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ABSTRACT
Recently, machine learning technologies have been successfully applied across various fields. How-
ever, most existingmachine learningmodels rely on unimodal data for information inference, which
hinders their ability to generalize to complex application scenarios. This limitation has resulted in the
development of multimodal learning, a field that integrates information from different modalities
to enhance models’ capabilities. However, data often suffers from missing or incomplete modali-
ties in practical applications. This necessitates that models maintain robustness and effectively infer
complete information in the presence of missing modalities. The emerging research direction of
incomplete multimodal learning (IML) aims to facilitate effective learning from incomplete multi-
modal training sets, ensuring that models can dynamically and robustly address new instances with
arbitrary missing modalities during the testing phase. This paper offers a comprehensive review
of methods based on IML. It categorizes existing approaches based on their information sources
into two main types: based on internal information and external information methods. These cat-
egories are further subdivided into data-based, feature-based, knowledge transfer-based, graph
knowledge enhancement-based, and human-in-the-loop-basedmethods. The paper conducts com-
parative analyses from two perspectives: comparisons among similar methods and comparisons
among different types of methods. Finally, it offers insights into the research trends in IML.
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1. Introduction

Conventional deep learning methods mainly rely on uni-
modal data for feature extraction and information infer-
ence. These models are primarily trained on data from
a single modality, achieving prediction or classification
by analyzing features within that specific modality and
applying them to the unimodal dataset (Z. Chen, Yang,
Huang, Li, et al., 2024; Ghandi et al., 2023; X. Qian
& Cui, 2023; Qin et al., 2024). In image processing (Azad
et al., 2024; S. Zhang & Metaxas, 2024), the image exists
in the form of pixel points and has a high degree of
spatial structure. Convolutional Neural Networks (CNNs)
effectively extract edge, shape, and texture features from
images through mechanisms like local receptive fields
and parameter sharing, enabling them to excel in image-
related tasks (Diwan et al., 2023; Joseph et al., 2021; X. Li
et al., 2023; Y. Liu, Sun, et al., 2021; Xiao et al., 2020). In
natural language processing (NLP) (Nadkarni et al., 2011;
Kang et al., 2020; Lauriola et al., 2022), text data is usu-
ally represented as discrete vocabulary with sequential
properties. Deep learning models, like Recurrent Neural
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Networks (RNNs) (Yin et al., 2017) and Long Short-Term
Memory (LSTM) (Y. Yu et al., 2019), are capable of mod-
elling sequential dependencies within the text, resulting
in a good performance in NLP tasks (Min et al., 2023). Sim-
ilarly, speech data also exhibits temporal features. RNNs
and their variants can capture the temporal correlation of
speech signals, leading to achievement in tasks such as
speech recognition (Y. Yu et al., 2019).

Despite the substantial advancements achieved by
unimodal deep learning models, unimodal data often
fails to provide complete information in complex appli-
cations, leading to inaccurate or biased judgments (Dong
et al., 2023; F. Han et al., 2023; Qin, Yang, et al., 2023).
In image classification, if models only infer according
to the visual information of the image and neglect the
textual descriptions, they may lead to reduced accu-
racy and decreased generalization (L. Chen et al., 2021;
Kim et al., 2022). In speech recognition tasks, while
the speech signal provides audio features of the lan-
guage, the model’s recognition accuracy often strug-
gles to improve further without additional information,
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such as facial expressions in a video or accompanying
text (Alharbi et al., 2021; Oruh et al., 2022; Ravanelli
et al., 2020). To overcome these challenges, multimodal
learning has gradually drawn attention for its capability
to combine information of different modalities (Bayoudh
et al., 2022; P. Xu et al., 2023).

Compared to unimodal deep learning, multimodal
learning provides a more comprehensive perspective by
simultaneously utilizing multimodal data, thereby cap-
turing complex relationships within the data more effec-
tively (J. Han et al., 2019; B. Li et al., 2020; P. P. Liang
et al., 2024; K. Sharma & Giannakos, 2020). For example,
in image captioning tasks, the model not only needs to
analyze the content of the image but also to understand
the related textual information to generate accurate and
contextually relevant descriptions (Hossain et al., 2019;
Stefanini et al., 2022). In sentiment analysis, multimodal
learning can combine text, audio, and video information
to assess the user’s emotional state, remarkably improv-
ing the accuracy of the analysis (Z. Liu et al., 2024; Y.
Sun et al., 2024). Furthermore, in medical diagnosis, by
integrating medical images with clinical text records,
models can evaluate patients’ health conditions compre-
hensively, assisting doctors in making precise diagnoses
(Azad et al., 2022; Qiu et al., 2024). Recently, self-attention
mechanisms and transformer models have been widely
utilized, enhancing the ability to process multimodal
data, particularly in capturing the complex relationships
between modalities (S. Qian & Wang, 2023; Y. Zhan
& Yang, 2023). Additionally, emerging technologies such
as cross-modal adversarial training and transfer learning
have been introduced to strengthen themodel’s general-
ization across differentmodalities (Ben-Cohenet al., 2019;
X. Chen et al., 2023; M. Li et al., 2022; H. Wang, Ma,
et al., 2024).

Most existing multimodal learning-based models
operate under the assumption that data from all modal-
ities is always available, a premise often challenging to
achieve in practical applications. Considerations such as
human error, privacy issues, and ambient changes fre-
quently give rise tomodalitymissingor incompletemulti-
modal data (Cai et al., 2018; K. Sharma & Giannakos, 2020;
Y. Shen & Gao, 2019). Modality missing refers to the
situation where the missing or unavailability of certain
modalities causes a decline in model effectiveness (S. Yu
et al., 2024). For autonomous driving, LiDAR might lose
data because of object occlusion or adverse conditions
(Roche et al., 2021; Zheng et al., 2023). In power grid
monitoring, faults or communication issues can disrupt
real-time data transmission, while incorrect patient posi-
tioning or equipment malfunctions can degrade medical
images or cause data loss (G. Li et al., 2021). Moreover,

ethical and privacy concerns may prevent the disclo-
sure of sensitive data. When one or more modalities are
unavailable, the model may lose critical contextual infor-
mation, remarkably dropping its performance and poten-
tially leading to task failure or critical errors in judgment
(H. Liu, Wei, et al., 2023; Y. Shen & Gao, 2019).

Therefore, the study of Incomplete Multimodal Learn-
ing (IML) is significant. The challenge of IML is find-
ing ways to effectively learn from incomplete multi-
modal training sets while ensuring that the model can
dynamically and robustly handle new instances with any
missing modalities during the testing phase (S. Qian
&Wang, 2023; Y.Wang et al., 2024). To solve this problem,
researchers have proposed various strategies, including
data generation-based, shared feature-based, and knowl-
edge transfer-based methods (Lee et al., 2023; M. Li
et al., 2022; Matsuura et al., 2018; Zeng, Liu, et al., 2022).
Data generation-based methods enhance model com-
pleteness and performance by generating data for miss-
ingmodalities (Islamet al., 2021). Techniques suchasGen-
erativeAdversarialNetworks (GANs) use agame-theoretic
approach to generate synthetic data, while Variational
Autoencoders (VAEs) model the data distribution to cre-
ate missing modalities (Q. Wang, Ding, et al., 2018; Y.
Wang, Zhou, et al., 2018). Shared feature-based meth-
ods aim to create shared representations across differ-
ent modalities, allowing the model to leverage features
from other modalities even when some are absent (R. Liu
et al., 2024; H. Wang et al., 2023). Knowledge transfer-
based methods tackle the problem of missing modali-
ties by transferring knowledge from complete modali-
ties or related tasks (Ding et al., 2014, 2015). The differ-
ences among conventional deep learning-based, com-
plete multimodal learning-based, and IML-based meth-
ods are shown in Figure 1.

Recently, some reviews have explored the issue of
modality missing and its development in brain tumor
segmentation (Azad et al., 2022; Zhou et al., 2023).
However, comprehensive reviews of IML-based meth-
ods across various fields are still lacking. As research
advances, new technologies and findings based on IML
continue to emerge. Therefore, this paper reviews the
progress of research based on IML, categorizes relevant
literature according to the sources of information for
addressing the issue, andprovides a comprehensive anal-
ysis and discussion, along with suggestions for future
directions. The contribution of this review lies in filling
the current gaps in the existing research, outlined as
follows:

(1) This review systematically outlines the development
of IML-based methods across various fields and
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Figure 1. Differences among conventional deep learning-based, complete multimodal learning-based, and IML-based methods (using
three modalities as an example, where ‘mod’ represents a modality and the box with diagonal lines indicates that a modality is missing
for the sample).

provides a structured guideline for researchers to
address the challenges of modality missing. By clar-
ifying the core goal of IML and offering a relevant
definition of themodalitymissing problem, this work
allows readers to gain deep insights and develop
effective strategies to tackle the modality missing
problem;

(2) This review proposes a novel taxonomy for IML from
the perspective of the information used to address
modality missing and provides a comprehensive
overview of IML-based methods for each type of cat-
egory, aiming to help researchers and practitioners
efficiently select suitable models;

(3) This paper provides a comparative analysis of IML-
based methods from the perspectives of both simi-
larities and differences, analyzes their strengths and
weaknesses, and identifies future research directions.

The subsequent sections of this review are arranged as
follows: Section 2 presents the problem formulation and
related definitions of IML; Section 3 provides a detailed
introduction of methods based on IML; Section 4 quali-
tatively analyzes these methods from the perspective of
similar and different methods; Section 5 discusses the
challenges andopportunities in existingmethods; Finally,
Section 6 presents the conclusion.

2. Preliminary

2.1. Problem formulation ofmodalitymissing

Considering a dataset D containing M modalities and
N multimodal samples, the formulation of the missing

modality is introduced. For m ∈ {1, 2, . . . ,M}, the repre-
sentation of the mth modality for the nth multimodal
sample is defined as xmn ∈ R

dm , with dm being the dimen-
sion of the mth modality. For one sample, there are
2M − 1 possible cases of modality missing (excluding the
case where all modalities of one sample are missing).
An indicator matrix J ∈ R

M×N for multimodal samples is
denoted as:

Jmn =
{
1, if the nth sample has themth modality

0, otherwise
(1)

where each column of J represents the modality status
of the corresponding sample. For each incomplete sam-
ple xmn , there exists

∑M
m=1 J

m
n < M. IML aims to find ways

to effectively learn from incomplete multimodal training
sets while ensuring that the model can dynamically and
robustly handle new instances with any missing modali-
ties during the testing phase.

2.2. Assessing incompleteness inmultimodal
datasets

An improved method is proposed in S. Yu et al. (2024)
for comprehensively assessing modality incompleteness
in multimodal datasets. Conventional methods typically
use amodalitymissingness score η to describe the extent
ofmissing data acrossmodalities in a dataset. Specifically,
η is calculated as follows:

η = 1 − 1
N × M

N∑
n=1

M∑
m=1

Jmn (2)



4 Y. ZHAN ET AL.

where
∑N

n=1
∑M

m=1 J
m
n denotes the total number of exist-

ing modalities.
The above calculation overlooks whether the missing-

ness is balanced across modalities. Even if two datasets
share the same η, one may exhibit significantly greater
incompleteness if one modality is substantially under-
represented. This imbalance leads to asymmetry in the
available information, posing challenges for a model in
extracting consistent representations from each modal-
ity. To address this issue, amodality imbalance coefficient
β is introduced to calculate as follows:

β = exp

(
−std

(
N∑

n=1

J1n,
N∑

n=1

J2n, . . . ,
N∑

n=1

JMn

))
(3)

where std(·) is the standard deviation function mea-
suring the distributional disparity of sample counts
across modalities. A higher standard deviation indicates
a greater imbalance between modalities, resulting in a
lowerβ . Finally, a compositemetric ξ is utilized to present
modality incompleteness:

ξ =
(

η + 1
1 + exp(β)

)
/2 (4)

Therefore, incompleteness is measured by both the
degree ofmodalitymissingness and the degree ofmodal-
ity imbalance.

2.3. Related definitions

(1) Modality: modality refers to the way of expressing
or perceiving things and is the specific manifesta-
tion of a source or form of information. For example,
the human sensory system includes touch, hearing,
vision, and smell, each corresponding to a different
modality. Additionally, information media can also
be considered different modalities, such as speech,
video, text, etc. Various sensor data, such as radar,
infrared, accelerometers, and others, can likewise be
regarded as different modalities. When a research
problemor dataset includesmultiple suchmodalities
of information, it is referred to as a multimodal prob-
lem (Bayoudh et al., 2022; M. Ma et al., 2021; P. Xu
et al., 2023).

(2) Multimodal learning:multimodal learning is amethod
that utilizes data frommultiplemodalities (or signals)
simultaneously for learning and reasoning.

(3) Homogeneous modality: homogeneous modality
refers to modalities with the same data type and
characteristics, such as images captured from differ-
ent angles or texts in different languages (W. Liang
et al., 2021; Ye et al., 2020). Although their content

may differ, their data characteristics are similar. In
multimodal learning with homogeneous modalities,
the model typically needs to integrate and compare
similar data to gain information from different per-
spectives.

(4) Heterogeneous modality: heterogeneous modality
refers to modalities with entirely different data types
andcharacteristics, suchas images and texts, or audio
and video. These modalities have significantly differ-
ent data characteristics and forms of representation
(J. Chen & Zhang, 2020; Suzuki & Matsuo, 2022; Z.
Zhang et al., 2022). In multimodal learning with het-
erogeneousmodalities, themodel is required to han-
dle the heterogeneity between different modalities
and effectively integrate them to utilize the com-
plementary information from each modality (Bay-
oudh et al., 2022; M. Ma et al., 2021; P. Xu et al.,
2023).

3. Incomplete multimodal learning-based
methods

This section introduces IML-based methods for address-
ing the issue of modality missing. As shown in Figure 2,
methods are classified into two types according to the
source of information for addressing the issue: based
on internal information and external information meth-
ods. Methods based on internal information rely on data
and patterns from the existing dataset to handle miss-
ing modalities (Q. Wang, Ding, et al., 2018, 2020; R. Wu
et al., 2020; C. Zhang et al., 2020). In contrast, methods
based on external information rely on external resources
beyond the dataset, such as additional context, addi-
tional datasets, domain knowledge or human involve-
ment (Buciluǎ et al., 2006; Hinton, 2015; D. Hu et al., 2019;
Ou et al., 2023; Qin, Zhang, et al., 2023; Zanzotto, 2019).
For a comprehensive overview, Table 1 provides a sum-
mary of representative IML-based studies.

3.1. Internal information-basedmethods

Methods based on internal information are classified into
data-based and feature-based approaches according to
the level at which they handle missing modalities. Data-
based methods focus on completing or grouping miss-
ing modalities before the data is input into the down-
stream task model (Cai et al., 2018; Shang et al., 2017;
Y. Wang et al., 2024; H. Yang et al., 2023). Feature-based
methods focus on the feature level by mapping different
modalities into a latent space to get shared information
(P. Li et al., 2022; Q. Wang, Ding, et al., 2020; R. Zhang
et al., 2023; Zhao et al., 2021).
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Figure 2. Taxonomy of IML-based methods.

Table 1. Summary of representative IML-based literature. ‘Homo’ represents homogeneous, while ‘Hetero’ denotes heterogeneous.

Reference Application Scenarios Taxonomy Modality Number of Modalities Published Date

Islam et al. (2021) Brain tumor segmentation Data synthesis-based Homo 4 2021
Zhou et al. (2020) Medical image synthesis Data synthesis-based Homo 3 2020
Y. Zhang et al. (2024) Medical image synthesis Data synthesis-based Homo 4 2024
Y. Zhang et al. (2024) Medical image synthesis Data synthesis-based Homo 4 2024
M. Ma et al. (2021) Multimodal generation Data synthesis-based Hetero 2/3 2021
Y. Wang et al. (2024) Emotion recognition Data synthesis-based Hetero 3 2024
Y. Sun et al. (2024) Sentiment analysis Data synthesis-based Hetero 3 2024
Yuan et al. (2012) Disease prediction Data grouping-based Hetero 2/3 2012
Xiang et al. (2013) Disease prediction Data grouping-based Hetero 4 2013
Zhao et al. (2021) Emotion recognition Cyclic translation-based Hetero 3 2021
Q. Yang et al. (2022) Brain tumor segmentation Feature disentanglement-based Homo 4 2022
R. Liu et al. (2024) Emotion recognition Feature disentanglement-based Hetero 3 2024
S. Yu et al. (2024) Federated learning Correlation-based Homo 2/3 2024
Qiu et al. (2024) Brain tumor segmentation Correlation-based Homo 4 2024
G. Yang et al. (2024) Fault diagnosis Correlation-based Homo 8 2024
J. Shi et al. (2023) Brain tumor segmentation Attention-based Homo 4 2023
Lee et al. (2023) Visual recognition Attention-based Hetero 2 2023
Zeng, Zhou, et al. (2022b) Sentiment analysis Attention-based Hetero 3 2022
S. Qian and Wang (2023) Multimodal learning Attention-based Hetero 2/3 2023
J. Li et al. (2024) Emotion recognition Attention-based Hetero 3 2024
Maheshwari et al. (2024) Semantic segmentation Knowledge distillation-based Homo 2 2024
C. Chen et al. (2021) Brain tumor segmentation Knowledge distillation-based Homo 3/4 2021
H. Liu, Wei, et al. (2023) Brain tumor segmentation Knowledge distillation-based Homo 4 2023
D. Zhang et al. (2024) Brain tumor segmentation Knowledge distillation-based Homo 4 2024
W. Zhang et al. (2021) Visual recognition Domain adaptation-based Homo 2 2021
Y. Shen and Gao (2019) Brain tumor segmentation Domain adaptation-based Homo 4 2019
Malitesta et al. (2024) Recommender system Adjacency-based Hetero 2 2024
C. Zhang et al. (2022) Healthcare informatics Adjacency-based Hetero 4 2022
Y. Liang (2024) Recommender system Knowledge graph-based Hetero 2 2024
X. Lu et al. (2022) Representation learning Knowledge graph-based Hetero 3 2022
Z. Chen et al. (2023) Entity alignment Knowledge graph-based Hetero 4 2023
A. Sharma and Hamarneh (2019) Medical image synthesis Curriculum learning-based Homo 4 2019
D. Hu et al. (2019) Sensory substitution Human fine-tuning-based Hetero 2 2019
Ou et al. (2023) Remote sensing image Human fine-tuning-based Hetero 2 2023

3.1.1. Data-basedmethods
These methods aim to mitigate the impact of missing
modalities at the data level and are categorized into data
synthesis-based and data grouping-based methods.

3.1.1.1. Data synthesis-based methods. To tackle
modalitymissing, themost direct solution is to synthesize
missing data. Conventional solutions are primarily reliant
on data imputation, such as zero imputation (Zheng
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et al., 2023) and mean imputation (Y. Sun et al., 2024;
C. Zhang et al., 2020), but these methods have limited
effectiveness as they fail to accurately model the com-
plex relationships and underlying structures of the data
(Van Tulder & de Bruijne, 2015). Recently, data synthesis
techniques have gradually replaced imputation methods
(Shang et al., 2017). Data synthesis-based methods seek
to use generative models to provide complete modali-
ties for downstream tasks (Hao et al., 2024). Specifically,
these methods refer to first inferring the missing modal-
ities using neural network-based generative models to
gain a complete multimodal dataset, and applying state-
of-the-art multimodal learning models for downstream
tasks (Dalmaz et al., 2022).

Data synthesis-based methods primarily employ gen-
erative networks like VAEs (Kingma, 2013), GANs (Good-
fellow et al., 2014), and diffusion models (Ho et al., 2020)
to generate missing modality data. VAEs-based methods
(M. Ma et al., 2021; M. Shen et al., 2021; Y. Shi et al., 2019;
Sutter et al., 2020; Tran et al., 2017; M. Wu & Good-
man, 2018) map input data to a latent space and sam-
ples from it to generate the missing modalities, balanc-
ing reconstruction loss and regularization of the latent
space to generate stable and diverse modality data. In
GANs-based approaches for handling missing modali-
ties (Cai et al., 2018; Pan et al., 2021; Shang et al., 2017;
Suo et al., 2019; Q. Wang, Ding, et al., 2018, 2020; R.
Wu et al., 2020; C. Zhang et al., 2020), the generator
produces the missing modality data, while the discrim-
inator differentiates between generated and real data.
Through adversarial training, the generator is optimized
to produce realistic missing modalities for downstream
tasks (Cai et al., 2018). Recently, diffusion models-based
methods have generatedmissingmodalities by gradually
adding noise and denoising, producing high-quality data
and reducing semantic ambiguity (Croitoru et al., 2023; Y.
Wang et al., 2024).

Based on the number of observable and target modal-
ities, data synthesis methods can be categorized into
three types: one-to-one synthesis methods, multi-to-one
synthesis methods, and unified synthesis methods (D.
Zhang et al., 2024). An overview of these three strategies
is illustrated in Figure 3. One-to-one synthesis refers to
generating a target modality from a complete observed
modality. For example, cross-modal medical image syn-
thesis was achieved on limited paired data and abun-
dant unpaired data through joint dictionary learningwith
weak coupling and geometric co-regularization, leading
to improved synthesis quality using sparse representa-
tion (Huang et al., 2017). To tackle differences between
modalities, VIGAN (Shang et al., 2017) treats each view as
an independent domain, utilizes GANs for inter-domain
mapping, and uses a multimodal denoising autoencoder

Figure 3. Basic framework of three types of data synthesis meth-
ods. The dashed arrows in the figure represent input pathways for
arbitrary modality combinations.

(DAE) to reconstruct the missing views from outputs of
GANs. Similarly, GANs (Cai et al., 2018) were used to
generate missing modalities, and the quality of the gen-
erated modalities was enhanced through content loss
and adversarial loss, even in the absence of class labels.
However, the one-to-one synthesis methods necessitate
training a distinct model for each missing condition.
This requirement significantly escalates the computa-
tional burden when attempting to synthesize multiple
modalities.

The multi-to-one synthesis method aims to use mul-
tiple available modalities to get a single target modality.
Compared to one-to-one methods, this approach better
captures the shared features between modalities, opti-
mizing the synthesized quality (J. Liu et al., 2023). How-
ever, it faces the challenge of effectively extracting and
integrating features from multiple modalities to avoid
information loss or feature conflicts. Therefore, a synthe-
sis model was introduced (Islam et al., 2021), built upon
Fully Convolutional Networks (FCN) (Long et al., 2015)
and Conditional GANs, to reduce feature redundancy and
model sparsity. Besidesa multi-scale gate mergence was
introduced to automatically learn weights for various
modalities (B. Zhan et al., 2021), improving task-related
informationwhileminimizing irrelevant information. Fur-
thermore, a layer-wise fusion strategy was employed to
combine multimodal representations adaptively (Zhou
et al., 2020). In addition, the incomplete multimodality-
diffused emotion recognition (IMDer) was introduced (Y.
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Figure 4. Basic framework of data grouping-based methods.

Wang et al., 2024), using a score-based diffusion model
to reconstruct missing data by ensuring distribution con-
sistency and semantic alignment. Although the multi-to-
one synthesis method effectively captured shared fea-
tures, it struggled to address multi-target modality gen-
eration tasks.

The unified synthesis method refers to generating one
or more target modalities from any available modali-
ties in a single forward pass. The main challenge of this
approach lies in designing an efficient network struc-
ture that can handle various missing modality scenarios
while ensuring high quality and consistency in the gen-
erated modalities. In response to the challenge of severe
modality absence, Bayesianmeta-learningwas leveraged
to predict prior weights through a reconstruction net-
work, effectively addressing significant data loss in multi-
modal learning (M. Ma et al., 2021). Additionally, a GANs-
based approach with a decoupling scheme (L. Shen et al.,
2020) was introduced to extract shared content encoding
and independent style encoding. More recently, a uni-
fied adaptive multimodal image synthesis method was
proposed, using a shared super-encoder to embed the
features of each modality into a shared space, followed
by a graph attention fusionmodule to ensure consistency
in the generated results (H. Yang et al., 2023). Further-
more, Transformer was employed to model long-range
dependencies between different modalities, achieving
unified image synthesis (Dalmaz et al., 2022). Finally, the
Commonality- and Discrepancy-Sensitive Encoder (CDS-
Encoder) was proposed, and a Dynamic Feature Unifica-
tionModule (DFUM)was introduced to integrate informa-
tion from different combinations of available modalities
(Y. Sun et al., 2024; Y. Zhang et al., 2024).

3.1.1.2. Data grouping-based methods. These meth-
ods address incomplete data samples by partitioning
them according to available data sources and train-
ing separate models for each group, transforming the
problem into a multi-task learning scenario (S. Qian
& Wang, 2023). An overview of this strategy is depicted
in Figure 4.

Two methods for incomplete data fusion were
designed (Yuan et al., 2012). The first, the incomplete
multi-source feature learning (iMSF) framework, divided
the data into blocks based on missing modalities and
built separate models for each block, enhancing model
sparsity and performance through joint feature learn-
ing and regularization. The second method, the model
score completion scheme (ScoreComp), involved training
base models on each data source to create a prediction
score matrix, which was then completed using imputa-
tion methods to form a full score matrix for training the
final classifier.

Unlike iMSF, the data groups in Incomplete Source-
Feature Selection (iSFS) model overlap to make each
group contain more samples (Xiang et al., 2013), as illus-
trated in Figure 5, where each red box indicates a group.
The model was trained separately on each group of data
sources, applying different regularization strategies to
each data source by adjusting regularization parameters.
This approach performed both feature-level and source-
level analysis simultaneously and simplified the optimiza-
tion problem through equivalence transformation, ulti-
mately constructing a multi-source fusion model.

Common issues associated with data grouping-based
methods include sample imbalances among subsets,
which can cause the model to favor larger groups dur-
ing training and impact generalization (J. Sun et al., 2024).
Additionally, defining appropriate grouping criteria for
complex multimodal datasets is challenging and may
overlook global feature dependencies, hindering effec-
tive information integration.

3.1.2. Feature-basedmethods
Unlike data-basedmethods, feature-basedmethods han-
dle missing modality data at the feature level by pro-
jecting data from each modality into a latent space
to identify shared information across modalities (Azad
et al., 2022; Zhou et al., 2023). These methods typi-
cally adopt an end-to-end multimodal learning frame-
work, where the handling of missing modalities and the
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Figure 5. Illustration of data grouping in iSFS.

downstream task are integrated within a unified model.
Feature-based methods can be categorized into four
types: cyclic translation-based, feature disentanglement-
based, correlation-based, and attention-based methods.

3.1.2.1. Cyclic translation-based methods. Cycle con-
sistency is an essential principle in multimodal learning,
stating thatwhen transformingbetweendifferentmodal-
ities, the final result should be consistentwith the original
input (W. Sun et al., 2021; Zhao et al., 2021). Cycle transla-
tion is amethod for achieving cycle consistency, ensuring
that during modality transformations – such as convert-
ing an image to text and then back to an image – the final
output is similar to the original input (C.-T. Lin et al., 2020).

Some data synthesis-based methods employed cycle
consistency to generate data. For instance, a generative
partial multi-view clustering model was introduced (Q.
Wang, Ding, et al., 2020), which used adaptive fusion and
cycle consistency to generate missing views from shared
representations of other views. However, such methods
increase model complexity and computational cost, and
may face risks of error accumulation and limited general-
ization ability.

To address these issues, cyclic translation-basedmeth-
ods use cycle consistency to learn joint representations
across modalities and perform downstream tasks, as
depicted in Figure 6. The Multimodal Cyclic Translation
Network (MCTN) was proposed (Pham et al., 2019), a
Seq2Seq-basedmodel that learned joint features through
cyclic transformations between modalities, using mean
squared error for cycle consistency. To handle three
modalities, MCTN Trimodal employed two Seq2Seqmod-
els for cyclic translation, allowingmultimodal representa-
tions from a single input during testing. However, experi-
ments showed training asymmetry, with results differing
based on the choice of source and target modalities.

Similarly, a Deep Multimodal Adversarial Cycle-
Consistent Network (DMACCN) was proposed (P. Li
et al., 2022), which captured intrinsic data patterns by
modelling local structures andglobal topology. An adver-
sarial cycle-consistent loss in DMACCN effectively guided
clustering and cross-modal semantic alignmentwhile fus-
ing complementary information and capturing cluster-
ing structures. Furthermore, cycle consistency constraints
were introduced to strengthen related region-phrase
pairs and weaken unrelated ones (R. Zhang et al., 2023),
leveraging bidirectional associations to reduce match-
ing ambiguities. However, the aforementioned models
are designed for the case of fixed modality missing
and face challenges in generalizing to randomly missing
modalities.

To address randomly missing modalities, the Miss-
ing Modality Imagination Network (MMIN) was pro-
posed (Zhao et al., 2021), employing Cascade Resid-
ual Autoencoder (CRA) and cycle consistency learn-
ing to create robust joint multimodal representations.
MMIN inferred the representation of the missing modal-
ity through forward imagination with available modal-
ities and estimated the representation of the original
modality through backward imagination. During testing,
MMINpredicted representations for anymissingmodality
condition.

3.1.2.2. Featuredisentanglement-basedmethods. Fea-
ture disentanglement aims to decompose complex fea-
ture representations into independent and interpretable
components (Azad et al., 2022; Q. Yang et al., 2022; Zhou
et al., 2023). This process enables themodel to identify the
role of each feature in different contexts, avoiding inter-
ference between features and thereby improving gen-
eralization (Y. Chen et al., 2023). In tasks such as image
generation, feature disentanglement helps the model
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Figure 6. Two basic frameworks of cyclic translation-based methods, with dashed lines indicating the modality is incomplete.

separate features like pose, colour, and shape, resulting
in accurate outputs (Q. Yang et al., 2022).

The core idea of feature disentanglement-basedmod-
els is to construct comprehensive representations by
extracting modality-specific and modality-shared repre-
sentations from each modality, as shown in Figure 7.
Specifically, the model establishes specific models for
each modality to extract unique specific features. Addi-
tionally, a shared model is created for all modalities
to obtain shared representations. Both the specific and
the shared representations are then used together for
downstream tasks. This approach allows the model to
effectively address the issue of missing modalities while
enhancing the integration and utilization of diverse infor-
mation in multimodal learning.

A dual-decoupling network called D2-Net was pro-
posed for brain tumor segmentationwithmissingmodal-
ities (Q. Yang et al., 2022). This method decoupled
modality-specific information througha spatial-frequency
joint modality contrastive learning scheme and then
guided the extraction of dense tumor region knowl-
edge by aligning the decoupled binary teacher net-
work features with the student network. Furthermore,

the ‘Disentangle First, Then Distill’ (DFTD) framework was
introduced for completingmissingmedical imagemodal-
ities (Y. Chen et al., 2023). This framework first decoupled
the image into cross-modality correlated and modality-
specific representations using a region-aware disentan-
glementmodule. It then used an imputation-induced dis-
tillationmodule to fill inmissingmodality representations
by utilizing inter-modality correlated features.

Similarly, modality-invariant features were leveraged
to generate missing modality information (R. Liu et al.,
2024). Pre-training was conducted using contrastive
learning on complete modalities, and self-supervised
learning was used to train an invariance encoder to
extract modality-invariant features. The robust imagina-
tion module then reconstructed the missing informa-
tion based on these features, combining the generated
modalitywith the availablemodalities for emotion recog-
nition.

Most feature disentanglement-based methods are
typically designed for specific tasks (such as classification
or segmentation) and primarily address modality missing
during the evaluation phase (Y. Chen et al., 2023; R. Liu
et al., 2024; Q. Yang et al., 2022). To address these issues,
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Figure 7. Basic framework of feature disentanglement-based methods, with dashed lines indicating the modality is incomplete.

the ShaSpec was introduced to generate features within
a shared space by modelling both shared and specific
features (H. Wang et al., 2023). This approach integrated
auxiliary task strategies such as distribution alignment
and domain classification, and employed a residual fea-
ture fusionmechanism. Therefore, themethod effectively
handled the modality missing during both the training
and testing phases and was applicable to different tasks.

3.1.2.3. Correlation-basedmethods. Researchers have
found that there are interconnections in information and
features between different modalities and samples. This
correlation is evident not only in the sharing of infor-
mation and the complementarity of features but also in
the consistent structures they follow within the same
context (Azad et al., 2022; S. Qian & Wang, 2023; Zhou
et al., 2023). Correlation-based methods model the rela-
tionships either between samples or betweenmodalities,
capturing their underlying correlations, as depicted in
Figure 8.

Amodulebasedondeepcanonical correlation analysis
was employed to enhance feature alignment bymaximiz-
ing correlation within matched categories during train-
ing (Q. Wang, Lian, et al., 2020).Moreover, a likelihood-
based method was designed to characterize conditional
distributions associated with samples of both complete

and incomplete modalities (F. Ma et al., 2021). Addition-
ally, constraints from the Hilbert-Schmidt Independence
Criterion (HSIC) were applied to guide the model in com-
pleting missing features (Y. Liu, Fan, et al., 2021).

Besides, the correlations between modalities were
captured by learning independent parameters for each
modality’s specific representation (Zhou et al., 2021b),
and these parameters were used to weight and com-
bine modality features to construct correlation repre-
sentations betweenmodalities. Furthermore a geometric
contrastive loss was designed to improve the correla-
tionbetweenmissing and completemodalitieswithin the
same sample (R. Lin and Hu, 2023). This method func-
tioned by maximizing the similarity between the missing
and complete modalities while minimizing the similar-
ity between different samples. However, the reliance on
correlation-based methods on assumptions about data
distribution may lead to decreased performance when
the input data deviates from the expected distribution.

3.1.2.4. Attention-basedmethods. Theattentionmech-
anismoriginated fromstudiesof humanvisual perception
(X. Li et al., 2023), aiming to simulate how the brain selec-
tively focuses on specific information in complex envi-
ronments (Y. Zhan & Yang, 2023). In the field of NLP,

Figure 8. Basic framework of correlation-based methods, with dashed lines indicating the modality is incomplete.
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Figure 9. Basic framework of attention-based methods using 0 to indicate missing modality and 1 to indicate available modality.

Figure 10. Illustration of two types of prompts.

attention mechanisms are widely used to enhance mod-
els’ ability to capture key information. They allowmodels
to dynamically assign different weights to various parts
of the input, emphasizing important featureswhile ignor-
ing redundant information during data processing (Zeng,
Zhou, et al., 2022b). The core idea behind using atten-
tion mechanisms to address modality missing issues is to
obtain shared latent features by compensating for miss-
ing information through a focus on key modalities or
features.

In multimodal learning, attention mechanisms auto-
matically assign weights to different modalities, selec-
tively focussing on the most relevant or important ones.
Typically, attention-based methods are combined with
prompt learning,whichguides pre-trainedmodels toper-
form tasks by designing specific prompts (Min et al., 2023;
Qin, Zhang, et al., 2023). In the case of modality missing,
prompt learning assigns identifiers (such as 0–1 labels)
to indicate which modalities are missing. The model can
then use cross-modal attention mechanisms to extract
complementary information from other modalities, com-
pleting or inferring the missing parts, ensuring the accu-
racy and robustness of the task, as shown in Figure 9.

Transformer-based models and their attention mech-
anisms offer significant advantages in addressing modal-
ity missing (M. Ma et al., 2022). Since fine-tuning
Transformer-based models requires substantial compu-
tational resources, it is crucial to develop methods that
do not necessitate fine-tuning the pre-trained model. By

incorporating prompt learning, Transformer-based mod-
els can effectively handlemissingmodalities by adjusting
a small number of learnable parameters, allowing the
model to focus on keymodalities or features. For instance,
a Tag-Assisted Transformer Encoder (TATE) network was
proposed in Zeng, Zhou, et al. (2022b) for handling mul-
timodal sentiment analysis with partially missing modal-
ities. This approach introduced a tag encoding module
to manage the absence of one or more modalities, guid-
ing the network to focus on the missing modalities and
extract the remaining raw features.

The Missing-Aware Prompts were introduced (Lee
et al., 2023) to tackle the challenge of missing modalities,
requiring adjustments to less than 1% of the learnable
parameters (e.g. pooling and fully connected layers). As
illustrated in Figure 10, the paper proposed two prompt
configuration methods: input-level prompting, which
attached prompts to each layer’s input, and attention-
level prompting, which embedded prompts into the
model’s attention mechanism. Experimental results indi-
cated that different prompt configurations influenced the
effectivenessof learning instructions forpre-trainedmod-
els. Notably, attention-level prompting was less sensitive
to dataset variations and significantly improved baseline
performance across various scenarios.

In scenarios where data can be represented as a graph
structure,GraphNeuralNetworks (GNNs)provideapracti-
cal framework for addressing the issue of missing modal-
ities (Y. Zhang et al., 2021). GNNsmap instances and their
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features into nodes and edges within a graph, captur-
ing the complex interactions between different modal-
ities. The attention mechanism dynamically adjusts the
weights between nodes and their neighbours, allow-
ing the model to focus on key modalities and essential
features, thus better compensating for missing informa-
tion and enhancing overall performance and robustness
(Azad et al., 2022; S. Qian &Wang, 2023; Zhou et al., 2023).

Besides, multimodal data was modelled as a Hetero-
geneous Hypernode Graph (HHG) (J. Chen and Zhang,
2020), with each hypernode representing an instance and
hyperedges capturing relationships between instances.
The HHG distinguished different modalities and their
feature combinations, utilizing Multi-fold Bilevel Graph
Attention Networks (MBGAT) to aggregate neighbour-
hood information from both similar and different modal-
ities. The attention mechanism dynamically assigned
weights to nodes based on their importance, allowing
the model to focus on key modalities. Furthermore, het-
erogeneous multimodal data was fused using a dual-
stage graph attention network with intra- and inter-
modal aggregationmechanisms (Y. Liang, 2024), enhanc-
ing interaction between nodes. This approach mapped
data to lower-dimensional feature space and learned
attention coefficients, allowingnodes to receive key infor-
mation from neighbouring nodes and modalities.

3.2. External information-basedmethods

Methods based on external information utilize external
resources or knowledge to supplement missing modal-
ity information. These approaches can effectively com-
bine information from various sources to address the
issue of modality absence (Vapnik & Izmailov, 2015; Wan
et al., 2021). Based on the source of external resources,
these methods can be categorized into three types:
knowledge transfer-based, graph knowledge enhance-
ment-based and human-in-the-loop-based methods.

3.2.1. Knowledge transfer-basedmethods
These methods focus on transferring knowledge from
one domain to another, or from one model to another.
Knowledge transfer-based methods include knowledge
distillation-based and domain adaptation-based
methods.

3.2.1.1. Knowledge distillation-based methods. To
address the challenges of applying large models on
resource-constrained devices, model compression was
introduced in 2006 (Buciluǎ; et al., 2006), allowing simple
and fast models to be derived from large, complex, and
high-performing models. Inspired by model compres-
sion, knowledge distillation was later proposed (Hinton,

Figure 11. Basic framework of knowledge distillation-based
methods, with dashed lines indicating themodality is incomplete.

2015), which involved training a complex teacher model
to obtain accurate results and then transferring its knowl-
edge to a small student model to enhance its perfor-
mance. In the context of handling missing modalities,
knowledgedistillationenables the studentmodel to learn
from the teacher model’s complete multimodal informa-
tion, compensating for missing modalities to improve
its performance on incomplete multimodal datasets, as
shown in Figure 11.

The KD-Net framework was proposed to improve
single-modal performance in medical image segmen-
tation by transferring knowledge from a multimodal
teacher network to a single-modal student network (M.
Hu et al., 2020). However, its application was constrained
as it only accepted single-modal input during testing. In
the same field, the Hierarchical Adversarial Knowledge
Distillation Network (HAD-Net) was proposed, which
reduced the domain gap by mapping segmentation
results and features from both networks to a shared
space (Vadacchino et al., 2021). However, this method
could not generalize to cases of random missing modal-
ities. To handle random missing modalities, the Adver-
sarial Co-training Network (ACN) was proposed (Y. Wang
et al., 2021). This network established a coupled learn-
ing mechanism that allowed both complete and missing
modalities to mutually enhance each other’s domain and
feature representations. This method enabled the stu-
dentnetwork to accommodate any arbitrary combination
ofmodality subsets as input during the inference process.

In recent years, Transformers (Qiu et al., 2024) have
demonstrated significant advantages in capturing long-
range dependencies and global context information. The
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Figure 12. Basic framework of self-distillation in the M3AE.

IMS2Trans network was proposed for brain tumor seg-
mentation (D. Zhang et al., 2024), which employed a
shared-weight encoder based on the Swin Transformer,
combinedwith shiftedmultilayer perceptronandmasked
bottleneck techniques to effectively capture both local
and global information. Through feature distillation, the
network was able to accurately extract features even in
the case of missing modalities.

The conventional knowledge distillation methods
mentioned above rely on pre-trained teacher models to
guide the trainingof studentmodels. If the teachermodel
performs poorly or overfits, it adversely affects the stu-
dentmodel. Additionally, training the teachermodel typ-
ically requires complete modal data, which may be chal-
lenging to obtain in practical applications (Gou et al.,
2021). To address these issues, self-distillation leverages
the model’s own outputs and internal features without
requiring a separate teacher model (Ge et al., 2021; M.
Ji et al., 2021). This method uses data augmentation
to create distinct training datasets, ensuring that the
network produces consistent predictions for the same
instance or class. Pre-training is conducted on one type
of augmented data, while fine-tuning is performed on
another. By utilizing its own outputs during training, the
model refines its predictions and internal representations,
achieving effective self-distillation.

For example, the Multimodal Masked Autoencoder
(M3AE) frameworkwas proposed (H. Liu, Wei, et al., 2023),
which consisted of pretraining and fine-tuning stages.
During pre-training, M3AE used themasked autoencoder
principle to reconstruct complete images from partially
observed ones, effectively handling missing modalities.
Bymasking3Dblocks to simulatemissingdata, the frame-
work learned both global and local features. In the fine-
tuning stage, a self-distillation strategy enhanced seman-
tic consistency and improved the network’s ability to
handle missing modalities, as shown in Figure 12.

3.2.1.2. Domain adaptation-based methods. Domain
adaptation, a form of transfer learning, addresses the
distribution mismatch between training (source domain)
and testing (target domain) data in machine learning
(X. Chen et al., 2023; Z. Chen, Yang, Huang, Wang
et al., 2024). The core idea of domain adaptation-based
methods is to leverage existing, complete modality data
from the source domain to support learning in the tar-
get domain where certain modalities might be miss-
ing (X. Chen et al., 2024). Conventional transfer learn-
ing methods often focus on transforming modalities
within a single dataset or transferring knowledge across
datasets from different domains. These methods typi-
cally assume that both source and target data are avail-
able during training. However, in real-world scenarios,
target modality data is often unavailable (X. Chen et al.,
2023).

To tackle this issue, a low-rank transfer learning
framework called Missing Modality Transfer Learning via
Latent Low-Rank Constraint (M2TL) was proposed (Ding
et al., 2014), (Ding et al., 2015). This method addressed
two challenges of transfer learning: cross-domain trans-
fer, which involved transferring knowledge from one
database to another, and cross-modality transfer, which
pertained to transferring knowledge from the source
modality to the target modality. A basic framework for
domain adaptation in this method is shown in Figure 13.
The approach maps source and target modality data into
a shared subspace using low-rank constraints, enabling
data reconstruction and aligning source featureswith tar-
get features. For cross-domain knowledge transfer, the
alignment of the two datasets’ shared subspaces allowed
the effective transfer of knowledge from the source to the
target database. Additionally, Maximum Mean Discrep-
ancy (MMD) was used as a regularization term to reduce
distribution differences, further improving transfer effec-
tiveness.
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Figure 13. Basic framework of domain adaptation-based meth-
ods, with dashed lines indicating the modality is incomplete.

Recently, deep transfer learning has shown clear
advantages in addressing missing modalities. Compared
to conventional methods, it enhances modality comple-
tion and knowledge transfer while capturing complex
data patterns, enabling smoother cross-modality transfer
(X. Chen et al., 2023). Therefore, a method using ran-
dom modality dropout training and domain adversarial
similarity loss was proposed (Y. Shen and Gao, 2019).
Independent encoding paths generated feature repre-
sentations for each modality, which were fused for seg-
mentation. The model randomly dropped one modal-
ity during training, using adversarial loss to maintain
consistency between missing and complete modalities,
enabling effective brain tumor segmentation despite
modality dropouts.

Similarly, the Progressive Modality Cooperation (PMC)
method was proposed (W. Zhang et al., 2021), which first
trained domain-invariant and modality-specific models
using labelled source data and unlabelled target data,
then refined target samples with pseudo-labels. A Multi-
Modality Generation (MMG) network was introduced

to ensure that the generated data maintains domain-
invariant characteristics through adversarial learning
while preserving semantic information. However, a com-
mon issue in domain adaptation-based methods is the
distribution difference, as the assumption of correlation
between source and target domainsmaynot always hold,
and the complexity of missing modalities in the target
domain can adversely affect model performance (Wan
et al., 2021).

3.2.2. Graph knowledge enhancement-based
methods
Knowledge augmentation is a method that enhances
model performance during training or inference by incor-
porating additional external knowledge, such as prior
knowledge, knowledge graphs, rules, or domain-specific
expertise. Graph-based knowledge augmentation lever-
ages graph structures, such as knowledge graphs, rela-
tional graphs, or domain-specific graph structures, to
provide external knowledge support for machine learn-
ing models. This approach improves the model’s reason-
ing capabilities, enabling it to understand and process
complex relationships within the data. These methods
build graphs to represent entities, nodes, and the rela-
tionships between them, utilizing the information in the
graph to enhance feature learning and reasoning. The
main approaches include adjacency-based and knowl-
edge graph-based methods (Y. Yang et al., 2022).

3.2.2.1. Adjacency-based methods. The adjacency-
based method improves model performance by utiliz-
ing the similarity or interaction relationships between
different modalities (C. Wang et al., 2016). It fills in miss-
ing modalities by retrieving similar or past samples or
by propagating features through GNNs, as shown in
Figure 14.

Based on task-guided deep kernel functions, a model
M3care was proposed (C. Zhang et al., 2022) to compute

Figure 14. Basic framework of adjacency-based methods, with dashed lines indicating the modality is incomplete.
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Figure 15. Basic framework of knowledge graph-based methods, with dashed lines indicating the modality is incomplete.

patient similarity, construct a patient graph, and aggre-
gate information from similar patients to adaptively fill
missingmodalities. Clinical tasks were completed by cap-
turing dynamic intra- and inter-modality interactions.
Additionally, the feature propagation method was intro-
duced (Malitesta et al., 2024),which transformed themiss-
ing modality problem into a graph node feature missing
problem. By iteratively propagating observed features in
the graph and optimizing its smoothness, the approach
provided complete feature input for subsequent graph
neural network learning. Experimental results demon-
strated significant effectiveness in multimodal recom-
mendation systems.

3.2.2.2. Knowledgegraph-basedmethods. Knowledge
Graphs (KG) represent knowledge using a graph struc-
ture, where nodes represent entities and edges repre-
sent the relationships between those entities (Hogan
et al., 2021). The core idea is to connect different pieces
of information through a semantic network, helping
machines understand and reason about complex real-
world concepts and their interrelationships (C. Peng
et al., 2023). The approach to solving the modality miss-
ing problem based on KG is to introduce the entities and
relationships from thegraph toassist in inferring themiss-
ingmodality features (S. Ji et al., 2021). A basic framework
of the KG-based methods is shown in Figure 15.

To reduce the impact ofmodality loss, theMulti-modal
Knowledge Graph Representation Learning (MMKRL), a
model that integrated multi-source knowledge through
knowledge reconstruction and adversarial training, was
proposed (X. Lu et al., 2022). MMKRL embedded struc-
tured knowledge and knowledge from modalities such
as text and vision into a unified vector space and aligned

themusing translationmethods. At the same time, adver-
sarial training was used to improve the model’s ability to
handle modality loss and attacks. Experiments showed
thatMMKRLoutperformedother baselinemethods in link
prediction and triple classification tasks, especially under
conditions of limited multi-source knowledge, demon-
strating its effectiveness and robustness.

3.2.3. Human-in-the-loop-basedmethods
Human-in-the-loop (HITL) initially hasproven tobe a solu-
tion to the difficulties of data annotation, where humans
select and label key data samples to enhance model per-
formance in specific tasks, particularly in scenarios of data
scarcity and high annotation costs (Budd et al., 2021). As
technology has advanced, the application scope of HITL
has gradually expanded to encompass model training
and inference processes (X. Wu et al., 2022). By involv-
ing humans in model fine-tuning, error correction, and
evaluation, HITL improves the accuracy and robustness
of models in complex scenarios. HITL has evolved into
a widely applicable framework for data preprocessing,
model optimization, and system design (Mosqueira-Rey
et al., 2023; Zanzotto, 2019). Additionally, the human
feedback mechanism in HITL addresses the shortcom-
ings of deep learningmodels’ ‘black box’ nature, enhanc-
ing models’ transparency and interpretability (H. Liu,
Yang, et al., 2023). The goal of this human-machine
collaboration model is to combine the computational
power of machines with human intelligence to achieve
higher model accuracy with less data and lower costs
(Mosqueira-Rey et al., 2023).

Figure 16 illustrates the iterativemethodofHITL.When
the model’s output confidence is low, user intervention
becomes particularly important. Human users can review
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Figure 16. The iterative process of HITL.

the model’s outputs based on their own knowledge and
experience, providing feedback to correct the model’s
errors or uncertainties through annotations, comments,
and other means (Ouyang et al., 2022). This feedback
is incorporated into the model’s further training and
optimization, achieving iterative improvement. With user
feedback, the model can not only enhance specific pre-
dictions but also gradually learn the user’s preferences
and domain knowledge, thereby increasing its own confi-
dence. Continuous optimization of themodel is achieved
through multiple cycles, allowing the model to gradually
adapt and improve its performance in specific tasks (Zan-
zotto, 2019). Methods for addressing modality missing
based on HITL can be classified into two types: one relies
on curriculum learning to design tasks, while the other
depends on human fine-tuning to optimize the model.

3.2.3.1. Curriculum learning-based methods. In cur-
riculum learning-based methods, human involvement is
primarily reflected in the design of the curriculumand the

Figure 17. Basic framework of curriculum learning-based methods.

control of training difficulty (Budd et al., 2021). Curricu-
lum learning progressively escalates the complexity of
the training data (Bengio et al., 2009; X.Wang et al., 2021),
enabling themodel to learn to handlemissingmodalities
from simple to complex tasks, as shown in Figure 17.

Human involvement includes designing the curricu-
lum’s difficulty curve to help the model gradually mas-
ter handling missing modalities (Soviany et al., 2022).
Experts determine the sequence and complexity of tasks,
allowing the model to strengthen its inference abili-
ties progressively. Additionally, human guidance priori-
tizes which modalities or scenarios are presented during
training, preventing the model from facing overly com-
plex tasks too early. Task strategies are also adjusted
grounded in the model’s feedback (Budd et al., 2021; X.
Wang et al., 2021; Zanzotto, 2019). For example, curricu-
lum learning strategies were applied to train Multimodal
Generative Adversarial Networks (MM-GANs) (A. Sharma
&Hamarneh, 2019). In the experiment, themethodbegan
training with simple single-sequence missing scenarios
and gradually transitioned to complex ones, resulting in
improved model performance. The design of the curricu-
lum learning strategy allowed the model to gradually
handle missing modalities as the difficulty of the tasks
increased.

3.2.3.2. Human fine-tuning-based methods. Human
fine-tuning methods use a feedback loop where users
provide real-time input when the model’s output is
uncertain or missing modalities. Users can correct the
model or add missing information based on their knowl-
edge, which helps adjust the model’s parameters and
improves its ability to infer missing modalities (Qin,
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Figure 18. Basic framework of human fine-tuning-based meth-
ods.

Zhang, et al., 2023; Zanzotto, 2019). This interactive feed-
back enhances the model’s adaptability and accuracy,
promotes informeddecision-making, and increases trans-
parency and reliability with multimodal data. Addition-
ally, user feedback can be used for further model train-
ing, boosting performance in multimodal learning. A
basic framework of human fine-tuning-based methods is
shown in Figure 18.

Based on this approach, researchers have proposed
the challenge of effectively interpreting model outputs
(Qin, Zhang, et al., 2023; Zanzotto, 2019). For instance, the
Late-Blind Model used a combination of visual memory
and auditory perception in late-blind individuals to help
understand situations involving missing modalities (D.
Hu et al., 2019). By integrating auditory perception with
past visual experiences, the model generated visual con-
tent that matches the sounds heard, thereby improving
the effectiveness of cross-modal perception. Thismethod
demonstrated how human feedback and experience can
enhance the model’s perceptual abilities in the case of
missing modalities.

In remote sensing, data scarcity is a common issue. An
innovative approach was proposed that leverages pre-
trained large models to generate initial text descriptions
for remote sensing images (Ou et al., 2023). By using
human feedback to refine these prompts with GPT-4
(Achiam et al., 2023), the model can accurately synthe-
size remote sensing images. The study shows that by
combining a small number of unlabelled images with
pre-trained image generation models and refining them
through human feedback, the challenges of generating
post-disaster remote sensing images can be effectively
addressed (R. Mao et al., 2023; Nori et al., 2023). This
method not only mitigates the impact of data scarcity
but also emphasizes the importanceof combininghuman
feedback with large pre-trained models when computa-
tional resources are limited.

4. Qualitative analysis

This section analyzes IML-based methods from the per-
spectives of comparisons among similar methods and

comparisons amongdifferentmethods,with Table 2 sum-
marizing the comparison.

4.1. Comparative analysis within similarmethods

4.1.1. Data-basedmethods
Data synthesis-based methods effectively generate miss-
ing modalities by learning the complex distribution and
feature representations of the data. This approach over-
comes the limitations of missing value imputation tech-
niques, such as zero imputation and mean imputation,
which fail to adequately consider the true data distribu-
tion (Cai et al., 2018; Pan et al., 2021; Shang et al., 2017;
Suo et al., 2019). However, generative models for mul-
timodal data often demand significant computational
resources and extended training times. Their generaliza-
tion capability may also be limited in noisy or heteroge-
neous datasets, potentially causing the generated data
to deviate from the original distribution (Q. Wang, Ding,
et al., 2018, 2020; R. Wu et al., 2020; C. Zhang et al., 2020).

Data grouping-basedmethods reduce noise introduc-
tion and information loss by partitioning data into dif-
ferent subsets for independent modelling, which simpli-
fies the challenge of incomplete multimodal alignment
(S. Qian & Wang, 2023). However, this approach faces
issues such as reduced sample sizes, increased model
complexity, and high resource consumption, particularly
when scaling in limited or high-dimensional data scenar-
ios. Additionally, theremaybe sample imbalances among
subsets, leading the model to favor groups with larger
amounts of data during training. Defining reasonable
grouping criteria is also highly challenging for complex
multimodal datasets, and it may overlook global feature
dependencies between modalities, resulting in insuffi-
cient information integration (J. Sun et al., 2024; Xiang
et al., 2013; Yuan et al., 2012).

4.1.2. Feature-basedmethods
First, cyclic translation-based methods can effectively
explore the relationships between modalities by main-
taining consistency among them (S. Qian & Wang, 2023).
This approach promotes the interaction and fusion of
features across different modalities. However, ensuring
consistency between modalities can pose challenges
when dealing with highly heterogeneous data. Further-
more, the results can be influenced by the selection of
source and target modalities. Specifically, the choice of
sourcemodality can significantly impact themodel’s per-
formance, as different source modalities provide vary-
ing information and features (P. Li et al., 2022; Pham
et al., 2019; Q. Wang, Ding, et al., 2020; R. Zhang
et al., 2023).
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Table 2. Comparison of IML-based methods.

Method
Category

Included
Subcategories

Included
Subcategories Core Concepts Advantages Disadvantages

Internal
Information-
based

Data-based Data Synthesis-based Infer missing modalities
using neural
network-based
generative models.

Complex distribution
learning and learning on
complete modalities for
downstream tasks.

High resource
consumption, and
limited generalization
capability.

Data Grouping-based Partition incomplete data
by data availability, and
train models separately
for each group.

Reducing noise
introduction, and
simplifying incomplete
multimodal alignment
challenges.

High resource
consumption, sample
imbalance among
subsets, difficulty in
defining reasonable
grouping criteria, and
potential neglect of
global feature
dependencies between
modalities.

Feature-based Cyclic
Translation-based

Ensure cyclical consistency
between modalities to
obtain a shared
multimodal latent
representation.

Promotion of interaction
and fusion between
different modality
features.

Variation in results due to
different source and
target modality
selections.

Feature
Disentanglement-
based

Construct a shared
multimodal latent
representation by
extracting
modality-invariant and
modality-specific
features.

Reduction of interference
between different
modalities.

High computational costs
and training difficulties
with high noise and
heterogeneous data.

Correlation-based Model relationships
between samples or
modalities to achieve a
shared multimodal latent
representation.

Task-specific model design
with enhanced
applicability.

High computational
complexity and
sensitivity to data
distribution
assumptions.

Attention-based Focus on key modalities or
features to compensate
for missing information
and obtain a shared
multimodal latent
representation.

Dynamically weighting
and focussing on key
modalities, and flexibly
handling missing
modalities.

Susceptibility to the quality
of pre-trained models.

External
Information-
based

Knowledge
Transfer-based

Knowledge
Distillation-based

Enable the student model
to acquire from the
complete multimodal
information of the
teacher model.

Reduction of student
model complexity and
self-distillation without
reliance on an
independent teacher
model.

Susceptibility to the quality
of teacher model.

Domain
Adaptation-based

Use complete modality
data (source domain) to
handle missing modality
data (target domain).

Reduction of labelling
requirements.

Susceptibility to data
distribution differences.

Graph Knowledge
Enhancement-
based

Adjacency-based Leverage similarity or
interaction relationships.

Easy to implement. Not suitable for complex
data.

Knowledge
Graph-based

Connect information via a
semantic network to help
machines understand
complex concepts and
relationships.

Enhanced context
understanding.

Complex construction and
low inference efficiency.

Human-in-the-
loop-based

Curriculum
Learning-based

Design the curriculum and
control training difficulty,
gradually increasing task
complexity.

Enhancing model
generalization ability.

Susceptibility to the
curriculum design.

Human
Fine-tuning-based

Allow users to supplement
information or adjust
model output.

Allowing real-time learning
and adjustment of the
model during practical
use.

Susceptibility of model
performance to feedback
quality.
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Second, feature disentanglement-based methods
effectively extract both modality-invariant and modality-
specific features. By employing independentdisentangle-
ment, these methods can reduce interference between
different modalities, enhancing the model’s capacity to
learn features unique to each modality. This approach
excels in facilitating the transfer of learned features to
new tasks, allowing for efficient adaptation and good
generalization. However, the processes of feature extrac-
tion and fusion can be complex, potentially increasing
computational costs and training difficulties, especially
when dealing with high noise or heterogeneous data (Y.
Chen et al., 2023; R. Liu et al., 2024; H. Wang et al., 2023; Q.
Yang et al., 2022).

Third, correlation-basedmethods emphasize the inter-
relationships amongmodalities, capturingpotential com-
plex relationships. These methods can design relevant
models according to the downstream task, thereby
enhancing the effectiveness and applicability of the task.
However, they tend to have high computational com-
plexity, particularly when processing large-scale data,
which may limit their real-time application. Furthermore,
their sensitivity to data distribution assumptions can
cause performance degradation when the input does
not align with the expected distribution (Y. Liu, Fan,
et al., 2021; F. Ma et al., 2021; Q. Wang, Lian, et al., 2020;
Zhou et al., 2021b).

Finally, attention-based methods dynamically assign
weights to effectively focus on key modalities. This
approach combines with prompt learning to flexibly
address missing modalities. However, its performance is
reliant on the quality of the pre-trained model. If the pre-
trained model performs poorly on specific modalities, it
may result in insufficient information extraction, and the
choice of prompts can also affect the model’s adaptabil-
ity to missing modalities (J. Chen & Zhang, 2020; X. Li
et al., 2023; Y. Zhan & Yang, 2023).

4.1.3. Knowledge transfer-basedmethods
Knowledge distillation-based methods effectively help
student models enhance performance on incomplete
multimodal datasets and improve their adaptability
on resource-constrained devices by extracting knowl-
edge from complex teacher models (Q. Wang, Zhan,
et al., 2020). However, the performance of the student
model is highly dependent on the quality of the teacher
model. It is assumed that the teacher model possesses
completemodality information, whichmay be difficult to
achieve in practical applications (Vadacchino et al., 2021).
Self-distillation does not rely on an independent teacher
model (Ge et al., 2021; M. Ji et al., 2021), but the training
processmay still facehigh computational costs, especially
when dealing with large-scale datasets.

Domain adaptation-based methods leverage relevant
source domain data to support target domain learn-
ing, providing new possibilities for addressing missing
modalities in the target domain (Kim et al., 2022). This
approach enhancesmodel adaptability and lowers anno-
tation requirements. However, the data from the source
and target domains may not necessarily follow the same
distribution, making it difficult to generalize to the com-
plex scenarios of modality missing in the target domain
(Ding et al., 2015).

4.1.4. Graph knowledge enhancement-based
methods
Adjacency-based methods are relatively easy to imple-
ment and exhibit adaptability in cases of sparse data (C.
Wang et al., 2016). However, they face challenges in cap-
turing complex relationships within the data, particularly
when interactions amongmodalities are intricateorwhen
latent factors influence the observed features (Malitesta
et al., 2024; Y. Yang et al., 2022; C. Zhang et al., 2022).

Knowledge graph-based methods utilize semantic
information to provide a structured representation of
information, clarifying relationships between modalities
(Budd et al., 2021). However, constructing high-quality
knowledge graphs requires extensivemanual annotation
anddomain expertise, leading to high costs and potential
delays in updates. Additionally, knowledge graph infer-
ence can be computationally intensive, particularly with
large-scale graphs. If the knowledge graph lacks relevant
entities or relationships, inference outcomes may also be
limited (Hogan et al., 2021; X. Lu et al., 2022; C. Peng
et al., 2023; X. Wu et al., 2022).

4.1.5. Human-in-the-loop-basedmethods
Curriculum learning-basedmethods effectively guide the
model’s learning process, reducing cognitive load dur-
ing training and enabling the model to perform robustly
on complex tasks. However, designing an appropriate
curriculum requires substantial domain knowledge and
experience, and a poorly designed curriculum can result
in suboptimal learning outcomes. Furthermore, an over-
reliance on curriculum design may limit the model’s
adaptability in handling unseen, complex situations,
potentially constraining its generalization capacity.

Human fine-tuning-based methods use a feedback
loop that allows users to provide real-time input when
model outputs are uncertain or modalities are missing.
This enables real-time learning and adjustment of the
model during practical use. Nevertheless, the method’s
effectiveness is reliant on the quality of user feedback,
and inaccuracies can lead to erroneous learning. Addi-
tionally, real-time feedback may burden users, especially
with large datasets.
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4.2. Comparative analysis between different
methods

4.2.1. Comparison of internal information-based and
external information-basedmethods
Themain advantage of internal information-basedmeth-
ods lies in efficiently utilizing internal data without need-
ing additional external data collection or integration. This
reliance on internal data also enhances data privacy,
thereby lowering privacy risks and ensuring compliance
with data protection regulations (J. Chen & Zhang, 2020;
Lee et al., 2023; Y. Zhan & Yang, 2023). Additionally, they
reduce the risk of data shift that arises from differing dis-
tributions or biases in external sources, leading to stable
model performance in inference. However, their limita-
tion is that if the dataset lacks sufficient information or
has uneven sample distributions, the model’s inference
capabilitiesmaybe restricted (Y. Liu, Fan, et al., 2021; F.Ma
et al., 2021; Q. Wang, Lian, et al., 2020; Zhou et al., 2021b).

In contrast, external information methods leverage
outside resources, such as contextual information, extra
datasets, domainknowledge, orhuman feedback.Access-
ing diverse information sources improves inter-modal
understanding and prediction accuracy, while human
feedback allows dynamic adjustments of models, boost-
ing adaptability (Kim et al., 2022). However, these meth-
ods face challenges in acquiring and integrating external
resources, adding complexity and time costs. Low-quality
information may introduce noise, and reliance on human
input can limit scalability, especially in large-scale appli-
cations (Malitesta et al., 2024; Q. Wang, Zhan, et al., 2020;
Y. Yang et al., 2022; C. Zhang et al., 2022).

4.2.2. Comparison of data-based and feature-based
methods
Data-based and feature-based methods pay attention
to different aspects when addressing the issue of miss-
ing modalities. Data-based methods emphasize modal-
ity completeness, typically by generating missing modal-
ities or grouping data to ensure downstream tasks
operate on fully complete modalities (Q. Wang, Ding,
et al., 2018, 2020). In contrast, feature-based methods
place greater emphasis on integrating existing modal-
ity information. Through feature extraction, integration,
and optimization, they leverage available modality fea-
tures for reasoning and decision-making to compensate
for missingmodalities (W. Sun et al., 2021; Q. Wang, Ding,
et al., 2020).

4.2.3. Comparison of knowledge transfer-based and
graph knowledge enhancement-basedmethods
Knowledge transfer-basedmethods rely directly on exist-
ing models or data sources (such as teacher models

or source domain data) to transfer knowledge. These
methods are effective for handling similar tasks, but
their performance is heavily dependent on the qual-
ity of the teacher model and the similarity between
the two domains (Ge et al., 2021). If the teacher or
source domainmodel is of poor quality, the effectiveness
of the transfer can be significantly compromised (Ding
et al., 2015). In contrast, graph knowledge enhancement-
based methods utilize mechanisms such as knowledge
reasoning and relational inference, emphasizing reason-
ing and integration from external knowledge bases (such
as knowledgegraphs) and structured information (Hogan
et al., 2021). These methods focus on multi-dimensional
information integration, enabling them to handle diverse
and complex data relationships (Hogan et al., 2021; X. Lu
et al., 2022; C. Peng et al., 2023; X. Wu et al., 2022).

4.2.4. Comparison of curriculum learning-based and
data grouping-basedmethods
Curriculum learning-based methods emphasize contin-
uous learning and dynamic feedback during training.
With a human-designed curriculum, the model receives
feedback on simple tasks and gradually advances to
complex ones. This approach allows real-time adjust-
ments to the learning strategy, enhancing adaptability
to modality gaps. It focuses on the growth of a single
model within a dynamic environment, characterized by
ongoing optimization throughout the learning process
(Graves et al., 2017; Pentina et al., 2015). In contrast, data
grouping-basedmethods prioritize independent training
across multiple models or data subsets instead of con-
tinuous learning in a single model. Training relies on
the distributional characteristics of existing data, without
direct human influence on the learning trajectory. This
method emphasizes collaboration among models, mak-
ing it suitable for handling static multimodal datasets. In
cases of significant feature variation, data grouping lever-
ages independent modelling to enhance robustness (J.
Sun et al., 2024; Xiang et al., 2013; Yuan et al., 2012).

5. Challenges and opportunities

The issue of modality missing has long been a criti-
cal topic in multimodal learning. Early studies primarily
focussed on methods such as data imputation and data
generation. Recently, with the widespread utilization of
neural networks, research in IML has made significant
progress with an increasing number of studies aiming to
tackle modality missing from various perspectives. How-
ever, in real-world open environments, the transition of
IML techniques from research to widespread application
still facesmany challenges. The following sections discuss
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the technical difficulties and future research directions in
this field.

5.1. Modality heterogeneity

In modality missing research, modality heterogeneity
poses a significant challenge, primarily due to variability
and inconsistency across different data sources or fea-
tures. First, each modality often follows its unique sta-
tistical distribution – for instance, image data tends to
exhibit high nonlinearity and high-dimensional features,
while text data involves linguistic diversity and complex
grammar structures (Zheng et al., 2023). These distribu-
tional differences can lead to model bias, affecting pre-
diction accuracy. Additionally, differences in measure-
ment scales, such as between numerical and categori-
cal data, can impact the effectiveness of conventional
data imputation methods (J. Chen & Zhang, 2020). Fea-
ture importance also varies across modalities, requiring
careful feature selection and weighting when handling
missing data. Complex inter-modal associations further
complicate processing, especially when one modality is
missing and others cannot fully compensate (W. Liang
et al., 2021).

5.2. Flexibly addressing randomand imbalance
missingness in both training and testing phase

The ultimate goal of IML is to effectively learn from
incomplete multimodal training sets while ensuring that
the model can dynamically and robustly handle new
instances with any missing modalities during the testing
phase. This means that the model needs to be flexibly
designed within a unified framework to handle various
modality-missing scenarios during both phases, ensuring
good performance under different modality conditions.
To overcome these limitations, future models for IML
should be designed to dynamically adjust the modalities
utilized during both phases. This involves implementing
adaptive strategies that enable the model to evaluate
the availability and relevance of each modality in real
time (Z. Liu et al., 2024; Y. Sun et al., 2024; Zeng, Zhou,
et al., 2022b).

5.3. Cross-domainmodality alignment and
mapping

Cross-domain modality alignment and mapping in IML
encounter significant challenges, especially when data
may be scarce. Models need to effectively complete and
generalize missing modalities, which require techniques
like self-supervised learning and few-shot learning to
extract useful cross-domain features (Xue et al., 2024; Y.

Zhang et al., 2022). Additionally, designing robust align-
ment mechanisms is crucial to avoid overfitting while
accurately mapping modality relationships across dif-
ferent domains. Conventional domain adaptation-based
methods struggle in scenarios where certain modalities
are entirelymissing (C. Yanget al., 2022). Therefore, devel-
oping domain-invariant feature alignment strategies is
essential to enable models to learn shared features in the
presence of modality missing.

5.4. Catastrophic forgetting in curriculum learning

Addressing the missing modality requires immediate
compensation strategies. It is also important to consider
catastrophic forgetting, which refers to the rapid forget-
ting of previously acquired information when new data is
introduced (Goodfellow et al., 2013). In dynamic environ-
ments, the periodic absence ofmodalities can disrupt the
learningprocess,making long-term learningandmemory
mechanisms crucial (Y. Zhan et al., 2024). These models
are required to learnmissing patterns fromhistorical data
and predict future absences, necessitating algorithms
with temporal dependencies and memory capabilities.
In deep learning frameworks, exploring new long-term
memory mechanisms is essential to mitigate knowledge
forgetting (L. Wang, X. Zhang, et al., 2024; Zhu et al.,
2023).

5.5. Accurate understanding of user feedback

In the interaction between users and large language
models, accurately inferring the emotions and tone in
user feedback, as well as avoiding misunderstandings,
poses a significant challenge in guiding themodel to gen-
erate missing modalities (Cao et al., 2023; Mei et al., 2011;
Wei et al., 2023). User feedback is influenced by cul-
tural backgrounds, personal experiences, and subjective
emotions, which can lead to vague or inconsistent emo-
tional signals. Therefore, the model needs to be sen-
sitive and flexible in capturing emotional changes and
tonal nuances (Axelsson & Skantze, 2022). Thus, users not
only act as feedback providers but also need to actively
guide the model by clearly expressing emotional inten-
tions and providing contextual information to enhance
communication effectiveness and improve the model’s
responsiveness.

5.6. Dynamic personalizationmodels in federated
learning

In federated learning, clients frequently encounter vary-
ing degrees of modality missing, which necessitates
personalized adjustments tailored to each client’s data
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distribution. Dynamic personalized models adjust model
parameters in response to missing modalities to main-
tain adaptability and accuracy in changing environ-
ments (Zheng et al., 2023). However, implementing
dynamic personalized models requires real-time updates
toaddressmodality changes andneedsprivacy-preserving
monitoring mechanisms, which place high demands on
communication efficiency. Future research should focus
on developing dynamic feedback mechanisms, adap-
tive optimization algorithms, and cross-modal learning
frameworks to personalize the approach to tackle modal-
ity missing (S. Yu et al., 2024).

5.7. Application to awide range of intelligent tasks

Existing research on IML has primarily focussed on tasks
such as medical image segmentation and generation, as
well as sentiment analysis (X. Chen et al., 2024; Z. Lu
& Guo, 2023). However, in practical applications, other
intelligent tasks – such as fault diagnosis, autonomous
driving, environmentalmonitoring, and industrial inspec-
tion – also require the capability to handle missing
modality issues (S. Ma & Li, 2023; Z. Wu et al., 2024;
Zhong et al., 2023). When designing IML algorithms for
these tasks, it is essential to not only draw on exist-
ing approaches but also to incorporate domain-specific
knowledge to develop models and algorithms with
strong relevance (Xue et al., 2024).

6. Conclusion

The challenge of IML is how to effectively learn from
incomplete multimodal training sets and ensure that
the model can dynamically and robustly handle new
instances with arbitrary missing modalities during the
testing phase. This paper first reviews the development
of multimodal learning, clarifies the challenge of IML, and
defines the issue of modality missing. Next, it provides
a review of the latest advancements in IML from vari-
ous technical perspectives, assessing the advantages and
disadvantages of different methods. A qualitative anal-
ysis of existing methods is conducted from two angles:
comparative analysis within similar methods and com-
parative analysis between different methods, along with
suggestions for future research directions. Currently, pre-
liminary explorations in IML have emerged, with further
research and development potential in fields such as fed-
erated learning, class incremental learning, and transfer
learning. Moreover, future IML should target more down-
stream tasks, including fault diagnosis, autonomous driv-
ing, environmentalmonitoring, and industrial inspection.
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