guo (Fellow, IEEE) is a Full Professor and
Associate Head (Research Development) in the De-
partment of Computing at The Hong Kong Polytech-
nic University. He also holds a Changjiang Chair
Professorship awarded by the Ministry of Education
of China. Prof. Guo is an IEEE Fellow (Computer
Society), a Highly Cited Researcher (Clarivate Web
of Science), and an ACM Distinguished Member.
His research interests are mainly in the areas of big
data, edge AI, mobile computing, and distributed
systems. He co-authored 4 books, co-edited 7 books,

and published over 500 papers in major journals and conferences. He is
the recipient of the 2019 IEEE TCBD Best Conference Paper Award, 2018
IEEE TCGCC Best Magazine Paper Award, 2019 2017 IEEE Systems Journal
Annual Best Paper Award, and other 8 Best Paper Awards from IEEE/ACM
conferences. His work was also recognized by the 2016 Annual Best of
Computing: Notable Books and Articles in Computing in ACM Computing
Reviews. Prof. Guoąŕs research has been sponsored by RGC, NSFC, MOST,
JSPS, industry, etc. Prof. Guo is the Editor-in-Chief of IEEE Open Journal
of the Computer Society and the Chair of IEEE Communications Society
(ComSoc) Space and Satellite Communications Technical Committee. He was
an IEEE ComSoc Distinguished Lecturer and a member of IEEE ComSoc
Board of Governors. He has also served for IEEE Computer Society on
Fellow Evaluation Committee, Transactions Operations Committee, Editor-in-
Chief Search Committee, etc. Prof. Guo has been named on editorial board
of a number of prestigious international journals like IEEE Transactions on
Parallel and Distributed Systems, IEEE Transactions on Cloud Computing,
IEEE Transactions on Emerging Topics in Computing, etc. He has also
served as chairs of organizing and technical committees of many international
conferences.

View publication stats

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI 10.1109/TNSE.2022.3141728,

Copyright © 2022 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelinesand-policies/post-publication-policies/

https://www.researchgate.net/publication/357569011

