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Abstract—Multivariate time series forecasting (MTSF) is of
significant importance in the enhancement and optimization of
real-world applications. The task of MTSF poses substantial
challenges due to the unpredictability of temporal patterns and
the complexity in modeling the influence of all non-predictive
sequences on the target sequence at different time stages. Recent
research has demonstrated the potential held by the Transformer
algorithm to augment long-term forecasting capability. However,
certain obstacles considerably obstruct the direct application of
the Transformer to MTSF, such as an unsuitable embedding
method, inadequate consideration of inter-variable associations,
and the intrinsic restriction of the point-wise objective function.
To overcome these challenges, the Fusionformer, an effective
Transformer-based forecasting model, is put forth in this paper,
which is characterized by three distinctive features: (1) the
introduction of a segment-wise sequence embedding method
allows for the conversion of the input sequence into multiple
informative segments; (2) the implementation of a fusion at-
tention mechanism, designed to capture predominant features
across the time dimension and to model intricate inter-variable
dependencies; and (3) the development of an adversarial learning
method, equipped with an auxiliary discriminator, facilitates the
learning of data distribution, instead of progressively correcting
the prediction error, thus substantially enhancing the MTSF’s
accuracy. Furthermore, a Fusionformer-based risk assessment
(FRA) method is structured for open-pit mine slope failure
early warning issue (SFEW), which aims to prevent potential
disasters by accurately predicting future slope movement trends
and assessing the probabilities of landslide occurrences. Experi-
mental outcomes validate that Fusionformer outperforms existing
forecasting methods, while the FRA framework provides valuable
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insights and practical guidance for real-world applications.
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I. I NTRODUCTION

Multivariate time series (MTS) data, characterized by mul-
tiple dimensions with each dimension representing a specific
univariate time series, is widely observed in diverse fields,
such as medicine, finance, and industrial applications [4], [13],
[22], [42]. MTS forecasting (MTSF), a discipline seeking to
predict the future values of MTS based on historical records,
has been accorded significant importance in various sectors,
including electricity consumption, traffic prediction, and the
prediction of remaining useful life [9], [16]. In addition to
the aforementioned applications where predicted values are
directly utilized, MTSF also aids in decision-making processes
for various downstream tasks. Examples include monitoring
the stability of open-pit mine slopes and industrial fault
surveillance [8], [47]. Consequently, MTSF holds a critical
position in the automation and optimization of intelligent real-
world scenarios.

Accomplishing an accurate MTSF poses a substantial chal-
lenge, as it requires the joint modeling of both intra-variable
dependencies (i.e., correlations between different time points
within a single variable) and inter-variable dependencies (i.e.,
correlations between sequences belonging to different vari-
ables). In recent years, the swift progression of deep learning
has led to the emergence of numerous neural network models,
which have empirically demonstrated superior performance in
MTSF [14], [21], [26], [27], [32]. One group of work treats the
MTS input as a vector sequence and employs convolutional
neural network (CNN)/recurrent neural network (RNN) and
their variants to capture temporal dependencies [3], [17], [54].
For instance, a temporal convolutional network (TCN) has
been proposed in [3] to capture long-range temporal patterns
by integrating causal convolutions, dilated convolutions, and
skip-connections. In [17], a multiple nested long short-term
memory (LSTM) network has been developed to infer inter-
relationships between different dimensions and highly volatile
pattern changes. A different strand of work, known as graph
neural network (GNN), perceives each variable in the MTS as
a node in the graph, with dependencies between variables rep-
resented as edges. As an example, the Transformer algorithm
with edge-enhanced dynamic graphs has been used to capture
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temporal associations and dimensional dependencies in [28].
In [4], a multi-scale adaptive GNN has been proposed to learn
the multi-scale temporal patterns of the MTS.

Despite deep learning having established itself as the state-
of-the-art (SOTA) method for MTSF due to its powerful
representational capability, two critically important issues have
not been adequately addressed yet. Firstly, existing studies
[38], [40] do not consider intra- and inter-variable associations
separately (e.g. using convolutional networks to capture depen-
dencies directly from multivariate time-series matrices), which
may bias the models toward learning association patterns
among different variables from an ambiguous perspective. In
reality, different variables within the MTS embody various
influential factors of the problem under study, with each
possessing a unique data distribution and temporal pattern.
In real-world scenarios, each sequence type is generally influ-
enced by multiple relevant variables, each to varying degrees.
For instance, in open-pit mining operations, the incidence of
landslides depends not solely on actual orebody movement,
but also on the combined effect of diverse variables such as
temperature and rainfall. As such, it becomes crucial to focus
on modeling the association weights among different variables
for accurate prediction, a perspective largely overlooked in
prior works.

Another issue with existing methods is their typical opti-
mization of a specific statistical metric (such as mean squared
error (MSE), mean absolute error (MAE), or likelihood loss)
to minimize the discrepancy between the ground truth values
and the predicted values on a point-by-point basis. However,
such point-wise objectives find it challenging to model the
stochastic behavior inherent in real-world time series, leading
to unreliable trends in predicted future data [45]. For instance,
the stability of a slope in an open-pit mine can be influ-
enced simultaneously by changes in weather and geological
conditions, without a clear periodic pattern. Moreover, MSE
strives to achieve a global optimum by optimizing the mean
of all possible outcomes of the model, which could potentially
result in the loss of fine-grained features of the time series.
Therefore, an effective MTSF model should be capable of
learning highly variable temporal patterns within the MTS.

Motivated by the discussions above, this paper presents
the Fusionformer, an adversarial learning-based Transformer
equipped with a Fusion Attention Mechanism (FAM). First-
ly, a Segment-Wise Sequence Embedding (SWSE) method
is introduced, wherein the input sequences are partitioned
into multiple segments and embedded into a two-dimensional
vector array, corresponding to time and factor. Subsequently,
the FAM, which comprises a Segment-Wise Intra-Variable
Attention (SWAA) and Segment-Wise Inter-Variable Atten-
tion (SWEA), is proposed to amalgamate information about
temporal dependencies within a single variable and the in-
teraction effects among different variables. Following this, an
auxiliary discriminator is introduced to learn comprehensive
representations of the historical sequences and to shape the
distributions of the predicted values. The adversarial learn-
ing process between the discriminator and the Fusionformer
nudges the predictions towards regions of the solution space
that have a high probability of containing realistic features,

which helps to overcome the weaknesses of the point-wise
single objective function and to enhance the inference accuracy
at the sequence level. Equipped with adversarial learning and
FAM, the Fusionformer is capable of learning valid temporal
patterns and association weights from historical time series,
thereby accomplishing an accurate MTSF.

Slope failure accidents are among the most common hazards
in open-pit mining operations, leading to significant threats to
human lives and property [7], [30], [58]. Consequently, it is
vital to provide reliable early warnings of progressive slope
movements for potentially unstable mines, offering crucial
response time for each hazard event. Early warning issue of
slope failure (SFEW) is a challenging but pivotal aspect of
intelligent mining, with the aim of preventing disasters by pre-
dicting future slope movement trends and assessing landslide
occurrence probabilities. With the rapid advancements in ar-
tificial intelligence, deep neural network-based MTSF models
have emerged as promising tools for a range of prediction
tasks. This has inspired us to propose the Fusionformer-based
risk assessment (FRA) method to enhance the accuracy of
SFEW.

The overarching aim of SFEW is to guarantee the safety
and efficiency of mining operations, which involves key steps
such as slope state prediction and failure hazard assessment.
The former aims to predict potential changes in the slope state,
while the latter seeks to calculate failure probabilities based
on these predictions. Specifically, the proposed Fusionformer
is first utilized to learn prominent event patterns over time
and intricate correlations among different variables from the
input MTS data, with the aim of predicting the future trend of
slope movement. Following this, a FRA method is proposed
to translate the predicted slope state into a failure probability,
where the evolutionary patterns of target historical sequences
can be effectively transferred to future time points, leveraging
the valuable insights drawn from other sequences.

The principal contributions of this paper can be summarized
as follows:

1) We propose the FAM to learn specific evolutionary
trends of different dimensional sequences effectively, by
fusing intra-variable and inter-variable dependencies.

2) An adversarial learning method is introduced into the
Fusionformer training to tackle the stochastic nature of
real-world time series, thereby further enhancing the
precision of the MTSF at the sequence level.

3) We develop the FRA method for failure hazard assess-
ment, introducing a learnable scaling parameter of the
Gaussian kernel to assess the failure degree, and devising
a new criterion to calculate the failure probability.

4) Extensive experiments are conducted on four real-world
open-pit mine datasets. The experimental results reveal
that our proposed Fusionformer algorithm outperforms
some state-of-the-art MTSF algorithms, thereby further
demonstrating the efficacy and efficiency of our algo-
rithm in addressing SFEW tasks.

The remainder of this paper is organized as follows. Sec-
tions II and III offer an overview of related works and prelimi-
naries, respectively. Section IV provides a detailed description
of the novel Fusionformer algorithm. Experimental results and
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pertinent analysis are presented in Section V, while Section
VI concludes the paper.

II. RELATED WORK

A. MTSF

Early approaches to MTSF are grounded in statistical
methods. For instance, a forecasting method that integrates
the eigenvalue decomposition of the Hankel matrix with an
autoregressive integrated moving average (ARIMA) model has
been proposed in [31] to handle non-stationary time series. In
[1], the ARIMA model has been combined with the Particle
Swarm Optimization (PSO) method to enhance forecasting
performance.

Recently, many deep neural networks have empirically
outperformed statistical ones due to their capabilities in mod-
eling non-linear dependencies. For example, a hierarchical
correlation pooling boosted GNN has been proposed in [42] to
learn hierarchical relationships and dynamic properties from
MTS data. In [55], a hybrid deep neural network was designed
to capture coupled and non-linear dynamic features within
the MTS, introducing a Deep Convolutional Neural Network
(DCNN) and a Gated Recurrent Unit (GRU). Furthermore,
an LSTM-based temporal change information learning method
has been developed in [57] to capture change information over
time from the error gradient flow. Moreover, in [49], a deep
hybrid network has been proposed to reduce data uncertainty
for accurate MTSF by employing CNN and bidirectional
GRU. Nevertheless, these methods have a limited capacity to
learn indeterminate temporal patterns and hierarchical variable
dependencies, which hampers the advancement of MTSF.

The Transformer, introduced in [34], has achieved signif-
icant performance in sequential data processing applications
such as machine translation [48], speech recognition [5], and
action recognition [33]. The Transformer’s capability for mod-
eling long-term dependencies has recently caught the attention
of researchers in the MTSF domain. As a result, a series of
studies have been reported, see e.g. [56], [59], [60]. In [56],
a model called Crossformer has been proposed that captures
dependencies across time and dimensions using two-stage
attention layers. In [59], a model named Informer has been
introduced to enhance prediction performance by employing
a ProbSparse self-attention mechanism and incorporating a
distilling operation. Lastly, in [60], a frequency enhanced
decomposed Transformer has been developed to learn the
overall trend and fine-grained features of the time series by
integrating the seasonal-trend decomposition method with the
Transformer.

III. PRELIMINARY

A. Problem Formulation

Generally, let the historical time seriesX1:T =
{

x1,x2, . . . ,xT | xt ∈ R
D
}

be given, whereT is the length
of look-back window andD > 1 is the number of variables.
MTSF aims to forecast corresponding sequenceYT+1:T+τ =
{

yT+1, . . . ,yT+τ | yt ∈ R
D
}

within a defined future horizon
τ . Therefore, the MTSF model can be formulated as follows:

ŶT+1:T+τ = f (X1:T ; Θ) , (1)

wheref is the prediction model with learnable parametersΘ,
and ŶT+1:T+τ is a set of predicted time points.

IV. M ETHODOLOGY

A. Motivations

In this section, we will analyze the weakness of existing
MTSF models as well as anomaly detection models and
provide a preview of the Fusionformer.

The Transformer, an encoder-decoder-based model, lever-
ages a multi-head self-attention layer to effectively model
long-term dependencies from various perspectives. Within
the Transformer, intra-variable dependencies can be modeled
using a self-attention map, which displays the distribution
of association weights for all data points along the time
dimension. This distribution offers a comprehensive depiction
of the context and dynamic properties of the time series.
However, when applied to MTSF, the Transformer model
presents three significant limitations.

1) The Transformer, initially developed for natural lan-
guage processing (NLP), typically maps a sequence of
words into a digital input using learned embeddings,
where each word is assigned to a vector of dimension
dmodel. Many existing Transformer-based MTSF models
adopt the same embedding approach as NLP. However,
unlike information-rich words, a single data point at a
specific timestep in the MTS lacks substantial informa-
tion. This makes it less meaningful and ineffective for
improving prediction performance.

2) Recent Transformer-based MTSF methods aim to model
variable dependencies by embedding data points from all
dimensions into a feature vector and calculating the as-
sociation weights among different time steps. However,
these methods primarily focus on learning intra-variable
dependencies rather than inter-variable dependencies,
which may limit their forecasting capabilities.

3) Most Transformer-based MTSF methods prioritize op-
timizing a point-wise loss function that only corrects
prediction errors within a fixed length. However, such
loss functions fail to learn long-term non-deterministic
dynamic variations from the entire series, which may
subsequently result in degraded prediction performance.

To address these issues, we propose a simple yet effec-
tive model, referred to as Fusionformer, which builds upon
the encoder-decoder Transformer and incorporates adversarial
learning. The Fusionformer comprises three key components:
1) the SWSE method which aims to provide informative
segments for model training; 2) the FAM method which seeks
to integrate intra- and inter-variable dependencies; and 3)
the adversarial learning method aiming to learn the dynamic
patterns of the MTS and accurately predict future values.

The challenge of time series anomaly detection lies in the
need to learn effective representations from complex temporal
dynamics, while simultaneously developing a criterion to
distinguish rare anomalies from the abundance of normal time
points. Various classic methods, such as Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) and Support
Vector Data Description (SVDD), fail to consider the influence
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of past time points on future states, making it difficult to
generalize these approaches to unseen real-world scenarios.
Therefore, we propose using the fusion attention map as the
criterion for anomaly detection, as it highlights the distin-
guishable association density between anomaly points and
normal points with global and local sequences. Nevertheless,
the attention map cannot be used to quantify landslide risk, as
it presents the distribution of association weights rather than
failure probabilities. To address this issue, we introduce the
Gaussian kernel with a learnable parameterσ to reframe and
quantify the fusion attention map.

B. Overview

As shown in Fig. 1, the encoder and decoder in the Fusion-
former both consist ofN identical modules, which include
two key sub-modules: the multi-head FAM layer and the fully
connected feed-forward network. To solve the problem of
gradient vanishing, a residual connection is used on each of
the two components, followed by layer normalization.

In the Fusionformer, the encoder first maps the input se-
quenceX1:T to latent variables, which are then fed to the
decoder to predict future valueŝYT+1:T+τ within a defined
horizon. Additionally, to improve prediction performance, a
discriminator is attached alongside the Fusionformer to learn
the dynamic properties of real-world distributions.

C. Segment-Wise Sequence Embedding and Positional Encod-
ing

Multiple adjacent points in the time domain can form an
informative segment. As shown in Fig. 2, neighboring data
points contain similar temporal patterns due to continuity.
Therefore, we argue that segment-wise representation learning
is more useful than point-wise representation learning.

In this part, we propose an SWSE method, which first
partitions the input sequence of each variable into multiple
non-overlapped segments of lengthLseg and then embeds each
segment into a learnable vector. The formulation of the SWSE
is as follows:

X1:T =

{

xi,d | 1 ≤ i ≤ T

Lseg
, 1 ≤ d ≤ D

}

, (2)

xi,d = {xt,d | (i − 1)× Lseg ≤ t ≤ i× Lseg} , (3)

wherexi,d is the i-th segment with lengthLseg in dimension
d, and xt,d is the t-th time step in thei-th segment of
dimensiond. Then, each segment is embedded into a vector by
using learnable linear transformation with trainable positional
encoding:

ui,d = Wxi,d +W
(pos)
i,d , (4)

whereui,d denotes embedded vector, andW ∈ R
dmodel×Lseg

is the learnable projection matrix for segment embedding.
W

(pos)
i,d ∈ R

dmodel is the learnable positional encoding for
position (i, d), aiming to provide the sequential nature of
temporal patterns. After that, a two-dimensional vector array
characterizing theX1:T can be obtained as follows:

U = {ui,d | 1 ≤ i ≤ Lsn, 1 ≤ d ≤ D} , (5)

whereui,d is a univariate time series segment of dimensiond,
andLsn = T

Lseg
(sn is an abbreviation of segment number).

Sequence Segmentation

Input MTS

Projection + Positional Encoding

Fig. 2: Illustration of the SWSE.

D. Fusion Attention Mechanism

1) Segment-Wise Intra-Variable Attention:A longer look-
back window is helpful in improving prediction capability
because it allows the model to learn event patterns from the
comprehensive context, as proven by [29]. However, simply
prolonging the input lengthT comes at the cost of computa-
tional effort. To address this issue, the SWAA is proposed to
learn reliable intra-variable dependencies from multiple short,
low-complexity, and information-rich segments.

Given a 2-dimension arrayU ∈ R
D×Lsn×dmodel as the input

of the SWAA, the dependencies between different segments
in dimensiond can be learned by:

Z l,tim
d,: =LayerNorm

(

U l−1,tim
d,: +MSWAA (QA,KA,VA)

)

,

(6)

U l,tim =LayerNorm
(

Z l,tim + Feed-Forward
(

Z l,tim
))

,

(7)

where U l−1,tim
d,: ∈ R

Lsn×dmodel represents all segments in
dimension d of the (l − 1)-th layer, 1 ≤ l ≤ L is the
layer number of MSWAA.1 ≤ d ≤ D is the dimension of
MTS, Z l,tim ∈ R

D×Lsn×dmodel is the hidden representation of
the l-th layer, andLayerNorm is a widely used activation
function in Transformer-based models [34].Feed-Forward
is the fully connected feed-forward network.MSWAA de-
notes a multi-head SWAA layer, whereQA = W l

QU
l−1,tim
d,: ,

KA = W l
KU l−1,tim

d,: , andVA = W l
VU l−1,tim

d,: are used as query,
key, and value for SWAA.W l

Q, W l
K, W l

V ∈ R
dmodel×dmodel

are the parameter matrices ofQA,KA,VA in the l-th layer
respectively. The multi-head version of SWAA is illustrated
in Fig. 3.

2) Segment-Wise Inter-Variable Attention:Inter-variable
dependence is critical to the MTSF, i.e., for the target variable,
exploiting the characteristics of related time series from other
variables may help to improve prediction accuracy. Some
previous works implicitly capture cross-variable dependency
information from the latent feature space via CNN or GNN.
Nevertheless, the above neural models consider the depen-
dency weights (the degree of interaction between different
variables varies, and this situation can be modeled by specific
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Fig. 1: Architecture of the Fusionformer model and the FRA method.
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Fig. 3: Multi-head segment-wise intra-variable attention consists of
h attention layers running in parallel.

methods as dependency weights) among different variables
to be equal, which may degrade prediction performance. To
overcome this limitation, the SWEA is developed in this paper
to learn hierarchical inter-variable dependencies.

Note that all segments withinU tim ∈ R
D×Lsn×dmodel are

merged in SWEA to enable the Fusionformer to learn inter-
variable associations on a large scale. To achieve this goal, the
output of theL-th layer in MSWAA is transmitted to the first
layer in MSWEA:

Z1,var =LayerNorm
(

UL,tim +MSWEA(QE ,KE ,VE)
)

,

(8)

U1,var =LayerNorm
(

Z1,var + Feed-Forward
(

Z1,var
))

,

(9)

where UL,tim ∈ R
D×(Lsn×dmodel) represents the output of

MSWAA layer. MSEWA denotes a multi-head SWEA layer,
where QE = W

1,var
Q UL,tim, KE = W

1,var
K UL,tim, and

VE = W
1,var
V UL,tim denote the query, key, and value of the

1-th MSWEA layer, respectively. Furthermore, the variable

dependencies ofk-th layer can be captured by:

Zk,var =LayerNorm
(

Uk−1,var +MSWEA(QE ,KE ,VE)
)

,

(10)

Uk,var =LayerNorm
(

Zk,var + Feed-Forward
(

Zk,var
))

,

(11)

whereQE = W
k,var
Q Uk−1,var, KE = W

k,var
K Uk−1,var, and

VE = W
k,var
V Uk−1,var. 1 ≤ k ≤ K is the layer number of

MSWEA. The multi-head version of SWEA is illustrated in
Fig. 4.

LinearLinearLinearLinearLinearLinearLinear LinearLinearLinearLinearLinearLinear LinearLinearLinearLinearLinearLinear

MatMul

Scale

SoftMax

MatMul

Concat

Linear

Fig. 4: Multi-head segment-wise inter-variable attention consists of
h attention layers running in parallel.

E. Adversarial Learning

The adversarial learning approach used in this paper draws
its inspiration from the generative adversarial network (GAN)
[12], [36], [37]. Formally, let ΘF and ΘD represent the
parameters of the FusionformerF and the discriminatorD,
respectively. First, the Fusionformer is employed to generate
future values close to the ground truth by optimizing the
following function:

Θ∗
F = argmin

ΘF

LF (Yfake; ΘF ,Θ
∗
D) , (12)
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where Θ∗
F and Θ∗

D denote the optimal parameters of the
Fusionformer and the discriminator, respectively. Furthermore,
Yfake ∈ R

Lw×D (Lw = T + τ ) is the synthetic sequence
obtained by:

Yfake = Concat
(

X1:T , ŶT+1:T+τ

)

, (13)

where Concat represents concatenation operation, and
ŶT+1:T+τ is the predicted sequence. Moreover,LF represents
the loss function, which is formulated as follows:

LF = E [log(1−D(Yfake))] , (14)

whereE is expectation, andD (·) denotes the output of the
discriminator, which outputs 1 if the input is ground truth and
0 otherwise.

The discriminator in this paper is implemented with three
fully connected layers and a Sigmoid activation function.
Typically, the prediction loss is calculated using the ground
truth and the predicted sequence within the future horizonτ .
In contrast, the Fusionformer is optimized by reducing the
global distribution discrepancy between the synthetic sequence
Yfake and real sequenceYreal. On the one hand, calculating
the global discrepancies can help the Fusionformer understand
the overall trends and dynamic patterns of the MTS distribu-
tion. On the other hand, the discriminator can regularize the
optimization direction of the Fusionformer in a global per-
spective, enhancing the prediction accuracy. Specifically, the
discriminator is trained to distinguish the synthetic sequence
from the real sequence by optimizing the following function:

Θ∗
D = argmin

ΘD

LD (Yreal,Yfake; Θ
∗
F ,ΘD) , (15)

whereYreal ∈ R
Lw×D is the real sequence obtained by:

Yreal = Concat (X1:T ,YT+1:T+τ ) . (16)

LD represents the objective function of the real sequence
and the synthetic sequence, which is formulated as follows:

LD = −E [log(Yreal)]− E [log(1−D(Yfake))] . (17)

The training process of the proposed Fusionformer is shown
in Algorithm 1.

F. Fusionformer-Based Risk Assessment

The requirement of SFEW is to assess the landslide risk
quantitatively, i.e., to provide an exact probability value for
the landslide occurrence, which is more challenging than the
anomaly detection task. Generally, the SFEW method iden-
tifies the potential landslide by analyzing only the predicted
slope state, however, the instability of real-world radar signals
may affect the assessment accuracy. Therefore, we should ex-
tract the informative context from the combination of observed
and predicted values to make an accurate risk assessment. In
the Fusionformer, the self-attention mechanism is well used
to learn the dynamic temporal patterns of a single variable
and the interactions among all variables, which inspires us
to exploit the attention map to characterize the movement
trend of a slope. Nevertheless, the attention map cannot be
used to quantify landslide risk, as it presents the distribution

Algorithm 1: The training process of the Fusionformer

Input : Historical seriesX1:T =
{

x1, . . . ,xT | xt ∈ R
D
}

.
Input : Initial Fusionformer parametersΘF .
Output : Optimal parametersΘ∗

F .
Hyperparameters: Lseg, N0, andN1.
for i0 ≤ N0 do

for i1 ≤ N1 do
PredictŶT+1:T+τ via Fusionformer;
ConstructYfake by concatenatingX1:T and
ŶT+1:T+τ ;
Update the discriminatorD by descending

stochastic gradient, which is formulated by:
∇ΘD

− E [log(Yreal)]− E [log(1−D(Yfake))];
end
Update the FusionformerF by descending stochastic
gradient, which is formulated by:

∇ΘF
E [log(1−D(Yfake))]

end

of association weights rather than failure probabilities. To
address this issue, a Gaussian probability density function with
a learnable parameterσ is introduced into the FRA method.

(�� ������� 	�
�����

��F�� �������� ���G��FF��� ��F�����

��F�� �������� ���G��FF��� ��F�����

(�� ����� 	�
�����

Fig. 5: Discrepancy between Gaussian distribution and fusionatten-
tion map.

Benefiting from the unimodal property of the Gaussian
kernel [46], the discrete Gaussian distribution has similar
characteristics to the attention map, as shown in Fig. 5.
Specifically, for the failure sequence, anomalies can establish
a robust association with adjacent time points, which are
characterized by small values ofσ. Furthermore, dominant
normal time points can form informative associations with the
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overall sequence, not limiting to the neighboring region, which
is characterized by large values ofσ. Thus, the parameterσ
for quantifying the failure risk can be obtained by minimizing
the discrepancy between the Gaussian distribution and the
attention map. The implementation process of the FRA method
is illustrated as follows.

First, for thei-th time point, its association weight to the
j-th time point can be presented by Gaussian Kernel as:

Gl
fake = Rescale

1√
2πσi

exp −|j − i|2
2σ2

i

))

, (18)

where Gl
fake ∈ R

Lw×Lw represents the distribution of the
learned scale parameterσ ∈ R

Lw×1, where theσi is asso-
ciated with thei-th time point inYfake. Rescale (·) represents
the rescaling operation that converts Gaussian distances into
discrete distributionsGl by dividing the sum of the rows. Then,
the attention map is calculated by:

Al
fake = Softmax

QF (KF )
T

√
dmodel

)

, (19)

whereAl
fake ∈ R

Lw×Lw is the attention map, andSoftmax
normalizes the attention map along the last dimension.QF =
W l

QY l−1
fake, KF = W l

KY l−1
fake, VF = W l

VY l−1
fake are the query,

key, and value in thel-th layer respectively. After that, the
discrepancyLFRA between the Gaussian distribution and the
attention map is reduced by minimizing:

LFRA =
1

L

L
∑

l=1

KL
(

Al
fake ‖ Gl

fake

)

, (20)

whereKL (· ‖ ·) denotes the Kullback-Leibler divergence used
to calculate the difference between two discrete distributions
corresponding toAl

fake and Gl
fake. Finally, the failure proba-

bility of i-th time point can be obtained by:

Pi =
σn − σi

σn − σf
, (21)

where σn and σf are σ thresholds of normal and failure
sequences chosen through extensive experiments.

V. EXPERIMENTAL RESULTS ONSLOPE FAILURE

DATASETS

According to most of the existing slope failure prediction
models outlined in [15], slope displacement or velocity serve
as the primary criteria for hazard assessment. Therefore, in this
paper, we utilize displacement data as the target sequence for
the SFEW task. Furthermore, the most reliable variables for
state prediction are velocity and acceleration, as they directly
correspond to the stability conditions of the moving mass.
Moreover, we explicitly consider various weather data vari-
ables (such as humidity, temperature, pressure, accumulated
rainfall, and wind speed) due to their significant influence on
slope stability.

A. Datasets

This work is supported by the EU-funded DIGIT project,
which aims to enhance the efficiency and sustainability of
mining operations through the development of a smart in-
dustrial IoT platform. All datasets used in this work are
collected by the Titania radar software from an open-pit mine
located in southern Norway. Fig. 6 shows a screenshot of
the digital terrain model (DTM), illustrating the displacement
recorded within a 24-hour period in one area of the mine. The
individual pixel data within the blue circle is representative of
measurements taken at a single point. Similarly, the same types
of variables (displacement, velocity, acceleration, amplitude)
are recorded for all pixels in the measured area.

Fig. 6: DTM supplied by Titania AS.

In this section, we conduct experiments on the following
four real-world datasets, including one normal dataset and
three failure datasets.

• OPMSmN (Open-Pit Mine Slope-minutely Normal) con-
tains 9999 normal slope records collected between 27
January 2021 and 24 February 2021.

• OPMSmF1 (Open-Pit Mine Slope-minutely Failure) con-
tains 3059 landslide records collected between 24 Decem-
ber 2018 and 1 January 2019.

• OPMSmF2 contains 2339 landslide records collected
between 7 July 2022 and 13 July 2022.

• OPMSmF3 contains 1064 landslide records collected
between 19 March 2023 and 21 March 2023.

Each slope data includes eight attributes/variables: veloc-
ity, acceleration, humidity, temperature, pressure, cumulative
rainfall, wind speed, and displacement. Data points in each
dataset are recorded every4 minutes. The split ratio of the
training/validation/test set is0.7 : 0.1 : 0.2.

B. Baselines

A comprehensive set of eight methods, including four
categories, is used to test the Fusionformer.

• LSTM [35] controls the flow of information by using
special multiplicative units called gates.

• TCN [3] attempts to model the temporal pattern using
dilated causal convolutions.

• LSTMa [2] encodes the input MTS into a multi-
dimensional vector and automatically aligns each target
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TABLE I: MAE and MSE at different forecasting lengths. Bold denotes the best results. Yellow background marks the LSTM
and TCN models; purple marks the LSTM-based models with the attention mechanism; green marks the Transformer-based
models; red marks the Fusionformer proposed in this paper.

Models LSTM TCN LSTMa LSTnet Transformer Informer FEDformer Crossformer Fusionformer

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

OPMSmN

16 0.603 0.439 0.623 0.443 0.429 0.236 0.369 0.157 0.251 0.428 0.289 0.196 0.184 0.129 0.350 0.147 0.180 0.186
32 0.626 0.460 0.630 0.514 0.443 0.259 0.472 0.240 0.288 0.365 0.304 0.210 0.196 0.139 0.352 0.165 0.183 0.132
64 0.639 0.450 0.601 0.412 0.500 0.310 0.476 0.255 0.332 0.366 0.313 0.219 0.214 0.155 0.369 0.163 0.153 0.118
128 0.588 0.421 0.647 0.482 0.523 0.342 0.576 0.345 0.545 0.846 0.383 0.294 0.255 0.199 0.434 0.211 0.250 0.195
256 0.682 0.524 0.689 0.541 0.603 0.427 0.575 0.337 0.531 0.537 0.413 0.331 0.287 0.242 0.429 0.207 0.338 0.247

OPMSmF1

16 1.037 1.788 0.897 1.427 0.490 0.351 0.599 0.416 0.469 0.319 1.449 3.795 0.438 0.327 0.435 0.231 0.225 0.114
32 1.136 2.169 0.305 0.337 0.499 0.353 0.634 0.458 0.413 0.245 1.538 4.729 0.323 0.146 0.476 0.275 0.291 0.194
64 1.203 2.811 0.854 1.282 0.501 0.342 0.630 0.462 0.431 0.263 1.632 5.070 0.437 0.299 0.537 0.296 0.325 0.248
128 1.401 4.259 0.929 1.390 0.477 0.323 0.638 0.485 0.433 0.274 1.965 7.849 0.628 0.542 0.576 0.345 0.337 0.238
256 2.090 9.601 0.859 1.165 0.565 0.416 0.693 0.574 0.468 0.318 1.684 6.640 0.632 0.547 0.456 0.241 0.344 0.289

OPMSmF2

16 0.551 0.566 0.518 0.274 0.532 0.363 0.385 0.228 0.299 0.309 0.658 0.791 0.349 0.269 0.350 0.171 0.228 0.123
32 0.664 0.854 0.551 0.308 0.617 0.458 0.541 0.363 0.330 0.344 0.719 0.943 0.550 0.471 0.599 0.426 0.258 0.282
64 0.638 1.020 0.568 0.329 0.631 0.470 0.636 0.475 0.457 0.511 0.791 1.244 0.515 0.406 0.550 0.367 0.307 0.211
128 0.713 1.163 0.520 0.280 0.665 0.516 0.644 0.499 0.573 0.641 0.806 1.145 0.485 0.390 0.549 0.353 0.344 0.276

OPMSmF3
16 0.575 0.404 0.577 0.398 0.356 0.175 0.503 0.274 0.252 0.308 2.272 14.081 1.224 3.662 0.464 0.227 0.239 0.290
32 0.455 0.299 0.592 0.434 0.482 0.308 0.528 0.293 0.287 0.348 2.665 14.838 1.316 3.852 0.551 0.308 0.295 0.347
64 0.526 0.367 0.608 0.434 0.540 0.355 0.542 0.300 0.419 0.528 2.400 14.848 1.701 6.976 0.568 0.329 0.379 0.457

Count 0 0 1 2 1 0 3 2 22

value to the relevant past point based on the encoder-
decoder RNN.

• LSTnet [19] employs CNN to capture short-term lo-
cal dependencies and utilizes RNN to extract long-term
trends in the data over time.

• Transformer [34] captures cross-time dependencies by
stacking multi-head self-attention layers and feed-forward
layers.

• Informer [59] is a Transformer-based forecasting model
employing the ProbSparse self-attention to capture cross-
time dependencies.

• FEDformer [60] is a Transformer-based forecasting
model that uses seasonal trend decomposition with
frequency-enhanced attention blocks to capture cross-
time dependencies.

• Crossformer [56] is a Transformer-based MTSF model
that uses the two-stage attention layer to capture the
cross-time and cross-dimension dependencies.

C. Evaluation Metrics

MSE and MAE are employed as metrics to evaluate the
performance of the Fusionformer, and they are defined as
follows:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2
, (22)

MAE =
1

n

n
∑

i=1

|yi − ŷi| , (23)

wheren represents the number of samples,y andŷ denote the
ground truth and predicted signal, respectively. Additionally,
recall, specificity, and accuracy are used to measure the

performance of the FRA method, and they are formulated as
follows:

Recall =
TP

TP + FN
, (24)

Specificity =
TN

TN+ FP
, (25)

Accuracy =
TP + TN

TP + FN + FP + TN
, (26)

whereTP is the correctly identified failure,FP is the incor-
rectly identified failure,TN is the correctly monitored normal
state, andFN is the incorrectly monitored normal state.

D. Implementation Details

We follow the experimental setup of [59], i.e., the training
set, validation set, and test set are zero-mean normalized by
the mean and standard deviation of the training set. We roll
the whole sequence withstride = 1 to produce different input
and output pairs. We assess the performance of all models over
the changing future horizonτ . All experiments are repeated
five times and the average of each metric is reported.

The Fusionformer contains4 encoder layers and3 de-
coder layers. The dimension of hidden state is set to256.
The head number of FAM layer is set to6. The seg-
ment length is set to32. Adam optimizer is employed
for model training and the learning rate is selected from
{5e− 3, 1e− 3, 5e− 4, 1e− 4, 5e− 5, 1e− 5} through grid
search. The batch size is set to32, and the total number of
epochs is set to30 with a proper early stopping strategy.

For different datasets, theτ is progressively prolonged,
i.e., {16min, 32min, 64min, 128min, 256min}. Note that the
Fusionformer can predict up to 128 minutes on OPMSmF2
and up to 64 minutes on OPMSmF3 due to insufficient data.
Moreover, in sensitivity analysis, we treatT as a hyperparam-
eter and test the impact of different input lengths on prediction
performance.
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For baselines, all hyperparameters (exceptT ) recommended
in the original paper are adopted if the dataset used in the orig-
inal paper is the same as ours. Otherwise, the hyperparameters
are selected via the grid search method using the validation
set. All models, including the Fusionformer and baselines, are
implemented by PyTorch and trained on a single NVIDIA
GEFORCE RTX 3090 GPU with 24GB memory.

E. Forecasting Performance Evaluation

Table I summarizes the evaluation results of the Fusion-
former and all baselines on the four datasets, where a pro-
gressively longer prediction horizon is used to measure model
performance. From Table I, we can draw the following con-
clusions:

• Our model (Fusionformer) shows leading performance
on all four datasets (see the counts in the last row).
Different from the baselines, the prediction error of the
Fusionformer rises smoothly with increasing prediction
horizon, which indicates the success of the Fusionformer
in improving the precision of MTS forecasting.

• Deep learning methods (LSTM and TCN) do not ex-
plicitly model the dependencies between different vari-
ables. As a result, they perform worse than LSTMa,
LSTnet, Transformer-based methods, and Fusionformer
on most datasets. Specifically, the Fusionformer algo-
rithm achieves significantly better results than the RNN-
based LSTM and the CNN-based TCN. For the input-
96-prediction-128 setting, compared to TCN, the Fu-
sionformer decreases MSE by59.5% in OPMSmN and
82.8% in OPMSmF1.

• LSTMa and LSTnet achieve slightly better performance
than LSTM and TCN, which is attributed to the use
of the attention mechanism. Nevertheless, their results
are still not comparable to those of the Fusionformer in
terms of MAE and MSE, i.e., 22>3. This demonstrates
that the self-attention mechanism is more suitable for
learning long-term temporal patterns than the recursive
structure. Note that for the OPMSmF3 dataset, LSTMa
achieves the best performance at prediction horizon 16,
and LSTnet performs best at horizons 32 and 64. One
possible explanation for this phenomenon is that the
OPMSmF3 dataset has only 1064 records, leading to the
underfitting problem of Transformer-based algorithms,
which have much more network parameters than LSTMa
and LSTnet.

• Benefiting from the self-attention mechanism, Trans-
former, Informer, FEDformer, and Crossformer sig-
nificantly surpass deep learning methods, where the
FEDformer algorithm performs better than the other
Transformer-based methods. However, the proposed Fu-
sionformer still shows a significant advantage over FED-
former in terms of MSE, with average reductions of
83.7% (at 16),79.3% (at 32), and78.1% (at 64). This
suggests that the cooperation of the fusion attention
mechanism and adversarial learning is more effective than
the conventional attention mechanism in capturing intra-
and inter-variable associations in the MTS.

Fig. 7 displays the forecasting cases for three variables in
the OPMSmF2 dataset with prediction lengthτ = 128. For the
variable “Acceleration”, all seven models can learn dynamic
characteristics from the sequence, but the Fusionformer is
the closest to the ground truth. For “Velocity”, LSTnet and
Transformer only predict a rough trend, in addition Informer,
FEDformer, Crossformer capture the non-deterministic dy-
namic variations to a certain extent, while the Fusionformer
recovers all feature details and achieves the best prediction
performance. For “Displacement”, all models capture the
ascending trend of the sequence, and the curve predicted by
the Fusionformer is sharper than the other six models.

F. Detection Performance Evaluation

Fig. 8 shows the recall, specificity, and accuracy of the
risk assessment. It can be found that the FRA has a recall
of 100%, a specificity of 96%, and an accuracy of 97% when
τ = 16, which is an outstanding experimental result. Note
that low recall represents a high missing alarm rate and low
specificity represents a high false alarm rate. As shown in
Fig. 8(a), the FRA achieves extremely low missing alarm
rates with the varyingτ from 16 to 64, which means that
the FRA can learn a lowσ value to represent the failure
time points. Furthermore, some prominent event patterns in
the normal data may be misidentified as failures due to the
unimodal property of the Gaussian distribution, which results
in the increasing false alarm rate within an acceptable range
and this issue will be addressed in future work. Additionally,
although these three metrics decrease to some extent with
the extension of the prediction horizon, they still meet the
engineering requirements.

Recall

Fig. 8: Recall, specificity, and accuracy of slope failure riskassess-
ment results.

G. Hyper-Parameter Sensitivity Analysis

The segment lengthLseg is first determined, as it is directly
related to the forecasting performance and the computational
complexity of the Fusionformer.

As shown in Fig. 9(a), a shortLseg fails to capture long-term
temporal patterns, while a longLseg is difficult to be learned
due to the limited computational ability, and therefore the best
results are obtained whenLseg = 32. Fig. 9(b) shows the
MSE and MAE of the Fusionformer with the number of input
lengthsT ranging from48 to 672, where the empty column at
672 indicates an out-of-memory problem. The best results are
obtained whenT is set to192. The reason for this phenomenon
may be that a smallT provides limited information about past
time points, while a largeT would introduce noise. Fig. 9(c)
shows the prediction performance of the Fusionformer with the
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Fig. 7: Showcases of the three dimensions (acceleration, velocity, and displacement) in the OPMSmF2 dataset with prediction lengthτ = 128.
The red and blue curves indicate prediction and ground truth, respectively. Each row represents a model and each column represents a variable.

growing number of encoder layers from 1 to 5. Generally, the
Fusionformer with a large number of encoder layers can learn
more accurate information than a small number of encoder
layers, but it also requires numerous computational resources.
Finally, the head number of FAM can be determined based
on the available computational resources, as the results of the
MSE and MAE are stable.

VI. EXPERIMENTAL RESULTS ONPUBLIC MTSF
DATASETS

In this section, the performance of the proposed Fusion-
former is comprehensively evaluated on various public time
series forecasting datasets.

A. Datasets

We extensively employ five MTSF datasets in the experi-
ments, including:
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Fig. 9: Impacts of key parameters on forecasting performance.

• ETT dataset [59] which consists of four subsets, includ-
ing two hourly datasets (ETTh1 and ETTh2) and two
15-minute datasets (ETTm1 and ETTm2). Each subset
contains seven factors related to electricity transformers,
covering the period from July 2016 to July 2018.

• Exchangedataset [19] collects daily exchange rate data
for eight countries from 1990 to 2016.

• Traffic dataset [60] includes hourly roadway occupancy
rates recorded by San Francisco freeway sensors from
2015 to 2016.

• Weather dataset comprises 21 meteorological indicators
in Germany over one year, including temperature, humid-
ity, etc.

• Electricity Consuming Load (ECL) dataset [44] records
the hourly electricity consumption of 321 customers from
2012 to 2014.

Detailed descriptions of these datasets are provided in
Table II.

TABLE II: Detailed descriptions of the datasets.

Dataset Dim Train/Validation/Test Size Prediction Length

ETTh1 7 (8545, 2881, 2881) 96, 192, 336, 720

ETTh2 7 (8545, 2881, 2881) 96, 192, 336, 721

ETTm1 7 (34465, 11521, 11521) 96, 192, 336, 722

ETTm2 7 (34465, 11521, 11522) 96, 192, 336, 723

Exchange 8 (5120, 665, 1422) 96, 192, 336, 724

Traffic 862 (12185, 1757, 3509) 96, 192, 336, 725

Weather 21 (36792, 5271, 10540) 96, 192, 336, 726

ECL 321 (18317, 2633, 5261) 96, 192, 336, 727

B. Baselines

We employ six well-acknowledged forecasting models used
in the iTransformer [24] as our benchmarks, including:

• TCN-based methods: SCINet [23] employs a recursive
downsample-convolve-interact architecture for temporal

modeling and forecasting; TimesNet [43] models tem-
poral variation by a modular architecture and captures
intraperiod- and interperiod-variations in 2D space by a
parameter-efficient inception block.

• Transformer-based methods: Autoformer [44] is a vari-
ant of Transformer that builds on the decomposition
architecture with an autocorrelation mechanism; Station-
ary [25] employs two interdependent modules, Series
Stationarization, and De-stationary Attention, for non-
stationarity real-world data prediction.

• Linear-based methods: DLinear [53] decomposes a raw
data input into a trend component by a moving average
kernel and forecasts future time series with two one-layer
linear layers; TiDE [6] is an encoder-decoder model based
on a multi-layer perceptron.

C. Ablation Study

To verify the effectiveness of the Fusionformer components,
we conduct detailed ablations on the ETTh1, Traffic, and
Weather datasets in line with Crossformer [56]. We use the
vanilla Transformer as the baseline andSWSE+FAM+AL
denote the Fusionformer without ablation. Three ablation
variations are compared: (1) SWSE; (2) SWSE+FAM; (3)
SWSE+AL. Results are averages of all prediction lengths
including 24, 168, and 720. The corresponding results are
recorded in Table III, where the best result is highlighted as
red and the sub-optimal result is labeled withblue.

TABLE III: Component ablation of Fusionformer.

Ablation Variations
ETTh1 Traffic Weather

MSE MAE MSE MAE MSE MAE

Transformer 0.782 0.936 0.502 0.622 0.575 0.638

SWSE 0.644 0.734 0.458 0.490 0.463 0.450

SWSE+FAM 0.418 0.398 0.356 0.487 0.459 0.425

SWSE+AL 0.472 0.432 0.404 0.518 0.418 0.388

SWSE+FAM+AL 0.321 0.272 0.307 0.495 0.285 0.231

Detailed analysis are provided: (1) The only distinction
between the vanilla Transformer and SWSE is the embedding
method. SWSE aggregates time steps into semantically rich
sub-sequence patches, achieving an average 50.88% promotion
on vanilla Transformer. (2) FAM effectively improves the
prediction precision on top of SWSE, which means it can
capture multivariate semantic correlations rather than difficult
and inflexible temporal correlations compared to the standard
self-attention mechanism. (3) The advantage of adversarial
learning lies in better capturing the complex characteristics
of data distribution and predicting more realistic sequences
from the global receptive field, compared to traditional MSE,
which tends to overemphasize point-to-point errors and results
in blurry and less diverse outputs. (4) The best MTSF perfor-
mance can only be achieved when all three components in
the proposed Fusionformer algorithm work together. In other
words, each component plays a significant and indispensable
role in the Fusionformer algorithm.
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TABLE IV: MTSF results with prediction lengthτ ∈ {96, 192, 336, 720} and fixed lookback windowT = 96. Results are
averaged over all predicted lengths.Averagedenotes further averaged results over all subsets of the ETT.

Models Fusionformer SCINet TimesNet Autoformer Stationary Dlinear TiDE

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETT(Average) 0.448 0.427 0.597 0.689 0.404 0.391 0.459 0.465 0.464 0.471 0.444 0.442 0.470 0.482

Exchange 0.422 0.408 0.626 0.750 0.443 0.416 0.539 0.613 0.454 0.461 0.414 0.354 0.413 0.370

Traffic 0.289 0.380 0.509 0.804 0.336 0.620 0.379 0.628 0.340 0.624 0.383 0.625 0.473 0.760

Weather 0.313 0.254 0.363 0.292 0.287 0.259 0.382 0.338 0.314 0.288 0.317 0.265 0.320 0.271

ECL 0.284 0.200 0.365 0.268 0.295 0.192 0.338 0.227 0.296 0.193 0.300 0.212 0.344 0.251

Count 7 0 6 0 0 3 2

D. Main Results

Comprehensive results are recorded in Table IV, where the
best result is highlighted asred and the sub-optimal result is
labeled withblue. Compared with other models, Fusionformer
shows superior performance on most datasets, as well as on
different prediction lengths, with the 4 top-1 and 3 top-2
metrics out of 10 in total. It is worth noting that Fusionformer
is particularly adept at high-dimensional forecasting tasks,
benefiting from the transformation of the token embedding
paradigm from time-centric to variate-centric.

VII. E XPERIMENTAL RESULTS ONANOMALY DETECTION

DATASETS

In this section, we comprehensively evaluate the perfor-
mance of the proposed FRA on various public anomaly
detection datasets.

A. Datasets

We extensively employ five anomaly detection datasets used
by [46], including: (1) SMD contains service monitoring
data in five weeks from 28 different machines. (2)SMAP
and MSL dataset contains real spacecraft telemetry data and
anomalies from the Soil Moisture Active Passive satellite and
the Curiosity Rover on Mars. (3)SWaT contains 7 days of
normal operation data and 4 days of attack scenario data
collected by 51 sensors from a real-world industrial water
treatment plant. Detailed descriptions of these datasets are
provided in Table V.

TABLE V: Detailed descriptions of the anomaly detection
datasets.

Dataset Dim Train/Validation/Test Size Prediction Length

SMD 38 (566724, 141681, 708420) 100

MSL 55 (44653, 11664, 73729) 100

SMAP 25 (108146, 27037, 427617) 100

SWaT 51 (396000, 99000, 449919) 100

B. Baselines

We add three well-acknowledged anomaly detection models
as our benchmarks, including: (1) Anomaly Transformer [46]

proposes an Anomaly-Attention mechanism for amplifying
the normal and abnormal distinguishability of the association
discrepancy for anomaly detection; (2) MAD-GANs [20] is an
unsupervised multivariate anomaly detection method that pro-
poses an anomaly score called DR-score to detect anomalies
through discrimination and reconstruction; and (3) TadGAN
[11] is trained with a cycle consistency loss to efficiently
reconstruct time series data.

C. Main Results

Anomaly detection performance of the FRA and three
comparison models are evaluated on various datasets using
Precision, Recall, and F1-Score metrics. The corresponding
results are recorded in Table VI, where the best result is
highlighted asred and the sub-optimal result is labeled with
blue. It can be found that FRA performs well in anomaly
detection, outperforming advanced GAN-based models and
having competitive capabilities with Anomaly Transformer.
Specifically, neither MAD-GAN, which purely relies on adver-
sarial learning to model time series distributions, nor TadGAN
and Anomaly Transformer, which employs a vanilla attention
mechanism to capture point-to-point correlations, achieves
results as favorable as FRA. This is primarily due to their
inability to effectively handle complex long-term dependencies
and broader multivariate correlations.

TABLE VI: Anomaly detection task. A higher value of Pre-
cision, Recall, F1-Score indicates a better performance. *
represents Transformer.

Models FRA MAD-GAN TadGAN Anomaly*

SMD
P 88.95 99.91 92.62 89.40
R 98.93 84.40 99.74 95.45
F1 93.67 91.50 96.05 92.23

MSL
P 93.12 85.16 90.38 92.09
R 98.92 99.30 99.99 95.15
F1 95.93 91.69 94.94 93.59

SMAP
P 95.72 81.57 80.43 94.13
R 100.00 92.16 99.99 99.40
F1 97.81 86.54 89.15 96.69

SWaT
P 99.91 95.93 97.60 91.55
R 97.27 69.57 69.97 96.73
F1 98.57 80.65 81.51 94.07
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VIII. C ONCLUSIONS

In this article, a Fusionformer algorithm has been proposed
for MTSF. Specifically, we have introduced the SWSE method,
which aggregates multiple adjacent points into an informative
segment, enabling the model to learn meaningful temporal
properties from historical data. Further, the FAM has been
designed to learn long-term temporal dependencies and com-
plex inter-variable associations within the MTS. We have also
employed an adversarial learning approach to enhance the
prediction accuracy of the Fusionformer with the aid of an
auxiliary discriminator. The issue of SFEW in open-pit mining
operations serves as a testbed to evaluate the performance of
the proposed Fusionformer and FRA. Our experimental results
attest to the effectiveness of the Fusionformer in predicting
future time points and the capability of the FRA in assessing
slope failure. In future work, we will focus on developing
advanced fusion strategies [10], [18], [39], [41], [50]–[52]
so as to further improve the efficiency and accuracy of our
forecasting model.
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