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1. Introduction

In the Industry 4.0 era, intelligent manufacturing drives 
global transformation, with 3D printing (or additive 
manufacturing) being one of the core technologies. Fused 
Deposition Modeling (FDM) is a widely used 3D printing 
technology due to its design flexibility, efficiency, and cost-
effectiveness [1][2]. FDM produces objects through a layer-
by-layer accumulation technique using thermoplastic 
filaments such as PLA, ABS, and PEI [3][4]. Despite its 
advantages, FDM faces challenges in defect control, 
including nozzle clogging, heating issues, cooling, vibrations, 
and environmental changes, which affect print quality and 
process stability [5][6]. Current 3D printing technology, 
although advanced, still lacks precise quality control and 
remote operation capabilities [7]. 
This research introduces an IoT-based intelligent cloud 
monitoring system for multiple 3D printers, enabling remote 
monitoring and optimization through real-time data collection 
and analysis on a cloud platform. The system's innovative 
capability lies in its provision of real-time data and video 
surveillance, the processing and analysis of this data through 
a combination of edge and cloud computing methodologies, 
the presentation of salient information via a tailored visual 
interface, and the optimization of both the printing process 
and print quality. Users can monitor and adjust printing 
parameters remotely, achieving higher-quality outputs. 
Experiments and the Taguchi method are used to explore the 

relationship between process parameters and surface 
roughness and to optimize the printing process and quality. 
The rest of this paper is organized as follows: Section 2 
reviews related work on monitoring 3D printers. Section 3 
details the design of the intelligent cloud monitoring system 
and its components. Section 4 describes the experimental 
design. Section 5 discusses the experimental results. Section 
6 concludes the paper and provides an outlook for future 
work. 

2. Related Work

Existing research on 3D printer quality monitoring focuses on 
visual observation and physical sensing [8][9]. For instance, 
Yang et al. used acoustic emission monitoring for filament 
breakage detection [10], while Kousiatza et al. monitored 
strain and temperature using fiber Bragg grating sensors [11]. 
Kakade et al. addressed material flow issues with rotary 
encoders and load cells [12], and Kwon et al. analyzed the 
impact of humidity on PLA properties [13]. 

Visual surveillance methods are also popular. Sánchez et al. 
used Raspberry Pi for local video monitoring [14], and Liu et 
al. developed a remote video monitoring system [15]. 
Nuchitprasitchai and others used webcams for comprehensive 
local monitoring [16]. However, these methods often lack 
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Abstract 

In the Industry 4.0 era, 3D printing has become a cornerstone of intelligent manufacturing, necessitating precise real-time 
monitoring and control to ensure efficiency and quality. This research developed an IoT-based cloud monitoring system 
for 3D printers to enhance remote monitoring and control capabilities. The system collects real-time sensor data on 
parameters such as temperature and humidity, along with live video feeds. These multimodal data are pre-processed at 
the edge and further analyzed in the cloud. Users can monitor the 3D printing status via a custom visual interface and 
adjust parameters based on data analysis to optimize printing quality. To evaluate the system's effectiveness, experiments 
were conducted to explore the relationship between process parameters and surface roughness and to optimize the printing 
process and quality using the Taguchi design of experiments. Five factors were considered: nozzle temperature, bed 
temperature, printing speed, layer height, and ambient temperature. The significant printing process factors were identified, 
and optimal factor levels were determined to enhance print quality. The experimental results demonstrated that the system 
can significantly improve the quality and response speed of 3D printing process monitoring. Additionally, it enhances the 
reliability and user experience of 3D printing.  
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comprehensive control designs and rely on either physical 
sensing or visual monitoring, which is not entirely effective. 
 
Recent advancements have made 3D printers more accessible, 
with the industry experiencing significant growth [17]. 
Quality monitoring systems are still primarily designed for 
individual printers, which is insufficient for large-scale 
networks of 3D printers. To address this, cloud-based remote 
monitoring systems for multiple 3D printers are essential. 
 
IoT technology connects physical devices to the Internet, 
enabling intelligent monitoring and management [18]. It has 
been progressively integrated into 3D printing to enhance 
monitoring efficiency. Kakade et al. developed an IoT-based 
real-time monitoring system using Raspberry Pi and sensors 
[19], while Kazhymurat et al. used embedded sensors and 
data visualization tools [20]. Our study integrates additional 
sensors, IoT, and cloud computing to create a smart remote 
quality monitoring and control system, advancing additive 
manufacturing towards smart manufacturing [21][22]. 
 
3. System Design 
 
3.1 Overall System Design 
Traditional 3D printing starts with creating a digital model 
using CAD, which is then converted into G-code files 
through slicing software for printing. Users typically need to 
load these files locally into the 3D printer to start the printing 
process. Without a remote monitoring system, users must be 
on-site or within a local network to monitor the printing, 
limiting mobility and wasting time and resources. 
 

 
Figure 1: Structural Diagram of a Single 3D Printer Cloud 
Monitoring System 
 
To address these issues, we integrate IoT with traditional 3D 
printing technology, developing a system that includes multi-
parameter monitoring, video and parameter data fusion, and a 
visual interface for local and remote monitoring. The system, 
as shown in Figure 1, is divided into four parts: 
 
Environmental Parameter Monitoring: An Arduino-
controlled setup collects environmental data using multiple 
sensors. The data is pre-processed and sent to the cloud for 

streaming processing and visualization. The system also 
includes edge loop feedback control for dynamic adjustment 
of environmental parameters. 
 
Video Monitoring and 3D Printer Control: A Raspberry Pi 
with a webcam facilitates real-time video monitoring. The 
processed video stream is uploaded to the cloud and 
displayed on a visualization interface. The Raspberry Pi also 
hosts a compatible operating system to allow remote control 
of the 3D printer (based on the open-source OctPrint module). 
 
User Interface: A cloud-deployed, user-friendly 
visualization interface enables bidirectional communication 
with the cloud. It features multiple sub-interfaces and 
navigation pages, allowing users to control the printer and 
adjust environmental parameters remotely. 
 
Cloud: The cloud processes video and sensor data uploaded 
by the Raspberry Pi and Arduino, displaying it in real-time 
on the visualization interface. It also receives control 
commands from the interface to execute instructions via the 
corresponding microprocessors. 
 
Given the increasing demand for 3D printed products, using a 
single 3D printer is often insufficient. Therefore, we extend 
the system to support remote control and monitoring of 
multiple 3D printers through cloud technology, as shown in 
Figure 2. 
 

 
Figure 2: Structural Diagram of a Cloud Monitoring Network 
System for Multiple 3D Printers 
 
This setup allows users to control multiple monitoring 
systems via the cloud. To address challenges such as network 
latency and bandwidth limitations, we incorporate edge 
computing, which processes data locally before uploading it 
to the cloud. This approach reduces reliance on the cloud, 
decreases latency, enhances data security, saves bandwidth 
and energy, and improves user experience. 
 
3.2 Monitoring of Environmental Parameters 
Environmental factors like temperature and humidity 
significantly impact 3D printing quality. Monitoring these 
parameters helps optimize printing conditions. We use the 
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Arduino MKR WIFI 1010 as the main controller, with an 
Arduino IoT Carrier expansion board integrating various 
sensors, as shown in Figure 3. 
 

 
Figure 3: Arduino IoT Carrier Board Mounted Sensors 
 
The monitoring process involves pre-processing sensor data 
on the Arduino, adjusting environmental conditions if 
necessary, and sending data to the cloud via MQTT for 
further processing and visualization.  The interface shows 
real-time environmental data in line charts and dynamic 
displays, making it user-friendly and intuitive. 
 
3.3 3D Printer Monitoring and Controlling 
Relying solely on sensors is not intuitive for users to judge 
the 3D printing process. Therefore, we set up a video 
monitoring section using a Raspberry Pi 400 and a USB 
camera. This setup allows for real-time video monitoring, 
adjustable for resolution and frame rate based on needs and 
bandwidth. The Creality Ender-3 printer is controlled locally 
by connecting it to the Pi, which hosts a control system 
adapted for the 3D printer, as illustrated in Figure 4.  This 
system establishes a secure bidirectional communication link 
with the cloud, transmitting video and environmental data for 
real-time display and enabling remote printer control. 
 
 

 
Figure 4: Structural Diagram of the 3D Printer Monitoring 
System 
 
3.4 Visual User Interface 
A comprehensive visual user interface presents monitoring 
data intuitively, allowing users to understand and control the 
3D printing process easily. Our cloud-based web interface is 
accessible anywhere with Internet access and includes a 
secure login. The main interface displays sensor data in real-
time graphs and numerical values. The 3D printer control 

interface is accessible via a navigation pop-up window to 
prevent accidental navigation, as shown in Figure 5. 
 

 
Figure 5: Main Interface and Navigation Pop-up Window 
 
The cloud control interface for 3D printers features preview 
windows for multiple printers and a multifunctional control 
panel (based on OctoEverywhere), as shown in Figure 6. 
 

 
Figure 6: Cloud Control Interface for 3D Printers 
 
The local control main interface (based on OctoPrint) 
includes areas for manipulating G-code files, monitoring and 
controlling print tasks, and displaying additional printing 
information, as detailed in Figure 7. 
 
3.5 Cloud 
Figure 8 outlines a three-layered system architecture 
comprising the Local, Cloud, and Application Layers. The 
Local Layer leverages Arduino boards for environmental 
monitoring and 3D printer control, using MQTT protocols 
and encrypted channels for secure data transmission. The 
Cloud Layer constitutes the central component of the system, 
encompassing stream analytics, data storage, a web 
application, an IoT Hub facilitating seamless device-to-cloud 
interactions, and a proxy server to bolster security measures. 
In addition, machine learning-based modules including fault 
prediction, auto-adjustment and quality optimization are 
deployed in this layer, significantly boosting system 
reliability and operational efficiency. The Application layer 
has a cloud-hosted interface that can visualize all data results. 
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Figure 7: Local Control Main Interface and Sub-interfaces of the 3D Printer

 
Figure 8: System Layer Diagram 
 
3.6 Alarms and Notifications 
The system features a local alarm, activated by a buzzer, and 
employs algorithms for environmental monitoring to detect 
anomalies. Upon detection, it displays notifications on the 
user interface and allows users to customize how they receive 
alerts, including options for emails and text messages. This 
customization aids in keeping users informed about 
environmental issues and the status of monitoring tasks. 
 
4. Experiments 
 
The developed system facilitates continuous monitoring, data 
storage, and dynamic control, enabling an in-depth study of 
the system's capacity to optimize 3D printing processes. To 
evaluate the system's effectiveness, we conducted 
experiments to explore the relationship between process 
parameters and surface roughness, and optimize the printing 
process and quality using the Taguchi design of experiment.  
 
4.1 Specimen Preparation  
In the experiments, the test samples were designed as 
rectangular PLA prisms with dimensions of 30 × 30 × 10 mm. 
The model's infill density was set at 20%, with a cubic infill 
structure. The test sample model and the actual test sample 
are shown in Figure 9. 

 
Figure 9 Test sample model and Test sample entity 
 
In the experiments, a surface roughness tester was used to 
measure the roughness of the top and bottom surfaces of the 
test samples. On each surface, the roughness at 5 different 
positions was measured, as shown in Figure 10. The surface 
average roughness at these positions is represented as Ra1, 
Ra2, Ra3, Ra4 and Ra5.  
 

 
Figure 10 Test Sample Measurement Position (Top View) 
 
4.2 Design of Experiments 
This study utilized the Taguchi method for experimental 
design, focusing on five factors: ambient temperature, nozzle 
temperature, bed temperature, printing speed, and layer 
height. The ambient temperature is set at two levels, whereas 
the other factors are at three levels. The selected values for 
these factors are aligned with the optimal parameter range for 
PLA material. An L18 orthogonal array was used to plan the 
experimental runs, as shown in Tables 1 and 2. 
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Table 1 Experimental factor parameters and their levels 

Factor Code 
Level 

1 2 3 
Environmental 
Temperature A 19℃ 29℃ / 

Nozzle 
Temperature B 190℃ 208℃ 225℃ 

Print bed 
Temperature C 25℃ 48℃ 70℃ 

Print Speed D 30 mm/s 60 mm/s 90 mm/s 
Layer Height E 0.12 mm 0.24 mm 0.36 mm 

 
4.3 Measurement of surface roughness 
The surface roughness of the specimens was measured using 
a MarSurf PS 10 surface roughness tester from Mahr. The 
probe was moved across the surface of each specimen to 
obtain the roughness Ra value, which was displayed on the 
device's screen and recorded for analysis. A leveled square 
iron block served as a support platform to ensure the accurate 
positioning of the specimens during measurement. 
 
Table 2 L18 Experimental Factorial Orthogonal Array 

Order 
Control factors 

A(℃) B (℃) C(℃) D(mm/s) E(mm) 
1 19 190 25 30 0.12 
2 19 190 48 60 0.24 
3 19 190 70 90 0.36 
4 19 208 25 30 0.24 
5 19 208 48 60 0.36 
6 19 208 70 90 0.12 
7 19 225 25 60 0.12 
8 19 225 48 90 0.24 
9 19 225 70 30 0.36 
10 29 190 25 90 0.36 
11 29 190 48 30 0.12 
12 29 190 70 60 0.24 
13 29 208 25 60 0.36 
14 29 208 48 90 0.12 
15 29 208 70 30 0.24 
16 29 225 25 90 0.24 
17 29 225 48 30 0.36 
18 29 225 70 60 0.12 

 
5. Results and discussions 
 
5.1 Measurement results 
Table 3 presents the surface roughness measurements for the 
top surfaces of the test samples, indicating variability in the 
outcomes. Experiment run 11 exhibited the highest average 
surface roughness at 4.1996 μm, suggesting a coarser surface, 
while Experiment run 8 had the lowest at 1.4522 μm, 
indicative of a smoother surface. These results highlight the 
impact of the varied printing parameters on surface roughness. 
 
 

Table 3 Top surface roughness measurement results  
Sample Ra1 Ra2 Ra3 Ra4  Ra5 Average 

1 3.196 3.560 1.577 3.217 3.494 3.0088 
2 3.744 4.059 2.700 2.467 2.812 3.1564 
3 2.305 3.826 3.950 2.687 3.119 3.1774 
4 1.091 1.552 2.399 3.599 1.561 2.0404 
5 2.527 1.912 2.611 2.808 1.802 2.3320 
6 3.228 3.180 3.922 3.219 3.047 3.3192 
7 2.978 2.572 3.096 3.044 2.258 2.7896 
8 1.879 2.012 1.043 0.781 1.546 1.4522 
9 2.440 2.096 1.888 1.818 2.638 2.1760 

10 2.752 3.868 2.684 2.901 2.933 3.0276 
11 4.078 3.863 3.488 4.242 5.327 4.1996 
12 4.091 3.286 3.409 3.480 3.954 3.6440 
13 2.980 2.504 2.816 2.727 2.621 2.7296 
14 2.634 3.424 3.645 3.295 3.221 3.2438 
15 3.510 3.879 2.643 3.971 4.065 3.6136 
16 2.256 2.799 3.411 2.934 3.151 2.9102 
17 2.821 3.178 1.690 2.518 3.488 2.7390 
18 2.792 4.084 3.608 3.296 3.963 3.5486 

Unit: μm 

Table 4 reports the surface roughness measurements for the 
bottom surfaces of the test samples, revealing significant 
variations. The highest average roughness was observed in 
Run 12 at 5.1298 μm, whereas Run 16 exhibited the lowest at 
3.3282 μm.  
  
Table 4 Bottom surface roughness measurement results 
Sample Ra1 Ra2 Ra3 Ra4 Ra5 Average 

1 4.986 4.174 4.030 3.480 4.258 4.1856 
2 4.165 3.826 4.436 4.927 4.344 4.3396 
3 4.396 4.590 4.455 3.795 4.974 4.4420 
4 2.769 3.082 3.900 4.157 4.162 3.6140 
5 4.389 3.228 4.175 3.753 4.545 4.0180 
6 3.227 4.128 3.996 3.910 4.377 3.9276 
7 3.352 3.034 4.347 3.237 3.693 3.5326 
8 3.431 3.179 4.010 3.733 3.403 3.5512 
9 2.747 3.197 4.448 4.293 3.288 3.5946 

10 4.742 3.435 3.062 3.956 3.888 3.8166 
11 4.638 3.970 5.019 4.521 4.395 4.5086 
12 5.188 5.249 4.050 5.797 5.365 5.1298 
13 5.264 4.039 4.558 3.890 5.301 4.6104 
14 3.895 4.403 4.601 4.770 4.385 4.4108 
15 4.292 4.443 4.866 3.431 3.741 4.1546 
16 3.819 3.790 3.380 3.291 2.361 3.3282 
17 3.367 3.635 3.768 4.223 2.432 3.4850 
18 4.583 5.021 4.818 4.289 3.254 4.3930 

Unit: μm 
5.2 Optimization of process parameters 
Table 5 illustrates the analysis of means for top surface 
roughness of the printed samples, using Delta and Rank to 
evaluate the influence of different parameters. The data 
indicates that nozzle temperature (Factor B), with the highest 
Delta value of 0.766, has the most significant impact on 
surface roughness, followed by ambient temperature (Factor 
A) and layer height (Factor E). These factors are ranked 
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accordingly, emphasizing their importance in the 
optimization of 3D printing settings. 
 
Table 5 Means Response Table for Top Surface Roughness 

Level A B C D E 
1 2.606 3.369 2.751 2.963 3.352 
2 3.295 2.880 2.854 3.033 2.803 
3 / 2.603 3.246 2.855 2.697 

Delta 0.689 0.766 0.495 0.178 0.655 
Rank 2 1 4 5 3 

 
Figure 11 and Table 5 together inform the optimal printing 
parameters for reducing surface roughness on the top surfaces 
of printed samples. The best results were observed at an 
ambient temperature of 19°C, nozzle temperature of 225°C, 
print bed temperature of 25°C, print speed of 90 mm/s, and 
layer height of 0.36 mm. Notably, the nozzle temperature 
demonstrates a pronounced impact on surface roughness, as 
evidenced by its significant fluctuations in the main effects 
plot. 

 
Figure 11 Main effects plot of Means for Top Surface 
Roughness 
 
Table 6 summarizes the analysis of means for bottom surface 
roughness of printed samples. Nozzle temperature has the 
most significant impact on roughness (Delta=0.756), 
followed by print bed temperature and print speed.  
 
Table 6 Means Response Table for Bottom Surface 
Roughness 

Level A B C D E 
1 3.912 4.404 3.848 3.924 4.160 
2 4.204 4.123 4.052 4.337 4.020 
3  3.647 4.274 3.913 3.994 

Delta 0.292 0.756 0.426 0.425 0.165 
Rank 4 1 2 3 5 

 
Figure 12 and Table 6 together determine the optimal 
parameters for minimizing bottom surface roughness in 3D 
printing. The optimal settings are an ambient temperature of 
19°C, nozzle temperature of 225°C, print bed temperature of 
25°C, printing speed of 90 mm/s, and layer height of 0.36 
mm. The results highlight the pronounced effect of nozzle 
temperature on surface roughness. 

 
Figure 12 Main effects plot of Means for Bottom Surface 
Roughness 
 
5.3 Analysis of variance (ANOVA) 
According to the ANOVA presented in Table 7, the relative 
impact of various factors on the surface roughness of 3D 
printed samples can be determined.  
 
The ANOVA results for top surface roughness indicate that 
ambient temperature has the most significant effect, 
contributing 29.13% to the variance, while printing speed has 
the least impact at only 1.32%. Ambient temperature, nozzle 
temperature, and layer height are statistically significant 
factors (p < 0.05) affecting top surface roughness.  
 
The significant influence of ambient temperature is likely due 
to its effect on the cooling rate of the extruded material. To 
maintain a stable ambient temperature of 19°C, windows and 
doors were opened, leading to potential air drafts or breezes, 
which could have introduced variability in the cooling rate, 
thereby affecting surface roughness. 
 
Additionally, within a certain range, an increase in nozzle 
temperature results in a decrease in surface roughness. This is 
because higher nozzle temperatures make the extruded PLA 
material softer and easier to shape, resulting in smoother 
surfaces. Conversely, lower nozzle temperatures reduce 
printing precision, thereby increasing roughness. 
 
Table 7 Analysis of variance (ANOVA) for the Mean of Top 
Surface Roughness 

Source DF Seq SS Contribution(%) Adj MS F P 
A 1 2.13831 29.13 2.13831 17.17 0.003 
B 2 1.80691 24.62 0.90346 7.26 0.016 
C 2 0.82037 11.18 0.41018 3.29 0.090 
D 2 0.09677 1.32 0.04838 0.39 0.690 
E 2 1.48196 20.19 0.74098 5.95 0.026 

Residual 
Error 8 0.99611 13.57 0.12451   

Total 17 7.34042     
 
Table 8 shows the ANOVA results for bottom surface 
roughness, highlighting nozzle temperature as the 
predominant factor, contributing 43.53% to roughness 
variability. Notably, ambient temperature and print speed are 
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also significant factors. In contrast, layer height contributes 
minimally, at only 2.36%. 
 
Table 8 Analysis of variance (ANOVA) for the Mean of 
Bottom Surface Roughness 

Source DF Seq SS Contribution(%) Adj MS F P 
A 1 0.38480 9.55 0.38480 5.61 0.045 
B 2 1.75345 43.53 0.87673 12.78 0.003 
C 2 0.54395 13.50 0.27198 3.97 0.064 
D 2 0.70261 17.44 0.35130 5.12 0.037 
E 2 0.09516 2.36 0.04758 0.69 0.527 

Residual 
Error 

8 0.54861 13.62 0.06858     

Total 17 4.02858         
 
The analysis underscores that due to the bottom surface's 
proximity to the heated print bed, ambient temperature's 
influence is mitigated. This study confirms the overriding 
impact of nozzle temperature on the bottom surface's quality, 
emphasizing its importance in optimizing 3D print quality. 
 
5.4 Linear regression 
In this study, linear regression analysis quantifies the impact 
of process parameters on surface roughness, with each 
regression model including a 95% confidence interval. The 
significance threshold for these models is set at p < 0.05. The 
regression equations are: 
 
TopSurfaceRoughness = 6.09 + 0.0689 × Environmental 
Temperature − 0.02195×Nozzle Temperature + 0.01096 × 
Print Bed Temperature − 0.00180 × Print Speed − 2.728 × 
Layer Height        (1) 
 
BottomSurfaceRoughness = 7.56 + 0.0292 × Environmental 
Temperature − 0.02155 × Nozzle Temperature + 0.00946 × 
Print Bed Temperature − 0.00018 × Print Speed − 0.689 × 
Layer Height       (2) 
 
Table 9 provides the R-squared values, indicating the 
proportion of variance each model explains for the respective 
surface roughness. The top surface model has an R² of 
81.19%, demonstrating a strong correlation between the 
parameters and the surface roughness, hence showing high 
predictive power. For the bottom surface, the R² of 67.45% 
suggests that while the relationship is significant, and it 
captures a lower proportion of the variance compared to the 
top surface. 
 
Residual plots, as illustrated in Figure 13, are essential for 
assessing the fit of regression models. The normal probability 
plots show residuals closely aligning with a straight line, 
indicative of normal distribution. This observation is 
supported by the histograms, which exhibit symmetry around 

zero, suggesting the normality of the residuals. Additionally, 
the scatter plots of residuals versus fitted values and versus 
order show randomness without discernible patterns or trends, 
confirming constant variance and unbiased data collection. 
These plots demonstrate that the models adequately capture 
the dynamics of the process. 
 
Table 9 Model Summary 

 S R-sq R-sq 
(adj) 

R-sq 
(pred) 

Top 
Surface 0.339217 81.19% 73.35% 59.14% 

Bottom 
Surface 0.330562 67.45% 53.89% 25.93% 

 
The optimum process parameters obtained in the Taguchi 
experimental design can be implemented in the remote 
control of the 3D printers to optimize the print quality, which 
can be also predicted using the regression models. 
 

 
a 

 
b 

Figure 13 (a) Residual plots for top surface roughness (b) 
Residual plots for top surface roughness. 
 
6. Conclusions 
 
In In the era of Industry 4.0, 3D printing has become pivotal 
to intelligent manufacturing. This study introduces an IoT-
based smart 3D printer cloud monitoring system to address 
the challenges of limited monitoring and inadequate remote 
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quality control inherent in traditional 3D printing. The system 
integrates environmental parameter collection, real-time 
video, edge pre-processing, and cloud-based analysis, thereby 
enhancing the timeliness and accuracy of 3D printing 
monitoring and improving print quality. 
A key innovation of the system is its ability to process multi-
source heterogeneous data and effectively coordinate edge 
and cloud computing. It features a real-time, user-friendly 
monitoring interface and a custom-designed visual UI that 
simplifies operations, allowing for easy remote adjustments 
and parameter optimization. The effectiveness of this system 
in improving 3D printing results was validated using a print 
quality optimization experiment based on the Taguchi 
method. 
Experiments investigated the process parameters through the 
cloud monitoring system to study their impact on surface 
roughness. The system enabled continuous remote 
monitoring, cloud data storage and analysis, and dynamic 
control, markedly enhancing the quality and response speed 
of the 3D printing process. The user-friendly interface and 
real-time data analysis significantly improved reliability and 
user experience, allowing for precise adjustments based on 
immediate feedback and comprehensive oversight of printing 
operations, thus optimizing outcomes and operational 
efficiency. 
However, the study acknowledges limitations, such as its 
dependency on specific environmental parameters and 
material choices, and limited verification across a broader 
range of conditions. Future research will focus on 
augmenting data analysis through the integration of machine 
learning and artificial intelligence to enable fault prediction, 
automatic adjustment, and quality optimization. Additionally, 
efforts will be directed toward expanding the system's 
versatility to accommodate a range of materials and 
parameters, enhancing system security and stability to ensure 
robust performance in intricate industrial settings, and 
refining the user interface for greater intuitiveness and 
expedited response times. 
In conclusion, this study presents an innovative approach to 
leveraging 3D printing technology in intelligent 
manufacturing, advancing remote real-time quality 
monitoring and control capabilities with wide applications. 
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