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Abstract
This paper is concerned with the analysis of geometrical properties and behaviors of
the optimal value and global optimal solutions for a class of nonsmooth optimization
problems. We provide conditions under which the solution set of a nonsmooth and
nonconvex optimization problem is non-empty and/or compact. We also examine
related properties such as the compactness of the sublevel sets, the boundedness from
below and the coercivity of the objective function to characterize the non-emptiness
and the compactness of the solution set of the underlying optimization problem under
the unboundedness of its associated feasible set.
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1 Introduction

The existence of global optimal solutions and the compactness of solution set formath-
ematical optimization problems are among interesting research topics in optimization
theory and have received remarkable attention from researchers; see, e.g., [2, 3, 5, 6,
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10, 11, 13–16, 19–21, 25, 29] and the related references therein. An answer to a ques-
tion on whether a function/optimization problem exists its global minimizers/optimal
solutions is often non-trivial even in the case of verifying the existence of a solution
for a polynomial function bounded from below [28]. The authors in [1] mentioned that
checking if a polynomial problem with only degree 4 possesses its solution is strongly
NP-hard, and moreover, they showed that justifying the coercivity of the objective
function on the feasible set or verifying the non-empty compactness of the sublevel
set of the underlying setting is strongly NP-hard.

Overall, the main approaches to the study of solution existence of optimization
problems can be categorized into dual/variational analysis (see, e.g., [6, 14, 18, 19,
22–24]) and primal/asymptotic analysis (see, e.g., [3, 5, 13, 16, 21, 25, 26]). For an
optimization problem, where the objective function is a quadratic polynomial bounded
from below on the feasible set and the constraint functions are affine, the authors in
[11] proved that an optimal solution of the underlying program exists. Based on the
well-posed property, the solution existence for a sum-of-squares convex polynomial
programwas given in [6]. The existence of solution set for the class of convex problems
was examined in [2, 3] by using asymptotic analysis, and some extension results were
given in [4]. In [5], the existence of minimum points to an optimization problem
involving a geometric set was investigated by focusing on the behavior of the objective
and the recession cone of the constraint set. Subsequently, authors in [25] developed
corresponding results for a problemwhere the constraint set was defined by functional
inequalities.

Various general results on the existence of solutions and the compactness of the
solution set for the class of quasiconvex problems involving the asymptotic direction
were later developed by the researchers in [10, 12, 13, 20]. If the objective function is a
polynomial and the constraint set is an unbounded closed semi-algebraic set, the author
in [29] employed the concept of tangency variety to provide necessary and sufficient
conditions for the existence of optimal solutions to the considered problem. These
results were extended to a class of semi-algebraic optimization problems in [19]. In
addition, the non-emptiness and compactness of the optimal solution set for a general
optimization problem were examined in [27] by using some properties of the sublevel
set and the coercivity property of its objective function. We refer the interested reader
to [18, 22, 30, 31] for other approaches and related results on the existence of solutions
and the boundedness of the solution set to some specific optimization models.

In this paper, we consider a nonsmooth optimization problem defined by

inf
x∈Rn

{
f (x) | x ∈ �, hi (x) ≤ 0, i = 1, ..., m

}
, (P)

where � ⊂ R
n is a non-empty closed set and f : Rn → R and hi : Rn → R, i =

1, ..., m, are locally Lipschitz functions. We assume unless otherwise stated that the
feasible set of problem (P), denoted by

S := {x ∈ � | hi (x) ≤ 0, i = 1, ..., m} (1.1)

is unbounded.
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The main purpose of this paper is to answer the following questions:

• Under what conditions is the optimal value of problem (P) finite?
• Under what conditions does the problem (P) have a global optimal solution?
• If the solution set of problem (P) is non-empty, how do we verify its compact-
ness/boundedness?

More precisely, we provide geometrical conditions under which the solution set of
(P) is non-empty and/or compact. We also examine other conditions that guarantee
the finiteness of the optimal value of problem (P). In this way, we explore related
properties including the boundedness from below or the coercivity of the objective
function and the compactness of sublevel sets to characterize the non-emptiness and
compactness for the solution set of problem (P).

It is worth noting that a recent paper [14] considered a robust optimization problem
and provided related conditions that guarantee the existence of solutions by means of
constraint qualifications and related conditions. The solution existence result obtained
in [14] was based mainly on the constraint qualification conditions. Unlike the robust
approach from that paper, in this paper, we examine the geometrical properties and
behaviors of problem (P) such as the coercivity of the objective and the compactness
of a sublevel set and provide geometrical conditions that ensure the existence of global
solutions and boundedness of the solution set.

The structure of the paper is as follows. InSect. 2, after giving somebasic definitions,
we employ the tangency properties to examine the compactness of the sublevel sets
of (P). In Sect. 3, we utilize the coercivity and the compactness of the sublevel sets
to investigate the optimal value finiteness and the solution existence for the problem
(P). Section 4 is devoted to the study of the non-emptiness and compactness of the
solution set of (P). Sect. 5 summarizes the obtained results.

2 Preliminaries and Compactness of the Sublevel Sets

In this section, we present some definitions and results on the compactness of sublevel
sets of the objective function of problem (P) that are essential for the analysis in the
sequel.

LetRn be the Euclidean space with the usual scalar product 〈·, ·〉 and the Euclidean
norm ‖ · ‖, where n ∈ N := {1, 2, ...}. The symbol IBr stands for the closed ball
centered at the origin with the radius r > 0. The notationRn+ signifies the nonnegative

orthant ofRn . For a non-empty subset� ⊂ R
n, the symbol x

�−→ x̄ means that x → x̄
with x ∈ �.

Let us recall some concepts and a calculus rule from variational analysis (see, e.g.,
[23, 24]). The sequential Painlevé-Kuratowski upper/outer limit of a set-valued map
F : Rn ⇒ R

m as x → x̄ is defined by

Lim sup
x→x̄

F(x) := {
ϑ ∈ R

m | ∃ xk → x̄, ∃ ϑk ∈ F(xk), ϑk → ϑ
}
.
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The Fréchet/regular normal cone N̂ (x̄;�) to � at x̄ ∈ � is defined by

N̂ (x̄;�) :=
{
ϑ ∈ R

n | lim sup
x

�→x̄

〈ϑ, x − x̄〉
‖x − x̄‖ ≤ 0

}
.

The limiting/Mordukhovich normal cone N (x̄;�) to � at x̄ ∈ � is given by

N (x̄;�) := Lim sup
x

�→x̄

N̂ (x;�).

As usual, we put N̂ (x̄;�) := ∅ and N (x̄;�) := ∅ for any x̄ /∈ �.

The limiting/Mordukhovich subdifferential of ψ : R
n → R̄ := R ∪ {±∞} at

x̄ ∈ R
n with |ψ(x̄)| < ∞ is defined by

∂ψ(x̄) := {
ϑ ∈ R

n | (ϑ,−1) ∈ N ((x̄;ψ(x̄)); epiψ)
}
,

where

epiψ := {(x, y) ∈ R
n × R | ψ(x) ≤ y}.

One puts ∂ψ(x̄) := ∅ if |ψ(x̄)| = ∞.

The followingoptimality condition for a nonsmooth optimization problem is needed
in the sequel.

Lemma 2.1 (See [24, Corollary 6.6]). Let the functions ψi : Rn → R, i = 0, ..., m +
p, be locally Lipschitz around x̄ ∈ �, where � ⊂ R

n is locally closed around this
point. If ψ0 attains its infimum value at x̄ on the set

{x ∈ � | ψi (x) ≤ 0, i = 1, ..., m, ψi (x) = 0, i = m + 1, ..., m + p},

then one can find (μ0, ..., μm+p) ∈ R
m+p+1 \ {0} such that μi ≥ 0, i = 0, ..., m,

and

0 ∈
m∑

i=0

μi∂ψi (x̄) +
m+p∑

i=m+1

μi
[
∂ψi (x̄) ∪ ( − ∂(−ψi )(x̄)

)] + N (x̄;�),

μiψi (x̄) = 0, i = 1, ..., m.

To proceed, let us provide the concepts of coercivity and extended tangency variety
for the problem (P).

Definition 2.1 (i) We say that the problem (P) admits the coercivity if

[∀{xk}k∈N ⊂ S, ‖xk‖ → ∞] ⇒ [
f (xk) → +∞ as k → ∞]

.
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(ii) The extended tangency variety at infinity with respect to r > 0 for the feasible set
S of (P) is defined by

�∞
r (P) := {

x ∈ S \ IBr | ∃μ := (μ0, ..., μm) ∈ R
m+1+ , ∃λ ∈ R, (μ, λ) �= 0,

0 ∈ μ0∂ f (x) +
m∑

i=1

μi∂hi (x) + λx

+ N (x;�), μi hi (x) = 0, i = 1, ..., m
}
.

(iii) The extended tangency variety for the feasible set S of (P) is given by

�∞(P) := {
x ∈ S | ∃μ := (μ0, ..., μm) ∈ R

m+1+ , ∃λ ∈ R, (μ, λ) �= 0,

0 ∈ μ0∂ f (x) +
m∑

i=1

μi∂hi (x) + λx

+ N (x;�), μi hi (x) = 0, i = 1, ..., m
}
. (2.1)

(iv) The set of tangency values at infinity for the problem (P) is defined by

T ∞(P) := {λ ∈ R | ∃{xk}k∈N ⊂ �∞(P), ‖xk‖ → ∞, f (xk) → λ as k → ∞}.

Note by definition that �∞
r (P) ⊂ �∞(P) for any r > 0. The concept in Defini-

tion 2.1(iii) was given in [14] for the setting of robust optimization, and if (P) is an
unconstrained (i.e., � := R

n) polynomial program with a non-constant polynomial
f , this concept agrees with the tangency variety of f in [32], and more particularly, if
n = 2, then it reduces to the curve of tangency in [9]. It is also worth mentioning that
for an unconstrained polynomial program (P), the sets�∞

r (P)with r > 0 and T ∞(P)

can be effectively computed by using tractable/analogous formulas of the polynomial
settings (cf. [7, 8, 17]).

In connection with the problem (P), we consider its optimal value, denoted by
inf(P), and a sublevel set of the objective f at λ ∈ R on S given by

Slev(λ) := {x ∈ S | f (x) ≤ λ}.

The following proposition shows under the finiteness of the optimal value that the
compactness or non-compactness of the sublevel set of the objective of problem (P)
can be justified through the set of tangency values at infinity and the extended tangency
variety at infinity.

Proposition 2.1 For the problem (P), let inf(P) > −∞ and consider the set Slev(λ),
where λ ∈ R. Then, the following statements hold:

(i) If T ∞(P) �= ∅, then the problem inf{λ | λ ∈ T ∞(P)} attains its infimum, denoted
by λmin := min{λ | λ ∈ T ∞(P)}, and λmin ≥ inf(P).

(ii) If T ∞(P) = ∅, then Slev(λ) is compact.
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(iii) If T ∞(P) �= ∅ and λ > λmin, then Slev(λ) is not compact.
(iv) If T ∞(P) �= ∅ and λ < λmin, then Slev(λ) is compact.

(v) Let T ∞(P) �= ∅ and λ = λmin. Then, Slev(λ) is compact if and only if there exists
r > 0 such that f (x) > λmin for all x ∈ �∞

r (P).

Proof Observe first that

λ ≥ inf(P) for all λ ∈ T ∞(P). (2.2)

Indeed, if this is not the case, there exists λ0 ∈ T ∞(P) such that λ0 < inf(P).

Then, there exists {xk}k∈N ⊂ S \ IBr such that f (xk) → λ0 as k → ∞. Since
f (xk) ≥ inf(P) for all k ∈ N and hence λ0 ≥ inf(P), which is absurd. So, our
observation is valid.

(i) Let T ∞(P) �= ∅. By the above observation, inf{λ | λ ∈ T ∞(P)} ≥ inf(P)

and so inf{λ | λ ∈ T ∞(P)} := λmin ∈ R. It suffices to show that λmin ∈ T ∞(P).

Since inf{λ | λ ∈ T ∞(P)} = λmin, there is a sequence {λk}k∈N ⊂ T ∞(P) such that
λk → λmin as k → ∞. If λk = λmin for all sufficiently large k ∈ N, then clearly,
λmin ∈ T ∞(P).

Now, there is no loss of generality in assuming that λk �= λmin for all k ∈ N. Let
k ∈ N. We get by λk ∈ T ∞(P) that there exists {xk,m}m∈N ⊂ �∞(P) satisfying

‖xk,m‖ → ∞ and f (xk,m) → λk as m → ∞.

Take mk ∈ N such that mk > k and

| f (xk,m) − λk | ≤ |λk − λmin| for all m ≥ mk .

By letting zk := xk,mk , k ∈ N, we see that {zk}k∈N ⊂ �∞(P) and ‖zk‖ → ∞ as
k → ∞ and that

| f (zk) − λmin| ≤ | f (xk,mk ) − λk | + |λk − λmin| ≤ 2|λk − λmin| for all k ∈ N,

which shows that f (zk) → λmin as k → ∞. Therefore, λmin ∈ T ∞(P) and conse-
quently, the problem inf{λ | λ ∈ T ∞(P)} attains its infimum with λmin := min{λ |
λ ∈ T ∞(P)} and λmin ≥ inf(P) by virtue of (2.2).

(ii) Let T ∞(P) = ∅. Assume on the contrary that Slev(λ) is not compact. Then,
there exists a sequence {xk}k∈N ⊂ S such that ‖xk‖ → ∞ as k → ∞ and f (xk) ≤ λ

for all k ∈ N. Furthermore, by inf(P) > −∞, lim inf
x∈S, ‖x‖→∞ f (x) is finite and so we

denote

ω := lim inf
x∈S, ‖x‖→∞ f (x), (2.3)

where inf(P) ≤ ω ≤ λ. By definition,

lim inf
x∈S, ‖x‖→∞ f (x) = sup

t>0

(
inf

x∈S, ‖x‖≥t
f (x)

)
,
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and so for each k ∈ N, there exists tk > 0 such that ω < inf
x∈S, ‖x‖≥tk

f (x) + 1

k
, which

ensures that

ω − 1

k
< f (x) for all x ∈ S with ‖x‖ ≥ tk . (2.4)

Now, by the definition of inf
x∈S, ‖x‖≥max{k,tk }

f (x), for each k ∈ N, there is vk ∈ S with

‖vk‖ ≥ max{k, tk} such that f (vk) − 1

k
< inf

x∈S, ‖x‖≥max{k,tk }
f (x) and hence

f (vk) < ω + 1

k
.

This, together with (2.4), entails that

ω − 1

k
< f (vk) < ω + 1

k
for all k ∈ N.

Consequently, we find a sequence {vk}k∈N ⊂ S such that

‖vk‖ → ∞ and f (vk) → ω as k → ∞.

For each k ∈ N, we let Sk := {x ∈ S | ‖x‖2 = ‖vk‖2}. Note that Sk is a non-empty
set because of vk ∈ Sk . Moreover, since f is continuous on S and Sk is compact, it
allows us to find x∗

k ∈ Sk such that

f (x∗
k ) ≤ f (x) for all x ∈ Sk .

This entails that x∗
k is an optimal solution of the following problem

inf{ f (x) | x ∈ �, ‖x‖2 − ‖vk‖2 = 0, hi (x) ≤ 0, i = 1, ..., m}.

Using Lemma 2.1, we find (μ0, ..., μm+1) ∈ R
m+2 \ {0} with μi ≥ 0, i = 0, ..., m,

such that

0 ∈ μ0∂ f (x∗
k ) +

m∑

i=1

μi∂hi (x∗
k ) + 2μm+1x∗

k + N (x∗
k ;�), (2.5)

μi hi (x∗
k ) = 0, i = 1, ..., m,

which entails that x∗
k ∈ �∞(P), where �∞(P) is defined as in (2.1). Since ‖x∗

k ‖ =
‖vk‖ for all k ∈ N and ‖vk‖ → ∞ as k → ∞, we get a sequence {x∗

k }k∈N ⊂
�∞(P) ⊂ S satisfying ‖x∗

k ‖ → ∞ as k → ∞ and

f (x∗
k ) ≤ f (vk) for all k ∈ N,
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which turns out that lim sup
k→∞

f (x∗
k ) ≤ ω due to f (vk) → ω as k → ∞. Besides,

by taking (2.3) into account, we see that ω ≤ lim inf
k→∞ f (x∗

k ). Then, we conclude that

f (x∗
k ) → ω as k → ∞ and so ω ∈ T ∞(P). This contradicts our assumption that

T ∞(P) = ∅. In conclusion, Slev(λ) is compact.
(iii) Let T ∞(P) �= ∅ and λ > λmin. By (i), λmin ∈ T ∞(P), and so there exists a

sequence {xk}k∈N ⊂ �∞(P) such that

‖xk‖ → ∞ and f (xk) → λmin as k → ∞.

Because of λ > λmin and f (xk) → λmin as k → ∞, we can find n0 ∈ N such that
f (xk) < λ for all k ≥ n0. This shows that Slev(λ) contains the unbounded sequence
{xk}k≥n0 and hence Slev(λ) is not compact.

(iv) Let T ∞(P) �= ∅ and λ < λmin. Suppose on the contrary that Slev(λ) is not
compact. Then, by similar arguments as in the proof of (ii), we arrive at

ω ∈ T ∞(P),

where ω := lim inf
x∈S, ‖x‖→∞ f (x) ≤ λ. Hence, ω ≤ λ < λmin, which is impossible due

to λmin = min{λ | λ ∈ T ∞(P)} ≤ ω. So, (iv) has been justified.
(v) Let T ∞(P) �= ∅ and λ = λmin. We first assume that Slev(λ) is a compact

set. Then, there exists r̄ > 0 such that Slev(λmin) ⊂ IBr̄ . For any r ≥ r̄ , it holds
that Slev(λmin) ∩ (S \ IBr ) = ∅, which implies that Slev(λmin) ∩ �∞

r (P) = ∅ as
�∞

r (P) ⊂ S \ IBr . Therefore, f (x) > λmin for all x ∈ �∞
r (P).

Conversely, assume that there exists r > 0 such that

f (x) > λmin, ∀x ∈ �∞
r (P). (2.6)

We assert that Slev(λmin) is compact. Indeed, if this is not the case, we can find a
sequence {xk}k∈N ⊂ S satisfying ‖xk‖ → ∞ as k → ∞ and f (xk) ≤ λmin for all
k ∈ N. Then, there is n0 ∈ N satisfying ‖xk‖ > r for all k ≥ n0.

For k ≥ n0, we let S̃k := {x ∈ S | ‖x‖2 = ‖xk‖2}. By similar arguments as in the
proof of (ii), we can find x̃∗

k ∈ S̃k such that x̃∗
k is an optimal solution of the following

problem

inf{ f (x) | x ∈ �, ‖x‖2 − ‖xk‖2 = 0, hi (x) ≤ 0, i = 1, ..., m}

and x̃∗
k ∈ �∞

r (P) for all k ≥ n0. By xk ∈ S̃k for k ≥ n0, we also arrive at

f (x̃∗
k ) ≤ f (xk) ≤ λmin,

which contradicts (2.6). So, the proof is complete. ��
Wefinish this sectionwith an example illustrating howwe employProposition 2.1 to

verify the compactness or non-compactness of sublevel sets by utilizing the tangency
values at infinity.
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Example 2.1 Let f : R → R and h1 : R → R be defined respectively by

f (x) :=
⎧
⎨

⎩
− 1

x2 + 1
if x ≥ 0,

−x − 1 if x < 0
and h1(x) := −|x | + 5 for x ∈ R.

Letting � := (−∞,−2] ∪ [6,+∞), we consider the problem (P) with m = 1 as
follows:

inf
x∈R

{
f (x) | x ∈ �, h1(x) ≤ 0

}
. (EP1)

In this setting, it is easy to see that the feasible set S of problem (EP1) is S =
(−∞,−5] ∪ [6,+∞). Moreover, the extended tangency variety �∞(E P1) for S
of (EP1) is computed by

�∞(E P1) = {
x ∈ S | ∃(μ0, μ1) ∈ R

2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0,

0 ∈ μ0∂ f (x) + μ1∂h1(x) + λx + N (x;�), μ1h1(x) = 0
}

= (−∞,−5] ∪ [6,+∞) = S.

On the one hand, by choosing a sequence xk := k for k ≥ 6, we see that {xk}k∈N ⊂
�∞(E P1) satisfying |xk | → ∞ and f (xk) = − 1

k2 + 1
→ 0 as k → ∞. Therefore,

0 ∈ T ∞(E P1). On the other hand, for any sequence {xk}k∈N ⊂ �∞(E P1) satisfying

|xk | → ∞ and f (xk) → y ∈ R as k → ∞, we assert that f (xk) = − 1

x2k + 1
for all

k sufficiently large. Otherwise, existing a subsequence {xkn } with f (xkn ) = −xkn − 1
would result in that the sequence f (xk) is not convergent to y when k → ∞. Thus,

f (xk) = − 1

x2k + 1
→ 0 as k → ∞ and so y = 0, which in turn guarantees that

T ∞(E P1) = {0}.
Now, we can justify that inf(E P1) > −∞. By Proposition 2.1(i), the problem

inf{λ | λ ∈ T ∞(E P1)} attains its infimum and λmin ≥ inf(P). In fact, we have

λmin = inf{λ | λ ∈ T ∞(E P1)} = 0 > −1 = inf(E P1).

Moreover, we can see from Proposition 2.1(iii) that Slev(λ) is not compact for any
λ > 0, i.e., λ > λmin, while it follows by Proposition 2.1(iv) that Slev(λ) is compact
for any λ < 0, i.e., λ < λmin. Next, for λ = λmin = 0, we consider arbitrary r > 0.
Then, by picking xk := k ∈ �∞

r (E P1) = �∞(E P1)\[−r , r ] for k > max{6, r}, we
see that f (xk) = − 1

k2 + 1
< λmin. So, we cannot find r > 0 such that f (x) > λmin

for all x ∈ �∞
r (E P1). From the assertion of Proposition 2.1(v), it entails that Slev(λ)

is not compact. In fact, Slev(λ) := {x ∈ S | f (x) ≤ λ} = [6,+∞).
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3 Optimal Value Finiteness and Solution Existence

In this section, we provide conditions in terms of compactness of the sublevel sets
and the coercivity of the objective function that guarantee the finiteness of the optimal
value or the existence of global optimal solutions for the problem (P).

The first theorem establishes characterizations for the finiteness of the optimal value
of problem (P). It also shows the close relationships among the finiteness of the optimal
value, the emptiness of the tangency value set, the compactness of the sublevel sets
and the coercivity of problem (P).

Theorem 3.1 Consider the problem (P). Then, we have the following assertions.

(i) inf(P) > −∞ if and only if inf
{

f (x) | x ∈ �∞
r (P)

}
> −∞ for any r > 0.

(ii) The following three conditions are equivalent:

(a) inf(P) > −∞ and T ∞(P) = ∅.
(b) Slev(λ) is a compact set for any λ ∈ R.
(c) The problem (P) is coercive.

Proof (i) Let inf(P) > −∞. Since �∞
r (P) ⊂ S for any r > 0, it holds that

inf
{

f (x) | x ∈ �∞
r (P)

} ≥ inf
{

f (x) | x ∈ S
}
,

and so

inf
{

f (x) | x ∈ �∞
r (P)

} ≥ inf(P) > −∞.

Conversely, for any fixed r > 0, assume that inf
{

f (x) | x ∈ �∞
r (P)

}
> −∞. To

show inf(P) > −∞, we suppose on the contrary that inf(P) = −∞. Then, one
can pick a sequence {xk}k∈N ⊂ S satisfying f (xk) → −∞ as k → ∞. We claim
that {xk}k∈N is unbounded. Otherwise, we can find a convergent subsequence, say
{xkl }kl∈N, such that xkl → x̄ for some x̄ ∈ S. Since f is continuous, it entails that
f (xkl ) → f (x̄) as kl → ∞. This contradicts the fact that f (xk) → −∞ as k → ∞.
So, we have ‖xk‖ → ∞ as k → ∞.

Pick n0 ∈ N such that ‖xk‖ > r for all k ≥ n0. For k ≥ n0, we let S̃k := {x ∈ S |
‖x‖2 = ‖xk‖2}. By similar arguments as in the proof of Proposition 2.1(ii), we can
find x∗

k ∈ S̃k such that x∗
k is an optimal solution of the following problem

inf{ f (x) | x ∈ �, ‖x‖2 − ‖xk‖2 = 0, hi (x) ≤ 0, i = 1, ..., m}

and x∗
k ∈ �∞

r (P). By xk ∈ S̃k for each k ≥ n0, we also arrive at

f (x∗
k ) ≤ f (xk) for all k ≥ n0,

which ensures that f (x∗
k ) → −∞ as k → ∞ due to f (xk) → −∞ as k → ∞.

Consequently, inf
{

f (x) | x ∈ �∞
r (P)

} = −∞, a contradiction. So, (i) holds.
(ii) Observe that [(b)⇔(c)]. To finish the proof, we need to show that [(a)⇔(c)].
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[(a)⇒(c)] Let inf(P) > −∞ and T ∞(P) = ∅. It is followed by Proposition 2.1(ii)
that Slev(λ) is compact for any λ ∈ R. This means that the problem (P) is coercive.

[(c)⇒(a)] Let the problem (P) be coercive. By the coercivity, any sequence
{xk}k∈N ⊂ �∞(P) ⊂ S with ‖xk‖ → ∞ as k → ∞ ensures that f (xk) → +∞ as
k → ∞. Therefore, by definition, T ∞(P) = ∅. It remains to show that inf(P) > −∞.
We assume on the contrary that inf(P) = −∞. Then, there exists {xk}k∈N ⊂ S such
that f (xk) → −∞ as k → ∞. If {xk}k∈N is bounded, we can pick a convergent sub-
sequence {xkl }kl∈N of {xk}k∈N such that xkl → x̄ for some x̄ ∈ S as kl → ∞. By the
continuity of f , we arrive at f (xkl ) → f (x̄) ∈ R as kl → ∞, which is impossible.
Otherwise, {xk}k∈N is unbounded, then, by the coercivity, f (xk) → +∞ as k → ∞,

which is also a contradiction. So, inf(P) > −∞, which completes the proof of the
theorem. ��
The next theorempresents characterizations bymeans of the tangency values at infinity
or the extended tangency variety at infinity for the solution existence of problem (P).
In what follows, the set of all global optimal solutions of problem (P) is denoted by
S(P).

Theorem 3.2 Consider the problem (P). The following conditions are equivalent:

(i) S(P) is a non-empty set.
(ii) One of the following statements holds but never both:

(a) inf(P) > −∞ and T ∞(P) = ∅.
(b) inf(P) > −∞, T ∞(P) �= ∅ and there exists x̄ ∈ S such that λmin ≥ f (x̄),

where λmin := min{λ | λ ∈ T ∞(P)}.
(iii) There exists x∗ ∈ S such that f (x∗) ≤ inf

{
f (x) | x ∈ �∞

r (P)
}

for any r > 0.
(iv) There exists r > 0 such that

min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ lim inf
x∈�∞

r (P), ‖x‖→∞
f (x),

where “min” indicates that the relaxation problem in the left-hand side attains its
optimal solutions.

Proof [(i) ⇒ (ii)] Let S(P) �= ∅. It is clear that inf(P) > −∞. If T ∞(P) = ∅,
then we arrive at the statement (a). Otherwise, T ∞(P) �= ∅. According to Proposition
2.1(i), λmin is well-defined and λmin ≥ inf(P). Now, picking an optimal solution
x̄ ∈ S(P), we see that x̄ ∈ S and λmin ≥ inf(P) = f (x̄) and so the assertion (b) is
verified.

[(ii) ⇒ (iii)] Let (a) hold, we show that there is x∗ ∈ S such that

f (x∗) ≤ inf
{

f (x) | x ∈ �∞
r (P)

}
(3.1)

holds for all r > 0. Take x̄ ∈ S and put λ̄ := f (x̄). We see that the non-empty sublevel
set Slev(λ̄) is compact by Theorem 3.1(ii). Due to the continuity of f on Slev(λ̄) ⊂ S,

123



   18 Page 12 of 25 Journal of Optimization Theory and Applications           (2025) 205:18 

one can find x∗ ∈ Slev(λ̄) such that

f (x∗) ≤ f (x) for all x ∈ Slev(λ̄),

which entails that

f (x∗) ≤ f (x) for all x ∈ S.

This shows that x∗ is an optimal solution to the problem (P), and therefore

f (x∗) = inf(P) ≤ inf
{

f (x) | x ∈ �∞
r (P)

}
.

This means that (3.1) holds for any r > 0 and so does (iii).
Now, let (b) hold. This means that inf(P) > −∞, T ∞(P) �= ∅ and there exists

x̄ ∈ S satisfying λmin ≥ f (x̄).

If λmin > f (x̄) := λ̄, then, by T ∞(P) �= ∅ and Proposition 2.1(iv), the set Slev(λ̄)

is compact. Furthermore, x̄ ∈ Slev(λ̄) and so Slev(λ̄) is a non-empty compact. Hence,
the inequality (3.1) follows as above.

Next, let λmin = f (x̄). If f (x̄) = inf(P) > −∞, then x̄ is an optimal solution
of problem (P) and so the inequality (3.1) holds with x∗ := x̄ . Otherwise, f (x̄) >

inf(P) > −∞. Pick a number λ ∈ R satisfying λmin > λ > inf(P) and consider a
sublevel set of f at λ as

Slev(λ) := {x ∈ S | f (x) ≤ λ}.

The compactness of Slev(λ) is implied byProposition 2.1(iv). For ε := λ−inf(P) > 0,
we get by the definition of inf(P) that there exists xε ∈ S such that f (xε) < λ and so
xε ∈ Slev(λ) �= ∅. Hence, the inequality (3.1) follows as above.

[(iii) ⇒ (iv)] Let (iii) hold, i.e., there exists x∗ ∈ S satisfying (3.1) for any r > 0.
Choosing r̄ > ‖x∗‖, we see that x∗ ∈ S ∩ IBr̄ and so S ∩ IBr̄ is a non-empty compact
set. This leads to the existence of optimal solutions for the following problem

min{ f (x) | x ∈ �, ‖x‖2 ≤ r̄2, hi (x) ≤ 0, i = 1, ..., m}.

In addition, it can be checked that

min{ f (x) | x ∈ �, ‖x‖2 ≤ r̄2, hi (x) ≤ 0, i = 1, ..., m} ≤ f (x∗)
≤ inf

{
f (x) | x ∈ �∞

r (P)
}

≤ lim inf
x∈�∞̄

r (P), ‖x‖→∞
f (x),

which asserts that (iv) is valid.
[(iv) ⇒ (i)] Assume that there exists r > 0 such that

min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ lim inf
x∈�∞

r (P), ‖x‖→∞
f (x),

(3.2)
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which also ensures that there exists x̄∗ ∈ S such that

f (x̄∗) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m}. (3.3)

By the definition of inf(P), there exists a sequence {xk}k∈N ⊂ S such that f (xk) →
inf(P) as k → ∞. If {xk}k∈N is bounded, then there exists a subsequence {xkl }kl∈N of
{xk}k∈N converging to x̄ ∈ S. By the continuity of f on S, we arrive at f (xkl ) → f (x̄)

as kl → ∞. We also have f (xkl ) → inf(P) as kl → ∞. So, f (x̄) = inf(P), which
shows that x̄ ∈ S(P), i.e., S(P) �= ∅. Now, let {xk} be unbounded, i.e.,

‖xk‖ → ∞ and f (xk) → inf(P) as k → ∞.

Picking n0 ∈ N such that for all k ≥ n0, we have ‖xk‖ > r . For each k ≥ n0, put
S̃k := {x ∈ S | ‖x‖2 = ‖xk‖2} and observe that S̃k is non-empty compact due to
xk ∈ S̃k . We argue similarly as in the proof Proposition 2.1(ii) to find x∗

k ∈ S̃k so that
x∗

k is an optimal solution of the following problem:

inf{ f (x) | x ∈ �, ‖x‖2 − ‖xk‖2 = 0, hi (x) ≤ 0, i = 1, ..., m}

and moreover x∗
k ∈ �∞

r (P) for all k ≥ n0.
Note that inf(P) ≤ f (x∗

k ) ≤ f (xk) for all k ≥ n0 because of xk ∈ S̃k . As a result,
we get a sequence {x∗

k }k≥n0 ⊂ �∞
r (P) such that

‖x∗
k ‖ → ∞ and f (x∗

k ) → inf(P) as k → ∞

and hence lim inf
x∈�∞

r (P), ‖x‖→∞
f (x) = inf(P). Taking (3.2) into account, one has

min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ inf(P),

which entails that

min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} = inf(P).

This together with (3.3) shows that x̄∗ is an optimal solution of (P), i.e., S(P) �= ∅.
So, the proof of the theorem is complete. ��

Let us provide an example which shows how to employ the equivalent conditions
in the above theorem to determine the solution existence of a nonsmooth optimization
problem.

Example 3.1 Let f : R → R and h1 : R → R be given respectively by

f (x) :=
{
1 − x if x ≤ 0,

cos x if x > 0
and h1(x) := −|x2 − 5| + 4 for x ∈ R.
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Let � := (−∞,−2] ∪ [2,+∞) and consider the problem (P) with m = 1 by

inf
x∈R

{
f (x) | x ∈ �, h1(x) ≤ 0

}
. (EP2)

In this case, we see that the feasible set S of problem (EP2) is given by

S := (−∞,−3] ∪ [3,+∞)

and that f (x) ≥ −1 for every x ∈ S, which shows that inf(E P2) = −1. Moreover,
the extended tangency variety at infinity �∞

r (E P2) with respect to r > 0 for S of
(EP2) is given by

�∞
r (E P2) :={

x ∈ S \ IBr | ∃(μ0, μ1) ∈ R
2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0,

0 ∈ μ0∂ f (x) + μ1∂h1(x) + λx + N (x;�), μ1h1(x) = 0
}

=((−∞,−3] ∪ [3,+∞)) \ [−r , r ].

Moreover, it can be checked that �∞(E P2) = (−∞,−3] ∪ [3,+∞). Choosing
any sequence {xk}k∈N ⊂ �∞(E P2)with xk → −∞ as k → ∞, one gets f (xk) = 1−
xk → +∞ as k → ∞.For anyα ∈ [−1, 1], let cos a = α.We pick a sequence {xk}k∈N
with xk := a + k2π + 1

k
. Then, there is n0 ∈ N satisfying {xk}k≥n0 ⊂ �∞(E P2). It

is clear that

xk → +∞ and f (xk) = cos xk → α as k → ∞.

So, T ∞(E P2) = [−1, 1], which shows that λmin := min{λ | λ ∈ T ∞(E P2)} = −1.
We can verify that the statements (ii)(b) and (iii) of Theorem 3.2 hold for x̄ = x∗ := π,

and the statement (iv) holds for r = 3π . Hence, we conclude by Theorem 3.2 that
S(E P2) is non-empty. In fact, for this setting, we can verify directly that

S(E P2) = {
π + k2π | k = 0, 1, 2, ...

}
.

4 Compactness of the Solution Set

In this section, we provide geometrical conditions that ensure the non-emptiness and
compactness of the solution set of problem (P).

We first present necessary and sufficient conditions based on the tangency value
set, the coercivity of problem (P) and extended tangency variety at infinity for the
non-emptiness and compactness of the solution set to the problem (P).

Theorem 4.1 Consider the problem (P). The following statements are valid.

(i) The following conditions are equivalent:

(a) −∞ < inf(P) /∈ T ∞(P).
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(b) There exists x̄ ∈ S such that f (x̄) < inf
{

f (x) | x ∈ �∞
r (P)

}
for some

r > ‖x̄‖.
(c) There is r > 0 satisfying inf(P) < lim inf

x∈�∞
r (P), ‖x‖→∞

f (x).

(ii) If one of conditions (a), (b) and (c) holds, then S(P) is a non-empty compact set.
(iii) If S(P) is a non-empty compact set, then the problem (P) is coercive whenever

T ∞(P) = ∅.

Proof (i) We will justify that [(a)⇒(b)⇒(c)⇒(a)].
[(a) ⇒ (b)] Let −∞ < inf(P) /∈ T ∞(P). If T ∞(P) = ∅, then we imply from

Theorem 3.1(ii) that the problem (P) is coercive, i.e., f (xk) → +∞ for any sequence
{xk}k∈N ⊂ S tending to infinity, or equivalently, the set Slev(λ) is compact for every
λ ∈ R. Taking arbitrarily x̄ ∈ S and λ ∈ R with f (x̄) < λ, we consider r > ‖x̄‖
satisfying Slev(λ) ⊂ IBr . Then

f (x̄) < f (x) for all x ∈ S \ IBr

and therefore f (x̄) < inf
{

f (x) | x ∈ S \ IBr
}
. Moreover, because of �∞

r (P) ⊂
S \ IBr , we have

f (x̄) < inf
{

f (x) | x ∈ S \ IBr
} ≤ inf

{
f (x) | x ∈ �∞

r (P)
}
.

Next, consider the case of T ∞(P) �= ∅.Due to Proposition 2.1(i), one has inf(P) ≤
λmin = inf

{
λ | λ ∈ T ∞(P)

}
. By the assumption inf(P) /∈ T ∞(P), it holds that

inf(P) < λmin. Let λ ∈ R satisfy inf(P) < λ < λmin. Certainly, there exist some
x̃ ∈ S with f (x̃) = λ and moreover, Slev(λ) is a non-empty compact set by virtue
of Proposition 2.1(iv). Then, there exists r > ‖x̃‖ such that Slev(λ) ⊂ IBr . It follows
from Slev(λ) ∩ (S \ IBr ) = ∅ that Slev(λ) ∩ �∞

r (P) = ∅ as �∞
r (P) ⊂ S \ IBr . This

yields f (x̃) = λ < f (x) for all x ∈ �∞
r (P). Thus, we conclude that

λ ≤ inf
{

f (x) | x ∈ �∞
r (P)

}
.

Now, pick λ̄ ∈ R with inf(P) < λ̄ < λ. There is x̄ ∈ S satisfying f (x̄) = λ̄ and
r > ‖x̄‖. Clearly, f (x̄) = λ̄ < λ ≤ inf

{
f (x) | x ∈ �∞

r (P)
}
. This claims that the

statement (b) is valid.
[(b) ⇒ (c)] Assume that x̄ ∈ S such that f (x̄) < inf

{
f (x) | x ∈ �∞

r (P)
}
for

some r > ‖x̄‖. It should be noted that

inf
{

f (x) | x ∈ �∞
r (P)

} ≤ lim inf
x∈�∞

r (P), ‖x‖→∞
f (x),

which implies that

inf(P) ≤ f (x̄) < lim inf
x∈�∞

r (P), ‖x‖→∞
f (x).

This asserts that (c) holds.
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[(c) ⇒ (a)] Assume that there is r > 0 satisfying inf(P) < lim inf
x∈�∞

r (P), ‖x‖→∞
f (x).

By the definition of inf(P), there exists a sequence {xk}k∈N ⊂ S such that f (xk) →
inf(P) as k → ∞. Assume that {xk}k∈N is unbounded, i.e.,

‖xk‖ → ∞ and f (xk) → inf(P) as k → ∞.

For each k ∈ N, put S̃k := {x ∈ S | ‖x‖2 = ‖xk‖2} and observe that S̃k is a non-empty
compact set due to xk ∈ S̃k . We argue similarly as in the proof of Proposition 2.1(ii)
to find x∗

k ∈ S̃k so that x∗
k is an optimal solution of the following problem:

inf{ f (x) | x ∈ �, ‖x‖2 − ‖xk‖2 = 0, hi (x) ≤ 0, i = 1, ..., m},

and moreover x∗
k ∈ �∞(P) for all k ∈ N, where �∞(P) is defined as in (2.1).

Note that inf(P) ≤ f (x∗
k ) ≤ f (xk) for all k ∈ N because of xk ∈ S̃k . Let n0 ∈ N

satisfy ‖x∗
k ‖ > r for all k ≥ n0. As a result, we get a sequence {x∗

k }k≥n0 ⊂ �∞
r (P)

such that

‖x∗
k ‖ → ∞ and f (x∗

k ) → inf(P) as k → ∞,

and hence lim inf
x∈�∞

r (P), ‖x‖→∞
f (x) = inf(P). This contradicts the fact that inf(P) <

lim inf
x∈�∞

r (P), ‖x‖→∞
f (x). Consequently, {xk}k∈N must be bounded. Then, there exists a

subsequence {xkl }kl∈N of {xk}k∈N converging to x̄ ∈ S. By the continuity of f on S,
we arrive at f (xkl ) → f (x̄) as kl → ∞. We also have f (xkl ) → inf(P) as kl → ∞.

So, f (x̄) = inf(P), which shows that inf(P) > −∞.
It remains to prove that inf(P) /∈ T ∞(P). Indeed, if lim inf

x∈�∞
r (P), ‖x‖→∞

f (x) = +∞,

then it holds that for every sequence {xk}k∈N ⊂ �∞
r (P), we have

‖xk‖ → ∞ and f (xk) → +∞ as k → ∞. (4.1)

Consider an arbitrary sequence {xk}k∈N ⊂ �∞(P) such that ‖xk‖ → ∞ as k → ∞
and observe that xk ∈ �∞

r (P) for all k large enough. Therefore, we conclude in
this case that the sequence {xk}k∈N ⊂ �∞(P) satisfies (4.1), which in its turn
entails by definition that T ∞(P) = ∅. So, (a) is valid for this case. Now, if

lim inf
x∈�∞

r (P), ‖x‖→∞
f (x) < +∞, then it is clear that λmin = lim inf

x∈�∞
r (P), ‖x‖→∞

f (x).

Hence, by inf(P) < lim inf
x∈�∞

r (P), ‖x‖→∞
f (x), one has inf(P) < λmin and so the assertion

(a) is also valid. Consequently, [(a)⇔(b)⇔(c)] has been justified.
(ii) By (i), it suffices to show that if (a) holds, then S(P) is a non-empty compact

set. To see this, we let λ̄ := inf(P) ∈ R and justify that S(P) = Slev(λ̄). Indeed, for
each x∗ ∈ S(P), we have f (x∗) = inf(P), and so

x∗ ∈ Slev(λ̄) := {x ∈ S | f (x) ≤ λ̄}.
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Conversely, take x∗ ∈ Slev(λ̄). Then, x∗ ∈ S and f (x∗) ≤ inf(P), which implies that
f (x∗) = inf(P). This means that x∗ ∈ S(P) and so S(P) = Slev(λ̄).
If T ∞(P) = ∅, then S(P) �= ∅ by Theorem 3.2. Moreover, by inf(P) > −∞ and

T ∞(P) = ∅, we get from Theorem 3.1(ii) that Slev(λ̄) is a compact set. Hence, S(P)

is a non-empty compact set.
In the case of T ∞(P) �= ∅, we assert by Proposition 2.1(i) that λmin := min{λ |

λ ∈ T ∞(P)} ≥ inf(P). By (a), we conclude that inf(P) < λmin because of λmin ∈
T ∞(P). Choosing inf(P) < λ < λmin, we consider the sublevel set of f at λ by

Slev(λ) := {x ∈ S | f (x) ≤ λ}.

From Proposition 2.1(iv), it shows that Slev(λ) is compact. Moreover, we derive from
the definition of inf(P) that there exists xε ∈ S such that f (xε) < λ for ε :=
λ − inf(P) > 0. Therefore, xε ∈ Slev(λ) �= ∅, which entails that the condition (ii)(b)
of Theorem 3.2 is satisfied. Thus, S(P) �= ∅ by Theorem 3.2. Note that Slev(λ̄) is
compact due to Slev(λ̄) ⊂ Slev(λ). Consequently, S(P) is a non-empty compact set.

(iii) Assume that S(P) is a non-empty compact set. Clearly, inf(P) > −∞. If
T ∞(P) = ∅, then it is followed by Theorem 3.1(ii) that the problem (P) is coercive.
The proof of the theorem is complete. ��

The following example shows how one can employ Theorem 4.1 to verify the non-
emptiness and the compactness of the optimal solution set of a nonsmooth optimization
problem.

Example 4.1 Let f : R2 → R and h1 : R2 → R be defined respectively by

f (x) :=
{

ex1+x2 + 1 if x1 + x2 < 0,

|x1 + x2 − 2| if x1 + x2 ≥ 0

and h1(x) := x21 + x32 − 2 for x := (x1, x2) ∈ R
2.

Let � := {x ∈ R
2 | 2|x1| + x2 ≤ 0} ∪ R

2+. Consider the problem (P) with m = 1 as
follows:

inf
x∈R2

{
f (x) | x ∈ �, h1(x) ≤ 0

}
. (EP3)

By direct calculation, we obtain the feasible set S of (EP3) (see Fig. 1a) as

S := {x ∈ � | h1(x) ≤ 0} = {x ∈ R
2 | 2|x1| + x2 ≤ 0}

∪ ({x ∈ R
2 | x21 + x32 − 2 ≤ 0} ∩ R

2+
)
.

Consider r ≥ 3

2
and take any x ∈ S \ IBr . One can check that x1 + x2 < 0 and

h1(x) < 0. For any x ∈ S \ IBr , we compute that

∂ f (x) = (ex1+x2 , ex1+x2), ∂h1(x) = (2x1, 3x22 ),

123



   18 Page 18 of 25 Journal of Optimization Theory and Applications           (2025) 205:18 

Fig. 1 (a) The feasible set S is shaded in blue, (b) The extended tangency set at infinity �∞
r (E P3) is in

red

N (x;�) = {(0, 0)} for x ∈ int(S \ IBr ),

N (x;�) = {(−2a, a) | a ≥ 0} for x = (x1, 2x1) ∈ S \ IBr and x1 ≤ 0,

N (x;�) = {(2a, a) | a ≥ 0} for x = (x1,−2x1) ∈ S \ IBr and x1 ≥ 0.

We also calculate the extended tangency variety at infinity with respect to r for S (see
Fig. 1b), which is given by

�∞
r (E P3) :={

x ∈ S \ IBr | ∃(μ0, μ1) ∈ R
2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0,

0 ∈ μ0∂ f (x) + μ1∂h1(x) + λx + N (x;�), μ1h1(x) = 0
}

={(x1,−2|x1|) | x1 ∈ R} \ {x ∈ R
2 | x21 + x22 ≤ r2}.

We observe by the definition of T ∞(E P3) that one can consider sequences in
�∞

r (E P3) (instead of in �∞(E P3)) for r ≥ 3
2 . Pick any sequence {xk}k∈N ⊂

�∞
r (E P3) such that ‖xk‖ → ∞ as k → ∞. If xk := (x1k, 2x1k) and x1k < 0,

then we observe that x1k → −∞ due to ‖xk‖ → ∞ as k → ∞. In this case, one has
f (xk) = e3x1k + 1 → 1 as k → ∞. For the case of xk := (x1k,−2x1k) and x1k > 0,
we obtain f (xk) = e−x1k + 1 → 1 as k → ∞. So, in both cases, we have

T ∞(E P3) = {1} = λmin := min{λ | λ ∈ T ∞(E P3)}.

Moreover, f (x) ≥ 0 for all x ∈ S and f (x∗) = 0 at x∗ := (1, 1). This tells us
inf(E P3) = 0 and so −∞ < inf(E P3) = 0 /∈ T ∞(E P3), which shows that the
condition (a) of Theorem 4.1 is satisfied.

Now, take r > 3
2 > ‖x̄‖ for x̄ := (3 − √

3,−1 + √
3). Clearly, f (x̄) = 0 and

moreover, one has x1 + x2 < 0 and f (x) = ex1+x2 + 1 > 1 for all x ∈ S \ IBr .
Therefore, inf

{
f (x) | x ∈ �∞

r (E P3)
} = 1 > 0 due to the fact that �∞

r (E P3) ⊂
S \ IBr . Thus, f (x̄) < inf

{
f (x) | x ∈ �∞

r (E P3)
}
. Moreover, we get inf(E P3) <
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lim inf
x∈�∞

r (E P3), ‖x‖→∞
f (x) = 1. So, the conditions (b) and (c) of Theorem 4.1 hold

and we conclude by Theorem 4.1 that the optimal solution set S(E P3) of problem
(EP3) is a non-empty compact set. In fact, we can calculate directly that S(E P3) =
{(x1, 2 − x1) | 1 ≤ x1 ≤ 3 − √

3} for this setting.
We observe that the converse statements of Theorem 4.1(ii) are not necessarily

valid as the next example illustrates.

Example 4.2 Let f : R → R and h1 : R → R be defined respectively by

f (x) :=
{

e−x if x ≥ 0,

|x + 1| if x < 0
and h1(x) := −x − 5 for x ∈ R.

Let � := [−10,+∞) and consider the problem (P) with m = 1 as follows:

inf
x∈R

{
f (x) | x ∈ �, h1(x) ≤ 0

}
. (EP4)

In this setting, the constraint set S of (EP4) is calculated by

S := {x ∈ � | h1(x) ≤ 0} = [−5,+∞)

and the extended tangency variety for S is given by

�∞(E P4) := {
x ∈ S | ∃(μ0, μ1) ∈ R

2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0,

0 ∈ μ0∂ f (x) + μ1∂h1(x) + λx + N (x;�), μ1h1(x) = 0
} = [−5,+∞).

Pick any sequence {xk}k∈N ⊂ �∞(E P4) such that xk → +∞ as k → ∞. Then,
f (xk) = e−xk → 0 as k → ∞. So, T ∞(E P4) = {0}. We observe that S(E P4) =
{−1} and inf(E P4) = 0. By direct computation, we have

inf
{

f (x) | x ∈ �∞
r (E P4)

} = lim inf
x∈�∞

r (E P4), ‖x‖→∞
f (x) = inf(E P4)

for any r > 0. In conclusion, S(E P4) is a non-empty compact set, while none of the
requirements (a), (b) and (c) of Theorem 4.1 holds.

We now provide characterizations by means of the sublevel sets, the coercivity and
the tangency values at infinity for the non-emptiness and compactness of the solution
set to the problem (P).

Theorem 4.2 Consider the problem (P). The following conditions are equivalent:

(i) S(P) is a non-empty compact set.
(ii) There exists λ̄ ∈ R satisfying Slev(λ̄) is a non-empty compact set.
(iii) One of the following statements holds but never both:

(a) The problem (P) is coercive.

123



   18 Page 20 of 25 Journal of Optimization Theory and Applications           (2025) 205:18 

(b) inf(P) > −∞ and either λmin > inf(P) or there exist r > 0 and x̄ ∈ S
satisfying f (x̄) = λmin < f (x) for all x ∈ �∞

r (P), where λmin := min{λ |
λ ∈ T ∞(P)}.

(iv) There exists r > 0 such that

min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ lim inf
x∈�∞

r (P), ‖x‖→∞
f (x)

(4.2)

and there does not exist a sequence {uk}k∈N ⊂ �∞
r (P) satisfying

f (uk) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m}
and ‖uk‖ → ∞ as k → ∞, (4.3)

where “min” indicates that the corresponding relaxation problem attains its optimal
solutions.

Proof Observe first that [(i) ⇔ (ii)].
[(i)⇒ (iii)] Suppose thatS(P) is a non-empty compact set. Clearly, inf(P) > −∞.

If the problem (P) is coercive, then (a) holds. We now assume that (P) is not coercive.
Then, by Theorem 3.1(ii), we have T ∞(P) �= ∅. Therefore, λmin := min{λ | λ ∈
T ∞(P)} ≥ inf(P) because of Proposition 2.1(i).

If λmin > inf(P), thenwe have the first statement of (b). Otherwise, λmin = inf(P).
Then, Slev(λmin) = S(P) and so Slev(λmin) is a non-empty compact set. Choosing
x̄ ∈ S(P) and invoking Proposition 2.1(v), there exists r > 0 such that f (x̄) =
λmin < f (x) for all x ∈ �∞

r (P), which concludes that (b) holds.
[(iii) ⇒ (iv)] First, let (a) hold. Then, we get by Theorem 3.1(ii) that Slev(λ) is

compact for any λ ∈ R. Choosing any x̄ ∈ S and setting λ̄ := f (x̄), we conclude
that Slev(λ̄) is a non-empty compact set because of x̄ ∈ Slev(λ̄). According to the
implication [(ii) ⇒ (i)], it holds that S(P) is a non-empty compact set. By the com-
pactness of Slev(λ̄), one can find r > 0 such that Slev(λ̄) ⊂ IBr . Take x∗ ∈ S(P). By
the continuity of f on the non-empty compact set S ∩ IBr , the following problem

inf{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m}

has an optimal solution. Furthermore, because of x∗ ∈ S ∩ IBr , we obtain

inf(P) ≤ min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ f (x∗) = inf(P),

which implies that

min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} = inf(P). (4.4)

So, the inequality (4.2) is satisfied by virtue of �∞
r (P) ⊂ S.
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To justify (4.3), assume on the contrary that there exists {uk}k∈N ⊂ �∞
r (P) such

that f (uk) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} for all k ∈ N

and ‖uk‖ → ∞ as k → ∞. However, we get by (4.4) that f (uk) = inf(P) for k ∈ N

and so {uk}k∈N ⊂ S(P). This contradicts the compactness of S(P). Hence, (iv) has
been justified under the validation of (a).

Now, let (b) hold. Then, we have inf(P) > −∞. Note under the assumption (iii)
that the problem (P) is not coercive. Then, by Theorem 3.1(ii), we have T ∞(P) �= ∅.
Consider the following two cases:

Case 1: Let λmin > inf(P). Pick a number λ̄ ∈ R satisfying λmin > λ̄ > inf(P)

and consider the sublevel set Slev(λ̄). For ε := λ̄ − inf(P) > 0, we can find x̄ ∈ S
such that f (x̄) < inf(P) + ε = λ̄ and therefore x̄ ∈ Slev(λ̄). We get by Proposition
2.1(iv) that Slev(λ̄) is compact and so it is a non-empty compact set. We proceed with
the same arguments as in the proof of (a) and obtain the desired conclusion of (iv).

Case 2: Assume that there exist r > 0 and x̄ ∈ S satisfying f (x̄) = λmin < f (x)

for all x ∈ �∞
r (P). We claim that ‖x̄‖ ≤ r . To see this, we suppose on the contrary

that ‖x̄‖ > r . Letting S̃ := {x ∈ S | ‖x‖2 = ‖x̄‖2}, we observe that S̃ is a non-empty
set due to x̄ ∈ S̃.As f is continuous on the compact set S̃, we can pick x̃ ∈ S̃ such that
f (x̃) ≤ f (x) for all x ∈ S̃. Equivalently, x̃ is an optimal solution of the following
problem

inf{ f (x) | x ∈ �, ‖x‖2 − ‖x̄‖2 = 0, hi (x) ≤ 0, i = 1, ..., m}.

By Lemma 2.1, there exists (μ0, ..., μm+1) ∈ R
m+2 \ {0} with μi ≥ 0, i = 0, ..., m,

such that

0 ∈ μ0∂ f (x̃) +
m∑

i=1

μi∂hi (x̃) + 2μm+1 x̃ + N (x̃;�),

μi hi (x̃) = 0, i = 1, ..., m.

Since ‖x̃‖ = ‖x̄‖ > r , we get by Definition 2.1(ii) that x̃ ∈ �∞
r (P). Clearly, f (x̃) ≤

f (x̄), which results in a contradiction as f (x̄) < f (x) for all x ∈ �∞
r (P).

Because of T ∞(P) �= ∅, we get by Proposition 2.1(i) that λmin ≥ inf(P) and
by Proposition 2.1(v) that the sublevel set Slev(λmin) is compact. This also entails
that S(P) is compact inasmuch as S(P) ⊂ Slev(λmin). Moreover, due to x̄ ∈ S and
f (x̄) = λmin, it implies that x̄ ∈ Slev(λmin) and so Slev(λmin) is a non-empty compact
set. If λmin > inf(P), then we conclude as in Case 1 that the statement (iv) is satisfied.

Otherwise, i.e., λmin = inf(P). Then, one has x̄ ∈ S(P) due to f (x̄) = λmin =
inf(P). Now, Theorem 3.2 shows that (4.2) holds. To justify (4.3), assume on the
contrary that there exists {uk}k∈N ⊂ �∞

r (P) such that f (uk) = min{ f (x) | x ∈
�, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} for all k ∈ N and ‖uk‖ → ∞ as k → ∞.
As ‖x̄‖ ≤ r with x̄ ∈ S and f (x̄) = λmin, we see that

f (uk) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ f (x̄) = inf(P),
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which implies that f (uk) = inf(P) for k ∈ N and so {uk}k∈N ⊂ S(P). This contradicts
the compactness of S(P). Consequently, (iv) has been justified.

[(iv) ⇒ (i)] Let (iv) hold. Under the validation of (4.2), we assert by Theorem 3.2
that the set S(P) is non-empty and there exists x̄ ∈ S with ‖x̄‖ ≤ r such that

f (x̄) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m}.

Weclaim thatS(P) is bounded. If this is not the case,we canfind a sequence {u∗
k }k∈N ⊂

S(P) satisfying

f (u∗
k) = inf(P) and ‖u∗

k‖ → ∞ as k → ∞.

For each k ∈ N, employing Lemma 2.1, there exists (μ0, ..., μm) ∈ R
m+1+ \ {0} such

that

0 ∈ μ0∂ f (u∗
k) +

m∑

i=1

μi∂hi (u
∗
k) + N (u∗

k ;�),

μi hi (u
∗
k) = 0, i = 1, ..., m.

When k ∈ N is large enough, we have ‖u∗
k‖ > r , which follows that u∗

k ∈ �∞
r (P) for

such large k. Therefore,

lim inf
x∈�∞

r (P), ‖x‖→∞
f (x) ≤ lim inf

k→∞ f (u∗
k) = inf(P).

This together with (4.2) entails that

f (u∗
k) ≤ f (x̄) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} ≤ inf(P),

and so f (u∗
k) = min{ f (x) | x ∈ �, ‖x‖2 ≤ r2, hi (x) ≤ 0, i = 1, ..., m} for such

large k. Thus, we arrive at a contradiction to (4.3). So, S(P) is a non-empty compact
set. The proof of the theorem is complete. ��

Finally in this section, we present an example to illustrate how we can employ dif-
ferent conditions in Theorem 4.2 to verify the non-empty compactness of a nonsmooth
optimization problem.

Example 4.3 Let f : R2 → R and h1 : R2 → R be given respectively by

f (x) :=
⎧
⎨

⎩

|x1| + x22 if x1 ∈ [−2, 2],
4

|x1| + x22 if x1 /∈ [−2, 2]
and h1(x) := −x1 + ex2 − 1 for x := (x1, x2) ∈ R

2.
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Let � := R
2+ and consider the problem (P) with m = 1 as follows:

inf
x∈R

{
f (x) | x ∈ �, h1(x) ≤ 0

}
. (EP5)

In this case, the feasible set S of problem (EP5) is S := {x ∈ R
2+ | −x1+ex2 −1 ≤ 0}.

Considering r > 3 and picking arbitrarily x ∈ S \ IBr , we can verify that x1 /∈ [−2, 2]
with x1 > 0, and that

∂ f (x) = (− 4

x21
, 2x2), ∂h1(x) = (−1, ex2),

N (x;�) = {(0, 0)} for x = (x1, x2) ∈ S \ IBr and x2 > 0,

N (x;�) = {(0, a) | a ≤ 0} for x = (x1, 0) ∈ S \ IBr .

Now, we compute the extended tangency variety at infinity �∞
r (E P5) with respect to

r for S of (EP5), which is given as

�∞
r (E P5) :={

x ∈ S \ IBr | ∃(μ0, μ1) ∈ R
2+, ∃λ ∈ R, (μ0, μ1, λ) �= 0,

0 ∈ μ0∂ f (x) + μ1∂h1(x) + λx + N (x;�), μ1h1(x) = 0
}

={
( 3
√

x1, 0) | x1 > 0
} \ {x ∈ R

2 | x21 + x22 ≤ r2}.

It can be justified that f (x̄) = 0 if and only if x̄ = (0, 0) and f (x) > 0 for every
x ∈ S \ {x̄}. For λ̄ := 0, it is obvious that the sublevel set Slev(λ̄) = {(0, 0)} is a
non-empty compact set. Therefore, the statement (ii) of Theorem 4.2 holds.

Note by the definition of T ∞(E P5) that we can consider sequences in �∞
r (E P5)

(instead of in �∞(E P5)) for r > 3. For r > 3, we pick any sequence {xk}k∈N ⊂
�∞

r (E P5), which implies that xk := ( 3
√

x1k, 0)with 3
√

x1k > r for all k ∈ N. If xk →
∞ as k → ∞, then f (xk) = 4

3
√

x1k
→ 0 as k → ∞. So, T ∞(E P5) = {0} = λmin.

Since f (x̄) = λmin < f (x) for all x ∈ �∞
r (P) ⊂ S, it entails that (iii)(b) of Theorem

4.2 holds. Similarly, we can check that (iv) of Theorem 4.2 also holds. Now, we can
employ Theorem 4.2 to conclude that the optimal solution set S(E P5) is a non-empty
compact set. In fact, we can calculate that S(E P5) = {(0, 0)} and inf(E P5) = 0 for
this setting.

5 Conclusions

In this paper, we have characterized the non-emptiness and compactness of the global
optimal solution set for a nonconvex and nonsmooth optimization problem. We have
examined geometrical conditions that ensure the finiteness of the optimal value of the
underlying problem. We have also investigated related properties including the coer-
civity of the objective and the compactness of sublevel sets for ensuring the existence,
non-emptiness and compactness of the solution set.
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It would be worthwhile to examine the advantages and limitations of our conditions
and results compared to those obtained by means of asymptotic analysis (e.g., [12,
26]).

It would also be interesting to see howwe can provide numerical schemes that based
on the obtained characterizations to verify the existence of the optimal solutions and
the compactness of the optimal solution set to the underlying optimization problem.
Moreover, analyzing and developing the obtained results of the solution existence and
its related properties for a more general class of vector or set-valued optimization
problems is worth further study.
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