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A B S T R A C T

Hydrogen lifecycle, encompassing production, storage, and transportation, is crucial in the global transition to 
clean energy. Integrating artificial intelligence (AI) and robotics into hydrogen lifecycle offers promising solu
tions to enhance efficiency, safety, and scalability. This paper presents a comprehensive review of the current 
advancements published over the past two decades (2005–2025), analyzing AI and robotics applications across 
hydrogen production, storage, and transportation. We systematically examine the role of AI in optimizing 
hydrogen production processes, improving the safety and efficiency of storage systems, and enhancing trans
portation logistics through real-time monitoring and route optimization. Additionally, the paper explores the use 
of robotics to handle complex tasks in hazardous environments within the hydrogen lifecycle. We identify key 
challenges and gaps in the literature and propose future research directions to fully leverage AI and robotics 
across hydrogen technologies. This review serves as a foundation for researchers and practitioners seeking to 
advance the integration of AI and robotics in the hydrogen economy.

1. Introduction

As the world confronts the escalating challenges of climate change 
and the depletion of fossil fuel resources, the transition to sustainable 
energy systems has become a global priority [1]. Within this transition, 
hydrogen has emerged as a pivotal player due to its potential to serve as 
a clean, versatile, and efficient energy carrier [2,3], offering the po
tential to decarbonize multiple sectors that are difficult to electrify, such 
as heavy industry, aviation, and maritime transport. Hydrogen’s envi
ronmental benefits are significant; its combustion emits only water 
vapor, making it a key contributor to efforts aimed at reducing green
house gas emissions and achieving international carbon neutrality tar
gets [4–9]. Hydrogen can be produced from various renewable sources, 
such as wind, solar, and biomass.

Hydrogen can be produced via multiple methods, with electrolysis 
(using renewable electricity) and steam methane reforming (SMR) being 
the most prominent [10]. While SMR is a mature and cost-effective 
technology, its carbon intensity necessitates integration with carbon 
capture and storage (CCS) to align with global decarbonization goals 

[11]. Electrolysis offers a cleaner alternative but remains constrained by 
high energy consumption and economic challenges [12]. In addition to 
these technical barriers, the slow pace of technological advancements in 
large-scale hydrogen production, especially for green hydrogen, pre
sents further challenges to commercial viability [13] as it is highly 
reactive and difficult to store and transport [14]. High-pressure storage 
systems and cryogenic technologies introduce significant safety con
cerns, particularly in large-scale applications. Additionally, developing a 
hydrogen infrastructure that includes pipelines, distribution networks, 
and refueling stations is critical but remains underdeveloped, rendering 
it inadequate to meet the anticipated future demand [15,16]. Achieving 
cost parity with existing fossil-fuel infrastructure requires substantial 
investments and policy support, particularly in developing hydrogen 
refueling stations and long-distance pipelines [17].

Governments and industries worldwide are investing heavily in 
hydrogen technologies, recognizing their capacity to decarbonize sec
tors that are difficult to electrify, such as heavy industry, aviation, and 
maritime transport [13]. The European Union, Japan, and several other 
countries have announced ambitious hydrogen strategies, aiming to 
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integrate hydrogen into their energy systems at scale by 2030 and 
beyond [17–19]. However, achieving these ambitions requires over
coming substantial technical and economic barriers, particularly those 
related to production efficiency, storage safety, and distribution costs. 
Furthermore, significant variations in regional policies, government 
support, and public perception may affect the global pace and scale of 
hydrogen adoption. Public acceptance of hydrogen technologies and 
emerging AI and robotics applications is critical for their successful 
adoption [20].

Recent advancements in artificial intelligence (AI) and robotics offer 
promising solutions to many such challenges. AI-driven systems have 
demonstrated their potential to optimize hydrogen production processes 
by enhancing efficiency and reducing energy consumption through real- 
time monitoring and predictive maintenance [21]. Meanwhile, robots 
can be deployed in dangerous or complex environments, such as 
hydrogen pipelines and electrolysis systems, to perform tasks otherwise 
classed as hazardous for humans [22]. These technologies collectively 
promise to improve hydrogen infrastructure by enhancing safety, reli
ability, and operational efficiency [23,24]. However, the large-scale 
deployment of AI and robotics in hydrogen systems is still in its early 
stages, with significant technological readiness gaps and regulatory 
challenges that must be addressed before these solutions can be widely 
adopted [12]. Public concerns regarding hydrogen safety and AI’s role in 
critical infrastructure management could also hinder acceptance. 
Addressing these concerns through public education and robust safety 
standards will ensure broad societal acceptance of these technologies 
[25].

AI and robotics applications in hydrogen technologies have gained 
increasing attention, with comprehensive reviews highlighting key ad
vancements and persistent challenges across hydrogen production, 
storage, and transportation (see Table 1). These studies emphasize the 
integration of AI-driven optimization algorithms, machine learning 
(ML)-based predictive modeling, and digital twin technologies to 
enhance hydrogen infrastructure efficiency and safety. One central area 
of advancement is the application of AI to optimize hydrogen production 
processes. A recent review of renewable energy-integrated AI techniques 
for hydrogen production [26] highlights the role of ML and optimization 
algorithms in improving electrolysis efficiency and reducing costs by 
adapting to intermittent renewable energy sources. AI-driven catalyst 
design, mainly through neural network-based models, has also played a 
crucial role in reducing the dependence on rare and expensive materials. 
However, these approaches face challenges in scalability and validation 
due to the limited availability of experimental datasets, emphasizing the 
need for industrial-scale AI validation frameworks.

AI applications in hydrogen safety have also seen significant prog
ress. For example [23], have demonstrated using artificial neural net
works, computer vision, and sensor fusion techniques to improve 
real-time monitoring and hazard prediction in hydrogen production 
and storage facilities. AI-powered leak detection systems have signifi
cantly reduced false alarms and enhanced response times, making 
hydrogen storage and refueling infrastructure safer. However, ensuring 
AI model robustness across varying environmental conditions remains a 
key challenge, as hydrogen facilities operate in diverse and unpredict
able settings. Material discovery and electrocatalyst optimization for 
hydrogen energy transformation have also benefited from ML ad
vancements [37]. High-throughput ML approaches now facilitate the 
rapid screening of catalysts for hydrogen evolution and oxygen reduc
tion reactions, integrating density functional theory data to accelerate 
experimental validation. However, training AI models on incomplete 
datasets remains challenging, impacting the scalability of AI-driven 
material discovery for commercial applications. Similarly, ML models 
have been employed in solid-state hydrogen storage systems to predict 
hydrogen adsorption properties in magnesium- and titanium-based 
materials, reducing the need for extensive experimental testing [38]. 
Despite these advancements, data standardization and model inter
pretability remain critical barriers, requiring further research to 

improve AI-driven material performance predictions.
Beyond production and storage, AI-enabled energy management 

systems are gaining traction, particularly in hydrogen-powered micro
grids. A recent study on Artificial Intelligence of Things (AIoT) frame
works for hydrogen energy systems [39] demonstrated how AIoT can be 

Table 1 
Recent review papers on the hydrogen value chain.

Reference Scope Is Robotics 
application in 
hydrogen lifecycle 
considered?

Is AI application 
in hydrogen 
lifecycle 
considered?

[27] Analyzed the use of 
machine learning in 
hydrogen energy systems, 
focusing on production, 
storage, and practical 
applications, while linking 
machine learning solutions 
to the challenges 
encountered.

No Yes

[28] Discussed development in 
hydrogen value chain for 
the Middle East region by 
focusing on the feedstock, 
production techniques, 
storage choices, delivery 
routes, and end-user 
applications

No No

[29] Studied the European 
region’s green hydrogen 
supply chain risk factors

Very briefly No

[30] Reviewed hydrogen tank 
designs focusing on 
spherical tanks

No No

[31] Studied the hydrogen value 
chain identifying both the 
present challenges and 
recent advances

No No

[32] Studied the technical and 
economic factors for the 
viability and 
competitiveness of two 
competing large-scale 
renewable hydrogen value 
chains via ammonia and 
liquid hydrogen

No No

[33] Conducted a techno- 
economic review of 
hydrogen energy systems 
consisting of power-to- 
power, power-to-gas, 
hydrogen refueling and 
stationary fuel cells

No No

[34] Studied the green 
hydrogen value chain in 
meeting the objectives 
stated in the 2030 Agenda

No No

[35] Reviewed optimization 
models for hydrogen 
supply chains and 
production

No No

[36] Performed strengths, 
weaknesses, opportunities, 
and threats (SWOT) 
analysis to the clean 
hydrogen value chain in 
different sectors to 
determine Japan’s clean 
hydrogen value chain

No No

This work Systematically reviewed 
the role of AI and 
robotics within the 
hydrogen lifecycle, from 
production to storage 
and transport.

Yes Yes
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combined to enhance real-time decision-making and predictive main
tenance across hydrogen production, distribution, and storage. Simi
larly, ML-driven smart energy management systems [40] have 
optimized hydrogen-based islanded microgrids, dynamically adjusting 
energy flow between hydrogen production and consumption based on 
real-time demand. These technologies underscore the potential of AI in 
decentralized hydrogen energy systems, though integration challenges 
persist, particularly in autonomous microgrid operations. The emer
gence of digital twin technology has also provided a transformative 
approach to hydrogen safety, operations, and predictive maintenance. A 
recent study on digital twin-based hydrogen refueling station safety 
models [41] demonstrated how convolutional neural networks (CNNs) 
combined with real-time 3D simulations can accurately predict safety 
risks, improving station reliability and operational efficiency. Similarly, 
digital twin integration is used for hydrogen leakage modeling [42]. has 
advanced scenario-based risk assessment, combining virtual experi
ments and AI-driven simulations to enhance safety in hydrogen trans
port and storage facilities. However, these AI-enhanced digital twins 
face challenges in data standardization, limiting their scalability for 
large-scale hydrogen applications.

While some studies have explored the potential of AI to enhance 
energy efficiency and safety in hydrogen systems [43], comprehensive 
research that examines the role of both AI and robotics throughout the 
entire hydrogen value chain remains sparse. This includes cost-benefit 
analyses, considering the upfront investment and long-term opera
tional savings [3,14]. Previous research highlights AI’s contributions to 
hydrogen production and storage optimization but fails to address how 
AI could work with robotics to automate operational tasks and mitigate 
safety risks. Similarly, while valuable insights are provided into the 
material challenges of hydrogen storage, the role of robotics in 
enhancing the safety and efficiency of these storage systems is generally 
overlooked. This omission is critical, as combining AI’s predictive ca
pabilities with robotics’ operational precision can significantly mitigate 
the risks associated with hydrogen’s highly reactive nature and its 
storage under extreme conditions [44]. Qureshi et al. [45] emphasize 
hydrogen’s commercial potential but do not engage with the techno
logical barriers, such as the high upfront investment costs associated 
with AI and robotics deployment [12]. This indicates a gap in the 
literature where the potential of AI and robotics to tackle economic and 
technical constraints jointly remains largely unexplored [46]. identified 
that there is an existing literature that recognizes the potential of 
hydrogen energy as an alternative to replace fossil fuels [47], but there is 
a shortage of comprehensive studies analyzing the recent evolution of 
hydrogen fuel technologies [46]. contributed to this research agenda, 
offering new insights to better understand the technological trajectories 
of hydrogen fuel, as well as a first mapping of the leading countries in 
developing new technologies in this field.

Despite these advancements, several fundamental challenges remain 
across AI and robotics applications in the hydrogen lifecycle. Data 
challenges persist, as many AI models lack high-quality, standardized 
datasets for hydrogen production, storage, and safety applications [23, 
37,38], and the limited availability of large-scale experimental datasets 
further hinder safety and material optimization efforts [48,49]. Scal
ability concerns also arise, as AI-driven hydrogen optimization models 
often perform well in small-scale demonstrations but struggle when 
applied to industrial-scale operations [38,48]. Additionally, integration 
bottlenecks remain a significant hurdle, as the full convergence of AI, 
robotics, and AIoT in hydrogen infrastructure is still largely conceptual, 
with limited real-world deployment [39,40]. A significant issue in AI 
adoption is model interpretability, as many widely used models, such as 
neural networks and CNNs, lack transparency, making their application 
in critical hydrogen energy systems more challenging [38,42]. There are 
still gaps in robotics applications, especially in hydrogen handling, 
transport automation, and infrastructure maintenance, even with the 
successful implementation of digital twins and automated inspection 
systems in hydrogen pipelines and storage. Tackling these issues is vital 

for progressing AI and robotics in hydrogen technologies and ensuring 
their efficient integration into industrial applications.

This review identifies critical gaps in the integration of AI and ro
botics across the hydrogen lifecycle and presents potential solutions to 
address these challenges. The analysis contributes to a deeper under
standing of how AI and robotics enhance hydrogen production, storage, 
and transportation. The key contributions of this review include: 

• Comprehensive analysis of the role of AI and robotics in hydrogen 
production, storage, and transport, with a focus on the current ap
plications, challenges, and potential solutions.

• Exploration of AI-driven optimization techniques for hydrogen pro
duction, focusing on efficiency improvements and cost reduction 
through predictive analytics.

• Discussion on the potential of AI-based predictive maintenance to 
improve transportation logistics and support the development of 
hydrogen infrastructure.

This paper is divided into five sections. Section 2 outlines the 
research questions and the methodology for the systematic literature 
review. Section 3 provides an overview of trends in publications related 
to AI and robotics in the hydrogen lifecycle. Section 4 discusses the re
sults of the literature review on hydrogen production, storage, and 
transportation, along with their respective challenges and opportunities. 
Section 5 summarizes and concludes the paper.

2. Methodology

This section details the methodology employed in this review, 
including the search strategy, selection criteria, and data extraction 
processes. A combination of systematic review protocols and traditional 
literature review methods was applied to ensure a thorough analysis of 
empirical studies while maintaining a broad understanding of key 
themes in the field. The study is guided by two research questions: (i) 
What is the current role of AI and robotics in the production, storage, 
and transportation of hydrogen fuel? (ii) What are the barriers and po
tential solutions to the further integration of AI and robotics technolo
gies in the hydrogen lifecycle?

A structured approach was followed to ensure the collection of 
relevant literature while maintaining integrity and reproducibility. The 
literature search was conducted in widely recognized academic data
bases, including Scopus and IEEE Xplore. The search strategy was 
designed to systematically capture relevant studies examining AI and 
robotics applications in the hydrogen lifecycle. A combination of key
words and Boolean operators (AND, OR, NOT) ensured a comprehensive 
yet targeted search. The search focused on hydrogen fuel production, 
storage, and transportation while selecting studies incorporating AI, 
machine learning, and robotics. The specific search query was: 
"Hydrogen fuel*" AND "Production*" OR "Storage*" OR "Transport*" OR 
"Adoption*" AND "Technology*" OR "AI*" OR "Artificial Intelligence*" 
OR "Machine Learning*" OR "Algorithm*" OR "Robot*". The study 
included research articles from the past 20 years to maintain relevance 
and accuracy. The timeframe was chosen because, before 2005, only a 
few studies addressed AI and robotics in the hydrogen lifecycle. 
Selecting papers from 2005 to 2025 ensures that the review remains up- 
to-date and reflects the most recent advancements.

Fig. 1 illustrates the methodological framework used in this study. 
The process begins with identifying research questions, which focus on 
the role of AI and robotics in hydrogen production, storage, and trans
portation, as well as barriers to their integration. The next step involves 
searching for relevant studies in academic databases. Scopus provided 
5916 papers, while IEEE Xplore contributed 991 papers, resulting in an 
initial dataset of 6907 studies. The study selection was conducted in 
multiple stages using Python Pandas library [50]. The first filter 
excluded studies outside the 2005–2025 timeframe and removed 
duplicate papers. A keyword-based filtering approach was then applied, 
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and papers that specifically discussed AI, robotics, and automation in the 
context of hydrogen technologies were selected. Additional filtering was 
performed to categorize studies based on their relevance to hydrogen 
production, storage, and transportation. The selection process reduced 
the dataset to 6907 papers, which was further refined to 652 papers. 
After applying additional relevance filters, 118 highly relevant papers 
were identified for detailed analysis. Following the selection process, 
bibliometric analysis was performed to categorize and visualize the 
distribution of studies using Python matplotlib [51] and plotly [52] li
braries. Data extracted from the selected papers were organized based 
on their focus on the hydrogen lifecycle. The final stage involved sum
marizing and synthesizing findings in a structured manner. Key trends 
and challenges were highlighted to provide a comprehensive under
standing of AI and robotics applications in hydrogen technologies. The 
analysis identified research gaps and potential future directions that 
could enhance the adoption of AI-driven solutions in the hydrogen 
lifecycle.

3. Overview of research trends

The extracted data are synthesized using a thematic analysis 
approach. Key themes and patterns across the selected studies are 
identified, allowing for the comparison of findings across different 
segments of the hydrogen lifecycle (production, storage, and trans
portation) and the integration of AI and robotics. Studies are clustered 
into thematic categories, enabling this review to systematically address 
the research questions and to ensure both depth and breadth in the 
analysis. The analysis specifically focused on synthesizing findings 
related to the role of AI and robotics in the hydrogen lifecycle, identi
fying common barriers to the integration of these technologies (such as 
cost, technological readiness, and regulatory constraints), and high
lighting potential solutions, technological advancements, and areas 

requiring further research.
Fig. 2 illustrates the growth in research publications related to AI and 

robotics in hydrogen technologies from 2005 to 2025. The data indicate 
a slow and steady increase in publications until 2017, followed by a 
sharp rise from 2018 onward, aligning with increasing global efforts 
toward hydrogen energy development. The total number of publications 
on AI and robotics in hydrogen surged from 16 in 2018 to 291 in 2024, 
reflecting the growing recognition of AI-driven solutions in hydrogen 
technologies. The subset of studies specifically focused on the hydrogen 
lifecycle (production, storage, or transport) also shows a rising trend, 
albeit at a lower volume, reaching a peak of 44 studies in 2024. This 
surge reflects a confluence of global factors, including the growing 
recognition of hydrogen’s potential as a clean energy vector and the 
integration of advanced technologies like AI and robotics in addressing 
its production, storage, and transportation challenges. The sharp in
crease in research following the 2018 EU Renewable Energy Directive 
underscores how policy-driven initiatives can accelerate scientific in
quiry and technological advancements. The International Energy 
Agency’s 2019 G20 report on the future of hydrogen catalyzed inter
national attention and investment, driving research in this field.

The distribution of publication types in research on AI and robotics in 
the hydrogen lifecycle is depicted in Fig. 3. Results reveal that journal 
articles (41.5%) constitute the largest proportion of studies, indicating a 
strong emphasis on peer-reviewed, high-impact research. Conference 
papers (37.9%) follow closely, reflecting the fast-paced nature of tech
nological advancements in AI and robotics, where early findings are 
frequently presented at conferences before complete journal publica
tion. Review articles (11.1%) account for a smaller but significant share, 
highlighting efforts to synthesize existing knowledge and identify 
research gaps. Other publication types (5.5%), including white papers, 
IEEE magazines, technical notes or technical reports, and book chapters 
(4.0%), which typically provide broader conceptual discussions, 

Fig. 1. Systematic review methodology for identifying, selecting, and analyzing relevant studies on AI and robotics in the hydrogen lifecycle. The process includes 
defining research questions, searching academic databases, filtering studies based on relevance, conducting bibliometric analysis, and synthesizing findings.
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represent a minor portion of the literature. This distribution suggests 
that while foundational and applied research dominates the field, there 
is still room for more systematic reviews and interdisciplinary book 
contributions to consolidate findings and guide future research 
directions.

Fig. 4 illustrates the distribution of the top 25 most used keywords in 
research on AI and robotics in the hydrogen lifecycle (excluding 
’hydrogen’). The analysis of the most frequently used keywords in AI 
and robotics research within the hydrogen lifecycle highlights a strong 
focus on machine learning (28.0%) and artificial intelligence (7.0%), 
underscoring the growing reliance on AI-driven techniques for 

optimizing hydrogen-related processes. The prominence of fuel cells 
(6.3%) and hydrogen fuel cells (5.6%) indicates a significant research 
emphasis on hydrogen’s role as an energy carrier, particularly in fuel cell 
technologies. The presence of renewable energy (4.9%), sustainability 
(4.2%), and green hydrogen (2.8%) suggests a parallel focus on inte
grating hydrogen production with clean energy sources to enhance ef
ficiency and reduce environmental impact.

For hydrogen storage, keywords such as hydrogen storage (3.5%) 
and optimization (2.1%) point to ongoing research in AI-driven safety 
monitoring, predictive maintenance, and advanced storage materials. 
The appearance of autonomous vehicles (2.8%) and autonomous un
derwater vehicles (2.1%) suggests that robotics and automation are 
being explored to facilitate hydrogen distribution and logistics, partic
ularly in transportation and storage infrastructure maintenance. 
Furthermore, the presence of deep learning (2.1%) and genetic algo
rithms (2.1%) reflects the increasing adoption of advanced AI method
ologies to enhance predictive modeling, process control, and system 
efficiency.

While technical advancements are well represented, the relatively 
lower frequency of terms such as sustainable development (2.1%) and 
renewable energies (2.1%) indicates that broader discussions on policy 
frameworks, economic feasibility, and long-term sustainability remain 
less emphasized. These insights set the stage for a deeper exploration of 
the applications, challenges, and potential solutions for AI and robotics 
in hydrogen production, storage, and transportation, discussed in the 
following sections.

In terms of geographical distribution of research on AI and robotics 
in the hydrogen lifecycle, Fig. 5 shows that China is the dominant 
contributor, accounting for 17.6% of total publications. The United 
States follows with 12.9%, reflecting its continued commitment to 
technological advancements in hydrogen energy. India ranks third with 
8.5%, demonstrating its growing investment in renewable energy and 
emerging AI applications. Several European and East Asian countries 
also play a significant role in the field. Germany (4.7%), Italy (4.2%), 
and the United Kingdom (4.1%) contribute substantially, aligning with 
their strong hydrogen policies and AI-driven energy research. Canada 
(3.4%), South Korea (2.8%), and Australia (2.5%) also exhibit notable 

Fig. 2. Article number on robotics and AI in hydrogen lifecycle from 2005 to 2025 in Scopus and IEEE Xplore after filters.

Fig. 3. Distribution of publication types in research on AI and robotics in the 
hydrogen lifecycle.
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research efforts, particularly in hydrogen production and storage. 
Beyond these leading nations, contributions are observed from a diverse 
range of countries, including Japan (2.5%), Russia (2.0%), Spain (1.8%), 
and Turkey (1.5%), indicating a globalized interest in AI and robotics 
applications within hydrogen technologies. Middle Eastern and South
east Asian nations, such as Saudi Arabia (1.3%), Iran (1.1%), Malaysia 
(1.5%), and Indonesia (0.74%), have also made contributions, particu
larly in hydrogen storage and industrial automation. While research 

efforts span multiple regions, China and the United States remain 
dominant, with a significant gap between them and other contributors. 
The relatively low representation from South America and Africa, aside 
from Brazil (0.7%) and South Africa (0.81%), suggests a disparity in 
research funding, policy incentives, and industrial engagement in 
hydrogen AI technologies. Addressing these gaps through international 
collaboration and technology transfer could enhance the global devel
opment and deployment of AI and robotics in the hydrogen economy.

Fig. 4. Distribution of the top 25 most used keywords in research on AI and robotics in the hydrogen lifecycle (excluding ’hydrogen’). The prevalence of terms such 
as ’machine learning’ and ’artificial intelligence’ highlights the growing role of AI-driven optimization, while keywords related to fuel cells, sustainability, and 
storage reflect key technological and environmental priorities across hydrogen production, storage, and transportation.

Fig. 5. Geographical distribution of research on AI and robotics in the hydrogen lifecycle.
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The impact of increased government funding, particularly in the 
application of AI and robotics, has been profound. Fig. 6 illustrates the 
year-on-year growth of The European Commission (ERC)-funded AI 
projects as a percentage of total ERC-funded projects from 2007 to 2021 
taken from European Research Council Executive Agency [53]. Initially, 
AI-related projects constituted a relatively small share, remaining below 
5% until 2013. However, from 2014 onwards, a noticeable upward trend 
emerged, reflecting an increasing prioritization of AI research within 
European funding schemes. This acceleration aligns with the broader 
global shift toward artificial intelligence as a transformative technology, 
driven by advancements in machine learning, robotics, and data-driven 
decision-making. The sharp rise after 2016 can be attributed to initia
tives under Horizon 2020, which actively promoted AI and digital 
transformation projects. By 2021, AI projects accounted for nearly 15% 
of all ERC-funded research, highlighting the growing role of AI in 
addressing scientific and societal challenges. This trend suggests a 
continued focus on AI within Horizon Europe, reinforcing the impor
tance of sustained investment in AI research and its applications across 
various domains, including hydrogen energy, automation, and indus
trial robotics.

According to the International Federation of Robotics [55], global 
investment in robotics research and development varies significantly 
across countries, with each nation allocating substantial budgets to 
advance industrial automation, artificial intelligence, and autonomous 
systems. China has focused on integrating robotics into key industries, 
investing approximately 45.2 million USD in 2023 and 44.5 million USD 
in 2024 for its National Key R&D Plan on Intelligent Robots. This aligns 
with China’s broader strategy to dominate the global humanoid robot 
market and enhance industrial automation. Similarly, Japan has prior
itized robotics in its Moonshot Research and Development Program, 
allocating 334 million USD over five years (2020–2025) and providing 
an additional 660 million USD in 2023 alone. Korea has also established 
long-term strategies, committing 163 million USD in 2023 for the 
Intelligent Robot Action Plan and an additional 128 million USD in 2024 
for its 4th Basic Plan on Intelligent Robots. The European Union con
tinues to be a leader in AI and robotics through Horizon Europe, with 
183.5 million USD dedicated to robotics-related projects between 2023 
and 2025. Meanwhile, Germany has committed 69.12 million USD 
annually until 2026 under its High-Tech Strategy 2025, reinforcing its 
position as the largest robotics market in Europe.

The United States leads in robotics funding, particularly in defense 
and space applications. The Department of Defense (DoD) allocated 10.3 
billion USD for autonomy and robotics technologies in FY23 and 
requested 10.2 billion USD for FY24, reflecting the growing role of un
manned systems in military operations. The National Science Founda
tion (NSF) also supports robotics research, investing 53.8 million USD in 
2023 and 69.9 million USD in 2024 under the Intelligent Robotics and 
Autonomous Systems (IRAS) R&D programs. Additionally, NASA’s 

Artemis lunar exploration program received a total budget of 53 billion 
USD for 2020–2025, including 10.67 billion USD in 2023 alone. The 
United Kingdom’s funding is more modest in comparison, with 
approximately 28.8 million USD allocated to robotics programs in 2023 
and 2024, supporting initiatives like Made Smarter Innovation and 
Transforming Food Production. These investments reflect a global 
recognition of robotics as a transformative technology, with increasing 
applications in automation, energy systems, and AI-driven industrial 
operations.

4. Results and discussions

This section discusses the integration of AI and robotics across the 
hydrogen lifecycle, focusing on their applications in production, storage, 
and transport. The results are discussed in terms of the benefits that 
these technologies bring to optimizing processes, enhancing operational 
safety, and enabling real-time decision-making. Additionally, the chal
lenges associated with scaling AI and robotics in industrial hydrogen 
systems and integrating them with existing infrastructure are analyzed. 
Table 2 summarizes the key applications, challenges, and potential so
lutions for AI and robotics in hydrogen production, storage, and trans
port to provide a comprehensive overview of the current landscape.

4.1. Hydrogen fuel production

4.1.1. Current uses of AI and robotics in hydrogen production
Generative models, such as generative adversarial networks (GANs), 

have been increasingly employed for the design of advanced materials 
used in hydrogen production, such as high-efficiency membranes for gas 
separation. A significant breakthrough in AI-driven materials design for 
hydrogen production has been achieved through the GLIDER frame
work, a deep generative artificial intelligence model developed by Niu 
et al. [74]. This deep generative AI model integrates generative AI, 
data-driven modeling, and collective intelligence, enabling the efficient 
optimization of Pt-carbon-ionomer nanostructures for fuel cell elec
trodes while remaining adaptable to other electrochemical energy de
vices. The approach addresses key challenges in catalyst layer design, 
reducing high synthesis costs and improving nanostructure-performance 
relationships. These models enable the creation of novel materials with 
optimized properties that are critical for enhancing the efficiency of 
hydrogen production processes.

Similarly, utilizing deep learning algorithms, AI-driven process 
control has been transformative in optimizing complex production 
processes like SMR. The integration of deep learning algorithms into AI- 
driven process control has been transformative in optimizing complex 
hydrogen production processes. For instance, Lee et al. [58] developed a 
deep neural network (DNN) trained on over 485,000 real-world opera
tional datasets to optimize SMR performance, achieving an exceptional 
accuracy of R2 = 0.9987. Their results demonstrated a thermal effi
ciency of 85.6%, surpassing previous benchmarks. The model’s capa
bility to conduct over 20,000 case studies per second makes it highly 
suitable for real-time process monitoring and optimization, allowing 
operators to dynamically adjust conditions and enhance efficiency [75]. 
A multi-objective optimization approach was applied to SMR to balance 
thermal efficiency and CO2 emissions by Hong et al. [54], using particle 
swarm optimization (PSO) and multi-objective PSO (MOPSO) (see 
Fig. 7). In the single-objective optimization, a higher PSA recovery rate 
(84%) improved hydrogen production but required additional natural 
gas (NG) combustion, increasing CO2 emissions. Conversely, optimizing 
for lower CO2 emissions (577.9 t/y) reduced NG input but sacrificed 
thermal efficiency (77.5%). The MOPSO algorithm identified 
Pareto-optimal solutions, allowing decision-makers to select trade-offs 
suited to operational priorities. A hybrid DNN model trained on pilot 
plant and process simulation data further improved prediction accuracy 
(R2 = 0.94), enabling soft sensing of unmeasured variables. The study 
suggests that optimizing SMR processes through AI-driven modeling can 

Fig. 6. Yearly evolution of ERC-funded AI projects as a percentage of total ERC- 
funded projects (2007–2021), reproduced from the European Research Council 
Executive Agency [53].
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Table 2 
Summary of AI and robotics applications, challenges, and solutions in the hydrogen lifecycle.

Category Current applications Challenges Potential solutions Application 
examples

Hydrogen 
production

Electrocatalyst design: ML applies high- 
throughput datasets and simulations like 
density functional theory for material 
development, accelerating hydrogen evolution 
reaction research. 
Electrolysis optimization: ML-driven 
electrolysis optimization enhances efficiency 
and reduces costs by analyzing operational 
parameters in green hydrogen production. 
SMR optimization: Employing AI and 
machine learning to optimize the SMR process, 
minimizing energy consumption and 
maximizing yield. 
Predictive maintenance: Using AI-driven 
predictive algorithms and robotics to minimize 
downtime in production facilities

Scalability: Limited datasets and scalability 
for industrial applications. 
Integration with existing production 
infrastructure: Ensuring compatibility 
between AI-driven systems and legacy 
production infrastructure. 
Energy efficiency: Developing algorithms to 
optimize energy consumption while 
maintaining hydrogen purity and yield. 
Safety compliance: Implementing AI and 
robotics in compliance with safety standards 
for handling high-pressure systems and 
hazardous materials.

Adaptive algorithms: Implementing 
adaptive learning algorithms to 
continuously optimize energy 
efficiency in electrolysis and SMR. 
Collaborative human–robot 
interaction: Developing systems for 
safe and efficient human–robot 
collaboration in maintenance tasks

[26]
[49]
[37] 
[56] 
[54] 
[57] 
[58] 
[59] 
[23] 
[60] 
[61] 
[62]

Hydrogen storage Pressure-based storage management: 
Implementing robotics to manage high- 
pressure storage tanks, ensuring safety and 
efficiency. 
Cryogenic storage automation: Applying 
robotics to handle cryogenic storage 
procedures, ensuring precision and safety. 
Leak detection and prevention: Utilizing AI 
algorithms and sensors for real-time leak 
detection and automated response. 
Material property: AI contributes to solid- 
state hydrogen storage optimization, focusing 
on material property prediction for systems 
like Mg-based compounds and solid-state 
hydrogen storage materials. 
Digital twins: They simulate and manage 
storage system vulnerabilities, providing real- 
time monitoring of conditions like temperature 
and pressure.

Material compatibility: Ensuring that 
robotic materials and sensors withstand high- 
pressure hydrogen storage conditions. 
Scalability: Managing complexities in scaling 
AI-driven robotic solutions to industrial 
levels. 
Energy efficiency: Managing energy 
consumption in cryogenic storage using AI 
and robotics.

Energy-efficient designs: 
Implementing algorithms and 
robotic designs to minimize energy 
consumption in cryogenic storage. 
Dynamic optimization: Utilizing AI 
for dynamic optimization and 
condition forecasting to enhance 
storage solutions.

[41] 
[63] 
[48] 
[39] 
[64] 
[59] 
[65] 
[66]
[38]

Hydrogen transport Hydrogen fuel transportation: Utilizing AI 
for route optimization and predictive 
maintenance in transportation, including 
pipelines and trucking. 
Intelligent distribution networks: Designing 
AI algorithms for real-time monitoring and 
control of hydrogen distribution networks. 
Intelligent pipeline monitoring: AI 
contributes to hydrogen transport through real- 
time monitoring and prediction of leaks in 
hydrogen refueling stations via digital twins, 
achieving high accuracy using CNNs. 
Computer Fluid Dynamics (CFD)-ML hybrid 
models for leak dispersion and safety analysis 
reduce computational burdens.

Reliability in diverse conditions: Ensuring 
consistent performance of route optimization 
in various conditions, including weather. 
Intermodal coordination: Coordinating 
between different transport modes (pipelines, 
trucks, ships) with complex AI-driven logistics 
solutions. 
Robotics integration: Robotics in 
transportation lacks coverage, aside from 
conceptual references to AIoT frameworks for 
infrastructure optimization. Robotics 
integration into this domain is mainly 
conceptual, focusing on inspection or 
visualization through digital twins

Dynamic supply chain 
optimization: Implementing AI for 
dynamic optimization and 
forecasting to strengthen supply 
chain resilience. 
Integrated multimodal systems: 
Applying AI to seamlessly coordinate 
different modes of transport.

[67]
[41] 
[68] 
[69] 
[70] 
[71] 
[72] 
[73]
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significantly lower emissions while maintaining efficient hydrogen 
production. This bridges the gap toward low-carbon hydrogen tech
nologies until green hydrogen becomes fully commercialized.

Beyond process optimization, ML-based soft sensors have been 
developed to enhance real-time monitoring and fault detection in 
hydrogen production. Nkulikiyinka et al. [76] introduced a random 
forest (RF) and artificial neural network (ANN)-based soft sensor for 
monitoring sorption-enhanced SMR. Both models exhibited high accu
racy (R2 > 98%), with RF outperforming ANN in predictive reliability. 
These soft sensors serve as backup systems when hardware sensors fail 
or require maintenance, ensuring uninterrupted monitoring. Addition
ally, they facilitate real-time quality control, reducing the reliance on 
intermittent laboratory analysis, which is often time-consuming and 
lacks real-time responsiveness. Predictive maintenance technologies 
that leverage robotics and AI are being used to anticipate equipment 
failures and perform safe repairs. This integration significantly enhances 
operational safety and reduces downtime by allowing for proactive 
maintenance rather than reactive repairs [77]. Integrating AI-driven 
material discovery techniques with existing deep learning-based pro
cess control could further enhance the overall optimization and scal
ability of hydrogen production systems. Despite these advancements, AI 
and robotics in hydrogen production face critical challenges that must 
be addressed to ensure widespread adoption and industrial feasibility.

4.1.2. Challenges of employing AI and robotics in hydrogen production
Traditionally, hydrogen production processes (mostly fossil-fuel 

based hydrogen production technologies e.g. grey, and more recently, 
blue hydrogen) have been mostly flow-sheeted, modelled and optimized 
by means of specialist advanced software such as Aspen Suite, and 
gPROMS. Despite the high level of accuracy and relative practicality of 
the employment of these conventional methods in process optimization 
and control, these methods could be significantly computationally 
demanding while may require the developer/user to have an in-depth 
knowledge of the process and the modelling techniques to be able to 
both interpret the data and fine-tune the process when needed. In 
addition to the process optimization and control, ML techniques have 
been equally used in the identification of suitable adsorbents and cata
lysts used in grey and blue hydrogen production processes.

With the global commitment to achieving net-zero carbon emissions 
by 2050 (both nationally in the UK and internationally), there is a 
continued reliance on fossil-fuel-based hydrogen production during the 
transition to fully renewable energy sources. As a result, there has been a 
significant increase in plans for the construction of blue hydrogen plants 
across the UK, expected to be developed over the coming decades until 
2050. These facilities are mandated to capture at least 95% of the CO2 
emissions generated during the production process, ensuring compli
ance with low-carbon transition strategies while bridging the gap 

Fig. 7. DNN and MOPSO framework for optimizing hydrogen production in SMR, adapted from Hong et al. [54]. The process involves data acquisition from an 
on-site SMR pilot plant, data processing, and training a DNN model to predict system performance. A hybrid DNN, integrating both pilot plant and simulation data, 
refines predictions for multi-objective optimization. The MOPSO algorithm identifies Pareto-optimal solutions balancing thermal efficiency and CO2 emissions, 
providing decision-makers with trade-off solutions for process optimization.
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toward a renewable hydrogen economy. Unlike grey hydrogen, blue 
hydrogen is referred to hydrogen produced using fossil fuels as feedstock 
(i.e. grey hydrogen); while capturing the co-generated CO2 by-product 
(for each kg of hydrogen, 8–12 kg of CO2 is generated when using fos
sil fuels as feedstock). As a result, a significant number of datasets have 
been generated for blue hydrogen production plants which would be 
vital to fully understand the behavior of such plants under both steady- 
state (i.e. normal continuous operation) and unsteady-state conditions 
(e.g. start-up and shut-down, and also, under variable load/demand). 
These datasets, whether generated via optimization of process models, 
or, gathered on pilot-scale units, could facilitate the generation of ML- 
based models. These models, when effectively implemented, could 
help to reduce the time necessary to understand and respond to a vari
ation in the operating conditions of the plant, and also, to predict the 
impact of such variations. This becomes even more crucial when dealing 
with a highly non-linear process in nature, such as hydrogen production 
plants.

The basics, as well as the applications of ML techniques and black- 
box models, including ANN, recurrent neural network (RNN), long- 
short term memory (LSTM), CNNs, modular neural network, deep 
learning (DL) and autoencoders in grey and blue hydrogen production 
processes, has been comprehensively reviewed by Masoudi Soltani et al 
[75] and Davies et al.[78]. More recently, Babamohammadi et al. [79] 
investigated the application of full factorial designs to probe into the 
potential interactions between various operational parameters in blue 
hydrogen production processes. One of the key challenges of the existing 
ML models is the lack of adequate datasets based on commercial-scale 
plants. This affects the reliability of such models and limits their appli
cations in real-world scenarios. Additionally, although ML models can 
significantly enhance the overall speed and computational demands, 
they suffer from offering interpretable outputs. This would be beneficial 
to plant operators; however, these models could fail to paint a clear 
picture of the underlying issues. To address this, recently, 
physics-informed neural networks (PINNs) have been introduced in 
which biases are fed into the learning process. This approach enables the 
learning process to pinpoint physically interpretable solutions to the 
problem at hand. This is especially important if ML models are to be 
deployed in the start-up and/or shutdown of the plant, where safety and 
accurate control are of paramount importance.

One of the key challenges associated with commercial hydrogen 
production plants is the potentially intermittent nature of the produc
tion load. This could be dictated by the variable feedstock flow rate, such 
as natural gas (i.e. in case of SMR) and/or other fossil fuels (i.e. 
collectively referred to as grey hydrogen). Such intermittencies (i.e. 
disruptions) directly impact the instantaneous energy demands, and 
hence, the operating variables such as temperature, pressure, flow rates 
and etc. Also, such fluctuations induce a transitional unsteady-state 
phase of operation similar to startup/shutdown scenarios. Salah et al. 
[80] developed and employed a structured neural network as a surro
gate platform for dynamic modelling of a biomass steam reformer, 
where the data was collated from a 200 kWth pilot plant. The importance 
of real-time control under non-linear and dynamically changing condi
tions is also important when applying ML techniques to inherently 
unsteady-state (or pseudo steady-state) processes such as pressure and 
temperature swing adsorption (TSA and PSA, respectively). PSA is a key 
unit operation in both grey and blue hydrogen production plants in 
which hydrogen is purified to high concentration before storage. Within 
the literature ML has been mostly applied to the overall process at hand; 
however, there have been studies where such algorithms have been used 
to optimize individual process units. With regards to PSA/TSA units, the 
highly dynamic nature of these processes, makes the development of a 
detailed first-principles model and its application in the real-time 
operation of the plant (e.g. digital twins) highly challenging and 
time-consuming [81]. The advantages of the employment of ML tech
niques in the optimization of PSA units have been reported in Subraveti 
et al. [82]. The authors have noted that their approach offers 

approximately a tenfold reduction in computational demands while still 
offering the same level of performance as that of the detailed 
physics-based models.

4.1.3. Potential solutions for employing AI and robotics in hydrogen 
production

To overcome these challenges, hybrid AI models that integrate 
physics-based principles with data-driven ML offer a robust solution for 
improving advanced control in hydrogen production. These models 
enhance transparency and reliability in process optimization by 
combining traditional process knowledge with AI. For example, PINNs 
integrate physical process knowledge into machine learning models, 
improving prediction accuracy and interpretability. PINNs have 
demonstrated significant potential in optimizing start-up and shutdown 
sequences in hydrogen plants, where accurate control is essential for 
safety and efficiency. This approach allows for more accurate pre
dictions and better decision-making by ensuring that AI recommenda
tions align with established scientific principles [83]. Swarm 
intelligence algorithms, such as PSO and Ant Colony Optimization 
(ACO), provide a powerful method for balancing multiple objectives in 
hydrogen production, including efficiency, cost, and environmental 
impact. These algorithms simulate decentralized systems to achieve 
optimal trade-offs between conflicting goals, thereby enhancing overall 
production performance.

The adoption of digital twins, i.e., virtual replicas of physical 
hydrogen production systems, enables advanced simulations and real- 
time optimization. Integrating AI allows these digital twins to conduct 
virtual tests on different operational strategies and predict potential 
problems prior to physical execution. This method minimizes the need 
for expensive trials and improves decision-making by offering compre
hensive insights into system performance [21]. However, while these 
solutions offer significant advancements, their implementation requires 
overcoming challenges related to data integration, model validation, 
and system scalability. Ensuring effective integration into existing pro
duction systems will be critical for maximizing the benefits of AI and 
robotics in hydrogen production. The use of hybrid AI models, swarm 
intelligence, and intelligent digital twins presents promising solutions to 
optimize hydrogen production processes. These approaches address key 
challenges and offer substantial improvements in control, optimization, 
and decision making.

4.2. Hydrogen fuel storage

4.2.1. Current uses of AI and robotics for hydrogen storage
The integration of robotics and AI into hydrogen storage systems has 

the potential to transform the industry by enhancing precision, safety, 
and efficiency. Nanomaterial-enhanced sensing technologies represent a 
significant advancement in monitoring hydrogen storage conditions. 
Researchers have achieved precise real-time monitoring of critical pa
rameters such as hydrogen purity, pressure, and temperature by utiliz
ing sensors embedded within nanomaterials combined with AI 
algorithms. This approach allows for the early detection of deviations 
from optimal storage conditions, which is crucial for maintaining the 
integrity and safety of storage systems. ML for structural integrity 
analysis is another key area where AI is making a substantial impact. AI 
algorithms can analyze data from high-pressure hydrogen storage tanks 
to predict material fatigue and failure. This capability is critical for 
preventing catastrophic failures in storage tanks subjected to extreme 
conditions. ML models help extend the lifespan of storage tanks and 
enhance operational safety by predicting potential issues before they 
occur [84,85]. Zhou et al. [38] provide a comprehensive review of the 
applications of ML in solid-state hydrogen storage materials, particu
larly in addressing key challenges such as low hydrogen storage capacity 
and unfavorable de-/hydrogenation conditions. The study highlights 
various ML techniques, including high-throughput composi
tion-performance scanning for Ti-based hydrogen storage materials, as 
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well as predictive modeling for rare-earth, magnesium-based, and 
complex hydrides. The authors emphasize the importance of dataset 
quality, feature selection, and the balance between model accuracy and 
interpretability. By leveraging ML-driven approaches, researchers can 
accelerate the discovery of next-generation hydrogen storage materials 
with improved efficiency, durability, and operational safety, thereby 
advancing the development of sustainable energy storage solutions.

Fig. 8 illustrates the fundamental ML workflow for materials dis
covery in hydrogen storage science, encompassing dataset establish
ment, feature engineering, model training, and performance evaluation. 
The first step involves defining key research objectives, such as opti
mizing phase structures, enhancing hydrogen absorption and desorption 
kinetics, and improving overall storage capacity. Subsequently, high- 
quality dataset curation and preprocessing are essential to ensure ac
curate and reliable model training. This includes selecting relevant 
feature descriptors that characterize solid-state hydrogen storage ma
terials. Proper feature engineering enhances the model’s ability to 
identify patterns and predict material performance, ultimately acceler
ating the discovery of advanced hydrogen storage solutions.

One of the most critical challenges in hydrogen storage is identifying 

materials with high hydrogen storage capacity (HSC), low desorption 
temperature, and long-term stability. Traditional material discovery 
relies on trial-and-error experiments, which are time-consuming and 
resource-intensive. Recent studies demonstrate how ML accelerates this 
process by predicting material properties and optimizing hydrogen 
storage conditions. For instance, Athul et al. [63] employed ML algo
rithms to identify stable intermetallic compounds for hydrogen storage, 
utilizing databases such as the U.S. Department of Energy Hydrogen 
Storage Materials Database and the Open Quantum Materials Database. 
Their study generated 349,772 hypothetical intermetallic compounds, 
of which 8568 were identified as stable. The random forest algorithm 
emerged as the most accurate ML model, demonstrating its potential in 
predicting enthalpy of formation, equilibrium pressure, and HSC. These 
insights reduce the time required for material discovery and improve the 
accuracy of storage performance predictions. Similarly, Li et al. (2025) 
explored the integration of ML in chemical looping hydrogen production 
and storage systems, showing that ANNs and Extra Trees models ach
ieved high prediction accuracy (R2 = 0.96 for hydrogen yield and R2 =

0.94 for purity). Their interpretability algorithm identified reaction 
temperature and fuel gas composition as the most influential factors in 

Fig. 8. Machine learning framework for material screening and selection in hydrogen storage, based on Zhou et al. [38]. The process begins with data establishment, 
including pre-processing to handle missing values and dataset partitioning. Feature engineering then reduces dimensionality and selects relevant material properties. 
Model training utilizes machine learning algorithms such as K-nearest neighbors (KNN), RF, support vector machine (SVM), and CNN for regression and classification 
tasks. Experimental model validation integrates laboratory experiments, theoretical calculations, and iterative model refinement. Finally, model interpretation and 
predictions provide insights into hydrogen storage capacity and enthalpy of formation, aiding in material optimization and discovery.
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hydrogen storage efficiency, providing a data-driven approach to system 
optimization. AI-driven nanomaterial-based hydrogen sensing further 
enhances real-time storage monitoring. Huang et al. [48] reviewed the 
application of AI in Mg-based hydrogen storage, emphasizing how 
ML-assisted microstructure modification and composition regulation 
improve hydrogen adsorption/desorption rates. These approaches 
optimize storage conditions dynamically, ensuring long-term material 
performance stability.

Robotics has also become a transformative force in hydrogen fuel 
production by significantly enhancing precision, efficiency, and safety in 
manufacturing processes. A key application is in assembling Proton 
Exchange Membrane Fuel Cell (PEMFC) stacks. Robots are particularly 
valuable for handling the precise and sensitive tasks required in 
assembling PEMFC stacks, which involve thin components and are often 
exposed to corrosive acids. These conditions make manual assembly 
challenging and hazardous [86]. Robotic systems improve both the ef
ficiency and safety of PEMFC production. They reduce the risk of errors 
and ensure consistent quality by performing tasks with high precision, 
thereby addressing the limitations and safety concerns associated with 
manual assembly. This advancement underscores the critical role of 
robotics in optimizing hydrogen fuel production processes and 
enhancing overall operational effectiveness [87].

Robotics has transformed the production of PEMFC stacks, signifi
cantly improving efficiency, safety, and precision. Gurau et al. [88] 
demonstrate the effectiveness of robotic assembly in PEMFC production 
by introducing a robot end-effector with a passive compliance system. 
This innovation compensates for the robot’s limitations in accuracy and 
flexibility, leading to enhanced assembly productivity and the ability to 
handle larger-scale fuel cell stacks. Similarly, a previous study show
cased an automated assembly process for PEMFC stacks, where robots 
equipped with advanced end-effectors handle various components with 
high precision. The design of these components, including alignment 
pins and positioning holes, ensures accurate assembly within a tolerance 
of 0.02 inches, thereby preventing accidental overlaps that could lead to 
gas leaks during operation. he integration of robotics enhances the 
precision of PEMFC assembly and adds an extra layer of safety to 
hydrogen production. Given the extensive range of flammable concen
trations and the low ignition energy associated with hydrogen, the 
integration of robotics presents significant advantages in maintaining 
stringent safety protocols and operating within hazardous environments 
[65]. Robotics effectively mitigates the risks involved in handling 
hydrogen by automating intricate and perilous tasks, thereby facilitating 
safer production practices.

The industrial application of robotics in hydrogen production is 
gaining momentum, with pioneering companies leading the charge. 
Greenlight Innovation offers a fully integrated robotic fuel cell assembly 
system, which includes cell and stack assembly, inspection, liquid 
dispensing, and welding systems [89]. This comprehensive automation 
enhances precision and efficiency throughout the production process. 
Similarly, Comau, a global leader in industrial automation, collaborates 
with international clients to automate the production of fuel cells and 
electrolyzers. This automation is expected to reduce operating costs by 
up to 20% and improve product quality by increasing precision and 
minimizing the need for cleanroom security measures. The shift from 
manual to automated manufacturing environments aims to scale up 
production volumes and make zero-emission power generation more 
accessible and affordable. The application of robotics in hydrogen fuel 
production offers substantial improvements in efficiency, safety, and 
cost-effectiveness. The advancements in robotic technology streamline 
the assembly process and address critical safety concerns, positioning 
robotics as a key enabler in the transition towards a sustainable energy 
future.

4.2.2. Challenges of employing AI and robotics for hydrogen storage
Despite significant advancements, several challenges hinder the 

widespread adoption of AI and robotics in hydrogen storage. Data lim
itations remain a major obstacle, as many AI models are trained on 
small-scale, pilot plant datasets that may not generalize well to 
commercial-scale storage systems. Ensuring model interpretability is 
another critical issue, as many ML algorithms function as black-box 
systems, making it difficult for engineers to trust and refine AI-driven 
decisions. For example, achieving precise robotic handling at cryo
genic temperatures, typically below − 150 ◦C, presents significant 
challenges due to the extreme conditions. These low temperatures cause 
materials to become fragile, lubricants to freeze, and electronic systems 
to malfunction, all of which decrease the reliability and precision of 
robotic operations. Robots must be constructed with specialized mate
rials and components to resist these harsh conditions, and their sensors 
and actuators must be meticulously calibrated for accuracy.

Developing intelligent control systems for these environments de
mands advanced AI algorithms capable of real-time adjustments, 
continuous monitoring, and predictive maintenance to prevent failures, 
such as reinforcement learning (RL), and CNNs. However, incorporating 
these techniques in cryogenic environments presents additional com
plexities. While RL could help to optimize robotic movements, it faces 
challenges due to the high risks of trial-and-error learning, which could 
lead to equipment damage. CNNs need large, high-quality datasets to 
analyze in real-time. Obtaining such data in cryogenic conditions can be 
challenging due to potential sensor malfunctions adding to the noise. 
Each technique demands significant computational resources, and 
ensuring energy efficiency in extreme conditions adds to the overall 
challenge.

One of the primary challenges in hydrogen storage monitoring is 
integrating AI with existing hydrogen storage infrastructure [90], which 
often involves legacy systems that may need to be more easily 
compatible with modern AI technologies. Implementing AI-driven so
lutions requires substantial upgrades to hardware and software and 
significant investment in time and resources, which can be a barrier to 
widespread adoption. Another challenge lies in ensuring the reliability 
and accuracy of AI algorithms in the highly specialized and critical 
environment of hydrogen storage. AI systems must be capable of making 
precise predictions and decisions in real time, but the quality and 
availability of data often hinder them. Data can be sparse, noisy, or 
incomplete in hydrogen storage environments, making it difficult for AI 
models to learn effectively and make accurate predictions [66]. Finally, 
there are concerns about the security and ethical implications of using AI 
in hydrogen storage. AI systems can be vulnerable to cyber-attacks, 
potentially leading to catastrophic failures in hydrogen storage facil
ities [91]. Ensuring robust cybersecurity measures and developing 
ethical guidelines for using AI in this context are essential to mitigate 
these risks.

4.2.3. Potential solutions for employing AI and robotics for hydrogen 
storage

Addressing these challenges requires innovative solutions centered 
around advanced AI algorithms, robotic adaptability, and sustainable AI 
practices. Next-generation robotics designed for safe human interaction 
in hydrogen storage environments can enhance precision and safety. 
These systems must feature advanced sensors and AI algorithms for real- 
time adjustments and collision avoidance. However, challenges include 
ensuring reliable human-robot collaboration and maintaining safety in 
dynamic conditions. AI algorithms capable of adaptive control in 
extreme pressures and temperatures are crucial for hydrogen storage. 
These algorithms need to manage real-time changes and predict main
tenance needs; however, they face difficulties due to the harsh condi
tions and the complexity of the interactions within the storage systems 
(e.g. [77,92]).
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Adaptive AI algorithms represent another promising solution, as 
these algorithms can dynamically respond to real-time data variations, 
manage sudden shifts in storage conditions, and accurately predict 
maintenance requirements. Techniques such as RL, when carefully 
controlled and guided by simulated environments, can optimize robotic 
movements without endangering sensitive equipment. A particularly 
compelling approach is developing PINNs. They significantly improve 
interpretability, prediction accuracy, and reliability by embedding 
established physical knowledge within AI algorithms, which is particu
larly critical in safety-sensitive storage operations. This hybrid model 
combines the benefits of traditional physical modeling with the flexi
bility and efficiency of modern AI, delivering reliable and actionable 
insights.

Finally, the concept of "Green AI" addresses concerns related to AI’s 
energy-intensive computational requirements. Green AI focuses on 
developing energy-efficient algorithms that require less computational 
power and data. This approach aims to reduce the environmental impact 
of AI systems. Implementing Green AI involves balancing efficiency with 
performance, ensuring that models remain accurate while minimizing 
resource use [93]. Each solution presents benefits and challenges; for 
example, intelligent robotics must ensure safe human interaction, 
adaptive control algorithms need to perform reliably under extreme 
conditions, and Green AI aims to optimize efficiency. Addressing these 
challenges is key to advancing AI and robotics in hydrogen storage for 
long-term system reliability and sustainability.

4.3. Hydrogen fuel transport

4.3.1. Geographical infrastructure
Geographical infrastructure is pivotal in shaping the efficiency, cost, 

and environmental impact of hydrogen fuel transport. In the Middle 
East, the prevailing use of SMR for hydrogen production highlights a 
trade-off between efficiency and environmental impact. SMR is favored 
for its cost-effectiveness and high efficiency compared to electrolysis, 
but it generates significant CO2 emissions and poses safety risks [28]. 
This reliance on carbon-intensive menkthods underscores the need for 
alternative production strategies that mitigate environmental impacts 
while meeting future hydrogen demands. Conversely, China has made 
notable advancements in hydrogen refueling infrastructure, particularly 
in urban areas with high population densities. Concentrating hydrogen 
refueling stations in these cities effectively reduces refueling distances, 
enhancing the convenience for fuel-cell vehicle users [94]. However, 
while this strategy improves user experience, it raises questions about 
the scalability and cost-effectiveness of such concentrated infrastructure 
in less densely populated areas.

International supply chains present additional complexities. A 
comparative analysis reveals that, while e-hydrogen production in 
Morocco and Chile may eventually be more cost-effective than in Ger
many and Finland, high transportation costs diminish these advantages 
[95]. This disparity suggests a potential shift towards more localized 
production to offset transportation expenses, which could foster regional 
job creation, enhance energy security, and generate additional tax rev
enue. In Turkey, the design of a hydrogen supply chain network reflects 
a strategic move towards decentralized systems that balance cost, CO2 
emissions, and safety risks [96]. This approach is indicative of a broader 
trend towards optimizing supply chains to address specific regional 
challenges; yet it highlights the ongoing need to reconcile efficiency 
with environmental and safety considerations. Last, Rasool et al. [97]
introduce a probabilistic decision analysis cycle methodology to eval
uate renewable energy supply chain pathways for hydrogen. This 
methodology underscores the complexity of decision-making due to 
multiple factors. It highlights how technology and carrier options might 
shift based on criteria such as the levelized cost of hydrogen or energy. It 
emphasizes the need for adaptive strategies that can respond to evolving 
conditions and technological advancements. Geographical infrastruc
ture is crucial in determining the success of hydrogen supply chains, 

influencing cost, efficiency, and environmental impact. While ad
vancements are being made, challenges remain, including high trans
portation and production costs, CO2 emissions, and safety risks. To 
facilitate the broader adoption of hydrogen, it is essential to develop 
strategies that address these challenges. This includes enhancing local 
production capabilities, advancing renewable production technologies, 
and increasing public awareness and acceptance.

4.3.2. Current uses of robotics and AI for hydrogen transport
AI has significantly improved hydrogen leak detection by enhancing 

accuracy and reducing response time compared to conventional sensor- 
based methods. Traditional techniques rely on fixed sensor networks, 
which can be affected by environmental factors such as temperature and 
humidity, leading to false positives and negatives. Moreover, manual 
inspections remain time-consuming and hazardous. AI-driven ap
proaches address these limitations by integrating deep learning and 
advanced sensor placement optimization techniques. For instance, in a 
study by Zhao et al. [73], deep residual networks and k-nearest dynamic 
programming models were applied to hydrogen leakage localization in 
underground garages, achieving precise leak source identification. 
Another AI-based approach employs transfer learning and multimodal 
sensor fusion to improve hydrogen leak detection and localization. Bi 
et al. [68] developed a hybrid model combining data denoising and deep 
learning to enhance leak location prediction accuracy. Additionally, 
Yang et al. [71] proposed a wavelet denoising-based hybrid model for 
hydrogen leakage detection, achieving 99.14% accuracy in predicting 
leak locations and 97.42% in determining leak intensity.

Despite these advancements in hydrogen leak detection, the role of 
robotics in hydrogen transportation remains an underexplored research 
area. While robotics has been successfully integrated into hydrogen 
storage and refueling stations for monitoring and safety, there is limited 
research on how robotic systems could enhance hydrogen leak detection 
and infrastructure maintenance during transportation. The absence of 
studies focusing on autonomous robotic systems for pipeline inspection, 
real-time hydrogen leakage monitoring, and transport vehicle safety 
highlights a critical research gap. Investigating the integration of mobile 
robotic platforms, such as drones or ground-based autonomous systems, 
with AI-driven leak detection could offer transformative solutions. 
Developing adaptive robotic inspection strategies that operate under 
different environmental conditions and transportation modes could 
significantly improve safety and efficiency in hydrogen logistics. This 
gap underscores the need for interdisciplinary research combining AI, 
robotics, and hydrogen transport engineering to enhance real-time 
monitoring and safety in hydrogen distribution networks.

4.3.3. Challenges of employing AI and robotics in hydrogen transport
Ensuring the reliability of AI for hydrogen transport is a significant 

challenge. Route optimization algorithms must perform well under 
varying conditions and unexpected events. The capability of AI systems 
to handle future conditions is crucial to prevent disruptions in hydrogen 
supply chains. These systems must be adaptable and resilient, using 
advanced predictive analytics and real-time data to ensure a consistent 
and reliable supply. For example, extreme weather conditions such as 
heavy snowfall, rain, or heat waves can significantly impact road con
ditions and, consequently, the effectiveness of AI-driven route optimi
zation [98]. These systems must be able to quickly adapt to such changes 
to avoid delays in hydrogen delivery. Urban areas often experience 
fluctuating traffic conditions, with rush hours, accidents, and con
struction work creating unpredictable traffic flows. AI route optimiza
tion algorithms need to account for these variables in real-time, 
requiring sophisticated machine learning models capable of processing 
large amounts of data quickly and accurately [99].

ML algorithms are essential for analyzing vast amounts of historical 
data to identify patterns and predict future conditions. Techniques like 
reinforcement learning can help AI systems learn optimal routing stra
tegies over time by interacting with the environment [100] Deep 
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reinforcement learning-based routing schemes have advantages such as 
autonomous training, strong adaptability, and reduced need for manual 
data labelling, making them stand out among many machine learning 
approaches. Convolutional neural networks can process real-time traffic 
camera feeds to assess road conditions [101]. However, these schemes 
often rely on fixed neural network structures like feedforward or 
recurrent networks, limiting their generalization ability and making it 
challenging to adapt to dynamic changes in network topology [102].

Maintaining data integrity in real-time distributed monitoring sys
tems for hydrogen pipelines poses significant challenges [103]. These 
systems rely on numerous sensors across vast networks, continuously 
collecting data on critical parameters like pressure and flow rates. 
Sensor malfunctions, environmental interferences, and transmission 
errors can compromise data quality [104]. Accurate timing and data 
synchronization across distributed monitoring systems are also crucial 
to avoid misinterpretations. AI algorithms must address this challenge to 
prevent false alarms or missed detections [105]. Additionally, the 
vulnerability of these systems to cyber-attacks requires robust AI-based 
security measures, which can be challenging to implement, especially in 
remote areas [106].

Inconsistent collaboration between various transportation modes, 
such as road, rail, and shipping, can result in significant inefficiencies in 
the hydrogen transport network. One of the primary challenges in this 
context is ensuring the quality and consistency of data used by AI models 
to optimize logistics across these different modes. Good quality data is 
essential for the effective operation of AI systems. Yet, data heteroge
neity and inconsistencies between datasets from different transportation 
sectors can lead to suboptimal decision-making and coordination fail
ures. For instance, proprietary datasets built from scratch for specific 
tasks may not align with datasets from other studies, leading to gaps in 
coordination. This issue is combined with the need for more standard
ized datasets in the transportation sector, which impedes AI systems 
from integrating and fully optimizing operations across different modes 
of transport [107]. AI-driven systems must deal with the uncertainty and 
limited nature of data in real-time operations, particularly in scenarios 
involving rare events such as accidents or critical system failures. 
Techniques such as transfer learning and using digital twins for gener
ating synthetic data can help AI models perform more effectively even 
with limited or imperfect data (Pan &Yang,2009). By improving data 
quality and integration, AI can enhance the coordination between 
different transportation modes, thereby reducing inefficiencies and 
improving the overall reliability of hydrogen transport.

4.3.4. Potential solutions for employing AI and robotics in hydrogen 
transport

To address these challenges, techniques such as transfer learning and 
digital twins offer potential solutions. Transfer learning allows AI 
models to adapt to new data with limited additional training, while 
digital twins can generate synthetic data to supplement real-world ob
servations [108]. However, these approaches introduce their own 
complexities and require further development to effectively enhance 
data integration and improve the reliability of hydrogen transport net
works. Effective AI integration across multiple transportation modes in 
hydrogen transport requires overcoming significant data quality and 
standardization challenges. Addressing these issues through advanced 
techniques like transfer learning and digital twins is essential for 
improving coordination and efficiency in hydrogen logistics.

AI-driven management within smart energy grids can significantly 
enhance hydrogen transportation. By integrating hydrogen transport 
with smart grids, AI systems can optimize distribution, monitor energy 
flows, and improve overall efficiency. This integration supports real- 
time adjustments and better alignment with energy demands, promot
ing a more flexible and responsive hydrogen transport network. Devel
oping machine learning models for real-time anomaly detection is 
crucial for maintaining safety and operational integrity in hydrogen 
transport. AI algorithms can detect anomalies such as leaks, 

unauthorized access, and equipment malfunctions. Implementing 
advanced models ensures timely identification and mitigation of po
tential issues, thus preventing accidents and system failures. Ensuring 
seamless synchronization across different transportation modes (pipe
line, road, maritime) is essential for efficient hydrogen logistics. AI al
gorithms can facilitate real-time decision making and coordination 
between these modes. Techniques for forecasting future conditions and 
optimizing logistics based on real-time data can enhance the reliability 
and efficiency of hydrogen transport systems. AI and robotics offer 
transformative solutions for hydrogen transport, including smart grid 
integration, real-time anomaly detection, and multi-modal synchroni
zation. Addressing these areas with advanced AI technologies can 
enhance efficiency, safety, and operational effectiveness in hydrogen 
transportation.

5. Conclusions

This review systematically analyzed the role of AI and robotics in 
hydrogen production, storage, and transportation, identifying both ad
vancements and challenges. AI-driven optimization in hydrogen pro
duction has improved electrolysis efficiency, enhanced catalyst 
discovery, and enabled predictive maintenance in steam methane 
reforming (SMR) plants. In hydrogen storage, AI-enhanced leak detec
tion, real-time monitoring, and nanomaterials discovery have contrib
uted to improving storage safety and efficiency. In hydrogen transport, 
AI-powered route optimization, autonomous robotics, and digital 
twins have enhanced pipeline monitoring, leak detection, and distribu
tion logistics.

The systematic review methodology used in this study involved a 
structured literature search across Scopus and IEEE Xplore, filtering 
6907 studies down to 118 highly relevant research papers. A combina
tion of bibliometric analysis, thematic clustering, and empirical syn
thesis was employed to identify key trends, challenges, and solutions in 
AI and robotics applications within the hydrogen lifecycle. This 
approach provided a comprehensive assessment of existing research and 
highlighted areas requiring further development. Despite these ad
vancements, several key actions are needed to accelerate AI and robotics 
deployment in hydrogen infrastructure: 

• Develop large-scale, standardized hydrogen data repositories to 
improve AI model training and validation across production, storage, 
and transport.

• Enhance AI model interpretability using physics-informed neural 
networks (PINNs) to bridge the gap between machine learning pre
dictions and established hydrogen system principles.

• Strengthen cybersecurity frameworks to protect AI-driven hydrogen 
systems from cyber threats, particularly in pipeline monitoring and 
storage facilities.

• To improve automation and safety, advance robotics for extreme 
environments, including cryogenic hydrogen storage and high- 
pressure containment.

• Expand digital twin applications for real-time hydrogen system 
management, predictive maintenance, and operational optimization.

Integrating AI and robotics into hydrogen infrastructure is essential 
for achieving the global transition to clean energy. Still, its success de
pends on overcoming these technological, economic, and regulatory 
barriers. Future research should focus on scaling AI-driven hydrogen 
production, developing autonomous robotic systems for hydrogen 
storage and transport, and ensuring real-world validation of AI models. 
An intensive effort from policymakers, industry stakeholders, and re
searchers is required to unlock the full potential of AI and robotics in 
hydrogen systems, ensuring a more efficient, safe, and scalable 
hydrogen economy.
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