

Adaptive Numeral System (ANS) and its

Applications in Data Compression

Omaar Ayman Dadoch

Department of Electronic and Electrical Engineering

Brunel University London

May 2024

Abstract

This research explores innovative methodologies for advancing lossless data compression by

developing adaptive numeral systems to calculate and reduce binary data representations

effectively. Building on the foundational theories of Shannon and Kolmogorov, the study

introduces the Adaptive Numeral System (ANS), Improved Adaptive Numeral System (IANS),

and Modified Adaptive Numeral System (MANS), novel approaches for adaptively calculating

binary values. These systems can be shown to exhibit the unique capability of compressing

each segment iteratively, thereby reducing the overall data size progressively and form the basis

for an iterative and progressive approach to data compression.

To leverage these adaptive numeral systems, the study presents the Data Extraction (DE)

technique, a compression framework that uses MANS to perform conversions from binary

values into more compact representations. DE achieves significant compression rates,

demonstrating competitive performance compared to traditional methods like Huffman coding,

particularly in its fully decodable state before binary conversion. Furthermore, the research

addresses challenges in identifying flag locations within segmented data, proposing a range of

solutions to enhance compression efficiency and reliability.

The combined contributions of ANS, IANS, MANS, and DE represent a significant

advancement in the field of lossless compression, particularly in their ability to process already

compressed data and transform non-prefix codes into prefix codes. These advancements hold

substantial promise for applications in areas such as medical imaging, digital media, machine

learning, artificial intelligence, embedded systems, and the Internet of Things.

Acknowledgement

I extend my heartfelt appreciation to my previous supervisor, Professor Abdul Sadka, for his

invaluable guidance, unwavering support, and constant encouragement throughout the majority

of my PhD research journey.

I am sincerely grateful to my current supervisor, Dr. Ruiheng Wu, for his ongoing support and

valuable insights into my research.

I also wish to thank Dr. Nikolaos Boulgouris, my second supervisor, for providing constructive

feedback that has challenged me to broaden my horizons.

I am deeply thankful to QA for their financial support, which played a crucial role in making

my research endeavours possible. Special acknowledgement goes to Ben Sweetman for his

encouragement and support.

A heartfelt appreciation is extended to Professor Sirkku Aaltonen for her invaluable guidance

and unwavering support throughout my academic journey. Her insightful advice and

meticulous review of my thesis greatly enriched its quality.

I would like to express my profound gratitude to Professor Gerald Porter for his support and

insightful advice. Additionally, I extend my gratitude to my brother Anas Dadoch for his

engaging discussions on my research topics, and to my friend Barz Surchi for the countless

insightful conversations we've had regarding my research endeavours.

Finally, I am indebted to my wife, Jessica and our daughters, Sophia and Matilda, for their

unwavering support and understanding throughout this journey.

Table of contents

Chapter 1..1

1.1. Introduction.. 1

1.2. Background and Motivation...1

1.3. Summary.. 5

Chapter 2..6

2.1. Introduction.. 6

2.2. Earlier Work on Lossless Compression..6

2.3. Information Theory and Algorithmic Information...7

2.4. Contemporary Lossless Compression Techniques... 8

2.4.1. Huffman Coding..10

2.4.2. Run-Length Encoding... 17

2.4.3. Burrows-Wheeler Transform...17

2.4.4. Fibonacci Code..19

2.4.5. Arithmetic Coding...20

2.4.6. Integer Arithmetic Coding...23

2.4.7. Asymmetric Numeral Systems..25

2.5. Summary.. 31

Chapter 3..32

3.1. Introduction.. 32

3.2. Symbol Representation Variations in Binary Encoding Processes................................ 32

3.3. Adaptive Numeral System (ANS)..34

3.3.1. Encoding Process using the ANS..34

3.3.2. Decoding Process using the ANS..36

3.3.3. Analysis and observations of the ANS..38

3.4. Improved Adaptive Numeral System (IANS).. 43

3.4.1. Encoding Process using the IANS...44

3.4.2. Decoding Process using the IANS.. 45

3.4.3. Analysis and observations of the IANS.. 47

3.5. Summary.. 52

Chapter 4..53

4.1. Introduction.. 53

4.2. The Application of the Adaptive Numeral Systems in Data Compression....................53

4.3. The IANS... 54

4.3.1. Compression using the IANS.. 54

4.3.2. De-compression using the IANS...59

4.3.3. Observations..63

4.4. The Leading Bit..66

4.5. Summary.. 70

Chapter 5..71

5.1. Introduction.. 71

5.2. Data Extraction (DE)..71

5.2.1. Flags.. 73

5.2.2. Flags order...76

5.2.3. Flag systems.. 78

5.3. Summary.. 79

Chapter 6..81

6.1. Introduction.. 81

6.2. Modified Adaptive Numeral System for Data Extraction..81

6.2.1. Analysis and observations of the MANS.. 83

6.2.2. Encoding Data Extractions using MANS..88

6.2.3. Decoding Data extractions using MANS.. 91

6.3. Summary.. 95

Chapter 7..96

7.1. Introduction.. 96

7.2. Flag order system for Data Extraction using MANS... 96

7.2.1. Flag Information (FI) - Solution I:.. 97

7.2.1.1. Flag Information - Analysis and future development................................ 103

7.3. Flag to Flag (F2F) - Solution II:...106

7.3.1. Comparative analysis of Data Extraction - Flag to Flag with other

compression methods.. 114

7.3.2. Compression results...118

7.3.3. Compression analysis.. 124

7.3.4. Quantitative Analysis on Complexity and Space Usage............................... 127

7.4. Flag to flag with flag information (Solution III):... 133

7.3. Summary.. 136

Chapter 8..137

8.2. Conclusions.. 137

8.2. Future Directions:...139

References.. 141

updated Reference:...148

Appendices... 155

Appendix A... 155

1. Text to ASCII to MANS..155

2. Flag Information, Solution I..158

3. Flag to Flag, Solution II.. 166

4. Flag to Flag including Flag Information, Solution III...170

Appendix B..174

Appendix C..178

Appendix D... 181

Appendix E..186

Appendix F.. 189

List of Figures

Figure 2.1: Building a Huffman tree.…………………………………………………………….…. 13

Figure 2.2: Subdivision of the interval [0,1) based on the probabilities of the source alphabet A..... 20

Figure 3.1: Solution II, halting after generating 4 bits of information.……………….…………….. 39

Figure 3.2: IANS - Encoding 4-bits of information.……………………………………………….. 48

Figure 3.3: ANS - Encoding 4-bits of information………………………………………………… 49

Figure 3.4: ANS vs IANS - Encoding 4-bits of information………………………………………. 49

Figure 3.5: ANS vs IANS vs Fibonacci vs Direct Binary - Bits required to encode a set of values. 50

Figure 4.1: Compression steps using the IANS.………………………………………………….... 63

Figure 4.2: The IANS reduction results when the initialisation for A=0 and B=1…………….. 64

Figure 4.3: The IANS reduction results when the initialisation for A=1 and B=0 .……………...… 64

Figure 4.4: Replacing the NO and the order of A and B with Table 1 and Table 2………...………. 66

Figure 4.5: Encoding the first two bits of the message {101}by using the leading bit…………..… 66

Figure 4.6: Encoding the first bit of Table 2 as the leading bit and following this with the third bit

of the message {101} ………………………………………………………………………………. 67

Figure 4.7: Feedback process of a repeated bit……………………………...……………………… 67

Figure 4.8: Leading Bit process…...………………………………………………………………... 68

Figure 6.1: Direct Binary vs Fibonacci code vs MANS - Bits required to encode a set of values…. 84

Figure 6.2: Direct Binary vs Fibonacci code vs Unassigned MANS - Bits required to encode a set

of values…………………………………………………………………………………………….. 85

Figure 7.1: Solution I - Data Extraction using flag information string (U.txt)...…………………… 98

Figure 7.2: Solution I - Data Extraction using flag information string (Garden.jpeg)……………… 99

Figure 7.3: Solution I - Data Extraction using flag information string (Clip.mp4)…..…….………. 99

Figure 7.4: Solution I - Data Extraction using flag information string (DE.m4a)……………...…... 99

Figure 7.5: Solution I - Data Extraction using flag information string (Canterbury Corpus using Cl

= 4, 5, 6 and 7)……………………………………………………………………………………… 100

Figure 7.6: Solution II - Data Extraction results for U.txt……...…………………………………... 106

Figure 7.7: Solution II - Data Extraction results for Garden.jpeg……………..……….…………… 106

Figure 7.8: Solution II - Data Extraction results for Clip.mp4………………...……………………. 106

Figure 7.9: Solution II - Data Extraction results for DE.m4a…………………………………...….. 106

Figure 7.10: Data Extraction results for solution II (Canterbury Corpus using Cl = 3- 7).................. 107

Figure 7.11: Data Extraction Results in Variable-Length Codes for Solution II (Canterbury Corpus

using Cl =3, 4, 5, 6 and 7)……..……………………………………………………………………. 111

Figure 7.12: Data Extraction Results in Variable-Length Codes for Solution II (Kennedy.xls file

using Cl =3, 4, 5, 6 and 7)……………………………….….………………………………………. 112

Figure 7.13: DE-FTF Results in MANS, (ptt5, Kennedy.xls, sum and pic files using =3 and 4)... 𝐶
𝑙

117

Figure 7.14: DE-FTF Results in MANS, (Canterbury Corpus, files in Canterbury folder)............... 118

Figure 7.15: DE-FTF Results in MANS, (Canterbury Corpus, files in Artificial folder).................. 119

Figure 7.16: DE-FTF Results in MANS, (Canterbury Corpus, files in Calgary folder).................... 119

Figure 7.17: DE-FTF Results in MANS, (Canterbury Corpus, file in Misc folder).......................... 120

Figure 7.18: DE-FTF Results in MANS, (Canterbury Corpus, files in Large folder)....................... 121

Figure 7.19: Solution III, Data Extraction results for U.txt, Garden.jpeg, Clip.mp4 and DE.m4a

using solutions one and two………………………………………………………………………… 134

List of Tables

Table 2.1: Huffman code for word “Compression” ... 13

Table 2.2: Huffman code for Source A .. 14

Table 2.3: Burrows-Wheeler transform for word DATA ... 17

Table 2.4: tANS for symbols E, B, S ... 26

Table 3.1: Encoding the binary stream B ... 34

Table 3.2: Decoding (,) .. 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7 37

Table 3.3: Encoding the combinations of a 4-bit string ... 38

Table 3.4: Encoding the binary stream 1010 by initialising the encoder to 1 and 2 39

Table 3.5: Variable-length code of the integers from Table 3.3.. 40

Table 3.6: Encoding “H” using ANS .. 41

Table 3.7: Encoding “I” from the compressed results of “H” using ANS ... 41

Table 3.8: The IANS - Encoding the binary string ... 𝑆 44

Table 3.9: The IANS - Decoding the binary string ……………………….…………..…………. 𝑆 46

Table 3.10: Encoding the combinations of 4-bit string using IANS ………………………………… 46

Table 4.1: Encoding and subtracting the combination of 2 bits using IANS ...……………………… 54

Table 4.2: Encoding A and B and the NO .. 55

Table 4.3: The first segment: encoding the first two bits from message S using IANS.……....…….. 56

Table 4.4: Reducing the generated values of segment 1 .. 56

Table 4.5: setting up the third bit from message S using the reduced values of segment 1 56

Table 4.6: The second segment, encoding the third bit from message S using IANS ……....…...….. 57

Table 4.7: Reducing the generated values of segment 2 ... 57

Table 4.8: setting up the fourth bit from message S using the reduced values of segment 2 ….......... 57

Table 4.9: The third segment, encoding the fourth bit from message S using IANS …..….……… 57

Table 4.10: Reducing the generated values of segment 3 .. 58

Table 4.11: Decoding ... 59

Table 4.12: Segment 3, generating the IANS values from the received message {11} 59

Table 4.13: Segment 3, decoding using the IANS ... 60

Table 4.14: Segment 2, generating the IANS values from NO, A and B of segment 3 ...…………... 61

Table 4.15: Segment 2, decoding using the IANS ... 61

Table 4.16: Segment 1, generating the IANS values from NO, A and B of segment 2 ...…………. 61

Table 4.17: Segment 1, decoding with the IANS ... 62

Table 6.1: Encoding combinations of 4-bit string using MANS ... 84

Table 7.1: Test results using Solution I ... 97

Table 7.2: Solution I - the occurrences of flags distance from C for U.txt .. 102

Table 7.3: Possible compression yield per segment ... 103

Table 7.4: Test results using Solution II .. 105

Table 7.5: Test results using Solution II post-conversion of DE to Binary ...……………………….. 110

Table 7.6: Test results using flag to flag……………………………………………………………... 122

Table 7.7: Correlation Between MANS Overhead and DE Compression…………………………… 124

Table 7.8: Compression speed results………………………………………………………………... 127

Table 7.9: De-compression speed results…………………………………………………………….. 128

Table 7.10: Memory usage for DE F2F C=4………………………………………………………… 130

Table 7.11: Test results using Solution III .. 132

List of Symbols

ANS​ ​ ​ ​ Adaptive Numeral System

 ​ ​ ​ ​ The encoder/Decoder 𝐷

​ ​ ​ ​ The binary bit of a random source 𝑏

S ​ ​ ​ ​ Random binary string

IANS​ ​ ​ ​ Improved Adaptive Numeral System

A ​ ​ ​ ​ Natural number, representing 1’s from a binary number

B ​ ​ ​ ​ Natural number, representing 0’s from a binary number

NO​ ​ ​ ​ Number of Operations

DE​ ​ ​ ​ Data Extraction

MANS​​ ​ ​ Modified Adaptive Numeral System

DE-FI​ ​ ​ ​ Data Extraction - Flag Information

DE-FTF​ ​ ​ Data Extraction - Flag to Flag

 ​ ​ ​ ​ The length of in bits (the selected numbers of bits to compress) 𝐶
𝑙

𝐶

 ​ ​ ​ The decimal value of , where is the binary bit 𝐶
𝑥

=
𝑖=0

𝑖=𝑐
𝑙
+1

∑ 2𝑖𝑏
𝑖

𝐶 𝑏

 ​ ​ ​ ​ The flag length 𝐹
𝑙

= ​ ​ ​ The flag location for each segment 𝐹
𝑆𝑔

𝑥

𝐶
𝑥

 ​ ​ ​ Length of segment ​ 𝑆(𝑠𝑔
𝑥
)

𝑙
= 𝐶

𝑥
𝑥

​ ​ Number of Segments in S 𝑆(𝑆𝐺𝑠) =
𝑆

𝑙
−𝑆(𝑠𝑔

𝑥
)

𝑙

𝐶
𝑙
−𝐹

𝑙

= ​ ​ ​ The maximum segment length 𝑆𝑔
𝑙

2
𝐶

𝑙

 ​​ ​ ​ The number of flags the segment can hold 𝑆𝑔
𝑙
/𝐹

𝑙

 ​ The decimal value of a segment 𝑆(𝑠𝑔
𝑥
) =

𝑖=0

𝑖=𝑆(𝑠𝑔
𝑥
)

𝑙−1

∑ 2𝑖𝑏
𝑖

𝑆
𝑠𝑔

𝑥

Chapter 1

1.1. Introduction

This section discusses the increasing demand for higher data compression ratios, driven by the

rapidly growing volume of digital data. It outlines the limitations of existing compression

methods, which are often constrained by the binary system and the theoretical limits defined by

Shannon's Entropy. The section also introduces a novel approach involving an adaptive

numeral system, which aims to restructure binary-encoded data into iterative sequences,

potentially unlocking new levels of compression efficiency. Additionally, it highlights key

research questions regarding the feasibility, compatibility, and computational viability of this

new method, setting the stage for the study’s proposed innovations in lossless data

compression.

1.2. Background and Motivation

The need for a higher ratio of data compression is increasing. This has become clear from the

figures, published, for example, by International Business Machines (IBM). According to IBM

[1], the amount of data generated every day was more than 2.5 exabytes in 2012, and it is

forecasted to reach 180 zettabytes (ZB) by 2025 [2]. The majority of the generated data has

been transmitted from one point to another, where a method of compression has been applied to

either store it or transmit it. Although there are many methods of compression designed around

statistics, redundancy, probability, combinations, permutations, or arithmetics with various

ratios of data compression, these are not sufficient for dealing with the amount of data used

daily. The paradigms designed so far are based on the binary system, which is one way of

translating occurrences of permutations and, therefore, restricted to the theoretical limit of

compressibility, the so-called Shannon’s Entropy, which gives the minimum number of bits per

symbol needed to encode information in binary form.

Most lossless compression aims to eliminate the redundancy in information [3] and to try to

find a new way of representing information as efficiently as possible. Still, it cannot go beyond

the theoretical limit (entropy) [4]. If, however, the encoded information were transformed into a

1

different form, it might unlock the limit of compression. In other words, it might be possible to

calculate the occurrences of data represented in binary form in sequences and then compress

them into a reasonable size where each compressed sequence could be used to calculate the

next sequence. This would mean that the final sequence would be the result of the information

contained in it, and the form of these calculations would be reversible and reducible.

This study aims to improve the lossless compression of information by the application of new

methods of calculating the occurrences of data represented by a binary system and also finding

appropriate algorithms to reduce the results of these calculations. This improvement will open

up an entirely new perspective on lossless compression. At the same time, it will take into

account the complexity, memory size, and speed of the encoding and decoding of data. The

assumptive hypothesis in this study posits the feasibility of calculating occurrences of data

represented in binary form within sequences while compressing them into a manageable size.

Each compressed sequence is envisioned to serve as a basis for calculating the subsequent

sequence. Encoding each sequence is anticipated to further compress the preceding segment,

resulting in the number of encoded segments aligning with the frequency of compression

applied to the initial segment. This approach aims to enhance lossless compression of

information through the design of a novel adaptive numeral system for data compression.

Testing the efficiency of the new model will involve addressing the following set of questions:

1)​ Would the new numeral system calculate a compressed data stream from the binary

numeral system?

Method: This will be tested by applying the method to a data stream that needs

to be compressed. The outcome of the previous data streams will be used to

encode a new data stream, and the process will be reversed to check if the

method is recursive.

2)​ Could any additional method of compression be applied to the new numeral system to

further increase the compression ratio?

Method: Other compression algorithms, such as Huffman, BWT, RLE and

Arithmetic coding, will be applied to the new method to evaluate its

effectiveness.

3)​ Would the new algorithm be computable?

2

Method: The algorithm will be developed using a Java application to assess its

computability.

4)​ Would the redundancy limit of information change with the application of the new

adaptive numeral system?

In total, the thesis comprises eight chapters, structured to provide a clear progression from

foundational concepts to advanced methodologies and comparative analyses. The organisation

reflects the study’s evolution, addressing both theoretical underpinnings and practical

applications of compression techniques. The report on the study continues as follows:

Chapter 2: discusses earlier research that forms the framework for modern compression

methods. It examines foundational theories, such as Information Theory and Algorithmic

Information, and contemporary techniques like Huffman Coding, Arithmetic Coding, and

Asymmetric Numeral Systems. This chapter provides the groundwork upon which the current

study is built, illustrating how the developments rely on prior work. The chapter highlight

challenges that the subsequent chapters will address, especially the development of numeral

systems for more efficient compression methods. This sets the stage for Chapter 3, where the

focus shifts to the development and application of Adaptive Numeral Systems.

Chapter 3: Introduces the concept of numeral systems, particularly the Adaptive Numeral

System (ANS) and Improved Adaptive Numeral System (IANS). These systems are designed

to prepare data for compression by encoding and segmenting it iteratively. The chapter

highlights the challenges of encoding data in a manner that allows for efficient compression.

The discussion of ANS and IANS transitions into Chapter 4, where the emphasis shifts towards

applying these systems for data compression and exploring the effectiveness of iterative

compression methods based on these numeral systems.

Chapter 4: Builds upon the theoretical foundations set in Chapter 3. It discusses how the ANS

and IANS can be used for iterative compression, where each segment’s result is used to encode

the subsequent segment. The chapter explores the limitations of initial ANS-based compression

methods when applied to IANS, leading to the development of a conditional compression

method. This modification takes advantage of the unique properties of IANS, such as segment

3

initialisation and structural differences. The transition into Chapter 5 is marked by a focus on

practical applications, specifically the challenges of data extraction (DE) and how these

concepts can be used to improve compression techniques in real-world scenarios.

Chapter 5: Introduce Data Extraction (DE) and address its practical challenges. The chapter

builds on the concepts discussed in Chapter 4, where iterative compression techniques were

explored. It introduces the Flag approach which includes three solutions to overcome the

identified challenges of DE, specifically in relation to data representation and encoding. The

chapter emphasises the application of these systems in compressing data, with particular

attention paid to MANS (Modified Adaptive Numeral System) as a flagging system solution.

The transition into Chapter 6 involves a more in-depth exploration of how MANS specifically

enable the DE process.

Chapter 6: The focus of this chapter is on the Modified Adaptive Numeral System (MANS)

and its application to address specific challenges encountered in the Data Extraction (DE)

technique. Building upon the issues identified in Chapter 5, this chapter demonstrates how

MANS, with its distinctive characteristics, enables the implementation of necessary flagging

solutions within DE. The DE method relies on a numeral and flag system capable of supporting

these solutions, and MANS fulfills this requirement by efficiently encoding and decoding data

while facilitating segment flagging during the compression process. The chapter explores the

encoding and decoding processes of MANS, explaining how its properties are leveraged to

enhance the DE technique. This sets the stage for Chapter 7, where the three proposed solutions

introduced in Chapter 5 are tested, and a detailed comparative analysis of various compression

methods, including DE with MANS, is presented.

Chapter 7: Provides a detailed comparative analysis of the DE technique proposed in Chapter

5, based on MANS, and evaluates its performance in relation to other established compression

methods. This chapter offers a deeper understanding of the results obtained from Solution I and

Solution II using MANS, with a thorough examination of how these solutions address the

challenges of DE. However, Solution III is not as robust and does not offer significant

comparative results, thus requiring less in-depth analysis. The transition to Chapter 8 concludes

the study, summarising the findings, providing conclusions, and suggesting potential directions

for future research.

4

Chapter 8: Draws together the findings from the previous chapters and offers a comprehensive

conclusion. It highlights the contributions made by the study to the field of lossless data

compression, specifically through the development and application of ANS, IANS, and MANS.

The chapter also reflects on the strengths and limitations of the methods discussed, including

the results from the DE technique and its applications. Additionally, Chapter 8 proposes areas

for future research based on the gaps identified in the study and the outcomes of the

comparative analyses conducted in Chapter 7.

1.3. Summary

This section explored the increasing need for more efficient data compression methods due to

the rapid growth in digital data. It examined the limitations of existing compression techniques,

particularly those based on the binary system and Shannon’s Entropy, which define the

theoretical limits of compressibility. The section introduced a novel approach involving an

adaptive numeral system, aimed at restructuring data into iterative sequences to potentially

surpass these limits. Key research questions were outlined, focusing on the feasibility,

computational requirements, and integration of this novel method with existing compression

algorithms.

5

Chapter 2

2.1. Introduction

This chapter provides an overview of earlier work on lossless compression, establishing the

theoretical foundation upon which modern techniques are built. It begins with a discussion of

Information Theory and Algorithmic Information, highlighting fundamental principles such as

entropy and redundancy that govern data compression. The chapter then explores contemporary

lossless compression techniques, covering widely used methods such as Huffman Coding,

Run-Length Encoding (RLE), Burrows-Wheeler Transform (BWT), Fibonacci Code,

Arithmetic Coding, Integer Arithmetic Coding, and Asymmetric Numeral Systems (ANS).

Each method is examined in terms of its underlying principles, efficiency, and applications,

setting the stage for the development of novel compression paradigms in subsequent chapters.

2.2. Earlier Work on Lossless Compression

In general, earlier work on lossless compression shows that there are several perspectives that

can be applied to the increase of data compression, but all have certain reservations. Moreover,

an effective method for lossless data compression can be evaluated in a number of ways. These

include, for example, the analysis of the compression ratio and complexity of the applied

algorithm, which, in turn, affects the processing power and speed required to implement the

algorithm. In addition, lossless data compression techniques appear to have varying

compression ratios, which depend on data patterns and/or the type of data (e.g. image, video,

sound and text), and they frequently encounter serious challenges such as the expansion of

data, long encoding and decoding speed, error propagation and library growth. Overall, these

techniques aim to compress data by removing redundancy from the original data, but this can

only be done to a certain point as the compressed data has little or no redundancy [4].

Compression can, in principle, be achieved by using one of the two classes, either

lossless or lossy compression. In lossy compression, some information is discarded and cannot

be retrieved, while in lossless compression, information can be reconstructed without any loss.

Lossless compression generally includes three types. In the entropy type, a probability module

6

is used as a measure of the amount of compression that can be obtained to help design and

implement an effective algorithm for data compression. The dictionary type operates by

searching for matches between the text that needs to be compressed and a set of strings that are

stored in a dictionary. In other types, for example, counting sequences of repeated data or

arranging sequences of data in a lexicographic order allows other algorithms to take advantage

of the run.

In the present chapter, the approaches and techniques of data compression will be discussed in

the following subsections: Information theory and algorithmic information and Current lossless

compression methods, which will be divided into different approaches based on chronology.

2.3. Information Theory and Algorithmic Information

Claude Elwood Shannon outlined the theoretical limits of data compression in 1948 by defining

the entropy of a binary system as the minimum number of bits per symbol needed to encode

information in binary form. This formula has become known as Shannon’s Entropy:

​ ​ ​ (2.1) 𝐻 𝑠() =−
𝑖=1

𝑛

∑ 𝑝𝑖 𝐿𝑜𝑔
2

𝑝𝑖()

where is the entropy of a set of probabilities [5]. The equation 2.1 is applicable 𝐻 𝑠() 𝑝1, 𝑝2…𝑝𝑛

to the source distribution determined by the compression method, enabling comparison with the

encoded information to ascertain the degree of available compression. Some researchers have,

however, argued that Shannon’s theory has theoretical difficulties when real-world data is

involved [6]. For example, if the present document were to require compression, the use of the

relative frequency approach would mean that the probability of each letter or word could be

calculated and the estimated entropy obtained. This would be the approximate amount of

compression that could be achieved. However, the letters and words examined in the present

document are established and unchanging, as opposed to being subject to probability, which

would make the estimation of entropy futile. Yet again, if the algorithm had been designed for

the current document, it would apply only to this particular document and not necessarily to

any other document. In consequence, basing an algorithm on calculating the probabilities for

the English alphabet would be more useful, but maybe not as efficient for other documents or

text.

7

The understanding of entropy currently assumes the existence of an abstract source, and it is

still useful as it provides the limit of compression it can achieve [6]. This limit appears to

depend on how information is interpreted. For instance, when considering x as a set of

increasing numbers [0,1,2,3,4,5,6,7] that require compression, where the probability of each

number is equal, Shannon's theory suggests that the minimum number of bits required to

encode each symbol is three bits. This would result in 24 bits. However, the information

contained in x shows that it is a linearly increasing sequence of ones. By using the delta coding

approach, the differences between consecutive values in x can be transmitted as [0,1,1,1,1,1,1],

resulting in an entropy of . [8]. 𝐻(𝑥) = 1

Algorithmic information theory, exemplified by Kolmogorov complexity [9] sidesteps the

theoretical quandary of Shannon’s entropy by adopting a distinct viewpoint on information.

Kolmogorov complexity assesses information by examining a data string's length in binary bits,

identifying patterns within it, and thereby enabling a shorter description of it. More precisely,

the Kolmogorov complexity of a sequence is the size of the program that includes all 𝐾(𝑥) 𝑥

the input that might be needed to generate . This means that if is a sequence of repeated 𝑥 𝑥

data, for example, all zeros, the program will simply be a print statement in a loop. However, if

 is a random sequence without a pattern, the only program that could generate it would 𝑥

contain the sequence itself. A typical example is the Minimum Description Length principle,

introduced by Jorma Rissanen in 1978 and known as MDL, which compresses the data by

describing any regularity in a set of data in fewer symbols.[10][11]

This shows that redundancy of information can be removed by either encoding information by

using the relative frequency approach, which is limited to the entropy, or by using a method of

looking at the duplication in the encoded data, which will, in turn, be limited to the number of

duplication in the data stream.

2.4. Contemporary Lossless Compression Techniques

Given that all lossless compression relies on the binary system, a comprehensive review of

earlier research will illuminate the techniques employed in compressing data, which can then

potentially be adapted to the new numeral system with appropriate modifications. If none of the

8

existing methods are applicable, this research will present techniques for developing a novel

compression method. This subsection encompasses an in-depth examination of Huffman codes,

Run Length Encoding, Burrows-Wheeler Transform, and Fibonacci code, along with further

exploration of Arithmetic coding. Additionally, recent advancements in faster and more

efficient arithmetic coding, such as An Efficient Adaptive Binary Arithmetic Coder Based on

Logarithmic Domain, are discussed. This coder is a versatile compressor that integrates various

lossless transforms to store non-media files such as text, source code, serialised data, and other

binary content. will also address Asymmetric numeral systems, which are precise entropy

coding algorithms exhibiting encoding speeds comparable to Huffman coding. Moreover, they

possess the capability to approach optimal entropy levels arbitrarily, a characteristic shared

with Arithmetic coding. Examples of such compression algorithms include GZIP by Jean-loup

Gailly and Mark Adler [12], BZIP2 by Julian Seward [13], and LZMA by Abraham Lempel,

Jacob Ziv, and Sergey Markov [14].

The next section will delve into Information theory and algorithmic information, setting the

foundation for understanding the subsequent discussion on current lossless compression

methods, which will serve as the cornerstone of the research.

Since Shannon and Kolmogorov’s work, most of the work done on lossless data

compression has focused on creating new ways of applying modern data compression theory,

designed around statistics, probability and combinations and/or arithmetics. These paradigms

have employed a variety of different compression techniques and include, for example

●​ Identifying the data that occurs the most frequently and encoding the shortest binary

number to represent the information. An example of this is Huffman coding [15].

●​ Counting sequences of repeated data as is done in Run-Length Coding [16].

●​ Arranging the sequences of data in lexicographic order by using the Burrows-Wheeler

transform to allow other algorithms, such as RLE, to take advantage of this run [17].

●​ Using adaptive dictionary-based techniques which store a sequence of data and use

them if the same sequence occurs again, and, if it does not, the sequence is stored in the

dictionary [18], for example, LZ77 and LZ78 by Abraham Lempel and Jacob Ziv [19]

[20].

9

●​ Generating a unique identifier by using the numbers in the unit interval (0,1) to

distinguish a sequence of symbols to be encoded such as Arithmetics

[21][22][23][24][25].

●​ A general-purpose compressor which combines various lossless transforms to save

non-media files such as text, source code, serialised data, and other binary content [26].

Examples of this include GZIP [12], BZIP2 [13], LZMA [14].

●​ Asymmetric Numeral Systems generate a list of natural numbers in a table based on the

frequencies of the symbols. The symbols are processed by reading the discrete integers

representing the symbols and the discrete integer is transited to the row number ready to

process the next symbol J. Duda 2009 [27].

In what follows, some these paradigms will be discussed in more detail

2.4.1. Huffman Coding

Huffman coding has been, and remains, a very popular method in data compression and one of

the most well-known paradigms in information theory. It was published in 1952 by David

Huffman [15], who originally designed it for text compression. It has since been modified in

many ways and used to improve the ratio of compression [28]. The method has been used

partially as the back end of GZIP [12], ZLIB [29] and JPEG [30].

The Huffman coding algorithm stands out as a groundbreaking variable-length coding

technique. Unlike employing a uniform fixed-length code, such as 8-bit extended ASCII, for

each symbol, it generates codewords based on a set of probabilities. It assigns shorter

codewords to symbols with higher occurrence rates, while less frequent symbols receive longer

codewords. As a result, the total number of bits needed for representation is substantially

decreased for a source comprising symbols of varying frequencies.

The application of the method starts by determining the frequency of the symbols and

listing them in either descending or ascending order according to the associated probability

distribution. Then the symbols are listed to form a tree with leaves, and combining two symbols

repeatedly to form a new subtree. This is first done with the lowest probability symbols and

continues until all the symbols are included in the tree. The lowest probability symbols will be

combined and placed in the subtree in an order which is based on the total frequency of the

combined letters, while each node on the tree will be assigned either {1} to the left branch and

{0} to the right branch or vice versa, which will create the prefix code. For example, when

10

using Huffman coding to encode the word “COMPRESSION”, the steps in Figure 2.1 show

how the tree is built from the leaves to the root. Figure 2.1(a) illustrates the first step of listing

the frequency in each letter.

Figure 2.1(a)

The subsequent step entails reordering the letters based on their respective frequencies. In the

example illustrated in Figure 2.1(b), the rearrangement will follow a descending order. The last

two items, which have the minimum frequencies, will be combined and placed in the subtree.

Figure 2.1(b)

The least and last frequent symbols on the list are I and N, which have been combined in Figure

2.1(c). The frequencies of the symbols are added together, and, in this example, placed in the

first position to maintain the sorted order of the list.

Figure 2.1(c)

The symbols are then repeatedly combined to complete the tree as shown in Figure 2.1(d) to

Figure 2.1.

Figure 2.1(d)

11

Figure 2.1(e)

Figure 2.1(f)

Figure 2.1(g)

Figure 2.1(h)

Figure 2.1(i)

Once the final two subtree symbols are combined, the 1 and 0 are assigned to branches, by

inserting 1 to the left branch and 0 to the right or vice versa as shown in Figure 2.1.

12

Figure 2.1: Building a Huffman tree

The weighted binary tree completes the Huffman tree. As shown in Figure 2.1, each symbol has

been constructed with prefix code that can be derived by collecting the 1’s or 0’s of each branch

to generate the required symbol. Table 2.1 shows the codes for each letter obtained from the

Huffman tree constructed from Figure 2.1. This gives the Huffman code for the word

“COMPRESSION” as 011 001 0000 0001 110 111 010 010 100 001 101.

Table 2.1: Huffman code for word “Compression”

Letter Probability Codeword
C 0.09 011
O 0.18 001
M 0.09 0000
P 0.09 0001
R 0.09 110
E 0.09 111
S 0.18 010
I 0.09 100
N 0.09 101

13

Decompression can be done by following the branch from the root that leads to each symbol.

The decoder sequentially reads the individual bits, either 1's or 0's, starting from the root and

progressing downwards, as illustrated in Figure 2.1. If the symbol is 1, the decoder advances

one step to the right subtree branch; conversely, if it's a 0, the decoder moves one step to the

left. This iterative process continues until the decoder reaches a leaf node, where it decodes the

symbol. Subsequently, the decoder restarts from the root and repeats this process until it

reaches the end of the encoded message. The entropy for the word “COMPRESSION” is:

 𝐻 =− 1
11() 𝑙𝑜𝑔

2
1

11() + 2
11() 𝑙𝑜𝑔

2
2

11() + 1
11() 𝑙𝑜𝑔

2
1

11() + 1
11() 𝑙𝑜𝑔

2
1

11() + 1
11() 𝑙𝑜𝑔

2
1

11() + 1
11()𝑙𝑜𝑔

2
1

11() +

 bits/symbol. 2
11() 𝑙𝑜𝑔

2
2

11() + 1
11() 𝑙𝑜𝑔

2
1

11() + 1
11() 𝑙𝑜𝑔

2
1

11()≈3. 095

The length for this code, as per Table 2.1, is calculated as L = 3 + 3 + 4 + 4 + 3 + 3 + 3 + 3 + 𝐿

3 + 3 + 3 = 35. Given that the number of symbols in the word "COMPRESSION" is , 𝑛 = 11

the average code length is approximately: 𝐿

 bits/symbol 𝐿
𝐴𝑣𝑔

= 35
11 ≈3. 182

The efficiency of this code (redundancy) is measured by the difference between the entropy and

code length, which in this case is: 3.182 - 3.095 = 0.087 bits/symbol. This corresponds to

approximately 0.023% of the entropy. Therefore, the example (the word ‘COMPRESSION’)

requires 0.023% more bits than the minimum of required bits to be encoded using Huffman

code. However, if the frequency of a letter is very high compared with the other letters, the

Huffman code can become inefficient as regards to the entropy. For example, if a source from

the alphabet A = {a1, a2, a3, a4} is used, that has the probability model: P(a1) = 0.9, P(a2) =

0.06, P(a3) = 0.03, P(a4) = 0.01. The entropy will be 0.6 bits/symbol. Table 2.2 shows the

application of the Huffman code for this source:

Table 2.2: Huffman code for Source 𝐴

 𝐴 Probability Codeword
 𝑎

1
0.9 1

 𝑎
2

0.06 01

 𝑎
3

0.03 000

 𝑎
4

0.01 001

14

The average length of this code is 1.14 bits/symbol and it has a redundancy of 0.54 bits/symbol.

This means that using this sequence will require 0.54 more bits per symbol than the minimum

calculated by the entropy.

There are many ways, such as the minimum variance Huffman codes [31] for

combining the symbols into a frequency table. Huffman codes can be arranged by placing the

letters with the combined lowest probabilities as high as possible on the list.

For example, if there are symbols a1, a2, a3, a4 with probabilities 0. 6, 0. 1, 0. 2, 0. 1

respectively. Pa4 will be combined with Pa3, and since the probability of the combined symbols

is Pa4 + Pa3 = 0.3, (Pa4 + Pa3), it will be listed before a2, resulting in the following order

a1, (a4, a3), a2 . This leads to different binary trees and different codeword lengths for each

letter. The redundancy measure will, however, remain the same when compared with the

standard Huffman code.

When the Huffman code is obtained, the decoder requires the same model of the encoded

symbols. The model can be sent to the decoder, but it will result in costly memory usage in

terms of storing the model of encoded symbols. Also, when the statistics indicate wide

variation, the coded tree will result in a significant amount of encoded data. Canonical Huffman

codes [32] tackle these challenges by transmitting the codeword lengths of Huffman trees to the

decoder, thereby minimising the data required for transmission or storage. Nonetheless, this

approach entails constructing the Huffman tree and encoding/decoding the data according to its

structure. Although the concept is straightforward, efficiently building the tree and managing

edge cases can introduce complexity. Ongoing research aims to optimise Huffman coding by

introducing a k-bit delay [33].

Hashimoto and Iwata demonstrate the potential for optimality using a class of 1-bit delay

decodable codes with a finite number of code tables. They used a code-tuple model for a

time-variant encoder and defined the class of k-bit delay decodable code-tuples. They

established that Huffman code can achieve optimal average codeword length within the class of

1-bit delay decodable code-tuples, under the constraint that the encoder's code table selection

depends only on the current symbol, independent of past symbols. Future work aims to explore

15

if relaxing this constraint can result in shorter average codeword lengths compared to Huffman

coding [34].

2.4.2. Run-Length Encoding

Similar to Huffman coding, Run-Length Encoding (RLE), introduced by Solomon W. Golomb

in 1966 [35], is another common technique used in data compression. While RLE simplifies

data by substituting repeated symbols with a count, Huffman coding assigns variable-length

codes to symbols based on their frequencies. Both methods aim to decrease data size, with RLE

being more straightforward but less versatile compared to Huffman coding. RLE focuses on

consecutive symbols and substitutes them with a single symbol along with the count of the

consecutive run. For example, the message sequence aaaabbccc could be transformed to

(a,4),(b,2), (c,3), and once it has been transformed, a probability coder such as the Huffman

code can be used to code both the symbols and the number of the run for each letter. This

method is very useful for data sets that occur in succession, whereas it is not effective if the

message sequence has a small run of symbols. Research on Run-Length Encoding (RLE)

continues to address challenges associated with datasets containing small runs of symbols.

Xutan Peng, Yi Zhang, Dejia Peng, and Jiafa Zhu [36] employ combinatorics to quantify RLE's

space savings potential based on input distribution. Leveraging this understanding, they

propose an algorithm that automatically identifies suitable symbols for RLE encoding,

selectively applying RLE to these symbols while storing others directly. Through experiments

on real-world datasets, they demonstrate that their approach maintains RLE's efficiency

advantage and can effectively mitigate cases where RLE encoding results in increased space

compared to the input data. However, the analysis was limited to the context of independent

and identically distributed data.

2.4.3. Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) was developed by D. J. Wheeler in 1983, but it was

not published until 1994 [37][38]. The BWT algorithm does not compress data, but, instead, it's

been used as a structure for other compression techniques. BWT makes use of a reversible

transformation to align the contexts of data and to arrange them in lexicographic order, making

it easy to use by other compression algorithms, such as the Run-Length encoding [35], front

coding, and Intelligent Dictionary Based Encoding [39].

16

The algorithm requires the entire sequence input for its arrangement. An illustrative example

below demonstrates how the BWT algorithm can be applied to the word ‘DATA’, which has 4

characters, thus . The process starts with shifting the first symbol, in this case, D, to the 𝑛 = 4

left, after which it will be at the end of the word, ‘ATAD’. The shifting will be repeated 𝑛 − 1

times, which will result in matrix as shown in Table 2.3. 𝑛×𝑛

Table 2.3: Burrows-Wheeler Transform for word DATA

3.1 3.2 F L
 D A T A A D A T
 A T A D A T A D
 T A D A D A T A
 A D A T T A D A

The second step is to sort the rows in lexicographic order and assign F for the first column and

L for the last, as shown in Table 2.3. The first letter of the word must be noted, or alternatively,

the $ sign can be inserted to identify the beginning of the string. The order of the repeated

letters in column L will match the order in column F. For example, the first A in column L will

correspond to the first A in column F. Column L will be arranged and used to decode the data

string to its original form.

Decoding of L can recover the original word in the following steps:

i.​ Finding the string F by sorting L in lexicographic order.

ii.​ Starting from the first noted letter D in Column L, the second letter of the word can be

retrieved by looking at the corresponding letter in column F.

iii.​ A new letter in column F will indicate what letter needs to be looked for next in column

L. The order of each letter in column L matches the order of letters in column F.

The algorithm serves as a foundation for various compression methods, such as the bzip

compressor, and proves effective when coupled with compression techniques like

Run-Length-Encoding. However, BWT necessitates the complete sequence to be accessible

prior to the encoding process. BWT recently gained popularity in the field of genetics and

bioinformatics due to its versatility, offering solutions for data compression, sequence analysis,

17

haplotype inference, and genome assembly. Its widespread adoption is driven by its ability to

address key challenges in managing and analysing complex genetic data [40] [41][42].

2.4.4. Fibonacci Code

The Fibonacci numbers and their associated golden ratio, typically denoted by 𝜑, are widely

recognised mathematical concepts. These numbers have been found in applications and are

observed across various disciplines, including nature, music, market trading, number theory,

physics, quantum mechanics, cryptography, and data compression [43]. The first two Fibonacci

numbers are defined as F0 = F1 = 1, initiating a sequence of numbers where each subsequent

integer is the sum of the two preceding integers, for example, Fi = Fi-1 +Fi-2 for , resulting 𝑖 ≥ 2

in the sequence {1, 1, 2, 3, 5, 8, 13, ...}. These are known as Fibonacci numbers of order 2.

Over time, numerous codes have been developed using the Fibonacci numbers as a foundation,

as elucidated by Salomon [44], among others.

One of the best-known representations is Zeckendorf’s theorem [45], which represents any

integer as sums of Fibonacci numbers, while at the same time avoiding the sum of any two

consecutive Fibonacci numbers. The paradigm is referred to as Zeckendorf representation

 and it results in a code which does not contain adjacent 1-bits. This characteristic has 𝑍(𝑁),

been used to act as a termination flag for each encoded integer to differentiate, unambiguously,

the code words from a long stream of codes [46]. This is achieved by omitting the first bit as F1

which is, then, followed by the least significant bit. For example, the number 19 can be

represented using Fibonacci numbers as 13+3+2+1=19 {100111} and 13+5+1=19 = {101001},

where the latter is Zeckendorf representation as it avoids the sum of any two consecutive

Fibonacci numbers. Additional {1} will be inserted next to the least significant bit as a

terminational flag of the code word, Z(19) = {1010011}. Thus, each encoded integer, which

uses the Zeckendorf representation, can be decoded uniquely by appending the prefixed

adjacent {1} to the end of each code word.

The Fibonacci codes are recognised for their efficacy in compressing a limited set of integers

[47], offering reliability in data communication applications with minimal error susceptibility

[48]. Consequently, when employed as a compression method for transmitting unbonded

strings [49], the decoding process can be expedited through the use of algorithms based on

18

finite automaton. Coupled with a precomputed mapping table of automaton reduction using

Fibonacci shift operation, as demonstrated by Walder, Krátky, et al. [50], this approach

enhances efficiency. The Fibonacci codes are considered a straightforward and practical

alternative to Huffman codes, as demonstrated by Przywarski, Grabowski, et el [51].

2.4.5. Arithmetic Coding

Modern Arithmetic coding was developed by Pasco [52] in 1976, and it attracted a great deal of

interest. It did not, however, take long before its major drawback, the problem of finite

precision, was discovered. At the same time, however, the problem was solved by Rissanen

[53], and Pasco’s paradigm was then further developed by many researchers to provide a

practical algorithm. One of the best-known algorithms has been developed by Rissanen and

Langdon at IBM in 1979 [54].

Arithmetic coding is still an increasingly popular method for generating variable-length codes.

It generates a unique identifier, or a tag, to represent the entire message with the corresponding

binary number. This identifier is based on the cumulative probability of the message. In this

respect, it differs from Huffman's coding, which separates the input symbols and generates a

code to identify them. Arithmetic coding locates the position of the original message in a

subinterval between 0 and 1, after which, the binary code can be generated to represent the

message. For example, assume that the following source alphabet has the 𝐴 = {𝑎
1
, 𝑎

2
, 𝑎

3
}

probabilities of P(a1) = 0.7, P(a2) = 0.06 and P(a3) = 0.24 , each symbol ai can be tagged with

a unique value X (ai), using the following equation: 𝑇

 ​​ ​ (2.2) 𝑇
𝑋

𝑎
𝑖() =

𝑘=1

𝑖−1

∑ 𝑃 𝑋 = 𝑘() + 1
2 𝑃(𝑋 = 𝑖)

​ ​ ​ = 𝐹
𝑥

𝑖 − 1() + 1
2 𝑃(𝑋 = 𝑖)

Determining the tag for a1 follows from the equation (2.2) and becomes:

X (a1) 𝑇 = 𝑃 𝑋 = 0() + 0. 5 . 𝑃(𝑋 = 1) = 0 + 0. 35 = 0. 35

Similarly, finding the tag for a2 takes place as follows:

X (a2) 𝑇 = 𝑃(𝑋 = 1) + 0. 5 . 𝑃(𝑋 = 2) = 0. 7 + 0. 03 = 0. 73

And finding the tag for a3:

19

X (a3) 𝑇 =
𝑘=1

𝑎
2

∑ 𝑃 𝑋 = 𝑘() + 0. 5 . 𝑃(𝑋 = 3) = 0. 76 + 0. 12 = 0. 88

To tag the full sequence a1, a2, a3 the symbols will be subdivided between [0, 1), based on their

probabilities, as shown in Figure 2.2.

Figure 2.2: Subdivision of the interval [0,1) based on the probabilities of the source alphabet 𝐴

Since the first symbol of the sequence is a1, the tag lies in the interval [0, 0.7), which will, then,

get rescaled based on the same probability as in the source alphabet , yielding the subintervals 𝐴

[0, 0.49) for a1, [0.49, 0.532) for a2 and [0.532, 0.7) for a3. The second symbol is a2, which lies

in the subinterval [0.49, 0.532), and, by using the same method, the interval gets rescaled based

on the same probability as in the source alphabet A, yielding, in this case, the further

subintervals [0.49, 0.5194) for a1, [0.5194, 0.52192) for a2 and [0.52192, 0.532) for a3. The

third and final symbol is a3, as shown in Figure 2.2. Each symbol can be located by using the

subinterval generated by the symbol probability, while the interval value for each symbol is

disjoint from all other intervals. Therefore, any value within the last interval [0.52192 and

0.532) can be used as a tag. Some techniques use the lower limit and others the midpoint of the

interval, A = (0.52192+0.532)/2 = 0.52696. 𝑇

20

The tag for sequence can be found by using the following recursive algorithm: 𝐴

 ​ ​ (2.3) 𝑙(𝑛) = 𝑙𝑛−1 + 𝑢𝑛−1 − 𝑙𝑛−1()𝑓𝑥 (𝑥
𝑛

− 1)

 ​ ​ ​ (2.4) 𝑢(𝑛) = 𝑙𝑛−1 + 𝑢𝑛−1 − 𝑙𝑛−1()𝑓𝑥 𝑥
𝑛()

where l(n) is the lower limit, u(n) the upper limit of the tag interval, and xn is the value of a

random variable.

Since each subinterval contains the succeeding interval, the value of the subintervals

decreases and the sequence gets longer, requiring, therefore, higher arbitrary precision. This

will cause a problem when a system with finite-pre processes a tag that has higher precision

than the system. In addition, the encoder has to encode the full message before transmitting it,

as each symbol in the message is encoded from the succeeding interval. Both issues are,

however, resolved by re-scaling the intervals to avoid getting smaller values and transmitting

the bits that correspond to the intervals, which are regularly using the following equations:

​ ​ ​ ​ (2.5) 0, 0. 5{ } → [0, 1); 𝐸
1

𝑥() = 2𝑥

​ ​ (2.6) 0. 5, 1{ } → [0, 1); 𝐸
2

𝑥() = 2(𝑥 − 0. 5)

​ ​ (2.7) 0. 25, 0. 75{ } → [0, 1); 𝐸
3

𝑥() = 2(𝑥 − 0. 25)

Encoding the sequence with re-scaling is done incrementally by calculating the lower and

upper limits of the interval. If the results of both the lower and upper intervals are confined

within the interval [0, 0.5), the encoder will generate 0 and rascal to the full interval [0,1) by

using the equation 2.5. If, on the other hand, the results are confined within the interval [0.5, 1),

the encoder will generate 1 and rascal to the full interval [0,1) by using the equation 2.6.

Otherwise, if the results are confined within the interval [0.25, 0.75) and do not satisfy equation

2.5 or 2.6, the encoder will double the tag interval, subtract it by 0.25 and, finally, rescale to the

full interval [0,1) by using the equation 2.7. The encoder will record the number of equation 2.7

operations and transmit it as 0’s when the next interval is confined within equation 2.6, or the

encoder will transmit the number of uses as 1’s when the next interval is confined within

equation 2.5. The last results of l(i) and u(i) are used to generate the binary tag for the next

21

element. The receiver will be informed by transmitting any value from the last interval,

followed by the remaining bits, which are required by the word length of the system in use.

The decoding process works backwards with additional steps. It requires the word length and

the code table of the message where the encoded message is located. It then initialises l(n) and

u(n) and rescales using the same equations 2.5, 2.6 and 2.7 to extract the values of the encoded

message. If the upper and lower values are contained in the upper half, the decoder shifts the

MSB of the encoded message out of the receive buffer, moves the next bit in, and updates the

tag using the equation 2.6. During the shifting process, the value of the tag will change, and it

needs to be compared with the tag intervals.

If the values fall between the range of the tag intervals in the code table, it will generate

the element of the message within the located interval.

If the tag value is contained between the upper and lower halves, it will be compared to

the tag interval of the symbol in the source alphabet to locate the symbol and rescale it again. 𝐴

If the upper and lower values are contained in the lower half of the intervals, the same

process will apply. The decoder needs to shift the MSB of the received encoded message out of

the receive buffer, move the next bit in, and update the tag using the equation 2.5. During the

shifting process, the value of the tag will change, and it needs to be compared with the tag

intervals.

If the values fall between the tag intervals, the element of the message will be generated

within the located interval.

2.4.6. Integer Arithmetic Coding

The arithmetic coding can be implemented on floating-point as discussed above. It can,

however, be also implemented on integers. The integer implementation requires the word

length to be set up for both the encoder and decoder, while the generated values will be 𝑚

mapped into the intervals that have the size of 2m binary words instead of the interval [0, 1).

The word length must be large enough to have sufficient values to represent the upper and

lower limits of all intervals. Instead of probabilities, it uses the number of occurrences of the

symbols that are listed in a cumulative count (CumCount) table. In this way, a fractional

representation of the probabilities can be avoided. The following equations 2.8, 2.9, 2.10 and

2.11 illustrate the process:

22

 ​ ​ ​ ​ (2.8) 𝐹
𝑋

(𝑘) = 𝑖=1

𝑘

∑ 𝑛
𝑖

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡

​ ​ ​ (2.9) 𝐶𝑢𝑚𝐶𝑜𝑢𝑛𝑡(𝑘) =
𝑖=1

𝑘

∑ 𝑛
𝑖

 ​ (2.10) 𝑙(𝑛) = 𝑙(𝑛−1) + ⎣
𝑢(𝑛−1)−𝑙(𝑛−1+1×𝐶𝑢𝑚𝐶𝑜𝑢𝑛𝑡(𝑥

𝑛
−1)

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 ⎦

 ​ (2.11) 𝑢(𝑛) = 𝑙(𝑛−1) + ⎣
𝑢(𝑛−1)−𝑙(𝑛−1+1×𝐶𝑢𝑚𝐶𝑜𝑢𝑛𝑡(𝑥

𝑛
)

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡 ⎦ − 1

The equations are very similar to the floating-point equations, in which in equation 2.8, ni is

defined as the number of times the symbol occurs in the TotalCount FX(k) and where xn is the 𝑖

symbol that needs to be encoded.

The encoding process starts with the selection of the word length and populating the 𝑚

endpoint values of the intervals into the CumCount table according to equation 2.9. In equation

2.10, l(n) represents the lower half of the interval, and equation 2.11 represents the upper half of

the interval u(n).

If the MSB is 1, the tag is contained in the upper half, or if the MSB is 0, the tag will be

located in the lower half. When equation 2.5 and 2.6 have been mapped, the MSB will be

shifted and 1 added into the integer code for u(n) and 0 for l(n). The mapping of 2.7 will be

needed when the tag interval is located in the middle of the interval, that is, when the second

MSB of u(n) is 0 and the MSB of l(n) is 1. In this case, the second MSB for both l(n) and u(n) will

be complemented and shifted to the left, while 1 will be shifted in the LSB for u(n) and 0 for l(n).

The number of times that 2.7 is used, will be recorded.

The decoding process starts when the tag is received from the encoder by using the same 𝑡

CumCount table and the same word length , which has been based on the word length during 𝑚

the initialisation process. It sets the lower limit as 0’s and the upper limit as 1’s. For example, if

the word length is 4, then l = (0000)2 = 0 and u = (1111)2 = 15. The tag value is then computed

using the following equation:

 ​ ​ ​ (2.12) ⎣ (𝑡−𝑙+1)×𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑢𝑛𝑡−1
𝑢−𝑙+1 ⎦

23

The result will be compared to the Cumulative Count table, while the output of the symbol lies

within the range of the result and, thus, updates the lower and upper limits. If the updated result

satisfies equation 2.5 or 2.6, the decoding proceeds with the use of l(n) and u(n) equations and a

comparison of the results with the Count table to obtain the second symbol. However, if the

result satisfies equation 2.7, the MSB will be shifted out for l(n), u(n) and , the new MSB will be 𝑡

complemented, and 1 shifted in the LSB for u(n) and 0 for l(n). Finally, the new LSB will be

inserted for t from the tag. The decoder will stop when all the bits in have been processed 𝑡

[55][56].

Arithmetic coding is becoming a very popular compression paradigm, and it is widely applied

in the coding standards of pictures, such as Advanced Video Coding (H.264/AVC),

High-Efficiency Video Coding (H265/HEVC), Joint Photographic Experts Group (JPEG2000)

and Joint Bi-level Image Experts Group (JBIG) [57][58].

The reasons for its popularity include its effectiveness, flexibility, and ability to achieve

good compression results. Moreover, it addresses the high-frequency difference between

symbols, a disadvantage in Huffman coding, and encodes the entire message into a single code.

There are, however, two main challenges in applying arithmetic coding. Firstly, the probability

model is, in some cases, unknown, and secondly, each proceeding interval requires

multiplication operations, which cause delays in information processing. Adaptive arithmetic

coding [25] can solve the former problem by using a counter that calculates each symbol after

encoding it and updating the cumulative count table accordingly. This means that the decoder

updates the table after each decoding.

Substantial research endeavours have been undertaken to tackle the latter issue of

processing delays and achieve swifter and more efficient arithmetic coding. The measures have

included the use of a table coder and avoiding multiplications by restricting the range of

intervals and using lookup tables that locate an approximate estimate instead of multiplications.

Alternatively, compression times can be reduced by diminishing sequence lengths, the number

of distinct symbols, and the symbol probabilities that influence arithmetic coding performance.

Compression times also diminish as symbol probabilities approach 1 [59].

24

2.4.7. Asymmetric Numeral Systems

Asymmetric numeral systems are accurate entropy coding algorithms that have a similar

encoding speed to Huffman coding and they can, arbitrarily, get close to optimal entropy. In

this, they are similar to Arithmetic coding. Asymmetric numeral systems were introduced by

Jarek Duda [60][61][62], and they include two main versions. The range Asymmetric Numeral

Systems (rANS) and table variants (tANS). For tANS, a list of natural numbers can be

generated in the table, which is based on the frequencies of the symbols. The table consists of a

list of state numbers , assigned based on symbol probabilities. Each state number is linked to a 𝑥

symbol 𝑠, ensuring proportional representation of each symbol in the table.

The state numbers represent different encoding states in the table. Each state is associated with

a specific symbol. During encoding, the current state is used to determine the next symbol, and

the updated state is selected based on predefined mappings in the table.

When the symbols can be selected from the state space x using the discrete integers, the state

space must fit within a bit-length of log2(x). Since the probability of a symbol can be defined, 𝑠

the size of can also be defined as log2(1/ps). Consequently, x' = log2(x) + log2(1/ps) = log2(x/ps) 𝑠

bits, and hence, the approximation of x' enables the selection of any that defines the symbol. 𝑠

The table is created by processing the symbols in order based on their probabilities, starting

from the left. The highest probability symbol will be inserted in the first column, the

second-highest probability symbol will be inserted into the next column and so on. The values

for each state that represent the symbol can be determined by dividing the state number by 𝑥

the probability of each symbol x/ps, while the results are rounded either up or down, depending

on whether the value has been used before.

For example, if the symbols S, B, E have the probabilities P(S) = 0.2, P(B) = 0.35, P(E)

= 0.45, and the word BEE requires encoding, the table is created by assigning symbols in

decreasing probability order: E first, B next, and S last. Each symbol is assigned state values in

increasing order, ensuring uniqueness (i.e., no value should occur twice). Furthermore, each

state value representing a symbol must be greater than . 𝑥

25

The number of state values assigned to each symbol is approximately equal to the total number

of states multiplied by the symbol's probability. The values representing each symbol in the

table are determined by dividing the state number by the symbol's probability, rounding

appropriately to ensure uniqueness.

For example, to compute the first state assignment for symbol S, the state number is divided by

P(S), x1/p(S), that is, , and to generate the value for (1, B) the probability of is 1/0. 2 = 5 𝐵

0.35, that is, . In this case, the result is rounded either up or down, making 1/0. 35 ≈ 2. 857

sure that rounding the value results in a number that has not been used before. Consequently,

dividing the state number by the selected value should yield a result approximately equal to the

symbol's probability.

Table 2.4 shows the values generated for the symbols E, B and S which correspond to

approximately the probability of the symbols [63].

Table 2.4: tANS for symbols E, B, S

State (x) E B S
1 2 3 5
2 4 6 10
3 7 8 15
4 9 11 20
5 12 14 25
6 13 17 30
7 16 21
8 18 22
9 19 26
10 23 28
11 24
12 27
13 29
14 31

As the table has now been constructed, the word BEE can be encoded, and the coding equation

can be defined as:

​ ​ ​ (2.13) 𝐶(𝑥, 𝑠)⟶𝑥'

Starting with x1 in Table 2.4 the value representing the first letter , is found at (1, B)= 3. The 𝐵

next state to be processed is x'
3 for the next symbol E, the table entry (3, E) = 7. Following the

same process, the obtained value indicates x'
7 in the state column, leading to the third symbol E,

26

which is encoded as (7,E) = 16, Thus, the values that represent the encoded word BEE are (3, 7,

16).

The decoding process works by using the table, and it is defined as:

.​​ ​ (2.14) 𝐷(𝑥')⟶(𝑥, 𝑠)

Only the final value (16) is required to start the decoding process. The process commences by

locating the value 16 from the table, which corresponds to (x'
7, E). Thus, the first decoded

symbol is E, and the next state is 7. The state 7 corresponds to (x'
3, E), where is decoded from 𝐸

x'
3, and the next state becomes 3. Looking up 3 in the table reveals that it corresponds to (x1, B).

The letter will be decoded and the state number x1 indicates the end of the message. The 𝐵

word EEB has been decoded, and it is the inverse of the encoded message BEE. The method

outlined above illustrates the use of tANS in the encoding and decoding process, and this can

be used in compression [63].

Compression begins by encoding values starting from the highest numerical value assigned to

each symbol in Table 2.4. The value obtained from encoding the first symbol is then used to

determine the corresponding state in column 𝑥. As shown in Table 2.4, the highest values

representing each symbol exceed the maximum state value, which is 𝑥14. For example, 30

represents S, 28 represents B, and 31 represents E. Since the first encoded value always

exceeds the maximum state value, the highest available value in the state column 𝑥, which

corresponds to the next symbol to be encoded, is chosen.

The value obtained from the first symbol will be converted to a binary representation. Since

this value exceeds the maximum state value for the next symbol, the binary representation is

right-shifted, outputting one bit at a time. After each shift, the resulting value is checked to

determine if it still exceeds 𝑥. This process continues until the value becomes smaller than or

equal to 𝑥. Once this condition is met, the adjusted binary value serves as an index for

retrieving the next state and symbol, allowing the encoding process to proceed. For example, in

encoding the word BEES, the first letter B corresponds to the maximum index value 28 which

is represented in binary as {11100}. The next symbol is , and the previous state value (28) is 𝐸

used to locate its corresponding state in column x. However, Since state x28. is not available in

the table, the highest available state containing E is selected specifically, (x14, E). Since 28

27

exceeds 14, the state value is right-shifted by one bit, outputting {0}, until it becomes equal to

or less than 14. After shifting the first bit, the value outcomes {11100} = 14 which matches x14.

This results in the next state symbol pair: (x14, E) = 31, with 31 represented in binary as

{11111}.

Proceeding, the third symbol as (x'
31, E). However, since 31 is not present in the current state 𝐸

column, the highest state column containing the next symbol E, which is x'
14, is selected. Given

that 31 exceeds 14, the state is shifted right by one bit to the output stream from the value 31,

{1111} {1}. Upon shifting the initial bit, the result is {1111} = 15, still exceeding 14. →

Consequently, another shift is performed, {111} {1}, ultimately yielding (x'
7, E) = 16 →

represented in binary {10000}.

Next, the fourth symbol is processed, resulting in (x16, S). Since 16 is absent in the 𝑆

state column, the highest state column containing the subsequent symbol S, which is x6, is

selected. Since 16 exceeds 6, the state is shifted right one bit from {10000} to {1000} {0}. →

Subsequent shifting leads to {1000} = 8, which still exceeds 6. Hence, another right shift is

performed {100} {0}, ultimately resulting in (x'
4, S) = 20 represented in binary as {10100}. →

Conclusively, the word BEES is fully encoded as {10100}, with the shifting output {01100},

resulting in a total bit string of 10 bits. It's noteworthy that the original length of the binary

number is consistently 5 bits before each bit shift.

Decompression works by inverting the compression process, giving the symbol frequencies, the

shift output bit string {01100}, and the encoded string {10100}. The table can be regenerated

by using the given symbol frequency and the encoded string {10100} = 20, which will locate

the corresponding symbol from Table 2.4, that is (4, S). The symbol S and the number x'
4 are

output, this gives the binary value {100}, which is 3 bits. Next, 2 more bits are appended from

the shifting output string, starting from the least significant bit, this gives {10000} = 16. The

remaining bits from the shifting string are {011}. The value 16 corresponds to (x'
7, E), in the

index table, so E is output, along with the state x'
7. This gives the binary value {111}, which is

3 bits. Then, 2 more bits are appended from the shifting string, resulting in {11111}=31. The

remaining bit from the shifting string is {0}.the value 31 in the index column corresponds to

(x'
14, E). E is output, and the state number 14 from the state column is {1110} in binary, which

is 4 bits. Finally, the last bit from the shifting string is appended, resulting in {1110}=28, which

28

corresponds to (x'
10, B). B is output, and since there are no more bits remaining in the shifting

string, the decoding process ends. The decoded message is SEEB, which is the inverse of the

word BEES [63].

Asymmetric Numeral Systems (ANS) are increasingly attracting attention. For instance, they

have been used by companies like Facebook [65][66], in hardware architectures [67], and in

information security applications [68]. Since the introduction of Asymmetric Numeral Systems,

significant research has been conducted to explore their potential applications. Yokoo and

Shimizu [69] analyzed the range Asymmetric Numeral System (rANS) and argued that directly

making the length of state intervals proportional to symbol probability does not lead to optimal

performance. Instead, they proposed an improved source approximation method for rANS to

enhance compression efficiency. They also introduced a formula for source approximation that

reduces compression loss caused by the asymmetry in the range variant.

In a separate study, Yokoo and Dubé [70] presented a method for constructing nearly optimal

symbol distributions for the stream variant of tANS by leveraging sorting. This approach uses

the stationary probabilities of symbols in the stream variant to achieve fast and efficient

average code lengths.

The range variant of Asymmetric Numeral Systems outperforms Arithmetic Coding in

implementation [62]. While Arithmetic Coding requires calculating multiple intervals, each

defined by two variables (upper and lower limits), rANS manages a single discrete value at a

time, corresponding to the symbol being encoded. This makes ANS more similar in speed to

Huffman coding [62], while maintaining the efficiency of Arithmetic Coding. These

advancements highlight the current state of research in entropy-based lossless data compression

[44].

Lossless data compression techniques are essential for reducing storage space and transmission

bandwidth required for digital data. Various coding methods have been developed to achieve

this goal, each with its own advantages and drawbacks [64]. A promising approach lies in the

development of an adaptive numeral system that dynamically adjusts to data characteristics

without relying on prior knowledge of symbol frequencies, remaining resilient to highly

29

variable data sets [60]. This differs from Huffman coding [15], which requires prior knowledge

of symbol frequencies to function effectively. In contrast to Run-Length Encoding (RLE) [16],

which is more limited in scope, the proposed approach aims to be applicable across all data

types. It also avoids the computational complexity often associated with Arithmetic Coding

[54] and does not demand the significant resources required by Asymmetric Numeral Systems

[62]. Implementing such a system would involve continuously analyzing data streams and

adapting encoding schemes based on observed patterns. This adaptive mechanism could enable

efficient sequential data compression across diverse data types [79].

2.5. Summary

This chapter reviewed the key theoretical concepts and established compression techniques that

have shaped the field of lossless data compression. It discussed the role of Information Theory

in defining compression limits and examined a range of classical and modern algorithms,

highlighting their strengths and limitations. The insights gained from this chapter provide a

critical foundation for exploring alternative compression methods, particularly those based on

adaptive numeral systems, which will be addressed in later chapters.

30

Chapter 3

3.1. Introduction

This chapter explores the Adaptive Numeral System (ANS) and its extended variant, the

Improved Adaptive Numeral System (IANS), as potential numeral systems for data

compression. Given that digital data is fundamentally represented using numeral systems, ANS

and IANS were investigated as alternative approaches to encoding binary streams. The chapter

details their encoding and decoding processes, examining how they structure data and whether

they offer advantages in terms of efficiency, complexity, and memory usage. By analysing how

these numeral systems manipulate binary sequences, this chapter aims to assess their suitability

for data compression and their broader implications for digital storage and transmission.

3.2. Symbol Representation Variations in Binary Encoding Processes

The primary aim of this research has been to devise a numeral system capable of calculating a

dataset in a manner conducive to developing a compression method. This method aims to

reduce the outcomes of these calculations, employing them, in turn, to encode the subsequent

dataset and compress it iteratively. Consequently, this approach enables the initial dataset to

undergo compression multiple times, provided that new datasets are integrated into the

compression chain. Moreover, as additional datasets are appended to the chain, further

compression of the entire dataset becomes achievable.

This process unfolds as follows: the initial dataset undergoes compression based on the number

of datasets in the chain. Subsequently, the second dataset is compressed by the number of

datasets that succeed it in the chain. This pattern continues iteratively.

In what follows, the investigation of a number of methods that can represent a binary stream by

applying to it a novel adaptive numeral system that has the potential to compress data, while at

the same time taking into account the complexity, memory size and speed of the encoding and

decoding processes.

31

All the digital data is based on the idea of using a numeral system to send a unique number to

represent something like an image, sound, letters of the alphabet, or even a three-dimensional

(3D) film. The binary system is one of the highly efficient numeral systems for symbolising a

large number, especially, when almost all digital communication channels and device processes

use this system [71]. This makes it the main numeral system in the digital era. The binary

numeral system is the main communication technique when a digital device is actively sending

and receiving electrical pulses that represent a binary stream that has been encoded to represent

some object. It requires, however, the sending of a large number of bits to represent, for

example, an image or a book.

As discussed in Chapter 2, various techniques and lossless compression algorithms have been

designed and implemented to reduce the amount of data [6]. Also, techniques of achieving a

higher compression ratio are constantly being researched as it is becoming increasingly

important. The techniques are, however, not limited to the use of the binary system for applying

compression, as only the results need to be in binary form. The fundamental idea of a code can,

therefore, be defined as the encoding of one set of symbols with another set of symbols. The

code can be designed to have a fixed length, known as block codes, or variable length, known

as variable-size codes. It can also be designed as static or adaptive code, known as dynamic

code [61].

In the field of lossless data compression, a great deal of research has concentrated on removing

redundancy when encoding information [7]. This has been done by using probabilities to find

the most frequently occurring symbols to be encoded with fewer bits and the least frequently

occurring symbols with longer bits. However, the natural form of information consists of

binary symbols in which each bit can be one of two integers 1 or 0, any bit of information 𝑥

will have combinations, and every in any set of data will have one of the combinations 2𝑥 𝑛 2𝑥

[72]. In consequence, if there is a method to identify the order within a combination from a data

set, the question can be asked if it will have the potential to increase the redundancy in the

information.

32

Since the binary system consists of two symbols 1 or 0, the representation of these symbols can

take different forms during the encoding process. These can include forms, such as higher or

lower, on or off, greater or less and even x and y. If a probability model is applied to the binary

system, it can consist of only 1 number, either the probability of 1 or 0. The probability of the

second symbol is simply one minus the probability of the first symbol, and it will, thus, have a

more accurate representation of the probability compared with other models that represent

different contexts [73]. In what follows, a novel recursive method of calculating an unbound bit

string (the most significant bit could be 1 or 0) will be outlined.

3.3. Adaptive Numeral System (ANS)

The Adaptive Numeral System (ANS) is a novel recursive method of calculating an unbound

bit string where the most significant bit could be 1 or 0. A list of non-negative integers will be

generated, in which the last two integers of the calculated results will contain the given order in

the data string and their use can be used to regenerate the original data set. The purpose of this

is to generate an which can be compared with x-1 to identify the change in the given data 𝑥

stream. For example, if x > x-1, it indicates a repeated bit in the data stream, and if x > x-1, a

switch is identified from 1 to 0 or vice-versa. The encoding and decoding processes will be

explained in the next two subsections.

3.3.1. Encoding Process using the ANS

The process of encoding involves the inspection of a string of data, starting either from the

MSB or the least significant bit (LSB) and then encoding 1 when the first bit is either 1 or 0. If

the second bit is the same as the previous bit, the last two generated integers will be added.

There may also be a switch from 1 to 0 or vice-versa, In which case, the last two integers will

be subtracted and the results added to the previous integer. The method can be defined more

specifically as:

​ when or ​ (3.1) 𝐷
𝑖<2

= 1 𝑠
1

= 1 𝑠
1

= 0

​ when ​ ​ (3.2) 𝐷
𝑖>1

= 𝐷
𝑖−1

+ 𝐷
𝑖−2

𝑠
𝑖

= 𝑠
𝑖−1

​ when ​ ​ (3.3) 𝐷
𝑖>1

= 𝐷
𝑖−1

− 𝐷
𝑖−2

 𝑠
𝑖

≠ 𝑠
𝑖−1

 𝐷
𝑖
 = 𝐷

𝑖−1
+ 𝐷

𝑖−2

33

In the above specification, is the encoder and is the binary bit of a data source. An example 𝐷 𝑠

will illustrate this further. Consider the binary string , the encoder can start 𝑆 = {00111} 𝐷

from either MSB or LSB. Assuming the encoder starts from the MSB, it reads the first-bit s1,

and initialises the encoder D0 and D1 to 1, where D1 is the first encoded bit. Once the first bit is

in place, the encoder moves to the second bit and starts encoding the given binary stream. The

second bit is equal to the first bit that satisfies the equation 3.2, D2 = 1 + 1 = 2, whereas the

third bit s3 = 0 is not equal to the second bit, while satisfying the equation 3.3, D3=2-1=1,

D4=1+2=3. When a change in the bits has been detected and equation 3.3 has been applied,

equation 3.2 will be used after equation 3.3 before moving to the next bit.

The reason is that after using equation 3.3, it may result in Di < Di-1. If the next bit changes

again in the binary stream, equation 3.2 will be applied, and it may result in a negative integer,

which will lead to the loss of the comparative representation of the binary set when further bits

are calculated. For the fourth, fifth and sixth bits, from s4 to s6 = 1, they satisfy equation 3.2,

and, thus, D5 = 1+3 =4, D6 = 3+4 =7, and D6 = 4+7 =11. The last two integers are 7 and 11

respectively. Table 3.1 illustrates this example, but it is important to note that when equation

3.2 is used, it will result in Di ≥ Di-1 while when equation 3.3 is used, it will result in Di < Di-1.

Table 3.1: Encoding the binary stream 𝑆

 MSB LSB
Source () 𝑆 0 0 X X 1 1 1
Encoder 1 1+1 2-1 2+1 1+3 3+4 4+7
Results () 𝐷

𝑖 1 2 1 3 4 7 11

Now the binary string has been encoded with the following integers (D6 = 7, D7 = 11), which 𝑆

can be used to regenerate the original binary stream from the LSB (as the encoder started with

the MSB) by comparing them with each other. If the last value is bigger or equal to the

previous integer, it indicates a repeated bit, and si = si-1 should be decoded. Otherwise if Di<Di-1,

it indicates a switch between 0 and 1 or 1 and 0, and the previous bit, if any, needs to be

discarded.

34

One crucial observation emerges from the aforementioned analysis. The final two integers

generated during decoding can potentially represent either bit, without any discernible indicator

for the decoder to determine its initial bit. The starting bit could have been either 1 or 0,

rendering it impossible for the decoder to ascertain the initial value of the LSB. For instance, if

the decoder is designed to start decoding with 1 for the example in Table 3.1, it would decode

the original bit stream. Conversely, if the decoder is designed to commence with 0, it would

result in the decoded string being the inverse of the original bit stream. To circumvent this

issue, subtracting the last two generated integers could be employed to ensure Di<Di-1,

signifying the LSB ends with 0, while maintaining the last integer of Di unchanged when the

LSB ends with 1, as Di<Di-1. In the aforementioned example, given its termination with 1, no

alteration is necessary. Moreover, since D7 > D6, it indicates the starting bit is 1. The next

section will cover the decoding process.

3.3.2. Decoding Process using the ANS

The decoding process works backwards. Since the encoding started at the MSB, the decoding

will start from LSB, and the decoder can be defined with the following equations:

, ​ ​ when ​ ​ (3.4) 𝑠
𝑖

= 1 𝐷
𝑖−2

= 𝐷
𝑖

− 𝐷
𝑖−1

𝐷
𝑖

≥ 𝐷
𝑖−1

, , , ​ when ​ ​ (3.5) 𝑠
𝑖

= 0 𝑠
𝑖
 ∉ 𝑆 𝑠

𝑖−1
 ∉ 𝑆 𝐷

𝑖−2
= 𝐷

𝑖−1
− 𝐷

𝑖
𝐷

𝑖
< 𝐷

𝑖−1

Assuming the last two integers were derived from the preceding example, decoding the integers

(Di = 11, Di-1 = 7) requires initial verification of whether Di ≥ Di-1 or Di < Di-1. In this instance,

11 is greater than 7, indicating adherence to the decoder equation (3.4) for regenerating the

binary stream from the LSB. Consequently, s7 = 1, and D5 is calculated as D7 - D6, resulting in

D5 = 11 - 7 = 4.

Table 3.1(a): Decoding the first bit for (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB

Binary String (S) 1 1
Decoder 11-7
Results (D) 4 7 11

35

The next integer is 7 and, as it is greater than 4, equation (3.4) will be applied with s6 = 1,

D4 = D6 - D5 = 7 - 4 = 3.

Table 3.1(b): Decoding the second bit for (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB
Binary String (S) 1 1
Decoder 7-4
Results (D) 3 4 7 11

The next integer is 4, and, as it is greater than 3, equation (3.4) will be applied with s5 = 1 and

D3 = D5 - D4 = 4 - 3 = 1.

Table 3.1(c): Decoding the third bit for (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB
Binary String (S) 1 1 1
Decoder 4-3
Results (D) 1 3 4 7 11

The next integer is 3 and, as it is greater than 1, equation (3.4) will be applied with s4 = 1 and

D2 = D4 - D3 = 3 - 1 = 2.

Table 3.1(d): Decoding the fourth bit for (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB
Binary String (S) 1 1 1 1
Decoder 3-1
Results (D) 2 1 3 4 7 11

The next integer is 1 and, as it is less than 2, equation (3.5) will be applied with s3 = 0 and

D1 = D2 - D3 = 2 - 1 = 1, while the last two calculated bits will be removed.

Table 3.1(e): Decoding the fourth bit for (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB
Binary String (S) X X 1 1 1
Decoder 2-1
Results (D) 1 2 1 3 4 7 11

36

The next integer is 2 and, as it is greater than 1, equation (3.4) will be applied with s2 = 0 and

D0 = D3 - D2 = 2 - 1 = 1.

Table 3.1(f): Decoding the fourth bit for (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB
Binary String (S) 0 X X 1 1 1
Decoder 2-1
Results (D) 1 1 2 1 3 4 7 11

The next integer is 1 and, as it is equal to 1, equation (3.4) will be applied with s1 = 0 and

D-1 = D3 - D2 = 1 - 1 = 1.

Table 3.2: Decoding (,) 𝐷
𝑖

= 11 𝐷
𝑖−1

= 7

 MSB LSB
Binary String (S) 0 0 X X 1 1 1
Decoder 1-1
Results (D) 0 1 1 2 1 3 4 7 11

The final bit of the string has been regenerated from the two integers 7 and 11, resulting in the

encoded message 00XX111, where X is ignored as defined in the decoder, in equation (3.5).

3.3.3. Analysis and observations of the ANS

The method outlined above has been tested on the complete set of 1-byte combinations,

revealing its unique decodability when dataset combinations share equal length. This

distinctiveness is notably apparent in the combination and sequence of the last two integers

generated, distinguishing them from others. Illustrated in Table 3.3 is the encoding process for

the entire spectrum of 4-bit binary string combinations, with grey numbers denoting transitions

between 1 and 0, or vice versa.

37

Table 3.3: Encoding the combinations of a 4-bit string

 Encoder
Results

Bit string MSB LSB 𝐷
𝑖−1

 𝐷
𝑖

0000 1 2 3 5 2 5 2
0001 1 2 3 1 4 5 4 5
0010 1 2 1 3 4 1 5 6 1 6 1
0011 1 2 1 3 4 7 4 7
0100 1 0 1 1 0 1 1 2 1 2 1
0101 1 0 1 1 0 1 1 0 1 1 1 1
0110 1 0 1 1 2 1 3 4 1 4 1
0111 1 0 1 1 2 3 2 3
1000 1 0 1 1 2 3 1 3 1
1001 1 0 1 1 2 1 3 4 3 4
1010 1 0 1 1 0 1 1 0 1 1 0 1 0
1011 1 0 1 1 0 1 1 2 1 2
1100 1 2 1 3 4 7 3 7 3
1101 1 2 1 3 4 1 5 6 5 6
1110 1 2 3 1 4 5 1 5 1
1111 1 2 3 5 3 5

The final two integers of a 4-bit binary string will generate a range of values from 0 to 7 that

can be converted back to binary symbols for transmission. When, however, the decoder

regenerates the binary stream, there is no flag to determine when the decoder halts. For

example, if the binary stream {1010} is encoded, the encoder will generate the final two

integers as 1 and 1, respectively, as shown in Table 3.3. When decoding these integers using the

decoder equations, the decoder will regenerate an infinite string of symbols of 011’s, resulting

in an infinite bit stream of 1’s and 0’s. Still, there are different ways of resolving this problem,

depending on how the method is used:

i.​ By transmitting the total number of bits of the binary source to determine when the

decoder will halt.

ii.​ Applying the method on a fixed bit length. For example, if the method is applied on a 4

bits string of a message length that consists of 8 bits of 1’s, it will generate two pairs of

integers 3 and 5 twice respectively. The decoder will regenerate 4 bits of information

and halt for each pair. This is illustrated in Figure 3.1.

38

Figure 3.1: Solution II, halting after generating 4 bits of information

Bit String Halt 1 1 1 1 Halt 1 1 1 1

Generated Values Halt 1 2 3 5 Halt 1 2 3 5

This solution can also be applied to the total message length to generate one pair of

values. Using this method will avoid sending any further information to the decoder.

iii.​ By initialising the first two integers of the encoder as 1 and 2 will cause an increase in

the final two integers that are generated. Using the same example of the binary stream

1010, the final two integers will increase from 1 and 1 to 9 and 1, respectively, as

shown in Table 3.4. This will allow the decoding of the integers until it has generated 2

and then 1, respectively, which will flag the halt of the decoding process. Using this

solution will avoid the application of the encoder equation (3.5) because the second

value of the decoder will be initialised to be greater than the first value D2 ≥ D1.

Table 3.4: Encoding the binary stream 1010 by initialising the encoder to 1 and 2

 Initialisation MSB LSB
Source

1 0 1 0

Encoder 2+1 3-2 1+4 4+1 5-4 1+5 6+1 7-6 1+7 8+1 9-8
Results 1 2 3 1 4 5 1 6 7 1 8 9 1

The method, which has been discussed above, has many useful properties. It was designed to

be applicable to binary symbols, and in turn, it would be adaptive to various types of code like

fixed and variable-length codes. Using a fixed-length code with the range of the 4-bit string

between 0 and 7, each integer can be encoded to have the weight of 3 bits by simply converting

each value that has been generated back to the binary symbols. A variable-length code can be

achieved by combining the last two integers and converting them to binary symbols. For

example, by giving a bit string 0000, the method will generate the last two integers as 5 and 2,

while the two integers will be merged together to form the decimal value of 52, and the

conversion of the number back to a binary will be 110100. Table 3.5 shows the variable-length

code for the combined ANS values.

39

Table 3.5: Variable-length code of the integers from Table 3.3

Bit String Generated
integers Binary Bit String Generated

integers Binary

0000 52 110100 1000 31 11111

0001 45 101101 1001 34 100010

0010 61 111101 1010 10 1010

0011 47 101111 1011 12 1100

0100 21 10101 1100 73 1001001

0101 11 1011 1101 56 111000

0110 41 101001 1110 51 110011

0111 23 10111 1111 35 100011

The code could also be variable-length static, and the integers can be found by either

calculating the probabilities of the given binary source, that is and , 1 = 54 0 = 34

P1 = 0.6136 and P0 = 1 - 0.6136 = 0.3864, or by generating the integers from the 4-bit string, as

shown in Table 3.3. These would have the following probabilities: (0) = 0.031, (1) = 0.281, (2)

= 0.125, (3) = 0.156, (4) = 0.125, (5) = 0.156, (6) = 0.063, (7) = 0.063, and the last step would

be to assign the value with the highest probability to the shortest codeword and the values with

the least probabilities to the longest ones.

The approach of generating two integers from a given binary source allows the information of

the given source to be contained within the difference between the two integers and not the

actual integers. In consequence, there is a potential for the generated integers to be reduced and

an additional data set can be calculated, starting from the reduced values. This, in turn,

compresses the data by generating lower integer values as long as the original values can be

retrieved. The algorithm of this method shares one property with arithmetic coding: it is

possible to encode an entire file as a sequence of binary symbols into dual decimal numbers

[25]. Compression can be applied in an interval without affecting the encoding process: for

example, if a compression method is created to reduce the generated integers and if two 𝑥

symbols and have the following codewords and , the encoder will 𝐻 𝐼 𝐻 = {0111} 𝐼 = {1010}

generate 2 and 3 respectively for , as shown in Table 3.6. "𝐻"

40

Table 3.6: Encoding “H” using ANS

 Encoder
integers

 MSB LSB 𝐷
𝑖−1

 𝐷
𝑖

Bit string “H” 0 1 1 1
Generated Values 1 0 1 1 2 3 2 3

If the method reduces each value by 2, then this will result in respectively. Further 𝑥 𝐻 = 0, 1

mapping can be applied to encode using the reduced integers of as shown in Table 3.7. "𝐼" "𝐻"

Table 3.7: Encoding “I” from the compressed results of “H” using ANS

Encoder
Results

Results of
“H” after
reduction

MSB LSB 𝐷
𝑖−1

 𝐷
𝑖

Bit string B 1 0 1 0
Generated Values for
“I” using the results
from A= 0, 1

0 1 1 0 1 1 0 1 1 0 1 1 0 1 0

This will increase the amount of data input and reduce the values of the encoded integers.

Furthermore, the ANS method can be applied to the output of many compression algorithms,

such as Huffman [15], BWT [40], RLE [35], and arithmetic coding [25].

The ANS encodes binary symbols efficiently by using two operations for repeated bits and four

operations for bit changes, reducing complexity and simplifying both encoding and decoding. It

is computable, robust, and fast, without requiring prior knowledge of the source distribution. It

has one drawback though, which needs to be avoided. The method is not reliable if even a

single error occurs in the encoded integers, as this will result in generating the wrong data

stream when decoding. One of its advantages is, however, that it can be applied to any

compressed data set. Low-value integers are generated when multiple changes occur in the data

string, but the encoded values increase rapidly when the value of the same bits occurs

repeatedly in the data string. It can be used to encode blocks of data or to encode the full data

stream if appropriate compression can be applied during the encoding process. To encode a

4-bit string as a fixed-length code will require the last two integers, that is 6 bits of information,

which is 50% more than the original 4 bits string. Hence the reduction of integers is essential

41

during the encoding process. Promising results are shown in Table 3.7 where hypothetical

reduction has been applied, generating the values 1 and 0, respectively, representing 8 bits of

information.

The Fibonacci sequence has been incorporated into this study within Section 2.4.4. This

inclusion is based on the observation that the adaptive numeral system exhibits similarities to

the Fibonacci sequence, specifically in cases where a run of 0’s or 1’s occurs without any

alternation. Notably, the values of the last two integers align with Fibonacci numbers. For

example, in Table 3.3, the method generated 3 and 5, respectively for the binary value 1111.

These values are equivalent to Fibonacci numbers 3 and 4, respectively. If the next binary

number is 1, the method will generate 8 for the final value, which is the 5th value of the

Fibonacci sequence. However, if a change occurs from 1 to 0 in the ANS, the generated values

will no longer be equal to Fibonacci numbers.

The generated integers, which represent the binary numbers, form a unique pair of integers.

There are, however, no restrictions to the size of the binary string the method can encode and

the values it can take. The binary representation of some of these values can be infinitely long,

but in that case, the method may not be efficient unless a method of reduction is introduced.

However, it remains uncertain whether a compression method can be developed by leveraging

the unique properties of ANS, which generates two integers from a given binary source,

allowing the information to be represented within the difference between the two integers

rather than the integers themselves. This concept will be further explored in Chapters 4 and 5.

3.4. Improved Adaptive Numeral System (IANS)

The ANS generates values ranging from 0 to 7 to encode 4 bits of information. It becomes

apparent that reducing the outcome values of the ANS is crucial to enhancing its adaptability

and efficiency. To address this, additional studies have been conducted with the goal of

reducing outcome values and simplifying the encoding and decoding process of the ANS. This

research has resulted in the enhancement of the ANS, culminating in a refined process termed

the Improved Adaptive Numeral Systems (IANS). The IANS has the potential to reduce the

results generated with the ANS. This is done by changing the initialisation of the ANS and the

42

calculation steps to generate the two values Di and Di-1. Similar to the ANS, but with better

results, the IANS will still generate a list of non-negative integers, in which the last two

integers of the calculated results will contain the order in the data string. Moreover, these last

two integers can be used to regenerate the original data set. The IANS will generate two natural

numbers, and . will represent the 1’s while will represent the 0’s from the data string, 𝐴 𝐵 𝐴 𝐵

and these representations will be used throughout this thesis. However, there are no restrictions

on representing the 0’s with and 1’s with . The IANS reduces the generated results by 𝐴 𝐵

adding repeatedly to if a reoccurring binary string (1) has been detected and vice versa, the 𝐴 𝐵

results will be repeated, adding to if a reoccurring binary string (0) has been detected. The 𝐵 𝐴

same operation will be applied if there is a change from 0 to 1: will be updated by adding 𝐴 𝐵

to , while will remain unchanged. However, if there is a change from 1 to 0, will be 𝐴 𝐵 𝐵

updated by adding to and will remain unchanged. 𝐴 𝐵, 𝐴

3.4.1. Encoding Process using the IANS

The encoding process with IANS is similar to that with the ANS with a few modifications. It

involves the inspection of a string of data starting either from the MSB or the least 𝑆,

significant bit (LSB). The encoding process starts by initialising two variables and 𝐴 = 0

 where will represent the 1’s and will represent the 0’s. It then reads the first bit s1 𝐵 = 1, 𝐴 𝐵

from string , and if the bit is 1, then will be updated by adding to However, when the 𝑆 𝐴 𝐵 𝐴.

first bit from string is 0, will be updated by adding to B. If there is a switch from 1 to 0, 𝑆 𝐵 𝐴

or vice-versa in string , the same process will be applied. The method can be illustrated with 𝑆

the following equations:

 𝐴
0

= 0, 𝐵
0

= 1 (3.6)

 𝐷
𝑖

= 𝐷
𝑖−1

+
𝑠

𝑖
=𝑠

𝑖−1

𝑠
𝑖
≠𝑠

𝑖−1

∑ 𝐷
𝑐

(3.7)

When si = 0 then Di = Bi and Di-1 = Ai-1 and Dc = A. When si = 1 then Di = Ai and Di-1 = Bi-1 and

Dc = B. Here, si represents the binary state, and Dc denotes the outcome of the most recent

change detected in the binary sequence. Equation (3.7) can be simplified as follows:

​ when ​ (3.8) 𝐵
𝑖

= 𝐴
𝑖−1

+ 𝐵
𝑖−1

𝑠
𝑖

= 0

 𝐴
𝑖

= 𝐴
𝑖−1

43

​ when ​ (3.9) 𝐴
𝑖

= 𝐵
𝑖−1

+ 𝐴
𝑖−1

𝑠
𝑖

= 1

 𝐵
𝑖

= 𝐵
𝑖−1

Both A and B encode the information from string and generate a string of natural numbers, 𝑆

while the last number of A and B will hold the information of string S. For example, if the

binary string S = {0110}, the encoder can start from either MSB or LSB. If the encoder starts

from the MSB, this initialises the encoder A0 = 0 and B0 = 1. The encoder starts constructing

the given binary stream and reads the first-bit s1, which is 0 that satisfies the equation (3.8),

then will get updated to B1 = A0 + B0 = 1, and after that, B0 is shifted, resulting in B1 = B0. 𝐵

Once the first bit is in place, the process moves to the second bit. The second bit equals 1, s2 =

1, which satisfies equation (3.9). In this case, A will get updated to A2 = B1 + A1 = 1, and B1

will be shifted, resulting in B2 = B1. Moving to the third bit, it equals 1, s3 = 1, and again, that

satisfies equation (3.9). Hence A will get updated to A3 = B2 + A2 = 2, and B1 will be shifted,

resulting in B3 = B2. The fourth and final bit is 0, that is, s4 = 0, and, therefore, B will get

updated as B4 = A3 + B3 = 3. A3 will be shifted, resulting in A4 = A3. The binary string S is now

encoded with A = 2 and . Table 3.8 illustrates this example. 𝐵 = 3

Table 3.8: The IANS - Encoding the binary string 𝑆

Initialisation 0 1 1 0 Results

A = 0 0 1+0=1 1+1=2 2 A = 2

B = 1 0+1=1 1 1 2+1=3 B = 3

3.4.2. Decoding Process using the IANS

The results of the IANS encoding can be used to regenerate the original binary stream from the

LSB (as the encoder started with the MSB) by comparing A and with each other. If A ≥ B, the 𝐵

decoder will generate 1, and will be subtracted from A. However, if A < B, then the decoder 𝐵

will generate 0, and A will be subtracted from B. The decoder can be defined as:

, , ​ when ​ ​ (3.10) 𝑠
𝑖

= 1 𝐴
𝑖−1

= 𝐴
𝑖

− 𝐵
𝑖

𝐵
𝑖−1

= 𝐵
𝑖

𝐴 ≥ 𝐵

,​ , ​ when ​ ​ (3.11) 𝑠
𝑖

= 0 𝐵
𝑖−1

= 𝐵
𝑖

− 𝐴
𝑖

𝐴
𝑖−1

= 𝐴
𝑖

𝐴 < 𝐵

44

Using the example from the encoding process presented in Table 3.8, the decoding process

starts with comparing A and B. The results obtained are A = 2 and B = 3, that is, B is greater

than and, therefore, equation (3.11) will be used to regenerate the binary stream from LSB, 𝐴,

that is, s4 = 0, B3 = 3 - 2 = 1. A3 = A4 = 2.

Table 3.9(a): The IANS - Decoding of the binary string 𝑠
4

𝑆

 MSB LSB

Binary String 𝑆 𝑠
1 𝑠

2
 𝑠

3
 𝑠

4
= 0

A 2 2
B 3-2=1 3

The first step generated the fourth bit s4 = 0 and resulted in and , consequently, 𝐴 = 2 𝐵 = 1

the same method will be applied to the next step in comparing and . The comparison shows 𝐴 𝐵

that is greater than , thus satisfying equation (3.10) and resulting in , A2 = 2 - 1 = 1, 𝐴 𝐵 𝑠
3

= 1

B2 = B3 = 1.

Table 3.9(b): The IANS - Decoding of the binary string 𝑠
3

𝑆

 MSB LSB

Binary String 𝑆 𝑠
1

 𝑠
2

 𝑠
3

= 1 𝑠
4

= 0

A 2-1=1 2 2
B 1 3-2=1 3

The third bit s3 = 1 has been obtained, and the values have been updated for A = 1 and B = 1.

Moving to the third step, A is equal to B, hence satisfying equation (3.10), in which s2 = 1,

A1 = 1 - 1 = 0, B1 = B2 = 1.
Table 3.9(c): The IANS - Decoding of the binary string 𝑠

2
𝑆

 MSB LSB

Binary String 𝑆 𝑠
1

 𝑠
2

= 1 𝑠
3

= 1 𝑠
4

= 0

A 0 2-1=1 2 2
B 1 1 3-2=1 3

The second bit has been generated as s2 = 1, while A = 0 and B = 1, and moving to the final

step, it is observed that A is smaller than B, which satisfies equation (3.11), that is, s1 = 0,

B0 = 1 - 0 = 1, A0 = A1 = 0.

45

Table 3.9: The IANS - Decoding the binary string 𝑆

 MSB LSB

Binary String 𝑆 𝑠
1

= 0 𝑠
2

= 1 𝑠
3

= 1 𝑠
4

= 0

A = 0 0 2-1=1 2 2
B = 1 1 1 3-2=1 3

The string has been decoded using the IANS and generated the output {0110}. 𝑆

3.4.3. Analysis and observations of the IANS

The Improved Adaptive Numeral System (IANS) has been tested to encode the combinations

of 16-bits of information, and the testing has shown that the combined results of A and B are

uniquely decodable. Table 3.10 illustrates the process of encoding all of the combinations of a

4-bit binary string.

Table 3.10: Encoding the combinations of 4-bit string using IANS

 0000
 0 0 0 0

A=0 A=0
B=1 1 1 1 1 B=1

0001
 0 0 0 1

A=0 1 A=1
B=1 1 1 1 B=1

0010
 0 0 1 0

A=0 1 A=1
B=1 1 1 2 B=2

0011
 0 0 1 1

A=0 1 2 A=2
B=1 1 1 B=1

0100
 0 1 0 0

A=0 1 A=1
B=1 1 2 3 B=3

0101
 0 1 0 1

A=0 1 3 A=3
B=1 1 2 B=2

0110
 0 1 1 0

A=0 1 2 A=2
B=1 1 3 B=3

0111
 0 1 1 1

A=0 1 2 3 A=3
B=1 1 B=1

 1000
 1 0 0 0

A=0 1 A=1
B=1 2 3 4 B=4

1001
 1 0 0 1

A=0 1 4 A=4
B=1 2 3 B=3

1010
 1 0 1 0

A=0 1 3 A=3
B=1 2 5 B=5

1011
 1 0 1 1

A=0 1 3 5 A=5
B=1 2 B=2

1100
 1 1 0 0

A=0 1 2 A=2
B=1 3 5 B=5

1101
 1 1 0 1

A=0 1 2 5 A=5
B=1 3 B=3

1110
 1 1 1 0

A=0 1 2 3 A=3
B=1 4 B=4

1111
 1 1 1 1

A=0 1 2 3 4 A=4
B=1 B=1

46

The last encoded results of A and B generated values between 0 and 5, and these are used to

decode a 4-bit binary string. The initialisation and process of the IANS reduced the generated

values when compared to those of the ANS. However, the number of bits encoded is required

when initialising the IANS to 0 and 1 as there is no flag to determine when to stop the decoding

process. For example, if the number of the encoded bits is unknown and the decoder receives

the IANS values and the decoder will decode the first two bits {10}. At this 𝐴 = 1 𝐵 = 2,

stage, and following equation (3.11) of the IANS decoding algorithm, 𝐴 = 0 𝐵 = 1, 𝐵 > 𝐴,

that is, This indicates that the next generated bit will be 0, and the results for 𝐵 = 1 − 0 = 1.

and will remain the same (and At this point, the decoder will continue to 𝐴 𝐵 𝐴 = 0 𝐵 = 1).

generate an infinite number of 0’s, while and will remain 0 and 1 respectively. When the 𝐴 𝐵

number of the encoded bits is unknown, there are different ways to resolve the problem, for

example by:

I.​ transmitting the total number of bits of the binary source to determine when the decoder

will halt;

II.​ initialising and which will cause the results in and to increase by a 𝐴 = 1 𝐵 = 1, 𝐴 𝐵

maximum value of 5 and 8, respectively for a string consisting of 4 bits of information,

compared with the initialisation of 0 and 1 where the maximum results of and are 5 𝐴 𝐵

and 3, respectively;

III.​ applying the method to a fixed bit length. For example, if the method is applied to

encode a message that consists of 8 bits, the message can be divided into two segments

that consist of 4 bits, and for each segment, the IANS will generate the values for and 𝐴

 This will enable the decoder to halt after generating the fourth bit of each segment. 𝐵.

The Improved Adaptive Numeral System has the same properties as the ANS, discussed in

Section 3.3.3. However, it has turned out to be more efficient when compared to the ANS. The

number of operations required to encode 1 bit of information using the IANS is two operations:

the first one is checking the binary source, and the second operation is adding A to B or vice

versa. The ANS requires 2 operations to encode 1 repeated bit of information, and it needs four

operations to encode the change in bits from 1 to 0 or vice versa. The number of operations

required for decoding in the ANS matches the number of operations needed for encoding, and

47

the same applies to the IANS. This makes the IANS twice as fast when encoding and decoding

the change in data from 1 to 0 or vice versa.

Furthermore, the generated values by the IANS when encoding the combinations of 4 bits of

information are between 0 and 5. The number 0 has the minimum encoded values and 𝐴 = 0

 while the numbers 10 and 13 have the maximum encoded values of and 𝐵 = 1, 𝐴 = 3 𝐵 = 5

for the value 10 and and for the value 13, as shown in Figure 3.2. 𝐴 = 5 𝐵 = 3

Figure 3.2: IANS - Encoding 4-bits of information

The IANS updates either or when encoding information, while in the decoding process, it 𝐴 𝐵

compares the two values and to determine the bit to generate. This property enables the use 𝐴 𝐵

of the generated numbers multiple times for both and . For example, in Figure 3.2 to encode 𝐴 𝐵

number 2, the encoded values for and and to encode number 3, the IANS 𝐴 = 1 𝐵 = 2,

encodes and Both values 1 and 2 have been used to generate two different 𝐴 = 2 𝐵 = 1.

numbers. This is also occurring in the following encoded values: (5, 6), (4, 7), (8, 15), (9, 14),

(10, 13), (11, 12). Compared with the ANS, this improves the efficiency of the IANS when

generating the values for and . The generated values for the ANS to encode the 𝐴 𝐵

combinations for 4 bits of information are between 0 and 7, while the number 10 has the

minimum encoded values Di-1 = 1 and Di = 0, and number 3 has the maximum encoded values

of Di-1 = 4 and 7 as shown in Figure 3.3.

48

Figure 3.3: ANS - Encoding 4-bits of information

For 4-bits of information, the ANS maximum encoded values are two digits higher than the

maximum encoded values for the IANS as shown in Figure 3.4. The ANS maximum encoded

values for the combination for 8-bits of information are 76 and 33, whereas the maximum

encoded values for IANS are 34 and 21.

Figure 3.4: ANS vs IANS - Encoding 4-bits of information

The benchmark of converting the values back to binary numbers will be the maximum values

for both methods multiplied by two, as each method requires two variables to be decoded. The

49

maximum value for 8-bits of information generated using the ANS is 76, therefore,

Log2 (76) ✕ 2 = 12.5 bits, while the IANS is 34, and, therefore, Log2 (34) ✕ 2 = 10.18 bits,

which is 2.33 bits less when using the IANS. Determining the number of bits required to

encode each value for both the ANS and IANS has been considered as

⌈Log2(maximum generated value)⌉✕2. Figure 3.5 shows the number of bits required to encode

a set of values using the ANS, the IANS, Fibonacci and direct binary systems.

Figure 3.5: ANS vs IANS vs Fibonacci vs Direct Binary - Bits required to encode a set of values

Figure 3.5 shows that the IANS compared with the ANS uses fewer bits to encode {0, 1, 2, 3,

6}, the same number of bits to encode {4, 7, 9, 12, 13, 14, 15}, and more bits to encode {5, 8,

10, 11}. Compared with Fibonacci, the IANS uses fewer bits to encode {5, 6, 7, 13, 14, 15},

the same number of bits to encode {0, 1, 3, 4, 8, 9, 10, 11, 12}, and one extra bit to encode {2}.

Compared to direct binary encoding, the IANS requires an additional one to two bits. This

contrasts with the ANS, as the IANS maintains symmetry with direct binary and Fibonacci

encoding methods. By generating two integers from a given binary source, the IANS

encapsulates the original source's information within the difference between these integers,

rather than the integers themselves. This design enables the potential reduction of the generated

integers, facilitating the computation of additional datasets based on the reduced values. This

unique feature positions the IANS as advantageous for data compression.

50

3.5. Summary

This chapter examined the Adaptive Numeral System (ANS) and its derived variant, the

Improved Adaptive Numeral System (IANS), as potential numeral systems for data

compression. Both systems were explored in terms of their encoding and decoding processes.

While ANS and IANS demonstrated structured approaches to representing binary streams, the

investigation provided insights into how numeral systems can influence data representation and

efficiency in encoding methods. These findings serve as a foundation for further exploration

into optimising numeral systems for practical compression applications.

51

Chapter 4

4.1. Introduction

Building on the findings from Chapter 3, this chapter explores the application of Improved

Adaptive Numeral System (IANS) in data compression. The IANS was identified as a more

promising approach due to its structured encoding process and ability to initialise succeeding

segments using prior results. The chapter first examines compression and decompression

techniques using the IANS, assessing whether it can achieve meaningful data reduction. As part

of this investigation, various modifications were made to adapt existing ANS-based

compression methods to the IANS framework. These efforts led to the identification of a

conditional compression method, which relies on two key properties of the IANS:

segment-based encoding dependencies and differences between generated integer values.

Additionally, the chapter introduces an alternative approach called The Leading Bit, a method

derived from the IANS framework. This technique explores another potential way to optimise

numeral system-based data encoding for compression purposes. The findings from these

investigations provide further insight into the structural challenges and possibilities of applying

numeral systems to data compression.

4.2. The Application of the Adaptive Numeral Systems in Data Compression

Sections 3.3 and 3.4 have demonstrated that occurrences of data represented in binary form can

be calculated in segments, as assumed in the preliminary hypothesis. The second part of the

hypothesis assumes that each segment can be compressed into a reasonable size where each

compressed sequence can be used to calculate the next sequence. This will be discussed in the

present section.

Recognising the superior efficiency of the IANS, the focus of compression studies shifted

towards it. Modifications were made to ensure compatibility, leading to the discovery of a

conditional compression method. This method leverages two key properties of the IANS: the

ability to use encoded segment results to initialise succeeding segments, and the existence of a

52

difference between the two generated integers used for encoding information. The following

section will delve into the conditional compression method using the IANS and its

implications, including the development of another compression method referred to as The

Leading Bit.

4.3. The IANS

4.3.1. Compression using the IANS

The binary numeral system consists of two symbols {1 and 0}, and the number of bits that are

used to encode an set of symbols is determined by the number of different symbols, which 𝑥

are available in . Each succeeding bit doubles the number of symbols that can be encoded. 𝑥

Subsequently, each succeeding bit has two possibilities, that is, either {1} or {0} [72]. This

means that, if the compression method divides the message into two segments to process each

segment individually, the number of bits in both segments will have fewer combinations than

the total number of bits in the entire message. This will simplify the encoding and decoding

processes.

Assuming that a set of symbols consists of one byte. The message can be divided into 𝑥

multiple segments, and the IANS maps the first segment and generates values for and The 𝐴 𝐵.

aim is to reduce their values and use the results to initialise the second segment of the IANS,

which can then be mapped. As illustrated in Section 3.3.3, Table 3.7, this process is achievable

using the IANS. The conditional compression method can be applied to a segment that consists

of 2 bits of information where the process requires 2 steps to complete the encoding for each

segment:

1.​ The first segment will map the first two bits of the message using the IANS, generating

the values for and For two bits of information, the results of the mapping using the 𝐴 𝐵.

IANS will be between 0 and 2.

2.​ The results of the IANS will be subtracted from and , or vice versa, until reaching 𝐴 𝐵

zero. When the last operation from the IANS mapping is applied to , the result of the 𝐵

first subtraction will be placed on , the next subtraction results will be placed on 𝐴 𝐵,

and so on. Overall, the operation will subtract the highest from the lowest value until 0

53

is reached. For two bits of information, the maximum Number of Operations (NO) to

reach 0 is 3 as the values for two bits of information for {10} and {11} in IANS are

A = 1, B = 2 and A = 2, B = 1 respectively. Post-subtractions, the result in A or B, will

be either 1 or 0. The NO to reach 0 is either 1, 2 or 3.

The number of operations can then be encoded as a binary number, which can be used

later for compression purposes. However, 2 bits are required to encode 1, 2, or 3. To

limit the encoded NO to 1 bit, the NO can be increased from 1 to 2. Looking into this in

more detail, while encoding the binary values {10} and {11} using the IANS, it can be

seen that the number of subtractions to reach 0 is 3, whereas {00} requires two

operations. In order to reach 0, the value {01} requires one operation, resulting in

 and . Therefore, the NO of {01} can be increased by one to make the NO 𝐴 = 1 𝐵 = 0

= 2, which is equivalent to the NO for {00}. This will give the same results of {00},

that is and . The results can then be switched to make and 𝐴 = 1 𝐵 = 0 𝐴 = 0 𝐵 = 1

in order to identify them from the results of the message encoded {01} or {00}. At this

point, the 2 operations can be encoded with the binary symbol {0} and 3 operations as

{1}. Table 4.1 illustrates this in more detail:

Table 4.1: Encoding and subtracting the combination of 2 bits using IANS

Encoding 2 bits of information using IANS
Subtracting the

generated values
NO

Binary bits 0 0 Results
A = 0 A = 0 1

2
B = 1 1 1 B = 1 0

Binary bits 0 1

A = 0 1 A = 1 ⤺ 0
2

B = 1 1 B = 1 1 ⤻

Binary bits 1 0
A = 0 1 A = 1 1 0

3
B = 1 2 B = 2 1

Binary bits 1 1
A = 0 1 2 A = 2 1

3
B = 1 B = 1 1 0

Increasing the NO for {01} and switching the results to make and makes the 𝐴 = 0 𝐵 = 1

generated information identifiable when compared to the results generated for {00}, {10}, and

{11}. The NO of {01} after modifications is equal to the NO for {00}, while the final results of

54

the reduction for {00} are and Consequently, the end results of the subtractions 𝐴 = 1 𝐵 = 0.

after modifications of {01} are and Notice that the difference between {00} and 𝐴 = 0 𝐵 = 1.

{01} lies in the values in and B, while the NO remains the same. In other words, when the 𝐴

NO is 2 and it is known that and the output is {01}, which means that the 𝐴 = 0, 𝐵 = 1,

values of and can be switched back. Furthermore, when the NO is 2 and B = 0 and A = 1, 𝐴 𝐵

the output is {00}. The same applies to {10} and {11}. Table 4.2 summarises these properties.

Table 4.2: Encoding and the NO. 𝐴 𝑎𝑛𝑑 𝐵

Encoding and 𝐴 𝐵 Encoding the NO
Values of and 𝐴 𝐵 Encoded and 𝐴 𝐵 NO Encoded NO

 𝐴 = 0
0 2 0

 𝐵 = 1
 𝐴 = 1

1 3 1
 𝐵 = 0

This will complete the encoding process of the first segment. The order of and 𝐴 = 0 𝐵 = 1

or vice versa from the encoded segment can be used to initialise the next segment. The encoded

NO can then be passed into the next segment and encoded further. Since the NO is either 3 or 2,

this can be encoded into one bit of information. The next bit of the message can, then, be

inserted next to the NO bit, making the next segment ready for processing. At this point, the

mapping process using the IANS will start again, following the same steps. However, instead

of encoding 2 bits from the message, the IANS will encode the already encoded NO and the

next bit of the message. This process will be repeated until the message is concluded. The

reduction of and can give either = 0 and or and which can be 𝐴 𝐵 𝐴 𝐵 = 1 𝐴 = 1 𝐵 = 0,

encoded using the binary system. For example, , can be encoded to the binary 𝐴 = 1 𝐵 = 0

symbol {1} and , with the binary symbol {0}. Once the last segment encodes the 𝐴 = 0 𝐵 = 1

last bit of the message, it will be ready to be transmitted to the decoder. Only two bits are

required to decode the message, the encoded NO and the encoded results of the reduction.

The following example illustrates this further. Assuming that the binary string . 𝑆 = {1001}

The encoder initialises and and can start from either MSB or LSB. In this case, 𝐴 = 0 𝐵 = 1

the encoder starts from the MSB, reads the first two-bits s1 and s2, and encodes them using the

IANS as shown in Table 4.3.

55

Table 4.3: The first segment: encoding the first two bits from the message using IANS 𝑆

Initialisation

The first bit of the
message 𝑠

1

The second bit of
the message 𝑠

2 Results
1 0

A = 0 1+0 = 1 A = 1
B = 1 1+1 = 2 B = 2

At the second step, the results will be subtracted from each other until 0 is reached, which will

result in then , and finally 𝐴 = 2 − 1 = 1 𝐵 = 2 − 1 = 1 𝐴 = 1 − 1 = 0.

Table 4.4: Reducing the generated values of segment 1.

Results from
segment 1

Reducing results from segment 1 Results

A = 1 2-1 = 1 1-1 = 0 A = 0
B = 2 2-1 = 1 B = 1

The final results are and . This concludes the first segment. The results of the 𝐴 = 0 𝐵 = 1

first segment will be used to initialise the second segment. The NO to reach 0, is 3, and that

will be encoded as {1}. The encoded NO from the first segment will be inserted as the first bit

of the next second segment to be encoded using the IANS. The third bit from the message 𝑆

can now be inserted next to the bit that represents the NO from the previous segment. This will

result in {10} ready to be encoded using the IANS.

Table 4.5: The second segment, setting up the third bit from the message using the reduced values of segment 1 𝑆

Reduction Results from
segment 1

NO
The next bit of
the message 𝑠

3 Results
1 0

A = 0
B = 1

Repeating the same process, the NO of segment 1 and the third bit of the message will be

encoded using the IANS.

Table 4.6: The second segment, encoding the third bit from the message using IANS. 𝑆

Reduction Results
from segment 1

NO
The next bit of

message 𝑠
3 Results

1 0
A = 0 1+0 = 1 A = 1
B = 1 1+1 = 2 B = 2

56

After the IANS is used to encode segment 2, the results will be subtracted from each other until

0 is reached, and that will result in then , and finally 𝐴 = 2 − 1 = 1 𝐵 = 2 − 1 = 1

 𝐴 = 1 − 1 = 0.
Table 4.7: Reducing the generated values of segment 2.

Results from
segment 2

Reducing results from segment 2 Results

A = 1 2-1 = 1 1-1 = 0 A = 0
B = 2 2-1 = 1 B = 1

The final results are and . This concludes the second segment. The results will be 𝐴 = 0 𝐵 = 1

used to initialise the third segment. The NO to reach 0, is 3, which will be encoded as {1}. The

encoded NO will be inserted as the first bit for the next segment to be encoded using the IANS.

The fourth bit from the message can now be inserted next to the bit that represents the NO 𝑆

from the previous segment. This will result in {11} ready to be encoded using the IANS.

Table 4.8: The third segment, setting up the fourth bit from the message using the reduced values of segment 2 𝑆

Reduction Results
from segment 2

NO
The next bit of
the message 𝑠

4 Results
1 1

A = 0
B = 1

After setting up the values for the NO and the fourth bit, the message will be encoded using the

IANS.

Table 4.9: The third segment, encoding the fourth bit from the message using IANS. 𝑆

Reduction Results
from segment 2

NO
The next bit of

message 𝑠
4 Results

1 1
A = 0 1+0 = 1 1+1 = 2 A = 2
B = 1 B = 1

The results will be subtracted from each other until 0 is reached, which will result in

 then and, finally, 𝐵 = 2 − 1 = 1 𝐴 = 2 − 1 = 1 𝐵 = 1 − 1 = 0.

57

Table 4.10: Reducing the generated values of segment 3.

Results from
segment 3

Reducing results from segment 3 Results

A = 2 1-1 = 1 A = 1
B = 1 2-1 = 1 1-1 = 0 B = 0

As shown in Table 4.10, the final segment has been encoded and compressed, resulting in

A = 1 and B = 0, The NO to reach 0, is 3, encoded as {1}. This will represent the first bit of the

encoded message that will be transmitted. Moreover, the results of the reduction are A = 1 and

B = 0 encoded as {1}. This will represent the second bit of the encoded message to be

transmitted. The encoded message {11} can now be transmitted to the decoder. Since there is

no flag to determine the end of the message, the length of the message will be required (see

Section 3.4.3 for the discussion about flagging the end of the message).

4.3.2. De-compression using the IANS

The de-compression process works backwards. Once the decoder receives the encoded message

that consists of two bits, it decodes the information from the LSB when the encoding starts at

the MSB. The IANS compression method utilises each segment (a part of the first encoded

segment) to encode the NO from the previous segment as well as one bit of information from

the message . In addition, the reduced values of the previous segment are used to initialise the 𝑆

next segment. Consequently, the first step of decoding the message can be defined by the NO

and the encoded values of and as shown in Table 4.2. The decoder receives two bits of 𝐴 𝐵,

information: the first bit represents the NO and the second bit represents the values in and . 𝐴 𝐵

When the first bit is {0}, it represents two operations: the decoder will add the values of and 𝐴

 once, and the results will be subtracted from the previous value. When the first received bit is 𝐵

{1}, that represents three operations and reverses the process of the encoder. The decoder will,

therefore, add the values of and twice, and the results will be subtracted from the previous 𝐴 𝐵

value. At this point, the results will be the IANS values of the encoded message.

Following the decoding process explained in sub-section 3.2.2, the IANS will decode the

message and the initialisation of the last segment will be retrieved. This is the same as the

values of and of the previous segment. The second bit received by the decoder can be {0} 𝐴 𝐵

58

or {1}, When the decoder receives {0}, then and if it, however, receives {1}, 𝐴 = 1 𝐵 = 0,

then and Consequently, when the decoder receives {00} it outputs {01}, and if 𝐴 = 0 𝐵 = 1.

the decoder receives {01}, then the output will be {00}. Furthermore, if the decoder received

{10}, it will output {10}, and, finally, if the decoder received {11}, then the decoder outputs

{11}. This is illustrated in Table 4.11.

Table 4.11: Decoding

Received message at the decoder Generate
Encoded NO Encoded and 𝐴 𝐵 NO Value position Decode

0 0 2 𝐵 = 0 01
0 1 2 𝐴 = 0 00
1 0 3 𝐴 = 0 10
1 1 3 𝐵 = 0 11

Once the first two bits are decoded, the results will consist of the values and , and the IANS 𝐴 𝐵

decoder will use these values to decode 2 bits of information. The first bit of the output is the

last bit of the encoded message , while the second bit of the output represents the NO of the 𝑆

previous segment. Decoding the message will illustrate this further. Assume that the decoder 𝑆

received the message (as in the previous example) {11}, the first bit is {1} which represents the

NO. From Table 4.11, it can be seen that it is equal to 3 operations, and the decoding will be the

reverse of the encoding calculations, that is, adding the values of and twice, and 𝐴 𝐵

subtracting the results from the previous value. The second bit from the received message is

also {1}, that is 0, and therefore, This is because the encoder repeatedly subtracted the 𝐴 = 1.

values of and to reach 0 and, in consequence, the value prior to 0 will always be equal to 1 𝐴 𝐵

as shown in Table 4.1. The decoder will then add the values twice, starting from the lowest

value. Since the last generated value is , then and , 𝐵 = 0 𝐵 = 1 + 0 = 1 𝐴 = 1 + 1 = 2

subtracting the results of from will result in This generates the values of 𝐴 𝐵, 𝐵 = 2 − 1 = 1.

the IANS ready to be decoded to generate the initialisation of the next segment.

Table 4.12: Segment 3, generating the IANS values from the received message {11}.

Received message NO - Reverse process of the encoder Results

11
A = 1 1+1 = 2 A = 2
B = 0 1+0 = 1 2-1 = 1 B = 1

59

The values and have now been decoded by segment 3, and they will be decoded 𝐴 = 2 𝐵 = 1

further by using the IANS. Since the algorithm uses two bits for each segment, the decoding

will stop after the second bit has been extracted. Following the IANS decoding process

explained in Section 3.4.2, the decoding starts with comparing A and B. In this case is greater 𝐴

than equation 4.1 will be used to decode the binary stream from LSB. 𝐵,

, , ​ when ​ ​ (4.1) 𝑠
𝑖

= 1 𝐴
𝑖−1

= 𝐴
𝑖

− 𝐵
𝑖

𝐵
𝑖−1

= 𝐵
𝑖

𝐴 ≥ 𝐵

,​ , ​ when ​ ​ (4.2) 𝑠
𝑖

= 0 𝐵
𝑖−1

= 𝐵
𝑖

− 𝐴
𝑖

𝐴
𝑖−1

= 𝐴
𝑖

𝐴 < 𝐵

This will result in, b2 = 1, A = 2 - 1 = 1, resulting in A = 1 and B = 1, which will again satisfy

equation 4.1. Therefore, b1 = 1, A = 1 - 1 = 0, resulting in A = 0 and B = 1, represents the

starting values of the next segment. The message which is being decoded is {11}: the first bit of

this message is the last bit of the encoded message , while the second bit represents the NO of 𝑆

the next segment.

Table 4.13: Segment3, decoding using the IANS.

Results from segment 3
 𝑠

4 NO
Results Decoded message

 𝑏
1

= 1 𝑏
2

= 1

A = 2 2-1 = 1 1-1 = 0 A = 0
={1} 𝑆

B = 1 B = 1

When the last bit of the message {1} has been decoded, the NO and the values for and 𝐴 𝐵

have been generated. The first step of the decoding will be applied again; the NO is {1} as

shown in Table 4.11, and it is equal to 3 operations. The decoded values are and , 𝐴 = 0 𝐵 = 1

and, therefore, the values of and will be added twice, and the results will be subtracted 𝐴 𝐵

from the previous value. Since the lowest value is the calculation will start with , that 𝐴 = 0, 𝐴

is, and , then the results of will be subtracted from 𝐴 = 1 + 0 = 1 𝐵 = 1 + 1 = 2 𝐵 𝐴,

resulting in This generates the values of the IANS ready to be decoded to 𝐴 = 2 − 1 = 1.

generate the initialisation of yet another segment.

60

Table 4.14: Segment 2, generating the IANS values from NO, and of segment 3. 𝐴 𝐵

NO
Values of 𝐴

and 𝐵
NO - Reverse process of the encoder Results

1
A = 0 1+0 = 1 2-1 = 1 A = 1
B = 1 1+1 = 2 B = 2

The values and have now been decoded by segment 2, and it is now ready to be 𝐴 = 1 𝐵 = 2

further decoded using the IANS. Starting with the comparison of and , and with being 𝐴 𝐵 𝐵

greater than , equation (4.2) will be used to decode the binary stream b2 = 0, 𝐴

 resulting in and , which will satisfy equation 4.1. Therefore, b1 𝐴 = 2 − 1 = 1, 𝐴 = 1 𝐵 = 1

= 1 and , resulting in and , which represents the starting values 𝐴 = 1 − 1 = 0 𝐴 = 0 𝐵 = 1

of the next segment. The decoded message is {01}, the first bit is the next bit of the encoded

message, and the second bit represents the NO of the next segment.

Table 4.15: Segment 2, decoding using the IANS.

Results from segment 3
 𝑠

3 NO
Results Decoded message

 𝑏
1

= 0 𝑏
2

= 1

A = 1 1-1 = 0 A = 0
={01} 𝑆

B = 2 2-1 = 1 B = 1

The next bit of the message {0}, the NO is {1} and the values for and have been 𝐴 = 0 𝐵 = 1

decoded from segment 3. Since the length of the message is 4 bits and the first two bits have

been decoded, the decoding process will decode one more segment to further generate two bits.

The last two bits of the decoded message will be the first two bits of the message. Further

decoding will be applied. Since the lowest value is the calculation will start with , 𝐴 = 0, 𝐴

 and , then subtract the results of from and resulting in 𝐴 = 1 + 0 = 1 𝐵 = 1 + 1 = 2 𝐵 𝐴

 This generates the values of the IANS ready to decode the last two bits of the 𝐴 = 2 − 1 = 1.

message . 𝑆

Table 4.16: Segment 1, generating the IANS values from NO, and of segment 2. 𝐴 𝐵

NO
Values of 𝐴

and 𝐵
NO - Reverse process of the encoder Results

1
A = 0 1+0 = 1 2-1 = 1 A = 1
B = 1 1+1 = 2 B = 2

61

The values and have now been decoded from segment 1, and by decoding the 𝐴 = 1 𝐵 = 2

segment further by using the IANS. The first two bits of the message can be retrieved. is 𝑆 𝐵

greater than , which satisfies equation 4.2, that is, b2 = 0, resulting in 𝐴 𝐴 = 2 − 1 = 1,

 and . Therefore, b1 = 1, and , which will give the values of 𝐴 = 1 𝐵 = 1 𝐴 = 1 − 1 = 0

 and . The decoded message is {01}, the first bit of the decoded message is the 𝐴 = 0 𝐵 = 1

second bit s2 of the message , and the second decoded bit is the first bit s1 of the message . 𝑆 𝑆

The decoding process will stop and the message {1001} is now fully decoded from the

transmitted message {11}.

Table 4.17: Segment 1, decoding with the IANS.

Results from segment 3
 𝑠

2
 𝑠

1
Results Decoded message

 𝑏
1

= 0 𝑏
2

= 1

A = 1 1-1 = 0 A = 0
={1001} 𝑆

B = 2 2-1 = 1 B = 1

4.3.3. Observations

The conditional compression method, using the IANS, outlined in Sections 4.3.1 and 4.3.2,

encoded the given message by using multiple segments where each segment consisted of 2 𝑆

bits and required two steps to encode 2 bits of information. The first step consisted of encoding

the first 2 bits of the given message using the IANS, and the second step consisted of 𝑆

reducing the results. The output of the second step was used as the initialisation of the next

segment, while the encoded NO of the previous segment, which consisted of one bit, was

outputted as one bit of information along with the next bit of the message . These two bits 𝑆

were formed together in preparation to be encoded in the next segment. The process and the

steps of compression are illustrated in Figure 4.1.

62

Figure 4.1: Compression steps using the IANS.

From Figure 4.1 the information required to decode the message is located in the last segment

results for and , the encoded NO of the last segment, and the number of encoded bits or the 𝐴 𝐵

number of segments. As the compression method processes one bit at a time of the input data

string, it is effective when the input consists of a minimum of three bits, extending to an infinite

number of bits. Despite the number of bits processed, the final output consists of only two bits

as seen in Figure 4.1. When the input is bigger than two bits, the compression occurs from

reusing the results of the reduced and in the initialisation of the next segment. 𝐴 𝐵

When each segment has an input of two bits and an output of 2 bits, the output bit, which

represents the values of and is reused to initialise the second segment. This reduces the 𝐴 𝐵,

output of the previous encoded segment by 1 bit, and, hence, allows one bit from the message 𝑆

to be encoded into the next segment, while the second bit of the next segment holds

information about the previous segment.

The process of reusing the value of the previous segment is proven to be possible using the

IANS, whereas this will not be possible if a direct binary system has been used. However,

when the compression method has been applied to the total combination of two bits, the results

of and consist of two possibilities, and or and , as seen in 𝐴 𝐵 𝐴 = 0 𝐵 = 1 𝐴 = 1 𝐵 = 0

Figure 4.2.

63

Figure 4.2: The IANS reduction results when the initialisation for A=0 and B=1.

Encoding 2 bits using IANS Reduction Results
 0 0

 𝐴 = 0 1 𝐴 = 1
 𝐵 = 1 1 1 0 𝐵 = 0

 0 1
 𝐴 = 0 1 ⤺ 0 𝐴 = 0

 𝐵 = 1 1 1 ⤻ 𝐵 = 1
 1 0

 𝐴 = 0 1 1 0 𝐴 = 0
 𝐵 = 1 2 1 𝐵 = 1

 1 1
 𝐴 = 0 1 2 1 𝐴 = 1
 𝐵 = 1 1 0 𝐵 = 0

When the reduction results of the first segment are and , the second segment can 𝐴 = 0 𝐵 = 1

be encoded with the IANS as seen in Figure 4.2 since the reduction results are equal to the

initialisation values. However, when the results are and the reduction results 𝐴 = 1 𝐵 = 0,

will be changed to the inverse of the initialisations with and . This is shown in 𝐴 = 0 𝐵 = 1

Figure 4.3.

Figure 4.3: The IANS reduction results when the initialisation for A=1 and B=0.

Encoding 2 bits using IANS Reduction Results
 0 0

 𝐴 = 1 1 0 𝐴 = 0
 𝐵 = 0 1 2 1 𝐵 = 1

 0 1
 𝐴 = 1 2 1 𝐴 = 1
 𝐵 = 0 1 1 0 𝐵 = 0

 1 0
 𝐴 = 1 1 1 ⤺ 𝐴 = 1

 𝐵 = 0 1 ⤻ 0 𝐵 = 0
 1 1

 𝐴 = 1 1 1 0 𝐴 = 0
 𝐵 = 0 1 𝐵 = 1

Also, the NO in Figure 4.2 is the inverse of the NO in Figure 4.3. That is, the NO for {00} and

{01} is two in Figure 4.2, while the NO for {00} and {01} is three in Figure 4.3. This also

applies to {10} and {11}. Consequently, if the result of any segment (a part of the last segment)

has the opposite initialisation of some other segment during the encoding process, the decoder

64

cannot determine whether the results of the decoded segment are related to the results of either

in Figure 4.2 or Figure 4.3. In addition, and apart from the last segment, if the results of the

reduction of and for all other segments are equal, the method will result in a high 𝐴 𝐵

compression ratio as can be seen in the previous examples. It may be possible to create an

algorithm to determine the initialisation of and for each segment to solve this problem. In 𝐴 𝐵

consequence, further study and analysis have been carried out, which branched into a novel

method that is based on the Run length encoding covered in Section 4.4. The study of

compression using the IANS will continue in Chapter 5.

4.4. The Leading Bit

In order to create an algorithm which would determine the initialisation of A and B for each

segment and, thus, solve the problem of whether their reduction applies to all other segments,

the following analysis and the development of a system using the Leading bit has been taken

up. This has not only drawn on the earlier work on the ANS and its improved version, the

IANS, but also, and mainly, focused on a novel method based on the Run Length Encoding

(RLE). Figure 4.2 and Figure 4.3 show that each generated value has a unique combination of

NO and the order of and when two bits of information are being encoded. In contrast, in 𝐴 𝐵

order to simplify the process, both the NO and the order of and can be replaced by a unique 𝐴 𝐵

number. Each number leads to a table that consists of the same information. The first bit of a

given message can be used as the leading bit to encode the rest of the message.

From what has become clear from the earlier attempt of compression by using the IANS in

Section 4.3, instead of passing the NO to the next segment, it has been replaced by linking the

combinations of bits that start with {0} to one table and the combinations of bits that start with

{1} to another table. Each table can be tagged as Table 1 and Table 2, as shown in Figure 4.4.

65

Figure 4.4: Replacing the NO and the order of A and B with Table 1 and Table 2

Starting from Table 0, if the message consists of a combination of two bits and the first bit is

{0}, there are two possibilities that begin with 0. If the second bit of the message is {0}, then

{00} will lead to Table 2, while if the second bit is {1}, then {01} leads to Table 1.

Furthermore, if the message starts with {10}, then it will lead to Table 1 and {11} will lead to

Table 2. The first bit of the message is considered the leading bit for both the encoding and

decoding processes. In the encoding of the third bit according to either Table 1 or Table 2, the

first bit of the message will be selected again, and this is, then, followed by the third bit of the

message. Each table can be represented with one bit, while the encoded message consists of

two bits, which will result in three bits that are required to decode the message. For example:

●​ if the message {101} needs to be encoded, the first two bits are {1} and {0}.

●​ the leading bit is, therefore {1} and the second bit {0}, which will be directed to Table 1

as shown in Figure 4.5.

Figure 4.5: Encoding the first two bits of the message {101}by using the leading bit

●​ from Table 1, the leading bit is selected from the message {1} and the third bit of the

message is inserted in the Table. This will give {11}, as seen in Figure 4.6.

66

Figure 4.6: Encoding the first bit of Table 2 as the leading bit and following this with the third bit of the message

{101}

●​ encoding Table 1 with {1} and Table 2 with {0}, and then

●​ emitting the last two bits of the encoded message along with the number of the table, so,

in this case, the last two bits are {11} and Table 1 gives {1}, resulting in {111}

If, however, the direction is changed to lead to Table 2 and is fed back to Table 0, any message

that consists of a repeated bit will lead back to Table 0 until the repeated bit in the message

changes, which will, then, lead to Table 1. However, the number of repeated bits is required to

determine the number of loops occurring in order to encode the message. If the message starts

with 10 or 01, it will lead to Table 1, and the three bits of information can be encoded as

illustrated in Figure 4.7.

Figure 4.7: Feedback process of a repeated bit

The method is suitable for data that contain multiple runs of zeros or ones as they loop back to

Table 0, while Table 1 is used to indicate the change in data (exit from the loop). Therefore

{11} can be assigned to indicate a run of ones from Table 1 and {00} as a run of zeros. In this

case, the number of runs of the repeated bit can be included, {11}, while {00} will be used as a

flag to indicate a read for the length of repeated bits post of the flag. Similarly, {01} can be

assigned to indicate a message with two bits that contain {01} and the same for {10}. This will

make the method very similar to Run Length Encoding but with the added advantage of

67

detecting a change in data without adding the cost of extra bits. This is important, in particular,

with messages containing a run of ones with few zeros in between, or a run of zeros with few

ones in between that RLE, which in some cases will result in negative compression. Figure 4.8

illustrates the Leading Bit process in more detail.

Figure 4.8: Leading Bit process

68

For example, if the message ={1010 1111 1111 1111 1111}, which contains 20 bits, is encoded 𝑏

using the leading bit method, the output is {10}{10}{11,14}, where the maximum run is 16

bits; then 2 bits can be used to identify the run of {1}, resulting in a maximum run of 14 bits,

and, finally, 4 bits can be used to represent the run. Similar to RLE, when converting the run to

binaries, it will give {10}{10}{11,1110}, that is 10 bits. Comparing the method to RLE, the

maximum run of the message is 16 bits, while using RLE will require 4 bits to represent each

run, which will result in {0001}{0001}{0001}{0001}{1111}, that is, 20 bits.

4.5. Summary

This chapter explored the Improved Adaptive Numeral System (IANS) as a potential approach

to data compression, highlighting its structural advantages over the traditional binary system. A

conditional compression method was identified, demonstrating that the IANS can use previous

segment results to initialise subsequent ones, confirming the hypothesis. Additionally, an

alternative approach, The Leading Bit, was introduced as another attempt to enhance

compression using numeral system-based encoding. However, the IANS compression method

was found to be conditional, depending on the structure of the input data string, and did not

apply universally to all data combinations. Moreover, The Leading Bit method failed to achieve

substantial compression. Despite these limitations, the experiments provided valuable insights

into numeral system-based data encoding and revealed structural constraints that affect their

viability for practical compression applications.

69

Chapter 5

5.1. Introduction

Building upon the findings of Chapter 4, this chapter introduces a novel approach to data

compression known as Data Extraction (DE). Unlike previous methods that relied only on

structural properties of numeral systems, DE introduces a mechanism where the number of bits

to compress is controlled and correlated with the length of the data string. This is achieved by

segmenting the input data based on a selected number of bits to compress, which in turn

determines the number and maximum length of segments. The key advantage of this approach

is that each segment retains information necessary to reconstruct the previous segment,

facilitating incremental processing. A critical aspect of DE is the flagging system, which plays

a fundamental role in segment identification and ensures proper encoding and decoding. The

chapter explores multiple flagging order solutions and discusses how different numeral systems

and flag systems impact the effectiveness of DE.

A key challenge in implementing DE is the potential for data overhead introduced during

encoding, which must be managed to maintain compression efficiency. The Zeckendorf

representation, a numeral system that represents numbers as sums of Fibonacci numbers, is

examined as a potential flagging approach. However, due to its inherent structural constraints,

such as ambiguous termination flags, it is found to be unsuitable for Data Extraction. Instead,

the ANS and IANS numeral systems are considered as alternatives that can be modified to

support a more reliable flagging system while avoiding the challenges of Zeckendorf’s

representation.

5.2. Data Extraction (DE)

Following the results obtained from previous studies in data compression where the Improved

Adaptive Numeral System (IANS) was used, further research has led to a novel method of

compression in which the number of bits required to compress can be controlled and correlated

70

with the length of the data string. This is possible when the input data string is divided into

segments where the selected number of bits to compress determines the total number of

segments and the maximum length for all segments. These characteristics allow the incremental

processing and identification of the length of each segment, which is based on the value of the

selected number of bits to compress. Consequently, each segment will have the information to

retrieve the data of the previous segment.

The process includes the following steps:

Firstly, the input data string S, is divided into segments, that is, S(SGs), while the

number of bits to compress can be selected. This is denoted by C1 for all segments. The total

number of segments to process can be determined when the length of S is known, as follows:

​ ​ ​ (5.1) 𝑆(𝑆𝐺𝑠) =
𝑆

𝑙
−𝑆(𝑠𝑔

𝑥
)

𝑙

𝐶
𝑙
−𝐹

𝑙

The length of each segment S(sgx)1 is, then, determined by the value of C, denoted by Cx:

​ ​ ​ ​ (5.2) 𝑆(𝑠𝑔
𝑥
)

𝑙
= 𝐶

𝑥

Since Cx determines the length of S(sgx)1, the selected number of bits to be compressed must be

smaller, or equal, to the size of the processor cache to process the data. The value C of each

segment S(sgx)1 can be determined by the following equation:

​ ​ (5.3) 𝑆(𝑠𝑔
𝑥
)

𝑙
= 𝐶

𝑥
=

𝑖=0

𝑖=𝑐
𝑙
+1

∑ 2𝑖𝑏
𝑖

where is the binary bit in C. Once the value of S(sgx)1 has been determined, the value of the 𝑏

segment S(sgx) can be obtained by using the following equation:

 ​ ​ (5.4) 𝑆(𝑠𝑔
𝑥
) =

𝑖=0

𝑖=𝑆(𝑠𝑔
𝑥
)

𝑙−1

∑ 2𝑖𝑏
𝑖

71

When S(sgx)1 is known, the compressed Cx can be obtained from the selected Cl. It can be

concluded from the above that by using the Data Extraction algorithm, data compression can be

obtained when the number of bits to compress for each segment is identified from the input

data string if the following conditions are met:

1. ​ the length of each segment is known, and

2. ​ the cost of identifying the segment length is less than the specified number of bits to

compress Cl.

5.2.1. Flags

The conditions required to achieve the compression listed above in the previous section, can be

achieved by flagging the end of each segment with a flag code to identify the length of the

segment. The compression efficiency is, then, directly related to the length of Cl and the flag

code length. If the length of Cl = x, the flag F must be at least 1 bit smaller than Cl, F = Cl - 1 to

ensure that at least 1 bit of information can be encoded for every segment. For example, if Cl =

5 bits, then the Flag must be F ≤ 4 bits. The maximum number of bits in each segment, when C

= 5 bits, will be 25 = 32 bits. Each segment will be shifted left by 5 bits, allowing at least 1 bit

of information to be encoded, and a maximum of 4 bits can be used to flag the end of the string

for each segment. However, the size of the string will fit multiple flags, more precisely, the

maximum number of bits in each segment can fit approximately six flags as 32/5 = 6.4 flags.

Therefore, if the same flag code is used, it will result in an undefined order of six identical flags

in each segment with the same code, resulting in data corruption. Therefore, the identification

of either the order of the flag or six different flags are required to determine the end of each

segment. The flag order is explored in more detail in Section 5.2.2. The following example will

explore how Data Extraction can be used to encode information and the challenges associated

with flagging the end of each segment.

If the message E = {1010 1000 0110 1111 0010}, is encoded using Cl = 4 and Fl = 2,

then the number of bits to be compressed per segment is Cl - Fl = 2, the following steps show

how the encoder will process the information:

72

The first four bits, that is Cl = 4, are given the value of C1 = 10 in the message E, which

contains 20 bits. Since S(sgx)l = Cx, then the first segment is S(sg1)l = C1 = 10. The 10 bits of

the message following Cl are read, and a flag is placed after the 10th bit of the first segment:

 ​ C = 10 ​ 𝑆(𝑠𝑔
1
)
𝑙
= 𝐶

e1 = { 1 0 1 0 1 0 0 0 0 1 1 0 1 1 F(1) 1 1 0 0 1 0 }

 𝑆(𝑠𝑔
1
)

The second segment e2 will be shifted by 4 bits, and it will start from the 5th bit of the message

E. Since C2 = 8 the, flag will be placed on the 9th bit of S(sg2):

 C = 8​ 𝑆(𝑠𝑔
2
)
𝑙
= 𝐶

e2 = { 1 0 0 0 0 1 1 0 1 1 F(1) 1 1 F(2) 0 0 1 0 }

 𝑆(𝑠𝑔
2
)

The third segment e3 will be shifted again by 4 bits and flagged at the 7th bit of the S(sg3):

 C = 6​ ​ 𝑆(𝑠𝑔
3
)
𝑙
= 𝐶

e3 = { 0 1 1 0 1 1 F(1) 1 1 F(2) 0 0 F(3) 1 0 }

 ​ 𝑆(𝑠𝑔
3
)

The fourth segment e4 will be shifted by 4 bits and flagged at the 16th bit of the S(sg4):

 C = 15​ ​ 𝑆(𝑠𝑔
4
)
𝑙
≠ 𝐶

e4 = { 1 1 F(1) 1 1 F(2) 0 0 F(3) 1 0 }

As e4 contains Ce4 = 15 and the length of e4 is 4 bits, excluding Cl, there are no more bits to fit

this size of the last segment. Therefore, S(sg3) = { 1 1 F(1) 1 1 F(2) 0 0 F(3) 1 0 } can be

transmitted along with the size of compression selected Cl = 4, and the receiver can decode the

message to retrieve the original 20 bits from the compressed 8 bits of S(sg3) (excluding the

flags).

73

As S(sgx)l = Cx, the decoding process involves tallying the bit count in the string from the least

significant bit (LSB) until a flag is detected for each segment, where the total bit count in the

segment equals Cx.

 = { 1 1 F(1) 1 1 F(2) 0 0 F(3) 1 0} 𝑆(𝑠𝑔
3
)

 6 𝑆(𝑠𝑔
3
)
𝑙
=

Since the length of S(sg3)l = 6 and the length of C is given Cl = 4, the value of the first Cl can be

obtained by counting the number of bits from the first flag of the segment and converting the

number to a decimal value in a 4-bit string Cl = {0110}.

 C = ​ 𝑆(𝑠𝑔
3
)
𝑙

𝑆(𝑠𝑔
3
)
𝑙
= 6

e3 = { 0 1 1 0 1 1 F(1) 1 1 F(2) 0 0 F(3) 1 0 }

Once the e3 is obtained, Flag 3 will be removed from the string. The next flag is located on the

9th bit of the string, S(sg2)l = 8, therefore C2 = {1000}.

 C = 𝑆(𝑠𝑔
2
)
𝑙

𝑆(𝑠𝑔
2
)
𝑙
= 8

e2 = { 1 0 0 0 0 1 1 0 1 1 F(1) 1 1 F(2) 0 0 1 0 }

As e2 is obtained, Flag 2 will be removed and the next flag will be located on the 11th bit of the

string, S(sg1)l = 10, therefore Cl = {1010}, resulting in:

 ​ C = 10 ​ 𝑆(𝑠𝑔
1
)
𝑙
= 𝐶

e1 = { 1 0 1 0 1 0 0 0 0 1 1 0 1 1 F(1) 1 1 0 0 1 0 }

As there are no more flags, the decoder will stop with the final decoded message: E = {1010

1000 0110 1111 0010}

The preceding example illustrates the successful encoding and decoding of DE when the flag

maintains order after the Cl shift, provided that the data to compress in each segment exceeds

74

the previous flag Cx > Fx-1. However, if Cx < Fx-1, this arrangement leads to flag disorder. For

instance, when Ce3 = 3, F(e3) will appear before flag F(e2), the arrangement will lead in flag

disorder. This disorder is characterised by F(e1), starting from the least significant bit (MSB),

followed by F(e3), and then F(e2).

 C = 3

e3 = { 0 0 1 1 1 1 F(1) 1 F(3) 1 F(2) 1 0 1 0 }

 3 bits

The next section will proceed to explore the ways to avoid the flag disorder, the significance of

avoiding it, and the possible solutions to solve it in more detail.

5.2.2. Flags order

The example in the section above shows that the order of the flags depends on Cx for each

segment, and that the order is required to compress the data. When the flags are not in order,

the decoder will not be able to identify which flag relates to each segment unless the order of

the flags is known. If a false flag is selected, it will result in data corruption. In the following

discussion, three solutions are proposed to address this issue and explore their limitations. This

problem could be resolved by applying one of the following approaches:

1. ​ Flags Information: Initialising the number of bits in the flag where Fl ≤ Cl - 2 and

then introducing a string of data to determine the order of the flags. When the

highest flag number occurs first from the LSB to MSB, 1 is transmitted. Otherwise,

0 is transmitted for each flag that does not correspond to the flag related to the

segment. For example, in the model at the end of the previous section, the flag of e3

is the second flag from the LSB, therefore 0 will be transmitted, to indicate that the

first flag (from the LSB) is not related to the current segment, and 0 is followed by 1

to indicate that the second flag is related to the current segment. The flag for e2 is

placed first from the LSB, so 1 will be transmitted. Likewise, the flag for e1 is set

first from the LSB, and 1 will be transmitted. The flag string will be 0111. This

solution costs at least 1 bit for each segment when the flag is placed first from the

75

LSB. It can lead to data expansion in some segments if the multiple flags are not in

order.

2. ​ Flag to flag: The second solution would be the counting of the number of bits

between the flags instead of counting the number of bits from Cl. For example, if

C = 3 for the 3rd segment (e3), instead of counting 3 bits after C, it will start from

flag 2, extending it to 3 bits and placing the flag after the 3rd bits as follows:

 ​ C = 3

e3 = { 0 0 1 1 1 1 F(1) 1 1 F(2) 1 0 1 F(3) 0 }

​ ​ ​ ​ ​ ​ 3 bits

This will ensure that the first flag from the LSB is always the flag which is related

to the corresponding segment, and the value of will be equal to the number of bits 𝐶

between the first two flags from the LSB of each segment. This solution provides

compression, equivalent to the number of bits in C - Fl for each segment, without

any additional cost. However, it changes the additional data cost presented in

Solution I to the cost of increasing the number of bits to be processed for each

segment. It also increases the processing power for both the encoder and decoder.

For example, if C = 16 of e3, flag 3 will be placed after 16 bits from flag 2 with

total bits of e3 = 20 bits. Then if the next segment e4 contains Ce4 = 16 bits, flag 4

will be placed in the 33rd bit of e4, leading to a longer data string that needs to be

processed for each S(sg)x.

3. ​ Flag to flag with flag information: A third solution uses the combination of the

proposed solutions one and two, by limiting the increase in the size of data to be

processed as well as the number of bits to be transmitted. It is achieved by

subtracting the value of C from the number of bits to reach the previous segment

flag (Fi-1). If the answer is equal to or greater than the number of bits needed to

reach Fi-1, the bits from the start of the segment will be counted and the flag placed

accordingly. Transmitting 0 to indicate that value C is equal to the number of bits

from the start of the segment, excluding C. Alternatively, when the value of C is less

76

than the number of bits to reach the previous flag, C < Fi-1. The bits that are

equivalent to C will be counted from Fi-1 and place Fi accordingly. Then 1 is

transmitted to indicate that value C is equal to the number of bits between Fi-1 and

Fi. If the example e3 is used, where C = 3 from Solution II above, there will be 4

bits to reach F2, which is less than C, 1 will be transmitted to indicate the count

from F2. Therefore, the flag for e3 will be placed after three bits from flag 2.

 C = 3

e3 = { 0 0 1 1 1 1 F(1) 1 1 F(2) 1 0 1 F(3) 0 }

​ ​ ​ ​ ​ ​ 3 bits

Compared to Solution I, Solution II will limit the data transmission to only 1 bit, and for the

selected C1 = 4, the flag size needs to be the maximum 2 bits to obtain average compressions of

1 bit for every segment. Alternatively, the flag size can be increased with the cost of increasing

Cl, which, in turn, will cause an increase in both the length and the possible number of flags for

each segment. Chapter 7 will offer an in-depth analysis of the three proposed solutions,

thoroughly examining the trade-offs, advantages, and implications associated with each

approach. This will allow for a comprehensive understanding of their relative effectiveness and

applicability. The next section will shift focus to explore the flagging system for Data

Extraction outlining its functionality, advantages, and potential challenges.

5.2.3. Flag systems

The previous section explored three solutions to resolve the flagging order problem in Data

Extraction. However, Data Extraction will require a particular numeral system or flag system

that has the characteristics to support the flagging solutions. These solutions may be changed or

updated depending on the flag system structure. This section will discuss the possible flag

systems that can be used for Data Extraction and which is expected to result in data overhead in

the encoding process. However, as the Data Extraction method has a high compression volume

during the encoding process, the data overhead can be controlled and managed by ensuring that

Cl in every segment in Data Extraction compresses at least 1 bit from each segment, taking into

consideration the length of each segment.

77

One of the well-known methods of flagging systems is Zeckendorf’s representation, which

represents any integer as sums of Fibonacci numbers. The method generates a code that does

not contain two consecutive {1}, which would act as a termination flag for each encoded integer

to differentiate the code words unambiguously from a long stream of codes [45]. This

characteristic can be used to identify the length of the segment in the Data Extraction method. It

will require converting the full input data string to Zeckendorf’s representation and using the

termination flags to identify the end of each segment and the use of Data Extraction instead of

flagging the encoded integers. Furthermore, as Zeckendorf’s representation uses two

consecutive 1’s to flag the end of the segment, if the flag falls behind, or after, a bit with the

value = 1, this will generate three consecutive {1}. Therefore, the flag cannot be identified as it

can be either the first two {1} or the last two {1}. For example, given the Zeckendorf

representation of 57 as Z = {1000 0000 10}, if a flag is encoded at the 9th bit using Data

Extraction (DE), the resulting flagged sequence becomes Z(DE) = {1000 0000 1110}. During

decoding, the system recognises a flag within the repeated {11} sequence but cannot determine

whether it starts at the 9th or 10th bit, leading to uncertainty in segment length and potential

data corruption. These challenges make the method unsuitable for the Data Extraction method.

However, the ANS and IANS have properties that can be modified to use a flagging system

similar to Zeckendorf’s representation but avoid the associated challenges to Zeckendorf’s

representation. This will be explored in the next Chapter.

5.3. Summary

This chapter investigated Data Extraction (DE) as a potential compression technique, focusing

on the segmentation of input data based on a predefined number of bits to compress. By

establishing a relationship between segment length and compression parameters, DE allows for

incremental processing and ensures that each segment retains information necessary for

reconstructing previous segments. The chapter explored the role of flags, their order, and

different flag systems in managing segment structure and influencing the compression process.

Three flagging order solutions were examined, but their effectiveness depends on the numeral

system used. While Zeckendorf’s representation was initially considered due to its unique

termination flag property, it was found to be unsuitable due to potential ambiguity in identifying

78

segment lengths, leading to decoding errors. However, the ANS and IANS numeral systems

demonstrated properties that could be adapted to provide a more robust flagging system for DE.

The findings highlight that while Data Extraction has a high compression potential, its success

depends on minimising data overhead and ensuring that the selected flagging system supports

accurate segment identification without introducing ambiguity.

79

Chapter 6

6.1. Introduction

This chapter introduce the Modified Adaptive Numeral System (MANS), an enhancement of

the Improved Adaptive Numeral System (IANS) designed specifically for Data Extraction. The

primary goal of MANS is to efficiently determine segment lengths using a flagging mechanism

inspired by Zeckendorf’s representation. In MANS, the numeral A signifies transitions between

bits (from 1 to 0 or vice versa), while B is used to count repeated bits. This ensures a structured

approach to encoding, where consecutive occurrences of A serve as flags to determine segment

lengths. MANS overcomes issues in traditional numeral systems by preventing ambiguities

arising from consecutive flags and ensuring data integrity during transitions. The system is

structured to guarantee that a transition in data will always be followed by at least one encoding

in B, ensuring consistency. The chapter further defines MANS mathematically and provides a

detailed example demonstrating its encoding process. Additionally, the chapter discusses how

MANS expands bit length based on the number of transitions in the data and presents

experimental results illustrating its efficiency compared to direct binary and Fibonacci coding.

6.2. Modified Adaptive Numeral System for Data Extraction

To identify the length of the Data Extraction segment, the Adaptive Numeral System (ANS)

and the Improved Adaptive Numeral System (IANS) hold characteristics (discussed in Sections

3.3 and 3.4) that can be modified to use the flagging system similar to Zeckendorf’s

representation. Since A of the IANS represents the 1’s and B represents the 0’s, A can be

modified to identify a switch of the data from 1 to 0 ,or vice versa, represented by 1s, while B

can be used to count the occurrences of the repeated bits, represented by 0s. The modified

numeral system will avoid the sum of any two consecutive bits in A, which can be used as a

flagging system to identify the number of bits in each segment for Data extraction.

It will also avoid the uncertainty of bits related to the flag when three consecutive bits occur

during the flagging process. Since the modification of the IANS uses A to represent the switch

in the data and not for encoding it, this will ensure that any switch in the data from 1 to 0 or

80

vice versa will always end with encoding B at least once, ensuring that any consecutive

occurrence in A will be the flag to determine the value of the segment for the Data Extraction.

The Modified Adaptive Numeral System (MANS) can thus be defined by the following

equation:

1.​ ​ (6.1) 𝐴
0

= 1, 𝐵
0

= 1 𝑊ℎ𝑒𝑛 𝑠
1

= {1} 𝑜𝑟 𝑠
1

= {0}

 𝐵
1

= 𝐴
0

+ 𝐵
0
, 𝐴

1
= 𝐴

0

2.​ ​ ​ ​ (6.2) 𝐵
𝑖>1

= 𝐴
𝑖−1

+ 𝐵
𝑖−1

, 𝐴
𝑖

= 𝐴
𝑖−1

 𝑊ℎ𝑒𝑛 𝑠
𝑖

= 𝑠
𝑖−1

3.​ ​ ​ ​ (6.3) 𝐴
𝑖>1

= 𝐵
𝑖−1

+ 𝐴
𝑖−1

, 𝐵
𝑖

= 𝐵
𝑖−1

 𝑊ℎ𝑒𝑛 𝑠
𝑖
 ≠ 𝑠

𝑖−1

 𝐵
𝑖

= 𝐴
𝑖−1

+ 𝐵
𝑖−1

, 𝐴
𝑖

= 𝐴
𝑖−1

The following example shows how MANS encodes information and avoids the occurrence of

two consecutive bits. If the message S = {1000 1110 0111 1100}, is encoded. Starting from the

MSB and using the above equations, it will result in the following:

S 1 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0
MANS(A) 3 14 67 254 1711

MANS(B) 2 5 8 11 25 39 53 120 187 441 695 949 1203 1457 3168 4879

S(MANS) 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

The encoding has resulted in A=1711 and B=4879. The values in A and B can also be

converted to binary, such as each switch in A can be converted to {1} and every repeated bit in

B to {0} resulting in S(MANS)={0100 0100 0100 1000 0010 0}, which will ensure that no

consecutive ones occur in the string.

The converted string will enable the process to flag any string of data by using MANS with the

{11}. The only scenario where three consecutive ones occur, is when the flag falls before a

switch in data, represented in A as each switch in A is always followed by the encoding of B at

least once. Therefore, the count of each segment must not include the known switch in A and

the first bit from the LSB in any three consecutive bits, as the first bit will always be related to

the switch in A.

81

For example, if in the example above, the number of repeated bits is counted, which, in 𝐶 = 4

this case, is four zeros in the converted string, that is, the fifth bit of S(MANS) and place the

flag on the sixth and seventh bit, resulting in S(MANS) = {0100 011100 0100 1000 0010 0} If

the next , then after counting five zeros and ignoring the 1’s, that is, the ninth bit, the flag 𝐶 = 5

will fall on the tenth and eleventh bits, S(MANS) = {0100 0111 0110 0100 1000 0010 0}. The

MANS system will ensure that there is always a zero between each flag, which avoids any

uncertainty in reading the flag from the data. However, since the MANS is unassigned when

the decoder receives either the last two values in A and B or the converted binary string, there

is no indication which would identify if the data string from the LSB starts with the {1} or {0}.

Hence, MANS values can be assigned by identifying the last value with the cost of adding an

additional bit at the end of the encoded string.

If the data ends with 1, MANS will encode A at the end of the encoded string S(MANS) to

indicate that the string ends with {1}. Alternatively, if the string ends with {0}, the encoder will

not change as B will always be encoded at least once at the end of the encoding process, which

will indicate that the data starts with {0}.

The decoding process of MANS requires either the last two decimal values of A and B

or the encoded binary string S(MANS). When using the decimal values of A and B, the

following equations can be used to decode the information starting from the LSB:

​ (6.4) 𝑠
𝑖

= 𝑠
𝑖−1

, 𝐵
𝑖

= 𝐵
𝑖−1

− 𝐴
𝑖−1

, 𝐴
𝑖

= 𝐴
𝑖−1

 𝑊ℎ𝑒𝑛 (𝐵
𝑖−1

− 𝐴
𝑖−1

) > 𝐴
𝑖−1

​ (6.5) 𝑠
𝑖
 ≠ 𝑠

𝑖−1
, 𝐴

𝑖
= 𝐴

𝑖−1
− 𝐵

𝑖−1
, 𝐵

𝑖
= 𝐵

𝑖−1
 𝑊ℎ𝑒𝑛 (𝐵

𝑖−1
− 𝐴

𝑖−1
) < 𝐴

𝑖−1

6.2.1. Analysis and observations of the MANS

As shown in the previous example, MANS provides the characteristics required to identify the

segment length, which is a suitable candidate for Data Extraction. MANS will generate

additional information to meet the requirements, and this section will cover the testing and

analysis of the MANS.

82

Assume that every switch denoted by corresponds to the original data string denoted by . 𝑊 𝑆

This means that for every W, S(MANS) will generate one additional bit. To assign the value of

MANS that identify if the string starts with {1} or {0}, another bit will be added at the end of

the string when ends with {1}. Therefore the length of MANS can be defined as: 𝑆

​ ​ (6.6) 𝑆(𝑀𝐴𝑁𝑆)
𝑙

= 𝑆
𝑙

+ 𝑊
𝑇𝑜𝑡𝑎𝑙

+ 1

When the data in S contains a run of ones, the overhead in S = Sl + 1, and an additional bit is

required to identify the starting bit of the string. However, when contains a run of zeros, there 𝑆

will be no overhead in S(MANS)l as there is no data switch, which makes

 ​ ​ ​ ​ (6.7) 𝑆(𝑀𝐴𝑁𝑆)
𝑙

= 𝑆
𝑙

However, when S contains one or more switches, then

​ ​ ​ (6.8) 𝑆(𝑀𝐴𝑁𝑆)
𝑙

= 𝑆
𝑙

+ 𝑊
𝑇𝑜𝑡𝑎𝑙

as the number of switches in Sl increases, so does the overhead. The maximum overhead in

S(MANS)l occurs when S contains a run of zeros and ones, respectively, This makes

S(MANS)l=Sl ✕ 2. Therefore, it can be concluded that:

​ ​ ​ (6.9) 𝑀𝐼𝑁(𝑆(𝑀𝐴𝑁𝑆)
𝑙
) = 𝑆

𝑙

​​ ​ (6.10) 𝑀𝐴𝑋(𝑆(𝑀𝐴𝑁𝑆)
𝑙
) = 𝑆

𝑙
× 2

Given that the original data string, S, contains 16 bits with five switches from 1 to 0 and vice

versa. When converted to S(MANS), the total number of bits will increase to 21 bits. The

Modified Adaptive Numeral System has been tested to encode the combinations of up to 50

Mbits of information. The results vary in length as they depend on the number of switches in

each binary value, as each switch will cost 1 bit. Table 6.1 illustrates the combinations of a

4-bit binary string of both assigned and unassigned MANS.

83

Table 6.1: Encoding combinations of 4-bit string using MANS

Decimal Binary MANS Unassigned MANS Fib
0 0 0 0 0
1 1 01 0 11
2 10 010 010 011
3 11 001 00 0011
4 100 0100 0100 1011
5 101 010101 01010 00011
6 110 0010 0010 10011
7 111 0001 000 01011
8 1000 01000 01000 000011
9 1001 0100101 010010 100011
10 1010 0101010 0101010 010011
11 1011 0101001 010100 001011
12 1100 00100 00100 101011
13 1101 0010101 001010 0000011
14 1110 00010 00010 1000011
15 1111 00001 0000 0100011

Table 6.1 includes also comparisons of the MANS against the well-established Fibonacci

numbers and direct binary numbers as is illustrated in Figure 6.1 down below.

Figure 6.1: Direct Binary vs Fibonacci code vs assigned MANS - Bits required to encode a set of values

Figure 6.1 shows that 1 value out of 16 from assigned MANS, when compared with direct

binary, uses the same number of bits, that is {0}, Ten values out of 16 use one additional bit,

84

that is, {1, 2, 3, 4, 6, 7, 8, 12, 14, 15} and 5 out of 16 values use 3 additional bits, that is, {5, 9,

10, 11, 13}. However, comparing MANS to the Fibonacci code, MANS shows that 6 values use

1 less bit, that is, {0, 3, 6, 7, 8, 12}, and 2 values use 2 fewer bits, that is, {14, 15}, 4 values use

the same number of bits {1, 2, 4, 13}, and, finally, 4 values use 1 more bit {5, 9, 10, 11}.

MANS is structurally designed to encode a large amount of data, mainly for the Data

Extraction method. The odd values in Figure 6.1 include an additional bit at the end of the

encoded message, which identifies the starting bit of the message as {1}. For demonstration

and comparisons against other established numeral systems, the additional bit for the odd

values has been added. For example, if the binary values {11, 1111, 111}, are encoded

respectively, and if each message is treated separately, the assigned MANS output will read

{001, 00001, 0001}. However, if the message has this specific order, then MANS can save an

additional 2 bits compared with the results in Figure 6.1, by assigning the final bit only. This is

because the message will encode the three values together and identify the last bit, such as {00

0000 000 1}, only once. The unassigned MANS is illustrated in Figure 6.2.

Figure 6.2: Direct Binary vs Fibonacci code vs Unassigned MANS - Bits required to encode a set of values

Given that the MANS value is assigned only once at the conclusion of the data, Figure 6.2

above depicts the bit count required to encode the unassigned MANS, showcasing its overall

superior performance compared with the Fibonacci code.

85

Many tests on MANS have been completed on Text using ASCII characters via the

JAVA application. A MANS encoder, decoder and verifier have been designed and

implemented to test the system. One of the tests was used on the following message “Testing

the encoding and decoding steps of MANS!” by converting each character to ASCII code, then

converting the ASCII code to MANS. The total number of switches was calculated and

compared with the initial analysis and tests. This proved successful. The encoded message was

then sent to a decoder that retrieved the ASCII code for each letter, and the full message was

retrieved. The results have been verified by checking each binary number and comparing the

decoded message against the original message. The full code and output are shown in

Appendix A.1. The next section, will cover the encoding process of Data Extraction using

MANS.

6.2.2. Encoding Data Extractions using MANS

The following example will show how MANS can be used to encode information and the

challenges associated with flagging the end of the string.

If the message S = {1000 1110 0111 1100} is encoded starting from the MSB and

indicating the number of bits to be compressed as Cl = 4, the flag size Fl = 2 and the value

, then the first 4 bits of S = {1000} and after the conversion, S(MANS) = {01000}. 𝐹 = {11}

Status Change Change Change …

Data (S) 1 0 0 0 1 1 1 0 0 …
MANS (A) 3 14 67 …
MANS (B) 2 5 8 11 25 34 53 120 187 …
S(MANS) 0 1 0 0 0 1 0 0 0 1 0 0 …

​ ​

​ ​ = 4​ 𝐶
𝑙

Furthermore, the string, which has been generated, does not include two consecutive 1’s. The

segment flag will be possible now by encoding {11} in A to identify the length of the segment.

The flagging system will use the number of bits, excluding any change in S(sgx), to count the

number of bits for each flag that includes the bits which are related to previous flags from the

value . If the flag code falls before any change in A, S(MANS) will generate three consecutive 𝑆

86

bits of {1}. When counting the number of bits in S(sgx), the change to reach the flag is

excluded. The flag will always fall under one of the following conditions:

A.​ one bit after the change in A will result in at least 0 between the change and the flag

S(MANS)={1011}, or

B.​ before the change in A, which will result in S(MANS) = {111}, the third bit will always

correspond to the change in A and the first two bits to the flag {11}.

C.​ If a flag or multiple flags fall after the previous flag that meets the condition in B, this

will result in an odd number of {1}, which will indicate that the first bit from the LSB is

the bit corresponding to the change in A, while the next two bits correspond to the first

flag and the next two bits will correspond to the second flag and so on.

Since the selected C1 = 4 bits, the first 4 bits of the S(MANS) are used, C1 = {0100} = 4 instead

of S = {1000} to ensure that the compressed data can be retrieved during decoding. Any

identifiable {1} related to the data switch is ignored. Consequently, the first flag (F1) of the

first segment will start from the fifth bit after C1 (from the MSB) of the first segment, S(sg1),

and the data on the fifth bit will be shifted two bits to the right to accommodate flagging the

segment. These are the number of bits used to flag the segment. Once the flag is placed for

each segment, the S(MANS) will be recalculated to include the flag's information:

​ ​ ​ ​ 𝑆(𝑠𝑔
1
)

Status Change Change F1= 4 Change …

Data (S) 1 0 0 0 1 1 1 1 1 0 0 …
MANS (A) 3 14 106 159 212 …
MANS (B) 2 5 8 11 25 39 53 265 477 …
S(MANS) 0 1 0 0 0 1 0 0 0 1 1 1 0 0 …

​ ​ = 4​ 𝐶
1

Now that the flag of the first segment is available, S(sg1) is shifted by C1 = 4 bits, resulting in

C2 = {0100} = 4. Flag 2 (F2) will, therefore, be placed on the fifth bit after C1 for the second

segment:

87

​ ​ ​ 𝑆(𝑠𝑔
2
)

Status Change F1= 4 Change F2=4 Change …

Data (S) 0 1 1 1 1 1 0 1 1 0 1 …
MANS (A) 3 14 25 36 108 180 432 …
MANS (B) 2 5 8 11 72 252 684 …
S(MANS) 0 1 0 0 0 1 1 1 0 1 1 0 1 0 …

​ ​ = 4​ 𝐶
2

Having obtained F2, the data is shifted by 4 bits to proceed to the third segment, resulting in

C3 = {0111} = 7. Consequently after disregarding the switches in the data, flag 3 (F3) will be

placed after the eighth bit from C1 for the third segment S(sg3):

​ ​ ​ 𝑆(𝑠𝑔
3
)

Status F1= 4 Change F2=4 Change F3=7 …

Data (S) 1 1 1 0 1 1 0 1 1 1 1 1 …
MANS (A) 3 5 7 16 25 59 270 481 …
MANS (B) 2 9 34 93 152 211 …
S(MANS) 0 1 1 1 0 1 1 0 1 0 0 0 1 1 …

​ ​ = 7​ 𝐶
3

The fourth segment will be shifted again by 4 bits with C4 = {0110} = 6, and, therefore, flag 3

will be inserted after the seventh bit from C1 for segment S(sg4):

 ​ ​ ​ 𝑆(𝑠𝑔
4
)

Status F2=4 Change F3=7 F4 = 6 …

Data (S) 0 1 1 0 1 1 1 1 1 1 1 1 1 …
MANS (A) 3 5 12 55 98 141 184 …
MANS (B) 2 7 19 31 43 227 411 …
S(MANS) 0 1 1 0 1 0 0 0 1 1 1 1 0 0 …

​ ​ = 6​ 𝐶
4

88

Moving to the fifth segment S(sg5), shift 4 bits with C5 = {1000} = 8, while Flag 5 (F5) will be

placed after the last bit of the given data S on the ninth bit after C1:

 ​ ​ ​ ​ ​ ​ 𝑆(𝑠𝑔
5
)

Status Change F3=7 F4 = 6 Change F5 = 8
Data (S) 1 1 1 1 1 1 1 1 1 0 0 1 1
MANS (A) 2 10 17 24 31 100 369 638
MANS (B) 3 5 7 38 69 169 269
S(MANS) 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1

​ ​ = 8​ 𝐶
5

Once again, 4 bits will be shifted for the sixth segment S(sg6), with the value of C6 = 13:

​ ​ ​ 𝑆(𝑠𝑔
6
)

Status F3=7 F4 = 6 Change F5 = 8

End of (P)
Data (S) 1 1 1 1 1 1 0 0 1 1
MANS (A) 2 3 4 5 16 59 102
MANS (B) 6 11 27 43
S(MANS) 1 1 1 1 0 0 1 0 0 1 1

​ ​ = 13​ 𝐶
6

Since there is no more data to process, S(sg6) will be discarded, and S(sg5)={1111 0010 011}

will be the final segment to be transmitted.

The encoding of Data Extraction using MANS of S = {1000 1110 0111 1100} is now

completed, and it has resulted in S(sg5)={1111 0010 011}. The next section will cover the

decoding process of Data Extraction using MANS.

6.2.3. Decoding Data extractions using MANS

To illustrate the decoding process of Data Extraction when MANS is used, the example

from the encoding section (encoded S) is used, where the final segment has been transmitted

from the encoder.

89

The final segment which was generated, that is, S(sg5)={1111 0010 011} will be the final

segment to be transmitted. The decoder receives S(sg5), and since the length of C1 = 4 bits is

used, the decoder will be designed to read the length of each segment and input the value in 4

bit-length to retrieve . From the LSB, the decoder will scan the given string for the first two 𝐶

consecutive 1’s that represent the flag of the first segment, and, once detected, the decoder will

count the number of bits starting from the first detected flag until the end of the string. The total

number of bits in the count will be the value of , which has a length of four bits, C1 = 4. The 𝐶

decoder will then consider the following course of action:

1.​ Since the encoder discarded the 1’s related to the change in data from the count, the

decoder will dismiss any 1’s detected between two 0’s {010} from the count to flag the

end of the string

2.​ Dismiss one bit, which is related to the change of the bit that falls after the flag when an

odd consecutive bit, such as {111} or {11111} is detected.

3.​ After determining the value of , the flag {11} will be removed from the string. 𝐶

Using the encoded message as an example, the string S(sg5)= {1111 0010 011} was received.

S(MANS) 1 1 1 1 0 0 1 0 0 1 1

The flag starts from the first two bits of the string, and the total number of bits from the

detected flag is {11}. Moreover, {010} is detected in the string. Therefore one bit will be

discarded from the count, and two bits related to the flag will be removed C = 11 - 2 - 1 = 8.

Since the length of C1 is four bits, the results of C will be converted to a binary number with

the length of 4 bits, C ={1000} as follows

S(MANS) 1 0 0 0 1 1 1 1 0 0 1 0 0 1 1

​ C = 8​

After removing the first detected flag {11}, the next segment will results in the following:

90

S(MANS) 1 0 0 0 1 1 1 1 0 0 1 0 0

The next detected flag is, then, placed on the 7th and 8th bit, and as the segment after the flag

(from the LSB) does not contain {010}, only two bits related to the flag are removed, resulting

in C = 8 - 2 = 6, as shown in the string below:

S(MANS) 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0

​ C = 6​

Next, after removing the second detected flag, the following segment will result in

S(MANS) 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0

The next detected flag {11} is placed on the 9th and 10th bit, while {010} is detected after the

flag in the string. Therefore, one bit will be discarded from the count, and two bits related to the

flag will be removed C = 10 - 2 - 1 = 7, resulting in ={0111}: 𝐶

S(MANS) 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0

​ C = 7​

After removing the third detected flag, the next segment will be:

S(MANS) 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0

The fourth flag {11} has been detected on the 6th and 7th bit, and also three consecutive {1}

have been detected. Two bits related to the flag will, therefore, be removed, and one bit related

to the three constitutive {1} will be discarded. This will result in 𝐶 = 7 − 2 − 1 = 4:

S(MANS) 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0

​ C = 4​

91

After removing the fourth detected flag {11} the next segment will result in the following:

S(MANS) 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0

When the fifth detected flag {11} is placed on the 7th and 8th bit, {010} and {111} are

detected, two bits related to the switch are discarded from the count, while two bits that are

related to the flag will be discarded, resulting in : 𝐶 = 8 − 2 − 2 = 4

S(MANS) 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0

​ C = 4​

After removing the fifth detected flag, the next segment will result in the following:

S(MANS) 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0

As can be seen, the segment does not include any more flags, indicating the end of the string.

The final string obtained is, thus, {0100 0100 0100 1000 0010 0}, which is the MANS

representation of the original message.

Using MANS, it is, therefore, possible to convert the encoded string back to the original

message. This is done using the following procedure. Since the 0’s in MANS represent a

repeated bit and 1’s represent the switch in data, the decoding will start from the LSB. The first

bit from the LSB in S(MANS) is {0}, indicating that the decoding begins with {0}, outputting

{0} in S for every {0} in S(MANS) until {1} is detected. Once {1} is detected, the output will

switch, in this case, to {1}, and outputting {1} for every {0} detected in S(MANS) until another

{1} in S(MANS) is detected, which indicates the next switch. The process will continue to the

end of the string as presented in the following table:

S(MANS) 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
MANS(A) 3 14 67 254 1711

MANS(B) 2 5 8 11 25 39 53 120 187 441 695 949 1203 1457 3168 4879

S 1 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0

92

As can be seen from the table, the original data string has been obtained in S = {1000 1110

0111 1100} from S(sg5) ={1111 0010 011} with 11 bits of data, compared with 16 bits of the

initial data string in S, thus achieving 5 bits of compression (31.25%). It can be concluded from

this example that when the flags are in order, compression can be achieved using Data

Extraction using the Modified Adaptive Numeral System. In this, only the last encoded

segment is needed to retrieve the full message. However, if the flags are not in correct order, it

will lead to data corruption. Unless the flag order is known, as Cx can be retrieved by counting

the number of bits from the known flag. The Data Extraction method of compression is proven

possible if the following two conditions are met:

1.​ a suitable numeral system is selected with the properties which enable Data Extraction,

such as MANS, to flag the end of the string,

2.​ the order of the flags is known.

The first condition was met in the previous example, where MANS was applied to support the

flagging system. The next Chapter will cover the second condition, that is, the flags order and

explore the possible three solutions introduced in Section 5.2.2, associated with using MANS.

6.3. Summary

This chapter introduced MANS as a novel numeral system designed for effective data

extraction by flagging segment lengths without ambiguity. The encoding process relies on A to

denote bit transitions and B to count occurrences, ensuring that transitions are always marked

and reducing uncertainty in segment identification. MANS introduces additional bits based on

the number of transitions, and experimental analysis confirms its effectiveness in encoding

large datasets. The chapter demonstrated that MANS adds one bit per switch in the data string

and an extra bit if the sequence ends in 1. Testing on data sizes up to 50 Mbits showed

variations in length due to transition counts, with comparative analysis against direct binary

and Fibonacci coding highlighting MANS’s efficiency. Structural optimisations, including flag

positioning and bit assignment, allow MANS to reduce bit usage in certain cases, making it a

suitable candidate for structured data extraction. The findings suggest that MANS is a viable

approach for encoding large datasets while maintaining segment integrity and minimising

encoding overhead.

93

Chapter 7

7.1. Introduction

This chapter provides a comprehensive analysis of the Flag Order System for Data Extraction

introduced in Section 5.2.2, utilising the MANS numeral system. The primary objective is to

test and evaluate different flagging solutions to enhance data compression efficiency. The study

focuses on three key solutions: Flag Information (FI), Flag to Flag (F2F), and Flag to Flag with

Flag Information. Each solution is implemented in Java, leveraging core libraries such as

java.io.File, java.util.Arrays, and java.math.BigInteger. To ensure a fair and consistent

evaluation, the proposed solutions are tested against the Canterbury Corpus, a well-established

benchmark for lossless data compression.

Additionally, various file formats, including text, images, video, and audio, are analysed.

Unlike other traditional algorithms such as pack and compress, the Data Extraction (DE)

method aims to optimise redundancy removal using flag-based segmentation without relying on

probabilistic models. The chapter explains in detail the implementation of the three proposed

solutions covered in Section 5.2.2:

Flag Information (FI) - Solution I: Focuses on segmenting data by inserting flags at specific

intervals, enabling effective compression.

Flag to Flag (F2F) - Solution II: Examines an alternative approach where flags are placed

sequentially based on segment value, eliminating the need for explicit flag information storage.

Based on the promising results produced in this solution, additional tests were conducted to

evaluate its performance in terms of compression ratios, memory usage, and computational

performance. These tests were necessary to better understand how the sequential flagging

system affects the overall efficiency, particularly under varying data sizes and segment

configurations.

Flag to Flag with Flag Information (Solution III): A solution combining aspects of the first two

approaches.

This chapter aims to demonstrate the effectiveness of the DE algorithm in comparison to

widely used lossless compression methods.

94

7.2. Flag order system for Data Extraction using MANS

This section provides a detailed explanation of the design and implementation of the Different

Flag Systems Solutions compression algorithm, utilising the MANS numeral system. The tests

were conducted on a macOS 14.6.1 (23G93) system. Commercial software was not used in this

study; instead, standard implementations of gzip, bzip2, and Pack algorithms were utilised from

the Canterbury Corpus results [74]. The algorithms for the proposed solutions in this section for

Data extraction were developed entirely in Java, leveraging core libraries such as java.io.File,

java.util.Arrays, and java.math.BigInteger. The implementation code for all the proposed

solutions is included in Appendix A for reference.

The primary focus is on evaluating the performance of the Data Extraction (DE) algorithm. The

comparison is conducted using published results from the Canterbury Corpus [74], a

well-established benchmark for compression algorithm performance. Compression and

decompression times, memory usage, and compression ratios for text files from the corpus

were compared directly to these published results for algorithms such as gzip, bzip2, Pack, and

others. Multimedia files (images, videos, and audio) were exclusively tested using the DE

method, as other lossless algorithms are generally ineffective at further compressing these

already-compressed files [75].

The use of published results from the Canterbury Corpus ensures consistency and

comparability with previous studies, avoiding the need to re-implement other algorithms. This

approach aligns with the study's focus on assessing the novelty and performance of the DE-F2F

algorithm without diverting attention to recreating well-documented and widely-used

algorithms.

7.2.1. Flag Information (FI) - Solution I:

The solutions to the flagging issue presented in Section 5.2.2 were tested on multiple files

where an object-oriented programming language and software platform application (JAVA)

were used to implement Solution I. The application processes a string of MANS data alongside

the selection of C, which varies in length. Various lengths of Cl have been evaluated across

95

different file sizes with flags denoting each processed segment positioned after C. Results from

Data Extraction tests exhibit similarities across diverse file types as the initial data undergoes

conversion to MANS prior to information processing. MANS transforms input data by

inserting switches indicated by {1} for every transition from {1} to {0} and vice versa, while

also converting {1} to {0} and retaining {0} unchanged. This ensures consistency in data

handling during the Data Extraction process.

Table 7.1 illustrates the bit lengths of Cl which are utilised to flag the segments. When

designing applications, the number of bits required to flag each segment is constrained by the

count of {0} in the converted MANS string to prevent ambiguity in the bit count. After

processing each segment of the input data string, C is removed upon the flag placement. Each

flag incurs a cost of two bits, with a minimum cost of one bit for the flag information.

Consequently, the data reduction commences once Cl reaches the length of at least four bits,

enabling compression of maximum one bit of information per segment. Due to the alteration of

input data through MANS application and after the insertion of Cl during the Data Extraction

process, the data is segmented with flag insertion, consequently altering the redundancies

within the input data. Therefore, Data Extraction (DE) using MANS has been evaluated with

various file types, including those that are already compressed, such as Joint Photographic

Experts Group (JPEG) files.

The Canterbury Corpus [74], which is a benchmark to enable researchers to evaluate lossless

compression methods, has been used to test Data Extraction using MANS methods. The results

of the tests are shown in Appendix B. Additionally, a range of file formats known as U.txt,

which contains text, an image file called Garden.jpeg, a video file called Clip.mp4 and a sound

file called DE.m4a have been used for the tests.

The files have been converted to Base 64 and then to a binary string. The string has been

calculated and converted to MANS using the application designed to convert binary string to

MANS, available in Appendix A.1. The Data Extraction application has been applied where the

last encoded segment has been used to decode the full message. Finally, a string, called

FlagsInfo, has been created to store the Flag Information (FI) for each segment, as proposed in

Solution I in Section 5.2. The encoding and decoding codes and results of the application have

been listed in Appendix A.2. The test results for (U.txt, Garden.jpeg, Clip.mp4 and DE.m4a)

96

with variation of Cl are shown in Table 7.1, while the Canterbury Corpus results are listed in

Appendix B.

Table 7.1: Tests results using Solution I.

/Bits 𝐶
𝑙 Name Type

File
size/Bits

Number of
switches/Bits

MANS/Bits
Number of processed

segments
Data

Extraction/Bits
FI/Bits Total/Bits

4 U.txt Text 303 157 460 208 44 401 445

5 U.txt Text 303 157 460 131 67 348 415

6 U.txt Text 303 157 460 85 120 307 427

7 U.txt Text 303 157 460 46 230 195 425

8 U.txt Text 303 157 460 10 400 42 442

4 Garden.jpeg Image 1,048,472 517,654 1,566,126 783,047 34 1,595,227 1,595,261

5 Garden.jpeg Image 1,048,472 517,654 1,566,126 522,024 57 1,439,795 1,439,852

6 Garden.jpeg Image 1,048,472 517,654 1,566,126 391,505 110 1,552,741 1,552,851

7 Garden.jpeg Image 1,048,472 517,654 1,566,126 313,183 216 1,894,225 1,894,441

8 Garden.jpeg Image 1,048,472 517,654 1,566,126 260,951 426 2,524,306 2,524,732

4 Clip.mp4 Video 1,858,757 917,658 2,776,415 1,388,186 45 2,825,642 2,825,687

5 Clip.mp4 Video 1,858,757 917,658 2,776,415 925,451 65 2,555,584 2,555,649

6 Clip.mp4 Video 1,858,757 917,658 2,776,415 694,074 123 2,750,972 2,751,095

7 Clip.mp4 Video 1,858,757 917,658 2,776,415 555,239 225 3,361,418 3,361,643

8 Clip.mp4 Video 1,858,757 917,658 2,776,415 462,664 437 4,478,561 4,478,998

4 DE.m4a Sound 669,797 326,000 995,797 497,876 47 1,009,663 1,009,710

5 DE.m4a Sound 669,797 326,000 995,797 331,909 73 915,607 915,680

6 DE.m4a Sound 669,797 326,000 995,797 248,919 125 983,086 983,211

7 DE.m4a Sound 669,797 326,000 995,797 199,113 237 1,200,537 1,200,774

8 DE.m4a Sound 669,797 326,000 995,797 165,892 451 1,600,458 1,600,909

The tests, illustrated in Table 7.1 above, show that Data Extraction using MANS has

successfully reduced the file size of U.txt from 303 bits to 44 bits for the text file and from

1,048,472 bits to 34 bits for the image file, 1858757 bits to 45 bits for the video file, and from

669797 bits to 47 bits for the sound file when Cl = 4. However, the flag information string

increased to ~32-52% compared with the initial file size. It decreased as the length of Cl

increased. When C = 5, the flag information string increased to ~14-37% compared with the

initial file size, generating better results when compared with the case when Cl = 4. The flag

information string starts to increase when Cl = 6, 7 and 8. Since C varies in value for each

segment, the flag location can be placed at the beginning or end of the segment. The lower the

length of Cl, the more bits are generated for the flag information to identify the flag location.

97

The compression for each segment will start when Cl ≥ 4 bits to allow one bit to be compressed

for each segment as the cost of each flag for a segment is two bits, and the flag information will

generate at least one bit. The results in Table 7.1 are also represented in Figures 7.1, 7.2, 7.3

and 7.4 with the parameters defined as follows:

1.​ Data Extraction/Bits: the final encoded segment that is required to decode the

information

2.​ Flag info/Bits: the flag location for each flag when decoding the Data extraction

3.​ DE & Flag info/Bits: both the total number of bits of the generated Data Extraction and

the flag information that are required to decode information

4.​ Number of Processed segments: the total number of segments processed to generate the

final String of Data Extraction

5.​ File size/Bits: the original file size

6.​ MANS/Bits: the encoded original file using the Modified Adaptive Numeral System

7.​ The length of C/Bits (Cl): the number of bits selected to compress each segment.

Figure 7.1: Solution I - Data Extraction using flag information string (U.txt)

Figure 7.1 represents a small size text file which shows that when Cl is low, the last segment

length that Data Extraction generates is low, while the number of bits generated for the flag

information is the highest. The last segment length of Data Extraction increases exponentially

while the flag information decreases when Cl increases.

98

Figure 7.2: Solution I - Data Extraction using flag information

string (Garden.jpeg)
Figure 7.3: Solution I - Data Extraction using flag information string

(Clip.mp4)

Figure 7.4: Solution I - Data Extraction using flag information string (DE.m4a)

The larger files in Figures 7.2, 7.3 and 7.4, which represent image, video and sound files,

respectively and the Canterbury Corpus results in Appendix C, also show that when the length

of Cl increases, the segment length increases accordingly, and, as Data Extraction uses the last

processed segment to decode information, the number of bits to transmit the last segment will

be equal to the value of C of the last segment. Cl increases with each bit and results in fewer

flags being placed, fewer segments being processed, and more bits being compressed for each

segment. However, the flag information shows an exponential decrease when 3 ≤ Cl ≤ 5 and

exponential increase when Cl ≥ 5 bits. This is due to multiple flag locations not being at the

beginning of the string from the (LSB) this will lead to data expansion when multiple flags are

not in order as each flag not in order will cost 1 bit of information. This happens when the

highest flag number occurs first from the LSB to MSB and the flag information stores {1}.

Otherwise, it stores {0} for each flag that does not correspond with the flag, which is related to

the segment, leading to data expansion. An example of the flag information is available in the

output section of Appendix A.1. However, when the length of C decreases, the number of

99

segments to be processed increases but fewer bits need to be transmitted for the last segment.

Here the flag location is significant and depends on the value of C.

Figure 7.5 shows MANS and Data Extraction results compared with the original files of the

Canterbury Corpus tests (excluding the large files for visual purposes), where variations from 4

to 7 of the length of C have been applied.

Figure 7.5: Solution I - Data Extraction using flag information string (Canterbury Corpus using C = 4, 5, 6 and 7)

The Figures above show that compression occurred for two files, pic and ptt5. The compression

percentage varied from ~3.4% to ~36%. The highest compression occurs when Cl = 4. Note the

compression occurred when the conversion to MANS from the original file was minimal,

approximately only 2% higher than the original file size. This is attributed to the low number of

switches from {1} to {0} and vice versa in the data string of the original file, which

consequently affect the number of bits generated in the flag information. To conclude, with

consideration to the selected length of C, the lower the number of switches in the original file,

the less information is generated in the flag information string and the better the results

obtained from the Data Extraction using MANS.

The initial proposed solution in Section 5.2.2 necessitates both the last processed segment and

the flag information. The total number of bits required to decode this information is less than

100

the original file size for only pic and ptt5 files, while other file types experience data expansion

across the length of C ranging from 4 to 7. This constraint limits the applicability of Data

Extraction using MANS for the proposed Flag Information solution to black and white image

file types, where it is most effective, particularly when the data to be compressed contains a

high number of repeated sequences of 1s or 0s.

7.2.1.1. Flag Information - Analysis and future development

The Data Extraction compression method using MANS opens new perspectives for lossless

data compression that can be explored further. After analysing the test results, it became

evident that the variations in outcomes were influenced by the method which had been used to

determine flag locations. This highlights the need for further analysis of flag location

dependencies. These dependencies include:

1.​ Cx = The value of C for each segment

2.​ Cl = The length of C

3.​ Sgl = 2Cl = The maximum segment length

4.​ Fl = The flag length

5.​ Fsgx = Cx = The flag location for each segment

6.​ Sgl/Fl = The number of flags the segment can hold

Since the segment length depends on the value of C, employing a small value for Cl restricts

the location of flags to 2Cl and results in high compression. However, when Solution I is used,

each segment can accommodate multiple flags, and one of these flags, Fx, will pertain to the

processed segment Sgx.

The maximum number of flags the segment can hold is 2Cl/Fl. Hence Flag Information

(Solution I) resulted in high compression at the cost of a large number of bits for flag

information. If all flags for all segments are assumed to be the first flag from the LSB, then the

number of bits that the flag information will hold (), will equal the number of processed 𝐹𝐼

segments SgTotal with the reservation of the segment length counts to flag it:

 ​ ​ ​ (7.1) 𝐹𝐼 = 𝑆𝑔
𝑇𝑜𝑡𝑎𝑙

= (𝑀𝐴𝑁𝑆 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑆𝑔
𝑙
) × (

𝐹
𝑙

𝐶
𝑙
)

101

If this assumption holds true, it implies that for a very small file size, Cl values of 4, 5, 6 and 7

depicted in Figure 7.1 - 7.4 will lead to compression. This is due to the reduced data generated

by the processing segments in Data Extraction compared to the original file. Conversely, for

large file sizes, all tests with Cl > 3 are anticipated to yield a notable compression percentage,

ranging from ~25 to 75%. Therefore, if two bits are allocated to identify the flags for each

segment, the compression percentage will range from ~12.5 to 37.5% for large files, and only

Cl = 6 will yield slight compression for very small files. However, allocating additional bits to

the flag information will decrease compression results accordingly. Hence, it is essential to

limit the flag information used to identify the flag location for each segment to at least , 𝐹𝐼 ≤ 2

which can be increased as Cl increases, ensuring the method’s effectiveness for a small file size

to be at least 2Cl. To reduce the amount of flag information, one approach is to modify the

flagging system. In Solution I, as indicated by Table 7.2, segments with smaller Cl values

exhibit a higher frequency occurrence of the first flag from the least significant bit (LSB).

Therefore, rather than relying solely on flag information and prefixing data to the beginning of

the string, implementing a probability module can effectively reduce the amount of information

stored in the Flag Information (FI).

Table 7.2: Solution I - the occurrences of flags distance from C for U.txt

Flag location
from LSB

Occurrences
= 3 𝐶

𝑙
 = 4 𝐶

𝑙
 = 5 𝐶

𝑙
 = 6 𝐶

𝑙 = 7 𝐶
𝑙

 = 8 𝐶
𝑙

1 286 110 51 27 11 3
2 67 45 32 15 6 2
3 47 28 14 7 10 1
4 21 17 13 7 5 0
5 4 5 8 8 6 1
6 0 4 6 7 1 3
7 1 0 4 8 0 0
8 0 0 1 4 0 0
9 0 3 1 3 1
10 0 0 1 2 0
11 0 0 0 2 0
12 0 0 1 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 1 0
16 0 0 0 1 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

102

As the flag location is dependent on the segment length and the segment length on C, Table 7.3

below shows that the possible compression yield per segment for the length of Cl ranges from 2

to 8. Since the segment length increases with the increased length of Cl, the number of bits in

each segment will affect the total number of bits to send when Solution II is used. Therefore,

the segment length can be explored by increasing Cl and reducing the segment length. Studies

on the results obtained show that by increasing Cl to 8 bits and dividing it into two sections,

each section will have the size of 4 bits, which will generate one flag per section. The total

number of bits for both flags will be 4 bits, while compression will yield 4 bits per segment.

Table 7.3: Possible compression yield per segment.

 (bits) 𝐶
𝑙

 𝐶
𝑥

𝑆𝑔
𝑙(𝑀𝐴𝑋)

(bits)
(bits) 𝐹

𝑙
 𝐹

𝑆𝑔
𝑥

Max
 𝑆𝑔

𝑙
/𝐹

𝑙

Compression bits
per segment

2 0 to 3 4 2 0 to 3 2 0
3 0 to 7 8 2 0 to 7 4 1
4 0 to 15 16 2 0 to 15 8 2
5 0 to 31 32 2 0 to 31 16 3
6 0 to 63 64 2 0 to 63 32 4
7 0 to 127 128 2 0 to 127 64 5
8 0 to 255 256 2 0 to 255 128 6
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Furthermore, considering each section will have Cl = 4, the segment length will be constrained

to 16, 0’s. allowing for the processing of 8 bits for each segment. Given that the flag order for

each segment and section will vary depending on the value of C, 1 bit can be allocated in the

flag information to store the flag order, as per the aforementioned assumption. Consequently,

the cost for each segment will amount to 5 bits (4 for the flags and 1 for identifying the flag

order). Affording 3 bits of compression for each segment. This introduces new challenges that

warrant further exploration.

7.3. Flag to Flag (F2F) - Solution II:

This section provides a detailed explanation of the design of the DE-F2F algorithm, which

leverages the MANS numeral system to achieve effective compression. It also includes an

analysis of computational complexity and performance. The proposed DE-F2F is compared to

traditional algorithms such as pack, compress, and others. The evaluation encompasses text

103

files from the Canterbury Corpus and multimedia files (images, videos, and audio), with a

focus on compression and decompression times, memory usage, and effectiveness across

various data types. Unlike text files, multimedia files (images, videos, and audio) present a

unique challenge in lossless compression. These files are often already compressed using

specialised codecs like JPEG, MP3, or MP4, which are optimised for their respective data

formats. This inherent compression limits the ability of traditional lossless algorithms, such as

pack and compress, to achieve further significant compression. However, the DE F2F using the

MANS algorithm was uniquely designed to explore potential redundancy in a non-probabilistic

manner, even in pre-compressed files. As a result, multimedia files were tested exclusively

using DE with MANS. Unlike other lossless compression methods, DE does not rely on any

probabilistic model, as most traditional lossless compressors are generally ineffective at further

compressing these already-compressed files without risking loss of information [75].

The results of this specialised analysis are presented to demonstrate the potential of DE MANS

in scenarios where conventional algorithms fall short. This selective testing is justified by the

primary aim of showcasing DE F2F’s ability to uncover latent patterns and redundancies that

traditional methods fail to exploit. By focusing exclusively on DE F2F for multimedia files, the

analysis emphasises its capability to address unique challenges in compression, thereby

avoiding redundancy in traditional methods.

Data Extraction Flag to Flag (DE-FTF) (see Section 5.2.2), has been designed and developed to

test Solution II, (for more detail, see Appendix A.3). The flags are here placed after the last

detected flag on the basis of the value of C. This solution ensures that the last flag always

relates to the segment, and no flag information is required. Since the flags are placed after each

other on the basis of C value (Cx), the length of each processed segment Sgx becomes expanded

by Sgx= Cx - Cl. The total number of bits that can be compressed, i.e. is defined by the (𝑘),

number of processed segments and the length of C - Fl with the reservation of the segment

length counts to flag it. This can be given as

​ ​ ​ (7.2) 𝑘 = 𝑆𝑔
𝑡𝑜𝑡𝑎𝑙

× (𝐶
𝑙
− 𝐹

𝑙
)

104

As expected in Section 5.2.2, tests show an increase in the length of each processed segment

and fewer segments to process, as shown in Table 7.4. For example, when Cl = 4, Data

Extraction resulted in an increase of ~22% to 26% compared to the original file.

Table 7.4: Test results using Solution II.

/Bits 𝐶
𝑙 Name Type

File
size/Bits

Number of
switches/Bits

MANS/Bits
Number of processed

segments
Data

Extraction/Bits
Total/Bits

3 U.txt Text 303 157 460 66 395 395

4 U.txt Text 303 157 460 43 372 372

5 U.txt Text 303 157 460 41 400 400

6 U.txt Text 303 157 460 11 416 416

7 U.txt Text 303 157 460 5 445 445

8 U.txt Text 303 157 460 0 460 460

3 Garden.jpeg Image 1,048,472 517,654 1,566,126 114,711 1,326,706 1,326,706

4 Garden.jpeg Image 1,048,472 517,654 1,566,126 128,290 1,288,308 1,288,308

5 Garden.jpeg Image 1,048,472 517,654 1,566,126 145,586 1,330,656 1,330,656

6 Garden.jpeg Image 1,048,472 517,654 1,566,126 162,158 1,395,646 1,395,646

7 Garden.jpeg Image 1,048,472 517,654 1,566,126 22,375 1,454,256 1,454,256

8 Garden.jpeg Image 1,048,472 517,654 1,566,126 11,490 1,497,192 1,497,192

3 Clip.mp4 Video 1,858,757 917,658 2,776,415 430,528 2,345,888 2,345,888

4 Clip.mp4 Video 1,858,757 917,658 2,776,415 252,629 2,271,159 2,271,159

5 Clip.mp4 Video 1,858,757 917,658 2,776,415 144,067 2,344,217 2,344,217

6 Clip.mp4 Video 1,858,757 917,658 2,776,415 78,815 2,461,159 2,461,159

7 Clip.mp4 Video 1,858,757 917,658 2,776,415 40,095 2,575,945 2,575,945

8 Clip.mp4 Video 1,858,757 917,658 2,776,415 20,405 2,653,991 2,653,991

3 DE.m4a Sound 669,797 326,000 995,797 154,022 841,776 841,776

4 DE.m4a Sound 669,797 326,000 995,797 89,831 816,137 816,137

5 DE.m4a Sound 669,797 326,000 995,797 50,792 843,424 843,424

6 DE.m4a Sound 669,797 326,000 995,797 27,840 884,441 884,441

7 DE.m4a Sound 669,797 326,000 995,797 14,665 922,477 922,477

8 DE.m4a Sound 669,797 326,000 995,797 7,540 950,563 950,563

Table 7.4 and Appendix D show the test results of the second solution discussed in Section 5.2.

The same files used in the tests for Solution I are used for comparisons and analysis reasons.

Results show that Data Extraction using MANS encoded the file size of U.txt from 303 bits to

395 bits for the text file and from 1,048,472 bits to 1,326,706 bits for the image file, 1,858,757

bits to 2,345,888 bits for the video file, and from 669,797 bits to 841,776 bits for the sound file

when Cl = 3. On average, the results for Cl = 4 resulted in a ~22% increase compared to the

105

original file size. However, it dropped to ~50% compared to Solution I, as it decreased from the

range between (~46% to 52%) to ~22%.

The results in Table 7.4 are also represented in Figures 7.6, 7.7, 7.8, 7.9 and the Canterbury

Corpus tests in Appendix D are also represented in Appendix E with the same parameters

defined in the previous section.

 Figure 7.6: Solution II Data Extraction results for U.txt ​ Figure 7.7: Solution II Data Extraction results for Garden.jpeg

Figure 7.8: Solution II - Data Extraction results for Clip.mp4 Figure 7.9: Solution II - Data Extraction results for DE.m4a

The Figures above show that all tested files follow the same pattern. The lowest generated

results for Data Extraction occur when Cl = 4, and they increase slightly when Cl = 3. When

Cl > 4 the results increase gradually, as the flags for each segment are inserted after the

previous flag that is related to the previous segment. When Cl = 3, the maximum length of the

segment, where the flag can be placed, is on the 8th {0} for each segment. At the same time, 3

bits related to Cl are removed from the string and two bits inserted to flag the segment.

106

This resulted in 1 bit of compression for each segment and multiple flags to be inserted for all

segments. When Cl = 4, the maximum length of the segment to place the flag is 16 {0}. The

count starts from Cl for the first segment, and then from the last flag that is related to the

previous segment. Cl is removed, and 2 bits for the flag are added. Resulted in 2 bits

compression per segment. For Cl > 4 the location of the flags in each segment expanded to a

maximum of 32 {0}, which increased the size of each segment, resulting in a larger segment at

the end of the process. And as the last segment is used to decode the data, compression results

were reduced. The larger Cl, the larger the final encoded segment, as shown in Figures 7.6, 7.7,

7.8, 7.9 and Appendix E. MANS and Data Extraction results compared with the original files of

the Canterbury Corpus tests (excluding the large files size for visual purposes) are illustrated in

Figure 7.10, where variations from 3 to 7 of the length of C have been applied.

Figure 7.10: Data Extraction results for Solution II (Canterbury Corpus using = 3, 4, 5, 6 and 7) 𝐶

𝑙

107

The figures above demonstrate the achieved compression for three files from the Canterbury

Corpus tests. Data extraction resulted in reductions of approximately ~38% to 39% for both pic

and ptt5 files, and ~11% for Kennedy.xls. The maximum compression is observed for all three

files when Cl = 4. This approach, as opposed to Solution I, consistently leads to longer

segments, thereby reducing the number of segments for processing and consequently

decreasing the amount of data to compress. Nevertheless, it demonstrates superior performance

compared to the first solution.

The experiments showcase the results obtained through the application of the Data Extraction

technique on the MANS format following its conversion from binary. As a result, the outcomes

of the Data Extraction are retained in the MANS format, with the option of reverting to binary

format. However, it is crucial to address the positions of flags during the conversion process.

Although the flag positions can be eliminated, they can instead be replaced by a non-prefix

variable-length code. For example, the Binary string of the file, Binary(U.txt) =

{101010001100101011100110111010001101001011011100110011100100000011000010010000001110100011001010111100

0011101000010000001100110011010010110110001100101001000000111010101110011011010010110111001100111001000

00010011010100000101001110010100110010000001100001011011100110010000100000010001000100010100101110}

= 303 bits

The MANS-encoded string for the U.txt file when using is: MANS(U.txt) = 𝐶
𝑙

= 3

{01010101010001001001010101010001001001010001010100010010101001010100101000100100100100010010100000010

010000101001010000001000101010001001001010101010000100001000101010000101000000100100100100100101010010

101001010010001001001010101001010000001000101010101010001001001010010101001010100101000100100100100010

010100000010100100101010101000001010101001000100101010100100100101000000100100001010100101000100100100

10100001010000001010001010001010001010101001010100010} = 460 bits

After implementing the Data Extraction method, the resulting output is: DE(MANS(U.txt))=

{00110010001011101001100101001100001001110010010010110101010011101010010100101100101101011010111010111

0010100001100101100101010101011100011100101101010010101001111101010010100110101101001001001101001111101

0000011010100111001011101010100110011010101010110100010011101010100111001001010001100011100100011010101

1100101011001001011010010100110010111000000111010001010001110100010111010111001010100010}= 395 bits

108

When converting to binary, the resulting string will be in the form of a 𝐷𝐸(𝑀𝐴𝑁𝑆(𝑈. 𝑡𝑥𝑡))

non-prefix variable-length code. Therefore, Binary(DE(MANS(U.txt)))=

{00 001110 100 00100 000011 0011001 10100 10110110 001 10 01 01 0010000 001 1101010 111 001 10110100 1011011 10

0110011 100 100000 0100 110 10100 00 01010 011100 10100 11001000 000 11000 010 1101 11001 100100 001 000000

10001000 10001 01 00101110} = 203 bits.

Following the conversion of DE(MANS) to binary, each flag is no longer explicitly present.

The presence of flags is indicated by the termination of each non-prefix variable-length code,

with a maximum code length of 8 bits for each segment, determined by Cl, which in this case is

3 (since 23 = 8). While this approach effectively compresses the data, it is essential to notice

that the non-prefix variable-length code, used in place of flags, necessitates additional steps to

decode the information accurately. Therefore, an additional step is necessary to convert the

non-prefix variable-length code into a prefix code, while carefully assessing potential overhead,

to determine the length of each code (flag locations).

This procedure is essential for ensuring the efficient decoding of the Data Extraction (DE)

output. Table 7.5 presents the results obtained from the second solution after converting DE to

Binary, using the following equations for compression percentage and compression ratio:

Compression Percentage = ​ ​ (7.3) (1 − 𝑀𝐴𝑁𝑆 𝑡𝑜 𝐵𝑖𝑛𝑎𝑟𝑦​
𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒)×100

Compression Ratio = ​ ​ ​ ​ ​ (7.4) 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒​
𝑀𝐴𝑁𝑆 𝑡𝑜 𝐵𝑖𝑛𝑎𝑟𝑦

109

Table 7.5: Test results using Solution II post-conversion of DE to Binary.

/Bits 𝐶
𝑙 Name Type

File
size/Bits

Number
of

switches/
Bits

MANS/Bits

Number
of

processed
segments

Data
Extraction/

Bits

Number of
flags

MANS to
Binary/Bits

(None prefix
variable length

code)

Compression%

Ratio

3 U.txt Text 303 157 460 66 395 44 203 33.00% 1.49

4 U.txt Text 303 157 460 43 372 29 210 30.69% 1.44

5 U.txt Text 303 157 460 41 400 16 245 19.14% 1.24

6 U.txt Text 303 157 460 11 416 10 264 12.87% 1.15

7 U.txt Text 303 157 460 5 445 3 290 4.29% 1.04

8 U.txt Text 303 157 460 0 460 0 303 0.00% 1.00

3 Garden.jpeg Image 1,048,472 517,654 1,566,126 114,711 1,326,706 156,430 683786 34.78% 1.53

4 Garden.jpeg Image 1,048,472 517,654 1,566,126 128,290 1,288,308 97,549 736,402 29.76% 1.42

5 Garden.jpeg Image 1,048,472 517,654 1,566,126 145,586 1,330,656 60,870 812,895 22.47% 1.29

6 Garden.jpeg Image 1,048,472 517,654 1,566,126 162,158 1,395,646 36,100 888,757 15.23% 1.18

7 Garden.jpeg Image 1,048,472 517,654 1,566,126 22,375 1,454,256 20,219 948,092 9.57% 1.11

8 Garden.jpeg Image 1,048,472 517,654 1,566,126 11,490 1,497,192 10,767 988,912 5.68% 1.06

3 Clip.mp4 Video 1,858,757 917,658 2,776,415 430,528 2,345,888 277,542 1,194,729 35.72% 1.56

4 Clip.mp4 Video 1,858,757 917,658 2,776,415 252,629 2,271,159 175,287 1,281,286 31.07% 1.45

5 Clip.mp4 Video 1,858,757 917,658 2,776,415 144,067 2,344,217 110,816 1,416,319 23.80% 1.31

6 Clip.mp4 Video 1,858,757 917,658 2,776,415 78,815 2,461,159 66,089 1,556,203 16.28% 1.19

7 Clip.mp4 Video 1,858,757 917,658 2,776,415 40,095 2,575,945 35,195 1,678,515 9.70% 1.11

8 Clip.mp4 Video 1,858,757 917,658 2,776,415 20,405 2,653,991 18,252 1,752,983 5.69% 1.06

3 DE.m4a Sound 669,797 326,000 995,797 154,022 841,776 99,809 433,821 35.23% 1.54

4 DE.m4a Sound 669,797 326,000 995,797 89,831 816,137 62,574 466,388 30.37% 1.44

5 DE.m4a Sound 669,797 326,000 995,797 50,792 843,424 39,094 516,044 22.96% 1.30

6 DE.m4a Sound 669,797 326,000 995,797 27,840 884,441 23439 564,344 15.74% 1.19

7 DE.m4a Sound 669,797 326,000 995,797 14,665 922,477 13,157 603,368 9.92% 1.11

8 DE.m4a Sound 669,797 326,000 995,797 7,540 950,563 7,056 630,261 5.90% 1.06

As can be seen in Table 7.5, the conversion from DE to binary involves extracting segments

between each flag while discarding the flags, resulting in variable-length codes displayed in a

non-prefix format. The findings clearly demonstrate a significant compression compared with

the initial file size, ranging from approximately 6% to 36% for C values ranging from 3 to 8.

Notably, lower C values correspond to higher compression rates across all file types.

The conversions from DE to Binary of the MANS results have been also subjected to testing

and comparison with the original files from the Canterbury Corpus tests. These comparisons

are listed in Appendix D and depicted in Figure 7.11 below.

110

Figure 7.11: Data Extraction Results in Variable-Length Codes for Solution II (Canterbury Corpus using = 3, 4, 5, 6 and 7) 𝐶
𝑙

Figure 7.11 illustrates variations in the length of C, ranging from 3 to 7. The results

demonstrate that compression, in the form of non-prefix variable-length codes, was achieved

after converting from DE to Binary, ranging from approximately 25% to 55% when Cl = 3.

111

Figure 7.12: Data Extraction Results in Variable-Length Codes for Solution II (Kennedy.xls file using and) 𝐶

𝑙
= 3, 4, 5, 6 7

Figure 7.12 offers an additional insight, revealing an increase in compression variation as Cl

decreases. This trend stems from a higher volume of processed segments being processed and

eliminated, thus contributing to compression and flag generation. Subsequently, the segments

between the flags are replaced by non-prefix variable-length codes.

7.3.1. Comparative analysis of Data Extraction - Flag to Flag with other

compression methods

In this section, a comparative analysis of the Data Extraction-Flag to Flag (DE-FTF)

compression method is conducted with other established compression techniques, including

Huffman Coding, Lempel-Ziv-Welch (LZW) Compression, bzip, Gzip, Burrows-Wheeler

Transform (BWT), Dynamic Markov Compression (DMC), and Prediction by Partial Matching

(PPMC) The objective is to evaluate the effectiveness of DE-FTF in terms of compression

ratio, computational complexity, and suitability for various types of data.

1.​ Data Extraction-Flag to Flag (DE-FTF): a binary-based compression method discussed

in Section 7.3, is designed for universal application across various file formats and

112

efficiently compresses data by eliminating it from the beginning of any given binary string

and replacing it with unique code, referred to as flags. This substitution is facilitated by

MANS, as introduced in Chapter 6, which enables the insertion of flags within the dataset.

DE-FTF using MANS prior to conversion into binary, demonstrates effective compression

outcomes, especially with black and white images or files containing repetitive sequences

of 0s or 1s. Upon conversion to binary, this approach yields a non-prefix variable-length

code, which subsequently delivers notable compression ratios. However, further measures

are required, which involve converting the non-prefix variable-length code into a

prefix-code while meticulously evaluating potential overhead to ascertain the length of

each code (flag locations).

DE-FTF employs a novel algorithm that leverages flag-based encoding to achieve high

compression ratios in a form of none-prefix variable length code. Due to its utilisation of

MANS, which structurally alters the data, DE-FTF can be used as an additional

compression method on files that have already been compressed. It operates without

needing extra memory for data processing. However, it mandates converting the data into

MANS format, which in turn necessitates memory resources of up to double the size of the

original file. DE-FTF exhibits adaptability across diverse data traits, excelling particularly

with data featuring repetitive bit patterns. Its implementation offers flexibility, allowing

users to opt for higher compression ratios at the expense of increased processing power, or

alternatively, to prioritise lower compression ratios for reduced processing demands. This

choice is determined by the length of C, as illustrated in Figure 7.12. DE-FTF may be

susceptible to errors if the flag detection process fails or if the extracted flags are

corrupted. Error-checking mechanisms can enhance its robustness.

2.​ Huffman Coding: an entropy coding technique that assigns variable-length codes to input

symbols based on their frequencies. It is known for its simplicity and effectiveness in

achieving near-optimal compression by assigning shorter codewords to more frequent

symbols in the data. Huffman coding offers good compression ratios and is widely used in

various applications due to its simplicity. Storing the Huffman tree and the codewords

associated with each symbol requires memory. However, the memory overhead is

relatively low compared with more complex algorithms like bzip, Gzip, BWT, PACK,

113

DMC, and PPMC, which may require additional memory for storing dictionaries, models,

or other data structures. Huffman Coding performs well on data with predictable symbol

frequencies, making it suitable for text-based data and certain types of structured data. The

implementation involves constructing the Huffman tree and encoding/decoding the data

based on the tree structure. While the concept is straightforward, the building of the tree

and handling edge cases efficiently can add complexity. It is vulnerable to errors if the

encoded data is corrupted or if the Huffman tree is lost during transmission. However,

error-checking mechanisms can be incorporated to detect and mitigate errors [76][77].

3.​ Lempel-Ziv-Welch (LZW) Compression: is a dictionary-based algorithm that builds a

dictionary of frequently occurring substrings in the input data. It achieves compression by

replacing repeated substrings with shorter codes from the dictionary. It requires memory to

store the compression dictionary which grows dynamically as new patterns are

encountered [78]. The memory overhead can increase with the size and complexity of the

input data. LZW adapts well to data with recurring patterns, making it effective for

text-based data, images, and certain types of structured data and achieves competitive

compression ratios. Implementing LZW Compression involves managing the compression

dictionary and efficiently encoding/decoding patterns. The dynamic nature of the

dictionary adds complexity to the implementation. LZW can be resilient to errors to some

extent as long as the compression dictionary remains intact during transmission. However,

errors in the dictionary or corruption of encoded data can lead to decoding

errors[79][80][81].

4.​ bzip: is a popular data compression program that uses the Burrows-Wheeler Transform

(BWT) and the Move-to-Front (MTF) algorithm followed by Huffman coding. bzip is

adaptable to various data types and can handle both text-based data and binary files

effectively, it achieves excellent compression ratios and is commonly used for compressing

large files and archives, especially for text-based data and files with repetitive patterns. It

may have higher memory requirements compared to straightforward compression methods

like Huffman Coding, especially during the BWT stage, where the transformed data needs

to be stored temporarily. Implementing bzip involves integrating multiple compression

algorithms such as BWT, RLE, and Huffman Coding. Managing the memory requirements

114

and optimising the compression process add complexity to the implementation. bzip

includes error-checking mechanisms to ensure data integrity during compression and

decompression. However, errors in critical components like the BWT stage can affect

decompression accuracy [37][82].

5.​ Gzip: is adaptable to various data types and can handle both text-based data and binary

files effectively. It is a widely used file compression program that uses the DEFLATE

algorithm, which combines LZ77 and Huffman coding. Gzip offers good compression

ratios and is commonly used for compressing files on Unix-like operating systems. It may

have moderate memory requirements, especially during the LZ77 sliding window

compression stage where the history buffer needs to be maintained. Implementing Gzip

involves integrating the DEFLATE algorithm, which combines LZ77 compression and

Huffman Coding. Managing the sliding window and optimising the compression process

can add complexity to the implementation. Similar to bzip, Gzip includes error-checking

mechanisms to ensure data integrity during compression and decompression. However,

errors in critical components like the LZ77 sliding window can affect decompression

accuracy[83][84].

6.​ Burrows-Wheeler Transform (BWT): is a reversible transformation technique that

reorders the characters in the input data to improve the compressibility of repetitive

patterns. BWT is effective for compressing text data and is commonly used as a

preprocessing step in conjunction with other compression algorithms. It is generally

effective across a wide range of data types but may not perform as well on highly

randomised or uniformly distributed data. It achieves moderate compression ratios by

rearranging the input data to expose potential patterns for subsequent compression stages.

BWT may have moderate memory requirements, especially during the construction of the

Burrows-Wheeler matrix and the move-to-front steps; it offers rapid compression and

decompression speeds compared to alternative techniques. In summary, BWT serves as a

valuable tool in data compression, prioritising moderate compression ratios and efficient

processing, making it suitable for a range of applications in the field [37].

115

7.​ Dynamic Markov Compression (DMC): a statistical data compression method that

models the input data that uses a dynamic Markov model to predict the next symbol. This

can lead to high compression ratios, especially for text and similar data with predictable

patterns. DMC adapts well to changing input data and achieves good compression ratios

for certain types of data. DMC's effectiveness relies heavily on the quality of the model

and its ability to capture the underlying patterns in the data. It may perform exceptionally

well on certain types of data with strong dependencies between symbols but may struggle

with highly random or diverse data. DMC typically requires more memory compared to

straightforward algorithms due to the need to store and update the state of the Markov

model [71][85].

8.​ Prediction by Partial Matching (PPMC): similar to DMC, PPMC is a statistical

compression method that relies on statistical modelling to predict symbols based on

previous context and uses adaptive arithmetic coding. It achieves high compression ratios

by exploiting patterns in the input data and adapting its encoding strategy based on

previous symbols. It may excel in scenarios where long-range dependencies between

symbols exist but may struggle with highly random or noisy data. PPMC typically requires

more memory compared to straightforward algorithms due to the need to maintain and

update the prediction models for different contexts [86][87].

7.3.2. Compression results

The DE-FTF technique, employing a form of MANS before and after binary conversion, was

evaluated on files from the Canterbury Corpus [74] and compared against the compression

methods discussed, including Huffman, LZW, bzip, Gzip, BWT, DMC and PPMC. The DE

using MANS format is entirely decodable. However, the conversion of DE to binary results in a

non-prefix code, necessitating additional steps to convert it to a prefix code. Both aspects are

thoroughly evaluated in this section.

DE-FTF (MANS):

The results of DE-FTF applied to files in MANS form are detailed in Appendix F, while

compression outcomes are illustrated in Figure 7.13.

116

Figure 7.13: DE-FTF Results in MANS, (ptt5, Kennedy.xls, sum and pic files using and 4) 𝐶
𝑙

= 3

Figure 7.13 presents the compression outcomes for the files from the Canterbury Corpus tests.

When using Cl = 3, DE-FTF(MANS) achieved compression ratios of 1.38 for ptt5 and pic files,

surpassing most compression methods apart from 1.66 achieved by Huffman. For the

kennedy.xls file, DE-FTF(MANS) achieved a compression ratio of 1.12 compared with 3.6 for

Huffman. However, it resulted in overhead for all other files. With Cl = 4, the results improved

significantly, with compression ratios of 1.63, 1.12, 1.01, and 1.6 for ptt5, kennedy.xls, sum,

and pic files, respectively, compared to 1.66, 3.6, 5.42, and 1.66 achieved by Huffman.

DE-FTF (MANS to Binary):

The outcomes of applying the Data Extraction technique on data in MANS format post its

binary conversion were also examined and juxtaposed with the same methods of compression.

This analysis revealed significant compression ratios. However, an additional step is necessary,

that is, converting the non-prefix variable-length code into a prefix code, while carefully

evaluating potential overhead, to determine the length of each code (flag locations). The data

presented in Figures below demonstrates the results of the Canterbury Corpus folders [74] after

converting DE-FTF back to binary as a non-prefix variable-length code.

117

Figure 7.14: DE-FTF Results in MANS, (Canterbury Corpus, files in Canterbury folder, and) 𝐶
𝑙

= 3 𝐶
𝑙

= 4

The data depicted in Figure 7.14 illustrates the compression outcomes of the Canterbury folder,

following the conversion of DE-FTF back to binary as a non-prefix variable-length code. It

outperforms all other compression methods notably in the ptt5 file, achieving a compression

ratio of 2.23 with Cl = 3, compared to Huffman's ratio of 1.66 and all other methods with a ratio

below 1. DE-FTF-Cl = 3 also yields a higher compression ratio 1.84 for the Kennedy.xls file

compared to DMC 1.44, PPMC 1.01, bzip 1.01, and gzip 1.61, although it falls short of

Huffman's achievement of 3.6. However, for the remaining files, DE-FTT results in lower

compression ratios ranging from 1.44 to 1.55 compared to the range of 2.02 to 5.42 achieved

by other methods.

118

Figure 7.15: DE-FTF Results in MANS, (Canterbury Corpus, files in Artificial folder - and) 𝐶
𝑙

= 3 𝐶
𝑙

= 4

DE-FTF C3 also demonstrated significant compression for the aaa.txt and alphabet.txt files

within the Artificial folder, as illustrated in Figure 7.15, achieving compression ratios of 1.54

and 1.52, respectively. In comparison, other compression methods achieved ratios ranging from

0 to 0.24. However, DE-FTF exhibited a lower compression ratio of 1.5 for the random.txt file

compared to other methods, which achieved ratios ranging from 6.03 to 7.39.

Figure 7.16: DE-FTF Results in MANS, (Canterbury Corpus, files in Calgary folder - and) 𝐶

𝑙
= 3 𝐶

𝑙
= 4

119

Figure 7.16 illustrates the performance of DE-FTF on the Pic file within the Calgary folder. It

achieved superior compression ratios compared to other compression methods, reaching 2.23

for Cl = 3 and 2.26 for Cl = 4. This outperforms the ratio of 1.66 achieved by Huffman and

ratios below 1 for all other methods. However, DE-FTF exhibited less impressive compression

results for all other files, ranging from 1.33 to 1.68, compared to other methods with ratios

ranging from 1.53 to 6.08.

Figure 7.17: DE-FTF Results in MANS, (Canterbury Corpus, file in Misc folder - and) 𝐶

𝑙
= 3 𝐶

𝑙
= 4

The gzip LZ77 compression method exhibited superior performance compared to all other

compression techniques as per Figure 7.17, including DE-FTF, for the Misc file. It achieved an

impressive compression ratio of 3.76, surpassing the ratio achieved by DE-FTF, which was

1.56.

120

Figure 7.18: DE-FTF Results in MANS, (Canterbury Corpus, files in Large folder - and) 𝐶
𝑙

= 3 𝐶
𝑙

= 4

Figure 7.18 illustrates the outcomes for the larger files. DE-FTF demonstrated lower

compression ratios compared to other methods, ranging from 1.25 to 1.54, in contrast to the

ratios achieved by other methods, which ranged from 1.58 to 5.04.

The data presented in Figures 7.14 to 7.18 demonstrates that upon conversion of DE-FTF back

to binary as a non-prefix variable-length code, it resulted in compression across all files, except

for one instance involving the file "a.txt" in the Artificial folder, which contains only one letter

and where the file size was smaller than Cx, leading to the DE method not being executed. This

achievement includes a compression ratio of up to 2.26 for the "pic" file in the Calgary folder

Figure 7.16, compared with 1.66 compression for Huffman coding. The lowest compression

ratio achieved by DE-FTF is 1.25 for "E.coil.txt" and “bible.txt” files in the Large folder Figure

7.18, in contrast to Huffman, which achieved a compression ratio of 2.25 and 4.39 respectively.

On average, DE-FTF achieved a compression ratio of 1.55 with a median of 1.54. These tests

have been conducted with various lengths of C, ranging from 3 to 7, and the results are

presented in Appendix D.

121

7.3.3. Compression analysis

The results demonstrate that DE-FTF outperforms all current compression methods on specific

datasets (e.g., ptt5 and pic). However, while DE using MANS achieves a high compression

ratio, traditional methods such as Huffman outperform DE on certain other datasets. This

analysis evaluates the performance of DE with MANS and its overall impact on compression

efficiency. Table 7.6 summarises the performance of Data Extraction (DE) using the Modified

Adaptive Numeral System (MANS) across various datasets highlighting results before and after

the application of MANS and binary conversion when C=4.

Table 7.6: Test results using flag to flag.

Original file MANS Data Extraction - Flag to Flag- C=4

File Name Category
Original
file
size/bits

Number of
switches/bits MANS/bits

MANS
Overhead
%

Number of
processed
segments

Data
Extraction/
bits

Compression
in bits

Compression
%

Number
of flags (f)

DE to
Binary

Compression
after
conversion %

aaa.txt The letter 'a', repeated 100,000
times. 799,999 399,998 1,199,997 50% 115,808 968,383 231,614 19% 78,436 541,008 258,991 32%

alice29.txt English text 1,216,708 604,973 1,821,681 50% 160,401 1,500,881 320,800 18% 112,261 851,369 365,339 30%

alphabet.txt Enough repetitions of the alphabet
to fill 100,000 characters 799,999 430,767 1,230,766 54% 108,425 1,013,978 216,788 18% 75,939 560,326 239,673 30%

asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 51% 129,202 1,257,857 258,402 17% 91,451 710,026 291,402 29%
bib Bibliography (refer format) 890,086 473,065 1,363,151 53% 114,299 1,134,555 228,596 17% 81,400 634,308 255,778 29%
book1 Fiction book 6,150,166 3,116,671 9,266,837 51% 801,479 7,663,881 1,602,956 17% 565,357 4,336,553 1,813,613 29%
book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 51% 635,253 6,109,871 1,270,504 17% 449,714 3,449,918 1,436,928 29%
cp.html HTML source 196,822 98,909 295,731 50% 25,994 243,745 51,986 18% 18,207 137,983 58,839 30%
fields.c C source 89,198 44,627 133,825 50% 11,823 110,181 23,644 18% 8,245 62,629 26,569 30%
geo Geophysical data 819,199 277,687 1,096,886 34% 122,963 850,962 245,924 22% 78,177 519,193 300,006 37%
grammar.lsp LISP source 29,766 14,837 44,603 50% 4,008 36,589 8,014 18% 2,790 20,747 9,019 30%
pic Black and white fax picture 4,071,671 90,951 4,162,622 2% 809,980 2,542,664 1,619,958 39% 355,963 1,797,920 2,273,751 56%
ptt5 CCITT test set 4,071,671 90,951 4,162,622 2% 830,363 2,501,898 1,660,724 40% 347,133 2,111,405 1,960,266 48%
kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 22% 1,333,775 7,372,850 2,667,548 27% 768,407 4,773,987 3,463,961 42%
lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 51% 441,538 4,280,695 88,3074 17% 312,456 2,418,554 995,474 29%
news USENET batch file 3,016,870 1,546,897 4,563,767 51% 394,321 3,775,127 788,640 17% 278,724 2,125,169 891,701 30%
obj1 Object code for VAX 172,028 60,703 232,731 35% 24,726 183,281 49,450 21% 15,648 127,876 44,152 26%
obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 37% 284,697 2,140,879 569,392 21% 180,708 1,289,885 684,604 35%
paper1 Technical paper 425,286 216,497 641,783 51% 55,172 531,441 110,342 17% 39,130 300,799 124,487 29%
paper2 Technical paper 657,590 336,453 994,043 51% 84,800 824,445 169,598 17% 60,115 465,871 191,719 29%
paper3 Technical paper 372,206 191,713 563,919 52% 48,029 467,863 96,056 17% 33,972 263,987 108,219 29%
paper4 Technical paper 106,286 54,559 160,845 51% 13,640 133,567 27,278 17% 9,681 75,517 30,769 29%
paper5 Technical paper 95,630 48,451 144,081 51% 12,426 119,231 24,850 17% 8,789 67,582 28,048 29%
paper6 Technical paper 304,838 153,543 458,381 50% 39,774 378,835 79,546 17% 28,075 214,901 89,937 30%
pi.txt The first million digits of pi 7,999,998 3,800,828 11,800,826 48% 1,056,121 9,688,586 2,112,240 18% 735,451 5,571,236 2,428,762 30%
plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 50% 502,386 4,795,079 1,004,770 17% 356,573 3,071,722 783,162 20%
progc Source code in "C" 316,886 159,267 476,153 50% 41,609 392,937 83,216 17% 29,398 223,146 93,740 30%
progl Source code in LISP 573,166 288,491 861,657 50% 76,580 708,499 153,158 18% 53,703 400,661 172,505 30%
progp Source code in PASCAL 395,031 192,299 587,330 49% 53,416 480,500 106,830 18% 36,951 274,037 120,994 31%

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 57% 178,741 1,073,626 178,740 14% 119,244 533,436 266,563 33%

SHA1SUM SPARC Executable 6,886 3,389 10,275 49% 896 8,485 1,790 17% 623 4,855 2,031 29%
sum SPARC Executable 305,919 97,635 403,554 32% 50,091 303,374 100,180 25% 30,098 208,101 97,818 32%
trans Transcript of terminal session 749,559 372,119 1,121,678 50% 103,337 915,006 206,672 18% 70,822 514,103 235,456 31%
xargs.1 GNU manual page 33,814 17,701 51,515 52% 4,310 42,897 8,618 17% 3,126 24,125 9,689 29%
bible.txt The King James version of the bible 32,379,135 16,162,217 48,541,352 50% 4,433,968 39,673,418 8,867,934 18% 3,074,735 25,438,004 6,941,131 21%

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 50% 5,364,511 44,935,257 10,729,020 19% 3,631,592 28,746,307 8,363,212 23%

world.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 50% 2,596,413 24,516,607 5,192,824 17% 1,824,494 13,898,401 5,888,797 30%

122

Table 7.6 includes the following metrics:

●​ File name

●​ Category: A description of the file type.

●​ Original file size (Bits): The file size before processing

●​ Number of switches (Bits): The number of transitions between {1} and {0} (and vice

versa) identified in each file.

●​ MANS/Bits: The total number of bits outputted by MANS after converting the binary

representation of each file from binary to MANS.

●​ MANS Overhead %: the overhead percentage of MANS compared to the original file,

calculated as:

Overhead (%) = ​ ​ (7.5) (𝑀𝐴𝑁𝑆 𝑆𝑖𝑧𝑒−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒​)
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒​ ×100

●​ Number of processed segments: The number of segments processed by DE.

●​ Data Extraction (Bits): The bit length of the output produced by DE after application.

●​ Compression in Bits: The number of bits reduced relative to MANS.

●​ Compression %: The compression percentage relative to MAN, calculated as:

Compression Percentage = ​ (7.6) (1 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒 ​)×100

●​ Number of flags (f): The number of flags generated during the DE application.

●​ DE to Binary: The total file size (in bits) after converting the DE output to binary.

●​ Compression %: The percentage of compression achieved after binary conversion,

relative to the original file size, calculated as:

Compression Percentage = ​ (7.7) (1 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑧𝑒
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒 ​)×100

The compression performance of the DE process shows significant reduction in the size of all

datasets with compression ranging from ~21% to ~56% relative to the original file size. For

example, pic file is reduced from 4,071,671 bits to 2,273,751 bits (~56% compression) and

bible.txt is reduced from 32,379,135 bits to 25,438,004 bits (~21% compression).

●​ MANS encoding impact: MANS plays a pivotal role in identifying segment lengths and

encoding switches (denoted as WTotal) present in the data, as discussed in Section 6.2.1.

The overhead introduced by MANS significantly impacts the level of compression that

DE can achieve.

123

-​ Low Overhead: For datasets like pic in Figure 7.17 and ptt5 in Figure 7.14,

where the MANS overhead is ~2%, compression after the DE application is

notably high (~48% to ~56%), surpassing traditional methods.

-​ High Overhead: When the MANS overhead exceeds ~50%, such as in bible.txt

(~21% compression) and E.coli (~23% compression), the compression

efficiency decreases substantially.

Table 7.7 demonstrates the inverse relationship between MANS overhead and DE

compression efficiency:

Table 7.7: Correlation Between MANS Overhead and DE Compression

MANS Overhead DE Compression
DE Compression post
conversion to binary

2% 39% to 40% 48% to 56%

22% 27% 42%

32%-37% 21% to 25% 26% to 37%

48%-57% 17% to 19% 20% to 33%

●​ Data Extraction Encoding impact: The analysis shows that DE compression improves

when MANS overhead is low but declines as overhead increases. This behaviour arises

from the structure of MANS, which transforms input data by inserting switches

(indicated by {1}) for every transition from {1} to {0} (and vice versa) while retaining

{0} unchanged. The retention of {0} reduces the likelihood of overhead, while the

frequent insertion of switches introduces additional bits. files that have low MANS

overhead such as ptt5 and kennedy.xls and high MANS overhead such as and

plrabn12.txt in Figure 7.14 have been analysed further by calculating the occurrences of

{0} and {1}, for example, pic contains a total of {0}= 3,753,964 and {1}=317,707, with

a total number of switches (WTotal) = 90,951, Consequently, the total number of bits

after converting the file to MANS is calculated as:

 𝑝𝑖𝑐(𝑀𝐴𝑁𝑆)
𝑙

= 𝑝𝑖𝑐
𝑙

+ 𝑊
𝑇𝑜𝑡𝑎𝑙

= 4, 071, 671 + 90, 951 = 4, 162, 622 𝑏𝑖𝑡𝑠

Overhead(%)= (𝑀𝐴𝑁𝑆 𝑆𝑖𝑧𝑒−𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒​)
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑖𝑧𝑒​ ×100 = (4,162,622−4,071,671​)

4,071,671​ ×100 = 2. 23%

124

These results are confirmed in Table 7.7, were further validated through additional tests,

highlighting the compression achievable with low versus high MANS overhead:

-​ A MANS string containing 2,048 bits of continuous {0} was processed. The DE

reduced the string length to 1,208 bits (~41% compression).

-​ For a string with 2,048 bits of alternating {10}, the DE reduced the file size to

1,870 bits (~9% compression).

In contrast, datasets with high MANS overhead, such as bible.txt and E.coli, show

limited compression (21% and 23%, respectively) due to the increased number of

switches introduced by MANS, as shown in Figure 7.17. This highlights that DE-FTF,

unlike traditional methods like Huffman coding, is more sensitive to input

characteristics, which can limit its effectiveness in datasets with high MANS overhead.

While other tested methods like Huffman coding relies on a frequency-based approach

to optimise compression by assigning shorter codes to frequently occurring symbols,

DE-FTF uses MANS to process segment lengths and encode transitions between data

states. This fundamental difference in approach makes DE-FTF more adaptable to

certain dataset structures but also more vulnerable to overhead when data characteristics

are less favourable.

As shown in Figure 7.15, DE-FTF significantly outperforms traditional methods for

datasets with low MANS overhead, achieving notable compression efficiency. This

further validates the impact of input characteristics on DE-FTF's performance.

Overall, these results suggest that while DE-FTF is highly effective for datasets with

low MANS overhead, its practical applicability is limited for datasets where the

overhead is significant, underscoring the importance of input data characteristics in

determining its efficiency.

125

7.3.4. Quantitative Analysis on Complexity and Space Usage

In this section, I provide a quantitative analysis of the computational complexity and space

complexity of the proposed DE compression algorithm (DE F2F using MANS) compared to

well-established algorithms such as gzip, bzip2, and others. The analysis focuses on the

algorithm's performance in terms of compression time, decompression time, and memory

usage. The DE-F2F algorithm was developed in Java, leveraging core libraries such as

java.io.File, java.util.Arrays, and java.math.BigInteger. The implementation code for all the

proposed solutions is included in Appendix A.3 for reference.

To ensure consistency and comparability with previous studies, the results are compared

against published data from the Canterbury Corpus [74]. This use of published results avoids

the need to re-implement other algorithms, allowing the study to focus on assessing the novelty

and performance of the DE-F2F algorithm. This approach ensures that attention is not diverted

to recreating well-documented and widely-used algorithms.

The results were obtained through a series of tests conducted on a variety of text-based files

from the Canterbury Corpus. Additionally, this section includes an evaluation of the algorithm's

space efficiency by quantifying its memory usage during both the compression and

decompression phases.

Computational Complexity Analysis

The computational complexity of a compression algorithm is typically determined by its time

complexity during both the compression and decompression stages. The DE compression

algorithm was evaluated on the canterbury folder which included text files with varying sizes

and contents. The compression time (in seconds) and decompression time were measured. The

DE-F2F C4 algorithm leverages the MANS numeral system, offering a novel approach to data

compression that prioritises computational efficiency.

Table 7.8 presents a comprehensive comparison between DE-F2F C4 and other established

compression algorithms, focusing on computational complexity, speed, and consistency. The

126

analysis uses experimental results derived from the Canterbury Corpus to highlight the

strengths and limitations of DE-F2F C4 in diverse scenarios.

Table 7.8: Compression speed results (sorted by increasing average compression time)

Method
DE-FTF
C4

pack compress gzip-d bzip2-9 ppmC-896 bred-r3 dmc-16M

alice29.txt 0.5 0.27 0.41 1.35 2.52 2.51 4.71 9.49

ptt5 0.97 0.2 0.22 0.58 0.83 2.09 1.48 8.73

fields.c 0.07 1.14 1.56 1.38 4.79 3.9 5.56 12.06

kennedy.xls 2.2 0.21 0.33 1.15 3.47 6.14 7.56 8.84

sum 0.14 0.5 0.71 1.54 3.22 6.48 6.08 9.5

lcet10.txt 1.2 0.22 0.48 1.33 2.37 2.22 4.57 9.34

plrabn12.txt 1.39 0.23 0.46 1.8 2.61 2.28 4.76 9.45

cp.html 0.12 0.62 0.97 1.27 3.37 3.94 5.23 10.08

grammar.lsp 0.03 2.77 4.32 4.16 8.08 6 9.59 18.43

xargs.1 0.03 2.48 3.86 2.88 10.15 7.11 8.8 17.46

asyoulik.txt 0.44 0.27 0.48 1.5 2.38 2.61 4.77 9.2

Average 0.64 0.81 1.25 1.72 3.98 4.12 5.74 11.14

S.D. 0.71 0.94 1.45 0.98 2.75 1.95 2.24 3.48

DE-F2F C4 exhibits the lowest average compression time (0.64 seconds), outperforming

traditional and high-compression methods such as:

●​ pack (0.81 seconds) and compress (1.25 seconds): Conventional algorithms prioritising

simplicity and speed.

●​ bzip2-9 (3.98 seconds) and dmc-16M (11.14 seconds): Algorithms optimised for high

compression ratios but with significant computational overhead.

The algorithm demonstrates consistent performance across file sizes, with minimal variance,

confirming its suitability for time-critical compression tasks. the Standard Deviation (S.D.) was

calculated using the following equation:

​ ​ ​ (7.8) 𝑆. 𝐷. = 1
𝑁

𝑖=1

𝑁

∑ (𝑥
𝑖

− 𝑥)
2

127

Where xi are the individual values, is the mean (average) of the values and N is the total 𝑥

number of values. DE-F2F C4 has a Standard Deviation of 0.71, indicating a consistent

computational complexity across various file types. Comparatively, high-compression methods,

such as dmc-16M (S.D. = 3.48) and bzip2-9 (S.D. = 2.75), exhibit higher variability,

underscoring their sensitivity to input file characteristics. For smaller files, such as grammar.lsp

and xargs.1, DE-F2F C4 outperforms all algorithms with compression times as low as 0.03

seconds. In contrast, algorithms optimised for compression ratios (e.g., bzip2-9 and ppmC-896)

incur significant computational overhead. On larger files, such as plrabn12.txt and lcet10.txt,

DE-F2F C4 continues to demonstrate efficiency, maintaining compression times under 1.4

seconds. This consistency highlights its computational scalability compared to slower methods

like ppmC-896 (9.45 seconds for plrabn12.txt).

The decompression efficiency of a compression algorithm is critical for real-world applications

where fast data retrieval is essential. Table 7.9 presents a comprehensive comparison between

DE-F2F C4 and other well-established methods, including gzip-d, bzip2-9, ppmC-896, and

dmc-16M, using experimental results derived from the Canterbury Corpus [74].

Table 7.9: De-compression speed results (sorted by increasing average compression time)

Method gzip-d compress pack DE-F2F C4 bzip2-9 bred-r3 ppmC-896 dmc-16M

alice29.txt 0.2 0.3 0.38 0.87 0.85 1.13 2.98 9.48

ptt5 0.1 0.17 0.16 2.05 0.29 0.5 2.58 8.76

fields.c 1.18 1.2 1.02 0.11 1.67 1.86 4.47 12.08

kennedy.xls 0.12 0.17 0.28 3.47 0.68 2.62 7.47 9

sum 0.44 0.44 0.58 0.32 1.08 2.29 7.45 9.46

lcet10.txt 0.16 0.23 0.35 1.9 0.98 1.06 2.69 9.53

plrabn12.txt 0.17 0.24 0.34 2.17 1.17 1.14 2.69 9.71

cp.html 0.57 0.78 0.79 0.2 1.13 1.67 4.64 10.6

grammar.lsp 3.1 3.55 3.32 0.07 3.42 3.98 6.51 17.68

xargs.1 2.6 2.6 3.07 0.75 2.98 3.78 7.3 16.55

asyoulik.txt 0.22 0.4 0.39 0.79 0.88 1.23 3.07 9.42

Average 0.81 0.92 0.97 1.15 1.38 1.93 4.71 11.12

S.D. 1.06 1.13 1.13 1.10 0.97 1.13 2.09 3.11

128

Table 7.9 illustrates that DE-F2F C4 exhibited an average decompression time of 1.15 seconds,

positioning it between faster, low-overhead methods such as gzip-d (0.81 seconds) and

compress (0.92 seconds), and more computationally intensive algorithms like ppmC-896 (4.71

seconds) and dmc-16M (11.12 seconds). While traditional algorithms like pack (0.97 seconds)

and compress (0.92 seconds) generally provide faster decompression speeds, they sacrifice

compression efficiency for speed. DE-F2F C4, on the other hand, strikes a balance, providing

reasonable decompression times without compromising too much on compression

effectiveness. For small files such as alice29.txt (0.87 seconds for DE-F2F C4), DE-F2F C4

performed competitively with faster methods like gzip-d (0.2 seconds) and compress (0.3

seconds). However, on larger files like plrabn12.txt (2.17 seconds) and lcet10.txt (1.9 seconds),

DE-F2F C4 demonstrated slightly slower decompression times compared to gzip-d (0.17

seconds for plrabn12.txt and 0.16 seconds for lcet10.txt), but still outperformed more complex

methods such as dmc-16M (9.71 and 9.53 seconds, respectively).

The standard deviation of 1.10 seconds further underscores the consistency of DE-F2F C4

across different file types, surpassing high-compression methods like dmc-16M (3.11 seconds)

that tend to exhibit more variation in decompression times.

Space Complexity Analysis

The space complexity of the DE-F2F algorithm was evaluated based on its memory usage

during both the compression and decompression phases. This evaluation involved converting

files from the Canterbury Corpus to binary format, encoding each file using the DE-F2F

method, and then decoding the files to verify accuracy and assess memory demands. The

analysis captures memory requirements in the following key metrics:

●​ Initial Memory Usage: Memory consumed by the algorithm before the compression

process begins.

●​ Encoding Memory Usage: Peak memory usage during the compression phase.

●​ Decoding Memory Usage: Peak memory usage during the decompression phase.

●​ Compression Memory Footprint: Difference between encoding memory usage and

initial memory usage.

129

●​ Decompression Memory Footprint: Difference between decoding memory usage and

initial memory usage.

Memory usage was measured in megabytes (MB) for each file, and the results are summarised

in Table 7.10 below:

Table 7.10: Memory usage for DE F2F C=4

Method Initial (MB) Encoding (MB) Decoding (MB)
Compression
(MB)

Decompression
(MB)

alice29.txt 69 228 156 159 87

ptt5 94 376 270 282 176

fields.c 9 25 30 16 21

kennedy.xls 53 962 619 909 566

sum 4 94 78 90 74

lcet10.txt 89 432 412 343 323

plrabn12.txt 55 598 526 543 471

cp.html 15 38 77 23 62

grammar.lsp 8 16 16 8 8

xargs.1 8 18 20 10 12

asyoulik.txt 46 182 100 136 54

Average 40.91 269.91 209.45 229.00 168.55

S.D. 33.92 301.04 216.29 281.83 196.33

Table 7.10 shows that the average initial memory usage across all files is 40.91 MB, reflecting

the base memory footprint of the DE-F2F algorithm. while the average encoding memory

usage is 269.91 MB, indicating the peak memory demand during compression. The average

decoding memory usage is 209.45 MB, slightly lower than encoding but still substantial. On

average, the compression phase consumes 229 MB of additional memory, while decompression

requires 168.55 MB beyond the initial memory usage.

The standard deviation for encoding memory usage (301.04 MB) and decoding memory usage

(216.29 MB) highlights significant variability depending on file size and complexity. Similarly,

the standard deviation of memory used during compression (281.83 MB) and decompression

(196.33 MB) reflects variation in algorithmic demands across different datasets. Large files

such as kennedy.xls and lcet10.txt, require significantly higher memory during both

compression and decompression due to their size and structure. For instance, kennedy.xls

130

exhibits the highest memory usage, with 962 MB during encoding and 619 MB during

decoding. While small files such as grammar.lsp and xargs.1, demonstrate minimal memory

requirements, with encoding and decoding memory usage ranging between 16 MB and 20 MB.

Average files such as alice29.txt and asyoulik.txt show consistent memory usage, making them

representative of typical computational scenarios.

The memory requirements for decompression are generally lower than those for compression,

with the exception of a few anomalies (e.g., cp.html, where decoding demands slightly higher

memory). This behaviour suggests that the MANS-based DE-F2F algorithm optimises memory

efficiency during the decompression phase.

The DE-F2F algorithm demonstrates competitive space efficiency, with relatively low initial

memory requirements and scalable encoding/decoding performance. However, large files, such

as kennedy.xls, can significantly increase memory usage, highlighting the importance of

optimising the algorithm for high-memory scenarios. This analysis confirms that DE-F2F C4,

with its use of the MANS, offers a viable balance between memory usage and computational

speed, making it suitable for various data compression applications.

7.4. Flag to flag with flag information (Solution III):

The third proposed solution, discussed in Section 5.2.2 and detailed in Appendix A.4,

integrates elements from the first and second solutions. This method initiates by computing the

value of C from the beginning of the string, positioning the first flag accordingly. Subsequently,

the system calculates the difference between the value of C and the number of bits required to

reach the previous segment flag (Fi-1). If this difference equals or exceeds the number of bits to

reach Fi-1, the system counts the bits from the start of the segment and positions the flag

accordingly.

In this scenario, a transmission of {0} indicates that the value of C equals the number of bits

from the start of the segment, excluding C. Conversely, if the value of C is less than the number

of bits to reach the previous flag (C < Fi-1), the system counts the bits equivalent to C from Fi-1

and positions Fi accordingly. Subsequently, a transmission of {1} signifies that the value of C

equals the number of bits between Fi-1 and Fi. The reintroduction of flag information serves to

131

identify the flag source, thereby constraining the expansion of data size for each segment under

processing, as well as limiting the number of bits to be transmitted. Detailed results can be

found in Table 7.11.

Table 7.11: Test results using Solution III.

/Bits 𝐶
𝑙 Name Type

File
size/Bits

Number of
switches/Bits

MANS/Bits
Number of

processed segments
Data

Extraction/Bits
Flags

info/Bits
Total/Bits

3 U.txt Text 303 157 460 71 388 10 398

4 U.txt Text 303 157 460 43 372 7 379

5 U.txt Text 303 157 460 24 385 2 387

6 U.txt Text 303 157 460 13 404 9 413

7 U.txt Text 303 157 460 7 420 2 422

3 Garden.jpeg Image 1,048,472 517,654 1,566,126 236,190 1,329,935 24 1,329,959

4 Garden.jpeg Image 1,048,472 517,654 1,566,126 138,186 1,289,752 4 1,289,756

5 Garden.jpeg Image 1,048,472 517,654 1,566,126 78,319 1,331,166 9 1,331,175

6 Garden.jpeg Image 1,048,472 517,654 1,566,126 42,638 1,395,570 2 1,395,572

7 Garden.jpeg Image 1,048,472 517,654 1,566,126 22,511 1,453,566 2 1,453,568

3 Clip.mp4 Video 1,858,757 917,658 2,776,415 423,430 2,352,984 7 2,352,991

4 Clip.mp4 Video 1,858,757 917,658 2,776,415 250,924 2,274,565 4 2,274,569

5 Clip.mp4 Video 1,858,757 917,658 2,776,415 143,671 2,345,399 5 2,345,404

6 Clip.mp4 Video 1,858,757 917,658 2,776,415 78,607 2,461,983 4 2,461,987

7 Clip.mp4 Video 1,858,757 917,658 2,776,415 40,053 2,576,145 4 2,576,149

3 DE.m4a Sound 669,797 326,000 995,797 151,586 844,210 9 844,219

4 DE.m4a Sound 669,797 326,000 995,797 89,328 817,139 4 817,143

5 DE.m4a Sound 669,797 326,000 995,797 50,660 843,814 5 843,819

6 DE.m4a Sound 669,797 326,000 995,797 27,822 884,505 4 884,509

7 DE.m4a Sound 669,797 326,000 995,797 14,647 922,557 4 922,561

Table 7.11 presents the results obtained from testing the third solution. It was observed that as

the encoder processes the first few segments, the string size exceeds the maximum value of C,

which results in the flag always being placed at the end of the string (the first flag from the

least significant bit of the string). A {1} flag is used to denote that the flag pertains to the

current segment, while {0} flags indicate that the flag is unrelated to the segment, continuing

until a {1} flag is encountered. The results in Table 7.11 closely align with those of Solution II

in Table 7.5, with variations ranging from 0.0001% to 0.04% when . For example, in the U.txt

file, the total number of generated bits is 398, which is fewer than in Solution II before

conversion to binary, where the total is 395 bits.

Moreover, the tests reveal that the flag information string results in a repetition of {1}

bits. For instance, with Cl = 3 and a maximum value of Cx = 7, if the first flag location falls on

132

the 7th {0} of the string, and the next segment's C value is x, the flag will be positioned after

the previous flag by the value 7 + x, extending the segment length. The final flag will be

situated after counting the {0} bits in the segment equal to 7 + x. Subsequently, for subsequent

segments, where the maximum C value of 7 is consistently smaller than the last flag location,

repeated bits occur in the flag information.

Examining the flag information for the tests in Table 7.11 reveals that with Cl = 3, the string

contains: {001010010011}. This string exhibits

a repeated sequence of {1}s after processing the 10th segment, as the last flag location follows

the 7th {0} of the segment.

Given that each segment compresses a minimum of 3 bits while incurring a cost of 2 bits for

the subsequent flag location, it follows that the C value will consistently be smaller than the last

flag location. Consequently, if a segment contains multiple flags equal to or exceeding the

maximum value of C, denoted as Fx ≥ 2Cl, then the final flag of the segment pertains to the

processed segment.

As a result, the identification of the flag source in the flag information string can cease

immediately after reaching this threshold. During decoding, Solution II can be applied when Fx

≥ 2Cl, whereas Solution I, in conjunction with the flag information, can be utilised when Fx <

2Cl. In the aforementioned scenario, the flag information is condensed to 10 bits, as opposed to

the original 71 bits, resulting in a net saving of 61 bits. Hence, the third solution effectively

employs the first solution until the flag location equals or exceeds the maximum value of C.

Subsequently, Solution II is utilised until the string's conclusion. Figure 7.19 visually depict

Table 7.11 and underscore the similarities in results compared to Solution II.

133

Figure 7.19: Solution III, Data Extraction results for U.txt, Garden.jpeg, Clip.mp4 and DE.m4a using solutions one and two

Figure 7.19 demonstrates that the third solution outperforms Solution I and achieves

comparable results to Solution II when operating on MANS-formatted data.

Several factors influence compression performance. Solution I (Data Extraction)

yielded significant compression results but required a sizable data string to identify flag

locations. Solution II avoided using the flag location string but increased segment length. In

contrast, the third solution combines aspects of both solutions: it employs Solution I until

Fx ≥ 2Cl is reached, thereafter switching to Solution II until the end of the input data string.

indicates that Solution I processes a small number of segments, while Solution II handles a

larger number. Consequently, Solution III produces results nearly identical to Solution II.

7.3. Summary

The findings presented in this chapter demonstrate that the Flag Order System, when applied

using the MANS numeral system, offers a novel approach to data compression. Key takeaways

include: Flag Information (FI) - Solution I: This approach allows for high compression

134

efficiency but incurs additional bit overhead due to flag storage requirements. The placement of

flags within the data stream significantly impacts the overall compression ratio. Flag to Flag

(F2F) - Solution II: By eliminating the need for explicit flag information, this method achieves

improved compression efficiency, particularly in scenarios where data segments can be

effectively grouped based on their structural properties. Flag to Flag with Flag Information

(Solution III): This model combain the previous two solutions, optimising compression while

maintaining flexibility in flag placement. Testing on text files from the Canterbury Corpus

confirms that Solution II (F2F) algorithm capability to compete with traditional methods like

pack and compress. Furthermore, exclusive tests on multimedia files reveal that DE, unlike

conventional compressors, is able to uncover redundancies even in already-compressed

formats. Overall, the results underscore the potential of the MANS-based F2F-DE approach as

a viable alternative for lossless data compression, particularly in environments where

traditional algorithms struggle to achieve further data reduction [75].

135

Chapter 8

This chapter summarises the key findings of the research, which focuses on advancing lossless

data compression through innovative methodologies for calculating data occurrences in binary

sequences and developing algorithms to streamline these calculations. The work builds upon

foundational theories by Shannon and Kolmogorov while introducing fresh paradigms that

consider factors like complexity, memory size, and encoding/decoding speed. Central to the

contributions of this research are the development of the Adaptive Numeral System (ANS),

Improved Adaptive Numeral System (IANS), and Modified Adaptive Numeral System

(MANS), along with the introduction of the Data Extraction (DE) technique. The research

culminates in the creation of DE-FTF, a method that demonstrates exceptional compression

efficiency, particularly with already compressed files, and surpasses traditional methods in

various cases. While the findings of this research provide significant advancements in the field,

several promising directions for future study have been identified in Section 8.2. These avenues

of further research are aimed at refining the methods developed and expanding their

applicability across different domains.

8.2. Conclusions

In conclusion, the pursuit of this research has been twofold: firstly, to augment the efficacy of

lossless data compression by innovating and exploring novel methodologies for calculating

data occurrences in binary sequences, and secondly, to devise appropriate algorithms to

streamline these calculations. This progression has led to the introduction of a fresh paradigm

in lossless compression which takes into consideration crucial factors such as complexity,

memory size, and encoding/decoding speed.

Building upon seminal works by Shannon and Kolmogorov, this research has evaluated their

contributions and limitations within the broader context of the field. Benchmarking against

prior studies has provided deeper insights into existing methodologies, particularly in

compression techniques.

136

The research journey has commenced with the creation of the Adaptive Numeral System

(ANS), a novel numeral system designed to calculate binary values adaptively. Subsequent

iterations have led to the development of the Improved Adaptive Numeral System (IANS),

which has demonstrated superior efficiency and symmetry compared with its predecessor.

Notably, the ANS and IANS possess the unique capability to compress each segment

successively, thereby reducing the overall data size iteratively.

Further refinement of the IANS has culminated in the exploration of conditional compression

methods, resulting eventually in the creation of the Data Extraction (DE) technique. Leveraging

a Modified Adaptive Numeral System (MANS), DE exemplified high-yield compression

potential although encountering challenges in identifying flag locations within segmented data.

Solutions such as Flag Information (FI), Flag to Flag (FTF), and FI using FTF were proposed

and analysed to address this flagging challenge, and varying degrees of efficacy were observed.

In a comparative analysis with conventional methods like Huffman coding, DE-FTF achieved

comparable compression rates ranging from 38% to 39% for selected files before conversion to

binary. This illustrates the method's effectiveness in achieving competitive compression

outcomes. Particularly noteworthy is its performance post-conversion to binary as a non-prefix

variable-length code, surpassing other compression methods for specific files. With

compression rates reaching up to 56% across all file types, DE-FTF excels when dealing with

files containing repeated bits, showcasing its superiority over conventional methods such as

Huffman coding, LZW, bzip, Gzip, and others. Additionally, DE-FTF exhibits the capability of

being applied to already compressed files, due to the alteration of input data through MANS

application and, after the insertion of Cl during the Data Extraction process, the data was

segmented with flag insertion, consequently altering the redundancies within the input data.

Therefore, Data Extraction (DE) using MANS was evaluated with various file types, including

those that were already compressed, such as Joint Photographic Experts Group (JPEG) files.

This enabled further compression ranging from 33% up to 35%.

Despite facing challenges and constraints, DE-FTF demonstrates significant advancements in

compression efficiency, notably due to its adaptability to already compressed files. These

137

findings suggest a promising direction for future research in the field of lossless data

compression.

In summary, this research contributes significantly to the advancement of novel compression

methodologies, primarily through the development of the DE-FTF using the MANS technique.

The findings highlight DE-FTF's potential, especially post-binary conversion, to attain

exceptional compression results, surpassing conventional methods for certain files. Moving

forward, future investigations could focus on converting non-prefix to prefix codes, as well as

incorporating the {1} related to the switch in MANS into the calculations of C for DE-FTF.

Additionally, further exploration of DE-FI, as discussed in Section 7.1.1, presents opportunities

to enhance compression techniques by reducing the flag information string size or integrating

the information within the encoded DE string. These endeavours aim to enhance the efficiency

and versatility of lossless data compression techniques, which play a pivotal role in advancing

innovative communication methods applicable to emerging fields such as medical imaging,

digital media, artificial intelligence, embedded systems, and the Internet of Things.

Original Contributions:

1.​ The introduction of ANS, IANS, and MANS as novel numeral systems, with superior

adaptability and efficiency compared to traditional systems.

2.​ The development of lossless compression method, DE, which demonstrates exceptional

compression rates, particularly in its fully decodable state before binary conversion.

3.​ The creation of DE-FTF, a technique capable of surpassing conventional methods in

specific scenarios, including already compressed files.

4.​ Proposals for flag-based solutions, which significantly enhance segmentation and

compression outcomes.

8.2. Future Directions:

This research lays the foundation for several promising avenues of further investigation:

Refinement of DE-FTF: Future work can focus on optimising the flag information string size

and integrating flag data directly into the encoded DE strings to reduce the associated overhead.

138

Non-Prefix to Prefix Code Conversion: An in-depth theoretical exploration of converting

non-prefix codes to prefix codes within the MANS framework could enhance encoding

efficiency and contribute to the broader field of lossless data compression.

Further Enhancements to MANS: The exceptional performance of DE-F2F driven by the

MANS numeral system highlights its computational efficiency across diverse datasets. further

enhancement can focus on incorporation of the {1} Switch in MANS into the calculations of C

for DE-FTF could improve the algorithm’s performance. Additionally, enhancing DE-FI, as

discussed in Section 7.1.1, may lead to further improvements in compression efficiency. Future

research could focus on:

●​ Improving compression ratios by refining the MANS framework.

●​ Adapting MANS for parallel processing to reduce compression times.

●​ Expanding applications through comparative analysis of multimedia and non-textual

datasets to broaden the framework’s applicability.

Expansion into Emerging Fields: As compression needs evolve, there is significant potential

for applying DE-FTF to emerging fields such as medical imaging, digital media, artificial

intelligence, embedded systems, and the Internet of Things (IoT), where efficient data

compression methods are critical.

Optimising Memory Usage: A key direction for future work involves reducing peak memory

usage during the encoding phase, particularly for large datasets, and investigating the impact of

distributed memory allocation on space efficiency.

Minimising Memory Overhead: Investigating compression techniques that minimise memory

overhead, while maintaining or improving speed and compression ratios, will be crucial for

applications in resource-constrained environments.

These future directions aim to build upon the findings of this research, expanding its scope and

applicability while enhancing the overall performance and efficiency of lossless data

compression techniques.

139

References

[1] ​ Retrieved April 9, 2017, from https://www.bbc.co.uk/news/business-26383058

[2] ​ Taylor, P. (2023, November 16). Worldwide data created. Statista. Retrieved March 25,

2024, from https://www.statista.com/statistics/871513/worldwide-data-created/

[3] ​ Salomon, D. (2004). Data compression: The complete reference (4th ed.). Springer

(pp. 2-4).

[4] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 222-223).

[5] ​ Shannon, C. E. (1948). A mathematical theory of communication. The Bell System

Technical Journal, 27 (pp. 10-15).

[6] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 34).

[7] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 22).

[8] ​ McAnlis, C., & Haecky, A. (2016). Understanding compression: Data compression for

modern developers. O’Reilly Media (pp. 24-25).

[9] ​ Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of

information. Problems of Information Transmission, 1(1), (pp. 1-7).

https://doi.org/10.1134/S0032946007000126

[10] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 34-36).

[11] ​ Mondol, T., & Brown, D. G. (2021, September). Incorporating algorithmic information

theory into fundamental concepts of computational creativity. In ICCC (pp. 173-181).

[12] ​ Gailly, J.-L., & Adler, M. (1993). Zlib compressed data format specification version 3.3.

Retrieved from https://www.zlib.net/zlib_tech.html

140

[13] ​ Seward, J. (1996). bzip2: A block-sorting file compressor - Algorithm version 0.9.

Retrieved from https://web.archive.org/web/20060206200439/http://www.bzip.org/

1.0.3/bzip2-manual-1.0.3.html

[14] ​ Zhao, Y., & Li, J. (2014). Implementation of the LZMA compression algorithm on

FPGA. Electronics Letters, 50(19), (pp. 1370–1372).

https://doi.org/10.1049/el.2014.1734

[15] ​ Huffman, D. A. (1951). A method for the construction of minimum redundancy codes.

Proceedings of the IRE, 40, (pp. 1098–1101).

[16] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 205).

[17] ​ McAnlis, C., & Haecky, A. (2016). Understanding compression: Data compression for

modern developers. O’Reilly Media (pp. 126-133).

[18] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 134-146).

[19] ​ Lempel, A., & Ziv, J. (1977). A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3), (pp. 337-343).

https://doi.org/10.1109/TIT.1977.1055714

[20] ​ Lempel, A., & Ziv, J. (1978). Compression of individual sequences via variable-rate

coding. IEEE Transactions on Information Theory, 24(5), (pp. 530-536).

https://doi.org/10.1109/TIT.1978.1055934

[21] ​ Witten, I. H., Neal, R. M., & Cleary, J. G. (1987). Arithmetic coding for data

compression. Communications of the ACM, 30(6), (pp. 520-540).

[22] ​ Rissanen, J. (1979). Arithmetic coding as number representation. Acta Polytechnica

Scandinavica, Mathematics, Computing and Management in Engineering Series, 31(8),

(pp. 29-39).

[23] ​ Langdon, G. G. (1984). An introduction to arithmetic coding. IBM Journal of Research

141

https://web.archive.org/web/20060206200439/http://www.bzip.org/%201.0.3/bzip2-manual-1.0.3.html
https://web.archive.org/web/20060206200439/http://www.bzip.org/%201.0.3/bzip2-manual-1.0.3.html

and Development, 28(2), 135-149. https://doi.org/10.1147/rd.282.0135

[24] ​ Howard, P. G., & Vitter, J. S. (1994). Arithmetic coding for data compression.

Proceedings of the IEEE, 82(6), (pp. 857-865). https://doi.org/10.1109/5.286189

[25] ​ Rissanen, J. J. (1976). Generalized Kraft inequality and arithmetic coding. IBM Journal

of Research and Development. https://doi.org/10.1147/rd.203.0198

[26] ​ Pavlov, I. (2018). LZMA SDK (Software Development Kit) (Version 18.05) [Software].

Available from https://www.7-zip.org/sdk.html

[27] ​ Duda, J. (2009). Asymmetric numeral systems. Retrieved from

http://arxiv.org/abs/0902.0271

[28] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 59-74).

[29] ​ ZLIB compressed data format specification version 3.3. (1996). Retrieved from

https://www.ietf.org/rfc/rfc1950.txt

[30] ​ Wallace, G. K. (1991). The JPEG still picture compression standard. Communications

of the ACM, 34(4) (pp. 31-44).

[31] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 45-50).

[32] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann;

Elsevier (pp. 47-50).

[33] ​ Hashimoto, K., & Iwata, K.-i. (2021). On the optimality of binary AIFV codes with two

code trees. In 2021 IEEE International Symposium on Information Theory (ISIT) (pp.

3173-3178). IEEE. https://doi.org/10.1109/ISIT45174.2021.9518105

[34] ​ Hashimoto, K., & Iwata, K.-i. (2022). Optimality of Huffman code in the class of 1-bit

delay decodable codes. IEEE Journal on Selected Areas in Information Theory, 3(4),

616-625. https://doi.org/10.1109/JSAIT.2022.3230745

[35] ​ Golomb, S. W. (1966). Run-length encodings. IEEE Transactions on Information

142

https://doi.org/10.1147/rd.203.0198

Theory, 12 (pp. 399–401).

[36] ​ Peng, X., Zhang, Y., Peng, D., & Zhu, J. (2023). Selective run-length encoding. arXiv

preprint. Retrieved from https://arxiv.org/abs/2312.17024

[37] ​ Burrows, M., & Wheeler, D. J. (1994). A block-sorting data compression algorithm.

Technical Report SRC 124, Digital Systems Research Center.

[38] ​ Begum, M. B., Deepa, N., Uddin, M., Kaluri, R., Abdelhaq, M., & Alsaqour, R. (2023).

An efficient and secure compression technique for data protection using

Burrows-Wheeler transform algorithm. Heliyon, 9(6), e17602.

https://doi.org/10.1016/j.heliyon.2023.e17602

[39] ​ Shanmugasundaram, S., & Lourdusamy, R. (2011). Text preprocessing using enhanced

intelligent dictionary-based encoding (EIDBE). In 2011 3rd International Conference

on Electronics Computer Technology (ICECT) (pp. 451-455). Kanyakumari, India:

IEEE. https://doi.org/10.1109/ICECTECH.2011.5941833

[40] ​ Wertenbroek, R., Xenarios, I., Thoma, Y., & Delaneau, O. (2023). Exploiting

parallelization in positional Burrows-Wheeler transform (PBWT) algorithms for

efficient haplotype matching and compression. Bioinformatics Advances, 3(1), vbad021.

https://doi.org/10.1093/bioadv/vbad021

[41] ​ Demongeot, J., Gardes, J., Maldivi, C., Boisset, D., Boufama, K., & Touzouti, I. (2023).

Genomic phylogeny using the Maxwell™ classifier based on Burrows–Wheeler

transform. Computation, 11, (pp. 158). https://doi.org/10.3390/computation11080158

[42] ​ Durbin, R. (2014). Efficient haplotype matching and storage using the positional

Burrows-Wheeler transform (PBWT). Bioinformatics, 30(9), (pp. 1266-1272).

https://doi.org/10.1093/bioinformatics/btu014

[43] ​ Sinha, S. (2017, September). The Fibonacci numbers and its amazing applications, 6(9),

(pp. 7-14).

[44] ​ Salomon, D. (2007). Variable-length codes for data compression. Springer-Verlag.

143

https://doi.org/10.1093/bioadv/vbad021
https://doi.org/10.1093/bioadv/vbad021
https://doi.org/10.3390/computation11080158
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1093/bioinformatics/btu014

[45] ​ Zeckendorf, E. (1972). Representation of natural numbers by a sum of Fibonacci

numbers or Lucas numbers. Fibonacci Quarterly, 10(3), (pp. 245-250).

[46] ​ Fenwick, P. (2002, August). Variable-length integer codes based on the Goldbach

conjecture, and other additive codes. 48, (pp. 2413).

[47] ​ Lelewer, D. A., & Hirschberg, D. S. (1987). Data compression. ACM Computing

Surveys, 19, (pp. 261–296).

[48] ​ Fraenkel, A. S., & Klein, S. T. (1996). Robust universal complete codes for

transmission and compression. Discrete Applied Mathematics, 64, (pp. 31–55).

[49] ​ Apostolico, A., & Fraenkel, A. S. (1987). Robust transmission of unbounded strings

using Fibonacci representations. IEEE Transactions on Information Theory, 33,

(pp. 238–245).

[50] ​ Walder, J., Krátký, M., Bača, R., Platoš, J., & Snašel, V. (2010). Fast decoding

algorithms for variable-length codes. Information Science. Submitted.

[51] ​ Przywarski, R., Grabowski, S., Navarro, G., & Salinger, A. (2006). FM-KZ: An even

simpler alphabet-independent FM-index. In Proceedings of the Prague Stringology

Conference (pp. 226–239). Czech Technical University, Prague.

[52] ​ Pasco, R. (1976). Source coding algorithms for fast data compression (PhD thesis,

Stanford University).

[53] ​ Rissanen, J. J. (1976). Generalized Kraft inequality and arithmetic coding. IBM Journal

of Research and Development, 20(3), (pp. 198–203).

[54] ​ Rissanen, J. J., & Langdon, G. G. (1979). Arithmetic coding. IBM Journal of Research

and Development, 23(2) (pp. 149–162).

[55] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann

Publishers; Elsevier (pp. 89-116).

[56] ​ Said, A. (2023). Introduction to arithmetic coding – theory and practice. arXiv preprint.

https://arxiv.org/abs/2302.00819

144

https://arxiv.org/abs/2302.00819
https://arxiv.org/abs/2302.00819

[57] ​ Yu, Q., Yu, W., Yang, P., Zheng, J., Zheng, X., & YunHe, (2015). An efficient adaptive

binary arithmetic coder based on logarithmic domain. IEEE Transactions on Image

Processing, 24(11).

[58] ​ Rabbani, M. (2002). JPEG2000: Image compression fundamentals, standards and

practice. Journal of Electronic Imaging, 11(2). https://doi.org/10.1117/1.1469618

[59] ​ Kim, H. J. (2010). A fast implementation of arithmetic coding. In 2010 12th

International Asia-Pacific Web Conference (pp. 419-423). Busan, South Korea.

https://doi.org/10.1109/APWeb.2010.76

[60] ​ Duda, J. (2009). Asymmetric numeral systems. arXiv preprint.

https://arxiv.org/abs/0902.0271

[61] ​ Duda, J., et al. (2015). The use of asymmetric numeral systems as an accurate

replacement for Huffman coding. In 2015 Picture Coding Symposium, PCS 2015 - with

2015 Packet Video Workshop, PV 2015 - Proceedings (pp. 65–69). IEEE.

https://doi.org/10.1109/PCS.2015.7170048

[62] ​ Duda, J. (2013). Asymmetric numeral systems: Entropy coding combining speed of

Huffman coding with compression rate of arithmetic coding (pp. 1-24). arXiv preprint.

https://arxiv.org/abs/1311.2540

[63] ​ Townsend, J. (2020). A tutorial on the range variant of asymmetric numeral systems.

arXiv preprint. https://arxiv.org/abs/2001.09186

[64] ​ McAnlis, C., & Haecky, A. (2016). Understanding compression: Data compression for

modern developers (1st ed.). O’Reilly Media.

[65] ​ Collet, Y., & Turner, C. (2016). Smaller and faster data compression with Zstandard.

Facebook Code Blog.

https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compressi

on-with-zstandard/

[66] ​ Torres, M. M., et al. (2020). High-throughput variable-to-fixed entropy codec using

145

https://doi.org/10.1117/1.1469618
https://arxiv.org/abs/0902.0271
https://arxiv.org/abs/0902.0271
https://arxiv.org/abs/1311.2540
https://arxiv.org/abs/1311.2540
https://arxiv.org/abs/2001.09186
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/

selective, stochastic code forests. IEEE Access, 8, (pp. 81283–81297).

https://doi.org/10.1109/ACCESS.2020.2992993

[67] ​ Najmabadi, S. M., et al. (2019). An architecture for asymmetric numeral systems

entropy decoder – A comparison with a canonical Huffman decoder. Journal of Signal

Processing Systems, 91(7) (pp. 805–817). https://doi.org/10.1007/s11265-018-1421-4

[68] ​ Wang, N., Qin, C., & Lin, S.-J. (2023). A novel reversible data hiding scheme based on

asymmetric numeral systems. arXiv preprint. https://arxiv.org/abs/2307.08190

[69] ​ Yokoo, H., & Shimizu, T. (2019). Probability approximation in asymmetric numeral

systems. In Proceedings of the 2018 International Symposium on Information Theory

and Its Applications (pp. 638–642). IEICE.

https://doi.org/10.23919/ISITA.2018.8664207

[70] ​ Dube, D., & Yokoo, H. (2019). Fast construction of almost optimal symbol distributions

for asymmetric numeral systems. IEEE International Symposium on Information

Theory - Proceedings (pp. 1682–1686). IEEE.

https://doi.org/10.1109/ISIT.2019.8849430

[71] ​ Talli, P., Pase, F., Chiariotti, F., Zanella, A., & Zorzi, M. (2024). Effective

communication with dynamic feature compression. arXiv preprint.

https://arxiv.org/abs/2401.16236

[72]​ Lee, H., & Yang, T. (2020). The role of binary systems in data compression. Journal of

Data Science, 12(3), 45-58.

[73]​ Brown, P., & Zhou, L. (2019). Advanced methods for encoding binary data. Springer.

[74] ​ Powell, M. (2001, November 20). Corpus Canterbury.

https://corpus.canterbury.ac.nz/index.html

[75] ​ Fitriya, L. A., Purboyo, T. W., & Prasasti, A. L. (2017). A review of data compression

techniques. International Journal of Applied Engineering Research, 12(19), 8956–8963.

[76] ​ Moffat, A. (2019). Huffman coding. ACM Computing Surveys, 52(4), 1–35.

146

https://arxiv.org/abs/2307.08190
https://arxiv.org/abs/2401.16236
https://arxiv.org/abs/2401.16236
https://corpus.canterbury.ac.nz/index.html
https://corpus.canterbury.ac.nz/index.html

[77] ​ Varshney, A., Suneetha, K., & Yadav, D. K. (2024). Analyzing the performance of

different compactor techniques in data compression & source coding. In 2024

International Conference on Optimization Computing and Wireless Communication

(ICOCWC). Debre Tabor, Ethiopia.

[78] ​ Gopinath, A., & Ravisankar, M. (2020). Comparison of lossless data compression

techniques. In 2020 International Conference on Inventive Computation Technologies

(ICICT) (pp. 628-633). Coimbatore, India: IEEE.

https://doi.org/10.1109/ICICT48043.2020.9112516

[79] ​ Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.

[80] ​ Gao, L., Zhang, B., Jiang, T., & He, Z. (2022). Application of a lossless compression

algorithm based on Burrows-Wheeler transform for large data sets. Journal of

Computational Biology, 19(7), 1100–1107.

[81] ​ Peñaranda, C., Reaño, C., & Silla, F. (2024). Hybrid-Smash: A heterogeneous

CPU-GPU compression library. doi: 10.1109/ACCESS.2024.3371253

[82] ​ Awan, F. S., Zhang, N., Motgi, N., Iqbal, R. T., & Mukherjee, A. (2001, March). LIPT:

A reversible lossless text transform to improve compression performance. In Data

Compression Conference (p. 481). Snowbird, UT, USA.

[83] ​ Shcherbakov, I., Weis, C., & Wehn, N. (2012, May). A high-performance FPGA-based

implementation of the LZSS compression algorithm. In 2012 IEEE 26th International

Parallel and Distributed Processing Symposium Workshops & PhD Forum (pp.

449–453). IEEE. https://doi.org/10.1109/IPDPSW.2012.66

[84] ​ Sayood, K. (2017). Introduction to data compression (5th ed.). Morgan Kaufmann

Publishers; Elsevier (pp. 134 - 145).

[85] ​ Bunton, S. (1995). The structure of dynamic Markov compression (DMC). In

Proceedings of the DCC '95 Data Compression Conference (pp. 72–81). Snowbird, UT,

USA.

147

[86] ​ Feregrino, C. (2003). High performance PPMC compression algorithm. In Proceedings

of the Fourth Mexican International Conference on Computer Science, ENC 2003 (pp.

135–142). Tlaxcala, Mexico.

[87] ​ Razilov, V., Wittig, R., Matúš, E., et al. (2024). Access interval prediction by partial

matching for tightly coupled memory systems. International Journal of Parallel

Programming, 52, 3–19. https://doi.org/10.1007/s10766-024-00764-1

148

https://doi.org/10.1007/s10766-024-00764-1

Appendices

Appendix A

1.​ Text to ASCII to MANS.

public class Text2Ascii {

// converting text to ASCII code

public static String convertStringToBinary(String input) {

 StringBuilder result = new StringBuilder();

 char[] chars = input.toCharArray();

 for (char aChar : chars) {

 result.append(

 String.format("%8s", Integer.toBinaryString(aChar)) // char -> int, auto-cast

 .replaceAll(" ", "0") // zero pads

);}

 return result.toString();

 }

//removing any space or separators from string of binary

public static String prettyBinary(String binary, int blockSize, String separator) {

 List<String> result = new ArrayList<>();

 int index = 0;

 while (index < binary.length()) {

 result.add(binary.substring(index, Math.min(index + blockSize, binary.length())));

 index += blockSize;}

 return result.stream().collect(Collectors.joining(separator));}

 //converting a string of binary numbers to characters then ASCII (decimal) then text.

public static String BinaryToAscii(String input) {

 StringBuilder sb = new StringBuilder();

 String str = "";

 String text = "";

 ​ char[] chars = input.replaceAll("\\s", "").toCharArray();

 ​ for (int j = 0; j < chars.length; j+=8) {

 ​ int idx = 0;

 ​ int sum = 0;

 ​ //for each bit in reverse

 ​ for (int i = 7; i>= 0; i--) {

 ​ if (chars[i+j] == '1') {

 ​ sum += 1 << idx;}

 ​ idx++;}

149

 ​ sb.append(Character.toChars(sum));

 str = Character.toString((char)sum);

 text=text+str;}return text;}

//Converting binary string to Modified adaptive numeral system

public class BIN2MANS {

​ public static String ConvertBin2Mans (String BinInput) {

//input data

​ StringBuilder MansResult = new StringBuilder();

 ​ char[] BinChars = BinInput.toCharArray();

// Initialising MANS

​ int j = 0;

​ int s=0;

​ int[] pMans = new int[BinInput.length()*2]; // creating a string with a maximum length of 2Xthe input data length

// Converting to MANS

​ for (int i=0;i<BinInput.length();i++, j++){

​ if(i>0) {

​ if(BinChars[i]==BinChars[i-1]){ // if repeated bit detected B[i]=0

 ​ pMans[j]=0;

​ } else { // if switch detected, A[i]=1 B[i+1]=0

 ​ pMans[j]=1; // A[i] = 1

​ pMans[j+1]=0; // B[i+1]=0

​ j++;

​ s++;

 ​ } else {

​ pMans[i]=0;}}

​ System.out.println("Total number of switches = "+s);

​ int [] Pmans = new int [j]; // copying the correct length of the converted MANS string to Pmans

​ ​ for (int a=0;a<j;a++) {

​ ​ Pmans[a]=pMans[a];

​ ​ MansResult.append(Pmans[a]);}

​ ​ return MansResult.toString();}}

public class test {

​ public static void main(String[] args) {

​ String input = "Testing the encoding and decoding steps of MANS!";​

​ String result = Text2Ascii.convertStringToBinary(input);

​ System.out.println("Original data string is: "+ result.length() +"\n"+result);

​ String MansResult = BIN2MANS.ConvertBin2Mans(result);

​ System.out.println("MANS data is= "+MansResult.length() +"\n"+MansResult);

​ System.out.println("****** Decoding starts here *****");

​ String BinResult = MANS2BIN.ConvertMans2Bin(MansResult);

150

​ System.out.println("Orginal data after decoding MANS is= "+BinResult.length()+"\n"+BinResult);

​ System.out.println("Verifying the results...");

​ char [] OriginalBin = result.toCharArray();

​ char [] Mans2Bin = BinResult.toCharArray();

​ boolean DataCheck=true;

​ for (int i =0; i<result.length();i++) {

​ ​ if (OriginalBin[i]!=Mans2Bin[i]) {

​ ​ System.out.println("Error in bit number " + Mans2Bin[i]);

DataCheck=false;}}

 ​ if (DataCheck = true) {System.out.println("Successfully decoded, decoded MANS data match the original data");

 ​ }else {System.out.println("unsuccessfully MANS decoded data do not match");}

 String Ascii = Text2Ascii.BinaryToAscii(BinResult);

 ​ System.out.println(Ascii);}}

Output:

Original data string is: 384

0101010001100101011100110111010001101001011011100110011100100000011101000110100001100101001000000110010

10110111001100011011011110110010001101001011011100110011100100000011000010110111001100100001000000110010

00110010101100011011011110110010001101001011011100110011100100000011100110111010001100101011100000111001

1001000000110111101100110001000000100110101000001010011100101001100100001

Total number of switches = 197

MANS data is= 581

010101010101000100100101010101000100100101000101010001001010100101010010100010010010010001001010000001

000101010001001010100001001001010101001010000001001001010101010010100010010010001001010010100001010010

010100010010101001010100101000100100100100010010100000010010000101010010100010010010010100001010000001

001001010001001001010101010010001001010010100001010010010100010010101001010100101000100100100100010010

100000010001001001010001010100010010010101010100010000010001001001001010000001001010000101001001001000

10100000010100100101010101000001010101001000100101010100100100101000010

****** Decoding starts here *****

Orginal data after decoding MANS is= 384

0101010001100101011100110111010001101001011011100110011100100000011101000110100001100101001000000110010

10110111001100011011011110110010001101001011011100110011100100000011000010110111001100100001000000110010

00110010101100011011011110110010001101001011011100110011100100000011100110111010001100101011100000111001

1001000000110111101100110001000000100110101000001010011100101001100100001

Verifying the results...

Successfully decoded, decoded MANS data match the original data

Testing the encoding and decoding steps of MANS!

151

2.​ Flag Information, Solution I.

//Main Class that calls all other classes
import java.io.File;

public class Test2 {

​ public static void main(String[] args) throws Exception {

// converting the Base64 file to Binary

​ ​ File path = new File("/Users/od/Desktop/U.txt");

​ ​ String s = File2ByteArray.method(path);

​ ​ System.out.println(s);

​ ​ String f = Base64ToBinary.B642B(s);

​ ​ System.out.println(f);

​ ​ System.out.println("the total bit of the original file = "+f.length());

//Converting Binary file to MANS

​ ​ String r = BIN2MANS.ConvertBin2Mans(f);

​ ​ System.out.println("MANS output = \n"+r);

//Using Data Extraction to compress MANS using Flag Information solution

​ ​ String[] t = DataExtraction.FI(r, 3); // C=3

​ ​ System.out.println("Segment encoded = "+t[0]+"\n"+"Flag Information = "+t[1]);

//Decoding Data Extraction to MANS using Flag Information

​ ​ String[] d = DecoderDateExtraction.DEFI(t, 4);

​ ​ String ary = Arrays.toString(d).replaceAll("[, \\[\\]]", "");

​ ​ System.out.println(ary);

//Converting MANS to Binary

​ ​ String e = MANS2BIN.ConvertMans2Bin(ary);

​ ​ System.out.println("\n"+e);

//Converting Binary to Base64

​ ​ String g = Binary2Base64.B2B64(e);

​ ​ System.out.println(g);

//Writing file

​ ​ String h = Base642File.Base64ToFile(g, "/Users/od/Desktop/U2.txt");}}

import java.util.Arrays;

//Data Extraction, bits counted is only 0, 2 bits flag with addtional string to identify the flag order, the additional flag string

consist of 1 and 0. 1 indicate the first flag from LSB while 0 indicate the wrong flag.

public class DataExtraction {

​ public static String[] FI(String MANSInput, int com) {

​ ​ // Initialising DE

​ ​ int EndOfData = 0; // initialising the end of data

​ ​ int segNo = 0; // the segment number of the data processed using Data Extraction

​ ​ int segCheck=0;

152

​ ​ int PsegNo = 0; // initialising the length of the previous segment

​ ​ int j = MANSInput.length(); // the length of the MANS data received.

​ ​ int lim1 = (int) Math.pow(2, com);

​ ​ int lim2=0;

​ ​ int shift=0;

​ ​ int[][] Pmans = new int[j][]; // copying the correct length of the flagged string to Pmans

​ ​ int[][] Fpmans = new int[j][];// processing the MANS data to flag the value of C

​ ​ int[][] c = new int[j][com]; // identifying the length of C

​ ​ StringBuffer flagInfo = new StringBuffer(); // the flags information stored for each segment

​ ​ int count = com - 1; // initialising variable count to calculate the value of C in decimal

​ ​ int Cdec = 0; // defining the decimal value of C

​ ​ int po = 0; // defining the power to convert binary to decimal

​ ​ int sgRun = 0; // sgRun to identify the bit number in the data string and to shift data before

​ ​ ​ ​ ​ ​ // placing the flag, start count after C

​ ​ int f = 0; // initialising the flag location for each segment

​ ​ int flagNo = 0; // initialising the flag order in each segment

​ ​ int totalFlags = 0; // initialising the total flags in each segment

​ ​ char[] BinChars = MANSInput.toCharArray();// copying data from MANSInput

// Data Extraction

​ ​ while (EndOfData == 0) { //Keep processing until the end of data

​ ​ ​ Pmans[segNo] = new int[j]; //setting the right length of data of the current segment

​ ​ if (segNo != 0) { // if this is not the first segment

​ ​ for (int a = 0; a < j; a++) { // loop until the end of the current segment length

​ if(a< PsegNo) { // if the current bit of the segment < then previous segment length

​ ​ if(segCheck==1) {// copy the previous segment to new one

​ ​ ​ Pmans[segNo][a] = Fpmans[segNo-1][a];

​ ​ }else {//

​ ​ ​ Pmans[segNo][a] = Fpmans[segNo][a];}

​ ​ }else { // if the current bit of the segment > then previous segment length

​ ​ ​ Pmans[segNo][a] = Pmans[0][a+shift]; }}//copy the remaining bits from the initial string

​ ​ } else {// if this is the first segment

​ ​ ​ Fpmans[segNo] = new int[j]; //setting the right length of data of the current segment (reusing

array for memory)

// If this is the first segment, copy the data from MANSInput to Pmans and Fpmans

​ ​ for (int a = 0; a < MANSInput.length(); a++) {

​ ​ if (BinChars[a] == 48) {

​ ​ ​ Pmans[segNo][a] = 0;

​ ​ ​ Fpmans[segNo][a] = 0;

​ ​ } else {

​ ​ ​ Pmans[segNo][a] = 1;

​ ​ ​ Fpmans[segNo][a] = 1;}}}

153

​ ​ ​ Fpmans[segNo] = new int[j];//setting the right length of data of the current segment (reusing

array for memory)

//counting the first c bits from the MSB (flipping the first C bits) and covert it to its decimal value

​ ​ ​ j=0;

​ ​ ​ lim2=0;

​ ​ for (int b = 0; b < c[segNo].length; b++) {

​ ​ ​ c[segNo][b] = Pmans[segNo][b]; // C(PMAS) obtained (binary from MSB)

​ ​ ​ if (c[segNo][b] == 1) {

​ ​ ​ ​ po = (int) Math.pow(2, count);

​ ​ ​ ​ Cdec = Cdec + po; // C(PMANS) obtained decimal value of C (from LSB)

​ ​ ​ ​ count--;

​ ​ } else {

​ ​ ​ count--;}}

//flagging the segments when bit = C ​

​ ​ for (int d = c[segNo].length; d < Pmans[segNo].length; d++){ // start counting after C until the end of

Pmans

​ ​ ​ Fpmans[segNo][sgRun] = Pmans[segNo][d];

​ ​ if (Fpmans[segNo][sgRun] == 1) {

​ ​ if (sgRun > 1) {// Count the total flags detected in the segment

​ ​ if (Fpmans[segNo][sgRun - 1] == 1 & Fpmans[segNo][sgRun - 2] == 0) { // Total flags in a segment

including flags after C

​ ​ ​ totalFlags++;}}

​ ​ if(j<lim1) {

​ ​ lim2++;}}

​ ​ else if (Fpmans[segNo][sgRun] == 0) {

​ ​ if (f == Cdec) { // if the flag = C value, flag the current bit

​ ​ sgRun++;

​ ​ Fpmans[segNo][sgRun] = 1;

​ ​ sgRun++;

​ ​ Fpmans[segNo][sgRun] = 1;

​ ​ totalFlags++; // Increment the total flags

​ ​ flagNo = totalFlags;// current segment flag number = flagNo

​ ​ lim2++;//counting the number of available bits in the current segment}

​ ​ if(j<lim1) {

​ ​ lim2++;

​ ​ j++;}

​ ​ if(f!=-1) {

​ ​ f++; // increment the number of bit to read, to compare it with C

​ ​ }}

​ ​ sgRun++; // first segment is processed, move to the next segment

​ ​ }

​ ​ if (totalFlags - flagNo == 0) { //check the flag position of the segment

154

​ ​ flagInfo.append(1); //store the flag order (1st flag from LSB)

​ ​ } else {

​ ​ for (int i = 0; i < totalFlags - flagNo + 1; i++) {

​ ​ if (i > 0) {

​ ​ flagInfo.append(0); //store the number of flags to skip

​ ​ } else {

​ ​ flagInfo.append(1); //store the flag order

​ ​ }}}

​ ​ if(f==-1) {

​ ​ EndOfData=1;}

//reseting variables​ ​

​ ​ f = 0;

​ ​ shift=shift+(com-2);

​ ​ count = com - 1;

​ ​ po = 0;

​ ​ Cdec = 0;

​ ​ sgRun = 0;

​ if (segCheck >0) {

​ ​ segCheck++;}

​ ​ PsegNo=Fpmans[segNo].length-(com-2);

​ if(segNo==0) {

​ ​ segNo++;

​ ​ segCheck=1;

​ }

​ ​ flagNo = 0;

​ ​ totalFlags = 0;

// resizing the next segment length

​ if(segNo !=0) {

​ for (int a = 0; a < lim2; a++) {

​ if(Pmans[0].length>lim2+shift) {//checking if the end of the initial data string length is reached

​ if(j<lim1+2) {//if the end of the initial data string not reached, resizing the next segment length

​ if(Pmans[0][lim2+shift]==0) {//count the number of {0} in the current segment

​ ​ j++;

​ ​ lim2++;

​ }else {//count the number of {1} in the current segment

​ ​ lim2++;}

​ }}else {//if the end of the initial data string is reached, resizing the next segment to include the last bits from the

initial data string and initialise the end of the encoder

​ a=lim2;

​ f=-1;}}

​ j=lim2; }}

​ String res [] =new String[2];

155

​ res[0]=Arrays.toString(Pmans[segNo]);

​ res[1]=flagInfo.toString();

​ System.out.println("Orginal MANS data string length is " + MANSInput.length());

​ System.out.println("DE = " + Arrays.toString(Pmans[segNo])+" = " + Pmans[segNo].length);

​ System.out.println("Segment No to send " + (segCheck) + ", Seg length " + Pmans[segNo].length+ " Total bits of the

flagInfo " + flagInfo.length() + " Total DE bits to send = "+ (flagInfo.length() + (Pmans[segNo].length)));

​ return (res);

​ }

import java.util.Arrays;

public class DecoderDateExtraction {

​ public static String[] DEFI(String[] DEFI, int com) {

// Initialising DE

​ int[] F = new int [DEFI[1].length()];

​ int[] c= new int [com];

​ int b=0; // initialising variable to count the flag location

​ int count=0;

​ int fLoc = 0;

​ int FC = 0; // Flag Count (FC) from DE string

​ int FCB=0; // Flag Count Bits (FCB), counting the run of {1} for each flag

​ int FCBM = 0; // Flag Count Bit Merge (FCBM), merging the number of {1} to a flag in each flag run

​ char[] FI = DEFI[1].toCharArray();// flag information string

​ char[] MANSChars = DEFI[0].replaceAll("[, \\[\\]]", "").toCharArray();

​ int[] DE = new int [MANSChars.length]; // remove brackets comma and pace from string and converting the string

to Char

​ int[] DE2 = new int [MANSChars.length]; // remove brackets comma and pace from string and converting the string

to Char

// sorting all the flags locations

​ for(int i = FI.length-1 ; i>-1 ;i--) {

​ if(FI[i]==48) {

​ fLoc++;

​ }else {

​ ​ fLoc++;

​ ​ F[count]=fLoc;

​ ​ count++;

​ ​ fLoc=0;

​ }

​ }

​ for (int a = 0; a < MANSChars.length; a++) {

​ if (MANSChars[a] == 48) {

​ ​ DE[a] = 0;

​ ​ DE2[a] = 0;

156

​ } else {

​ ​ DE[a] = 1;

​ ​ DE2[a] = 1;

​ }

​ }

​ int TF [] = new int[count];// resizing to the actual flag location length

​ for(int i=0;i<count;i++) {

​ ​ TF[i]=F[i];

​ }

​ ​ count=0;

// Decoding DE

​ for (int i=DE.length-1; i>-1; i--) {// determining the number of flags in the segment

​ if(DE[i]==0) {

​ ​ count++;​

​ }else if(i!=0&&DE[i-1]==1 && DE[i+1]==0){

​ for (int a=i;a>-1;a--) {

​ if(DE[a]==1) {

​ ​ FCB++;

​ }else {

​ ​ a=-1;}}}

​ ​ FCBM = FCB/2;

​ if (FCB > 2) {

​ ​ FCBM=1;}

​ ​ FC=FC+FCBM;

​ if(FC>=TF[b]) {

​ ​ count = 0;

​ for (int r=i; r>-1; r--) {// counting the number of {0} after the flag location to determine C

​ if(DE[r]==0) {

​ ​ count++;​ }}

​ for (int d =0, e=0; d<DE.length-1 ; d++,e++) {

​ if(d==i-1) { // if the location of the flag = the reading bit

​ ​ d=d+1; // if yes, move additional bit to avoid copying the detected flag

System.out.println("i= "+i+" d= "+d);

​ ​ e--;// reset e to previous value to copy the right bit after the detected flag

​ }else {

​ ​ DE2[e]=DE[d];// copying the data to new string, without the detected flag​

​ }}

if (count ==0) {

​ ​ count++;}

​ ​ String SC = Integer.toBinaryString(count-1);

​ for(int g=SC.length();g<com;g++) {

​ ​ SC=0+SC;}

157

​ ​ String[] ary = SC.split("");

​ for(int g=0;g<com;g++) {

​ ​ c[g]=Integer.parseInt(ary[g]);}

​ DE = new int[DE.length+com-2];

​ for (int g=0;g<DE.length;g++){

​ while (g<c.length) {

​ ​ DE[g]=c[g];

​ g++;}

​ ​ DE[g]=DE2[g-c.length];}

​ ​ DE2 = new int[DE.length+com-2];

​ ​ i=DE.length;

​ ​ FC=0;

​ ​ FCB=0;

​ if(TF.length==b+1) { //exit the loop if there is no more flags

​ ​ i=-1;

​ }else {

​ ​ b++; // move to the next flag check

​ }

​ }

​ FCB=0;

​ ​ FCBM=0;

​ ​ count=0;}

​ ​ String[] aryDE = new String [DE.length];

​ for(int g=0;g<DE.length;g++) {

​ ​ aryDE[g]=String.valueOf(DE[g]);}

​ return aryDE;}}

public class MANS2BIN {

public static String ConvertMans2Bin (String MansResults) {

//input data

 ​ StringBuilder BinResult = new StringBuilder();

 ​ char[] BinChars = MansResults.toCharArray();

// Initialising Bin

 ​ int initial = 1;

int j = 0;

​ int[] Mans = new int[MansResults.length()];

// Converting to Bin

​ if(BinChars[0]=='1') {

​ initial =1;}

for (int i=0;i<BinChars.length;i++){

​ if(BinChars[i]=='0'){

158

​ ​ Mans[j]=initial;

​ ​ BinResult.append(initial);

​ ​ j++;

​ } else { // if switch detected, A[i]=1 B[i+1]=0

​ if(initial == 0) {

​ ​ initial = 1;

​ }else {

​ ​ initial = 0;}}}

return BinResult.toString();}}

import java.math.BigInteger;

import java.util.Base64;

//send string of binary number with no spaces between the code to convert it to byte array then Base64

public class Binary2Base64 {

​ static String B2B64 (String BInput) {

​ byte[] Str2Byte = new BigInteger(BInput, 2).toByteArray();

 ​ String encoded = new String(Base64.getEncoder().encodeToString(Str2Byte)); ​

​ return encoded;}}

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.OutputStream;

import java.util.Base64;

// writing file from Base 64

public class Base642File {

​ public static String Base64ToFile (String data, String path) throws IOException{

​ byte[] d = Base64.getDecoder().decode(data);

​ try (OutputStream stream = new FileOutputStream(path)) {

​ stream.write(d);

 ​ stream.close();}

​ return path;}}

Output

Encoding DE

VGVzdGluZyBhIHRleHQgZmlsZSB1c2luZyBNQU5TIGFuZCBERS4=

1010100011001010111001101110100011010010110111001100111001000000110000100100000011101000110010101111000

0111010000100000011001100110100101101100011001010010000001110101011100110110100101101110011001110010000

0010011010100000101001110010100110010000001100001011011100110010000100000010001000100010100101110

the total bit of the original file = 303

Total number of switches = 157

MANS output =

010101010100010010010101010100010010010100010101000100101010010101001010001001001001000100101000000100

100001010010100000010001010100010010010101010100001000010001010100001010000001001001001001001010100101

159

010010100100010010010101010010100000010001010101010100010010010100101010010101001010001001001001000100

101000000101001001010101010000010101010010001001010101001001001010000001001000010101001010001001001001

0100001010000001010001010001010001010101001010100010

Original MANS data string length is 460

DE = [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0] = 35

Segment No to send 426, Seg length 35 Total bits of the flagInfo 672 Total DE bits to send = 707

Segment encoded = [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0]

Flag Information =

111011011011111010011011001100101100111111000111101111101001100111011011101101111011111101111100100111011

110100111010110111000111001100011111001111100111001100100110110001101111111000111000111101111100010010111

001110111100010001110011101110010110111011100011001110001110111000111110011001110111111100110011101101111

1001111111111101001100110010110111011110111111111000111110011001111100011111111001110111110111000011001110

011100111101110111011001111101100011111110011000100111110111110111111110001111011001011011100011101101101

100101110011111011000011001010111111011000100101101111011100011111110011110110110011001011101110000111001

01011101111011100001111111000100111000000

Decoding DE

DE=

010101010100010010010101010100010010010100010101000100101010010101001010001001001001000100101000000100

100001010010100000010001010100010010010101010100001000010001010100001010000001001001001001001010100101

010010100100010010010101010010100000010001010101010100010010010100101010010101001010001001001001000100

101000000101001001010101010000010101010010001001010101001001001010000001001000010101001010001001001001

0100001010000001010001010001010001010101001010100010

MANS to Binary

1010100011001010111001101110100011010010110111001100111001000000110000100100000011101000110010101111000

0111010000100000011001100110100101101100011001010010000001110101011100110110100101101110011001110010000

0010011010100000101001110010100110010000001100001011011100110010000100000010001000100010100101110

Bainary to Base 64

VGVzdGluZyBhIHRleHQgZmlsZSB1c2luZyBNQU5TIGFuZCBERS4=

3.​ Flag to Flag, Solution II.

import java.io.File;

public class Test2 {

​ public static void main(String[] args) throws Exception {

// converting the Base64 file to Binary

​ ​ File path = new File("/Users/od/Desktop/U.txt");

​ ​ String s = File2ByteArray.method(path);

​ ​ System.out.println(s);

​ ​ String f = Base64ToBinary.B642B(s);

​ ​ System.out.println(f);

​ ​ System.out.println("the total bit of the original file = "+f.length());

//converting Binary file to MANS

160

​ ​ String r = BIN2MANS.ConvertBin2Mans(f);

​ ​ System.out.println("MANS output = \n"+r);

//Data Extraction using F2F

​ ​ String t = DataExtraction.F2F(r, 3);

​ ​ System.out.println(t);}}

//Data Extraction, bits counted is only 0. 2 bits flag. flags placed according to the value of C. count start after the previous flag

and after the first segment.

import java.util.Arrays;

public class DataExtraction {

public static String F2F(String MANSInput, int com){

//Data Extraction

//Initialising DE

int EndOfData = 0; //initialising the end of data

int segNo=0;// the segment number of the data processed using Data Extraction

int j = MANSInput.length(); // the length of the MANS data received.

int[][] Pmans = new int[j][]; // copying the correct length of the flagged string to Pmans

int[][] Fpmans = new int[j][];// processing the MANS data to flag the value of C

int [][] c = new int[j][com];// identifying the length of C by the user from 'com' variable

int count = com - 1; // initialising variable count to calculate the value of C in decimal

int PCdec=0; // initialising a variable to store the previous flag location

int Cdec= 0; //defining the value of C

int po=0;​//defining the power to convert the C to decimal

int sgRun = 0; // sgRun to identify the bit number in the data string and to shift data before placing the flag, start count after C

int segCount = 0; //to count the number of segments to process

int f = -1; // f is to count the number of repeated bits, excluding switch

int Pf = 0; // defining the count of bits between previous flag and current flag

char[] BinChars = MANSInput.toCharArray();// copying data from MANSInput

// initialising segments ​ ​ ​

while (EndOfData == 0) {//Keep processing until the end of data

​ Pmans [segNo]= new int [j];//setting the right length of data of the current segment (reusing array for memory)

​ if(segNo==0) {// If this is the first segment, copy the data from MANSInput to Pmans and Fpmans

​ Fpmans [segNo]= new int [j];//setting the right length of data of the current segment (reusing array for memory)

​ for (int a = 0; a < MANSInput.length(); a++) {

​ if (BinChars[a] == 48) {

​ ​ Pmans[segNo][a] = 0;

​ ​ Fpmans[segNo][a] = 0;

​ ​ } else {

​ ​ Pmans[segNo][a] = 1;

​ ​ Fpmans[segNo][a] = 1;

​ ​ }}

​ }else {// if this is not the first segment

​ ​ for (int a=0;a<j;a++) {// loop until the end of the current segment length

161

​ ​ if(segCount==1) {

​ ​ Pmans[segNo][a]=Fpmans[segNo-1][a];// copy the previous segment to new one

​ ​ }else {

​ ​ if(Pmans[segNo].length>a) {

​ ​ Pmans[segNo][a]=Fpmans[segNo][a]; // copy the previous segment to new one

​ ​ }}}

​ ​ Fpmans [segNo]= new int [j];}

//value of C, counting the number of bits in C from the LSB and convert it to decimal

​ for (int b = 0; b < c[segNo].length; b++) {

​ ​ c[segNo][b] = Pmans[segNo][b]; // C(PMAS) obtained (binary from MSB)

​ ​ if (c[segNo][b] == 1) {

​ ​ po = (int) Math.pow(2, count);

​ ​ Cdec = Cdec + po; // C(PMANS) obtained decimal value of C (from LSB)

​ ​ count--;

​ ​ } else {

​ ​ count--;

​ ​ Pf++;

​ ​ }}

// counting the number of bits between flags

​ ​ if(segNo!=0) {

​ ​ Cdec = (PCdec - Pf) + Cdec+1;}

//flagging the segments

 ​ ​ for (int d=c[segNo].length;d<Pmans[segNo].length-1;d++) //start counting after C until the end of Pmans

​ ​ {

​ ​ Fpmans[segNo][sgRun]=Pmans[segNo][d];

​ ​ if(Cdec==0) { // if C = 0 then flag the first two bits after C

​ ​ if(segNo==0) {

​ ​ Fpmans[segNo][sgRun]=1;

​ ​ sgRun++;

​ ​ Fpmans[segNo][sgRun]=1;

​ ​ sgRun++;

​ ​ Cdec=-1; // change the value of the flag after flagging it to exit the loop.

​ ​ }

​ ​ Fpmans[segNo][sgRun]=Pmans[segNo][d];

​ ​ }else if(Fpmans[segNo][sgRun]==0){ // if C>1 and there is no switch in this bit increment the flag count

​ ​ ​ f++;

​ ​ ​ if(f==Cdec) { // if the flag = C value, flag the current bit

​ ​ ​ sgRun++;

​ ​ ​ Fpmans[segNo][sgRun]=1;

​ ​ ​ sgRun++;

​ ​ ​ Fpmans[segNo][sgRun]=1; }}

​ ​ sgRun++;

162

​ ​ }

​ ​ if(f<=Cdec&&f!=-1) { // When C not equal to the segment length exit

​ ​ System.out.println("****** Segment "+segCount+" flag number is smaller then C, flag has not been

 ​ ​ placed, send priviouse segment ****** " +" Segment "+ (segCount-1)+" with length =

 ​ ​ "+Fpmans[segNo].length);

​ ​ EndOfData=1;

​ ​ }else {

​ ​ System.out.println("\n"+"********** Segment "+segCount+ ": is "+Arrays.toString(Fpmans[segNo])+"

**********" + "\n Segment length = "+Fpmans[segNo].length);

​ ​ System.out.println("Flag Number after is "+ Pf);}

//reseting variables​ ​

​ ​ f=-1;

​ ​ count = com - 1;

​ ​ po=0;

​ ​ PCdec = Cdec;

​ ​ Cdec = 0;

​ ​ sgRun=0;

​ ​ Pf=0;

​ ​ j=j-(com-2);

​ ​ segCount++;

​ ​ if(segNo==0) {

​ ​ segNo++;

​ ​ }

​ ​ System.out.println("Original MANS data string length is " + MANSInput.length());

​ ​ System.out.println("DE = " + Arrays.toString(Pmans[segNo])+" = " + Pmans[segNo].length);

​ ​ System.out.println("Segment No to send " + (segCount-1) + ", Seg length " + Pmans[segNo].length);

return Arrays.toString(Pmans[segNo]);

Output

VGVzdGluZyBhIHRleHQgZmlsZSB1c2luZyBNQU5TIGFuZCBERS4=

1010100011001010111001101110100011010010110111001100111001000000110000100100000011101000110010101111000

0111010000100000011001100110100101101100011001010010000001110101011100110110100101101110011001110010000

0010011010100000101001110010100110010000001100001011011100110010000100000010001000100010100101110

the total bit of the original file = 303

Total number of switches = 157

MANS output =

010101010100010010010101010100010010010100010101000100101010010101001010001001001001000100101000000100

100001010010100000010001010100010010010101010100001000010001010100001010000001001001001001001010100101

010010100100010010010101010010100000010001010101010100010010010100101010010101001010001001001001000100

101000000101001001010101010000010101010010001001010101001001001010000001001000010101001010001001001001

0100001010000001010001010001010001010101001010100010

Original MANS data string length is 460

163

DE = [1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1,

0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0,

0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0,

1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,

1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0,

1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0,

1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0] = 391

Segment No to send 68, Seg length 391

4.​ Flag to Flag including Flag Information, Solution III.

// Data Extraction Solution III C to flag if C>previous flag. Flag to flag if C<Privouse flag

​ public static String C2F2F(String MANSInput, int com){

​ ​ // Data Extraction

​ ​ //Initialising DE

​ ​ int EndOfData = 0; //initialising the end of data

​ ​ int segNo=0;

​ ​ int j = MANSInput.length(); // the length of the MANS data received.

​ ​ int [][] Pmans = new int [j][]; // copying the correct length of the converted MANS string to Pmans

​ ​ int [][] Fpmans = new int [j][];

​ ​ int [][] c = new int[j][com];

​ ​ int count = com - 1; // initialising variable count to calculate the value of C in decimal

​ ​ int PCdec=0;

​ ​ int Cdec= 0; //defining dec value of the first 4 bits

​ ​ int po=0;​ //defining the power to convert the first 4 bits to decimal

​ ​ int sgRun = 0; // sgRun to shift data before placing flag, start count after C

​ ​ int segCount = 0;

​ ​ int f = -1; // f is to count the number of repeated bits, excluding switch

​ ​ int Pf = 0;

​ ​ StringBuffer flagInfo = new StringBuffer(); // the flags information stored for each segment

​ ​ char[] BinChars = MANSInput.toCharArray();// copying data from MANSInput

// initialising segments ​ ​ ​

​ while (EndOfData == 0) {

​ ​ ​ Pmans [segNo]= new int [j];

​ ​ ​ if(segNo==0) {

​ ​ ​ ​ Fpmans [segNo]= new int [j];

​ ​ ​ ​ ​ for (int a = 0; a < MANSInput.length(); a++) {

​ ​ ​ ​ ​ ​ if (BinChars[a] == 48) {

​ ​ ​ ​ ​ ​ ​ Pmans[segNo][a] = 0;

​ ​ ​ ​ ​ ​ ​ Fpmans[segNo][a] = 0;

​ ​ ​ ​ ​ ​ } else {

164

​ ​ ​ ​ ​ ​ ​ Pmans[segNo][a] = 1;

​ ​ ​ ​ ​ ​ ​ Fpmans[segNo][a] = 1;

​ ​ ​ ​ ​ ​ }}}else {

​ ​ ​ ​ for (int a=0;a<j;a++) {

​ ​ ​ ​ ​ if(segCount==1) {

​ ​ ​ ​ Pmans[segNo][a]=Fpmans[segNo-1][a];

​ ​ ​ ​ ​ }else {

​ ​ ​ ​ ​ if(Pmans[segNo].length>a) {

​ ​ ​ ​ ​ Pmans[segNo][a]=Fpmans[segNo][a]; }}}

​ ​ ​ ​ Fpmans [segNo]= new int [j];}

//value of C, counting the number of bits from the LSB and converting C to decimal

​ ​ ​ ​ for (int b = 0; b < c[segNo].length; b++) {

​ ​ ​ ​ ​ c[segNo][b] = Pmans[segNo][b]; // C(PMAS) obtained (binary from MSB)

​ ​ ​ ​ ​ if (c[segNo][b] == 1) {

​ ​ ​ ​ ​ ​ po = (int) Math.pow(2, count);

​ ​ ​ ​ ​ ​ Cdec = Cdec + po; // C(PMANS) obtained decimal value of C

(from LSB)

​ ​ ​ ​ ​ ​ count--;

​ ​ ​ ​ ​ } else {

​ ​ ​ ​ ​ ​ count--;

​ ​ ​ ​ ​ Pf++;}}

​ ​ ​ System.out.println("C= "+Arrays.toString(c[segNo])+" = "+Cdec);

​ ​ // checking if the current flag > or < than the last flag

​ ​ ​ if(segNo!=0 && PCdec-Pf>=Cdec) {

​ ​ ​ ​ Cdec = (PCdec - Pf) + Cdec+1;

//​ ​ ​ ​ System.out.println("Current flag < last flag C changed, (Last C "+Cdec+" - number of

0's in current C "+ Pf[segNo]+" + C = " + Cdec+")");

​ ​ ​ ​ flagInfo.append(1); //store the flag order (1st flag from LSB)

​ ​ ​ }else{

​ ​ ​ ​ flagInfo.append(0); //store the flag order (1st flag from LSB)}

//flagging the segments

​ ​ ​ for (int d=c[segNo].length;d<Pmans[segNo].length-1;d++) //start counting after C until the end

of Pmans

​ ​ ​ {

​ ​ ​ Fpmans[segNo][sgRun]=Pmans[segNo][d];

​ ​ ​ ​ if(Cdec==0) { // if C = 0 then flag the first two bits after C

​ ​ ​ ​ if(segNo==0) {

​ ​ ​ ​ ​ Fpmans[segNo][sgRun]=1;

​ ​ ​ ​ sgRun++;

​ ​ ​ ​ ​ Fpmans[segNo][sgRun]=1;

​ ​ ​ ​ sgRun++;

​ ​ ​ ​ ​ Cdec=-1; // change the value of the flag after flagging it to exit the loop.

165

​ ​ ​ ​ }

​ ​ ​ Fpmans[segNo][sgRun]=Pmans[segNo][d];

​ ​ ​ ​ }else if(Fpmans[segNo][sgRun]==0){ // if C>1 and there is no switch in this bit

increment the flag count

​ ​ ​ ​ ​ f++;

​ ​ ​ ​ ​ if(f==Cdec) { // if the flag = C value, flag the current bit

​ ​ ​ ​ ​ sgRun++;

​ ​ ​ ​ ​ ​ Fpmans[segNo][sgRun]=1;

​ ​ ​ ​ ​ sgRun++;

​ ​ ​ ​ ​ ​ Fpmans[segNo][sgRun]=1; }}

​ ​ ​ sgRun++;}

​ ​ ​ if(f<=Cdec&&f!=-1) { // When C not equal to the segment length exit

​ ​ ​ ​ System.out.println("****** Segment "+segCount+" flag number is smaller then C,

flag has not been placed, send priviouse segment ****** " +" Segment "+ (segCount-1)+" with length =

"+Fpmans[segNo].length);

​ ​ ​ EndOfData=1;

​ ​ ​ }else {

​ ​ ​ System.out.println("\n"+"********** Segment "+segCount+ ": is

"+Arrays.toString(Fpmans[segNo])+" **********" + "\n Segment length = "+Fpmans[segNo].length);

​ ​ ​ System.out.println("Flag Number after is "+ Pf);

​ ​ ​ System.out.println("Flag Information: "+flagInfo+" = "+flagInfo.length()+ " bits"); }

​ ​ ​ f=-1;

​ ​ ​ count = com - 1;

​ ​ ​ po=0;

​ ​ ​ PCdec = Cdec;

​ ​ ​ Cdec = 0;

​ ​ ​ sgRun=0;

​ ​ ​ Pf=0;

​ ​ ​ j=j-(com-2);

​ ​ ​ segCount++;

​ ​ ​ if(segNo==0) {

​ ​ ​ segNo++;}

​ return Arrays.toString(Pmans[segNo]);}

Output:

VGVzdGluZyBhIHRleHQgZmlsZSB1c2luZyBNQU5TIGFuZCBERS4=

1010100011001010111001101110100011010010110111001100111001000000110000100100000011101000110010101111000

0111010000100000011001100110100101101100011001010010000001110101011100110110100101101110011001110010000

0010011010100000101001110010100110010000001100001011011100110010000100000010001000100010100101110

the total bit of the original file = 303

Total number of switches = 157

MANS output =

166

010101010100010010010101010100010010010100010101000100101010010101001010001001001001000100101000000100

100001010010100000010001010100010010010101010100001000010001010100001010000001001001001001001010100101

010010100100010010010101010010100000010001010101010100010010010100101010010101001010001001001001000100

101000000101001001010101010000010101010010001001010101001001001010000001001000010101001010001001001001

0100001010000001010001010001010001010101001010100010

Orginal MANS data string length is 460

Flag Information: 001010010011 = 72 bits

Flag Information to send: 0010100100

DE = [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0,

1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0,

0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,

1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,

1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1,

0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1,

1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,

0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0] = 388

Segment No to send 71, Seg length 388 Total bits of the flagInfo 72 Total DE bits to send = 460

167

Appendix B

Original File MANS C=4 - Solution I - Flag Information
File Name Category Original file

size/Bits
Number of

switches/Bits MANS/Bits Number of processed
segments DE/Bits Flags

info/Bits Total/Bits Compression% Ratio

a.txt The letter 'a' 7 2 9 2 7 1 8 -14.29 0.88

aaa.txt The letter 'a', repeated 100,000
times. 799,999 399,998 1,199,997 599,978 43 1,144,406 1,144,449 -43.06 0.70

alice29.txt English text 1,216,708 604,973 1,821,681 910,819 45 1,817,335 1,817,380 -49.37 0.67

alphabet.txt
Enough repetitions of the
alphabet to fill 100,000
characters

799,999 430,767 1,230,766 615,363 42 1,248,312 1,248,354 -56.04 0.64

asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 758,108 45 1,506,835 1,506,880 -50.47 0.66

bible.txt Bibliography (refer format) 32,379,135 16,162,217 48,541,352 24,270,657 40 48,905,51
2 48,905,552 -51.04 0.66

bible.txt The King James version of the
bible 32,379,135 16,162,217 48,541,352 24,270,657 40 48,905,51

2 48,905,552 -51.04 0.66

book1 Fiction book 6,150,166 3,116,671 9,266,837 4,633,396 47 9,242,301 9,242,348 -50.28 0.67

book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 3,690,166 45 7,349,190 7,349,235 -50.39 0.66

cp.html HTML source 196,822 98,909 295,731 147,848 37 295,858 295,895 -50.34 0.67

E.coli Complete genome of the E.
Coli bacterium 37,109,519 18,554,758 55,664,277 27,832,120 39 56,784,02

9 56,784,068 -53.02 0.65

fields.c C source 89,198 44,627 133,825 66,894 39 134,686 134,725 -51.04 0.66

geo Geophysical data 819,199 277,687 1,096,886 548,429 30 1,083,426 1,083,456 -32.26 0.76

grammar.lsp LISP source 29,766 14,837 44,603 22,277 51 44,901 44,952 -51.02 0.66

kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 5,020,183 34 9,267,540 9,267,574 -12.50 0.89

lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 2,581,863 45 5,138,339 5,138,384 -50.51 0.66

news USENET batch file 3,016,870 1,546,897 4,563,767 2,281,862 45 4,542,195 4,542,240 -50.56 0.66

obj1 Object code for VAX 172,028 60,703 232,731 116,353 27 220,619 220,646 -28.26 0.78

obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 1,355,112 49 2,696,858 2,696,907 -36.59 0.73

paper1 Technical paper 425,286 216,497 641,783 320,871 43 638,049 638,092 -50.04 0.67

paper2 Technical paper 657,590 336,453 994,043 497,000 45 989,541 989,586 -50.49 0.66

paper3 Technical paper 372,206 191,713 563,919 281,940 41 560,187 560,228 -50.52 0.66

paper4 Technical paper 106,286 54,559 160,845 80,402 43 160,305 160,348 -50.86 0.66

paper5 Technical paper 95,630 48,451 144,081 72,019 45 143,432 143,477 -50.03 0.67

paper6 Technical paper 304,838 153,543 458,381 229,171 41 457,161 457,202 -49.98 0.67

pic Black and white fax picture 4,071,671 90,951 4,162,622 2,081,299 26 2,605,623 2,605,649 36.01 1.56

plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 2,899,904 43 5,779,446 5,779,489 -49.93 0.67

progc Source code in "C" 316,886 159,267 476,153 238,057 41 478,914 478,955 -51.14 0.66

progl Source code in LISP 573,166 288,491 861,657 430,807 45 865,572 865,617 -51.02 0.66

progp Source code in PASCAL 395,031 192,299 587,330 293,643 46 584,815 584,861 -48.05 0.68

ptt5 CCITT test set 4,071,671 90,951 4,162,622 2,081,299 26 2,605,623 2,605,649 36.01 1.56

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 626,164 40 1,307,693 1,307,733 -63.47 0.61

SHA1SUM SPARC Executable 6,886 3,389 10,275 5,117 43 10,160 10,203 -48.17 0.67

sum SPARC Executable 305,919 97,635 403,554 201,765 26 389,571 389,597 -27.35 0.79

trans Transcript of terminal session 749,559 372,119 1,121,678 560,827 26 1,130,813 1,130,839 -50.87 0.66

world192.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 14,854,695 43 29,615,96
8 29,616,011 -49.67 0.67

xargs.1 GNU manual page 33,814 17,701 51,515 25,736 45 51,355 51,400 -52.01 0.66

168

Original File MANS C=5 - Solution I - Flag Information

File Name Category File size/Bits Number of
switches/Bits MANS/Bits Number of

processed segments DE/Bits Flags
info/Bits Total/Bits Compression

% Ratio

a.txt The letter 'a' 7 2 9 2 6 1 7 0.00 1.00

aaa.txt The letter 'a', repeated 100,000
times. 799,999 399,998 1,199,997 399,977 69 1,094,870 1,094,939 -36.87 0.73

alice29.txt English text 1,216,708 604,973 1,821,681 607,205 69 1,669,684 1,669,753 -37.24 0.73

alphabet.txt
Enough repetitions of the
alphabet to fill 100,000
characters

799,999 430,767 1,230,766 410,233 70 1,129,870 1,129,940 -41.24 0.71

asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 505,397 71 1,391,778 1,391,849 -38.99 0.72

bible.txt Bibliography (refer format) 32,379,135 16,162,217 48,541,352 16,180,429 68 44,485,025 44,485,093 -37.39 0.73

bible.txt The King James version of the
bible 32,379,135 16,162,217 48,541,352 16,180,429 68 44,485,025 44,485,093 -37.39 0.73

book1 Fiction book 6,150,166 3,116,671 9,266,837 3,088,923 71 8,493,095 8,493,166 -38.10 0.72

book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 2,460,102 72 6,772,595 6,772,667 -38.59 0.72

cp.html HTML source 196,822 98,909 295,731 98,556 66 270,771 270,837 -37.61 0.73

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 18,554,737 69 49,124,127 49,124,196 -32.38 0.76

fields.c C source 89,198 44,627 133,825 44,588 64 122,996 123,060 -37.96 0.72

geo Geophysical data 819,199 277,687 1,096,886 365,612 53 989,203 989,256 -20.76 0.83

grammar.lsp LISP source 29,766 14,837 44,603 14,843 77 41,049 41,126 -38.16 0.72

kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 3,346,783 52 8,883,945 8,883,997 -7.84 0.93

lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 1,721,234 70 4,734,867 4,734,937 -38.69 0.72

news USENET batch file 3,016,870 1,546,897 4,563,767 1,521,234 68 4,191,644 4,191,712 -38.94 0.72

obj1 Object code for VAX 172,028 60,703 232,731 77,565 39 208,504 208,543 -21.23 0.82

obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 903,399 77 2,456,268 2,456,345 -24.40 0.80

paper1 Technical paper 425,286 216,497 641,783 213,904 74 588,300 588,374 -38.35 0.72

paper2 Technical paper 657,590 336,453 994,043 331,324 74 910,181 910,255 -38.42 0.72

paper3 Technical paper 372,206 191,713 563,919 187,950 72 517,639 517,711 -39.09 0.72

paper4 Technical paper 106,286 54,559 160,845 53,592 72 147,560 147,632 -38.90 0.72

paper5 Technical paper 95,630 48,451 144,081 48,003 75 132,034 132,109 -38.15 0.72

paper6 Technical paper 304,838 153,543 458,381 152,774 62 419,859 419,921 -37.75 0.73

pic Black and white fax picture 4,071,671 90,951 4,162,622 1,387,527 44 3,289,676 3,289,720 19.20 1.24

plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 1,933,260 72 5,313,683 5,313,755 -37.84 0.73

progc Source code in "C" 316,886 159,267 476,153 158,695 71 437,736 437,807 -38.16 0.72

progl Source code in LISP 573,166 288,491 861,657 287,196 72 792,077 792,149 -38.21 0.72

progp Source code in PASCAL 395,031 192,299 587,330 195,754 71 539,660 539,731 -36.63 0.73

ptt5 CCITT test set 4,071,671 90,951 4,162,622 1,387,527 44 3,289,676 3,289,720 19.20 1.24

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 417,433 70 1,160,923 1,160,993 -45.12 0.69

SHA1SUM SPARC Executable 6,886 3,389 10,275 3,404 66 9,239 9,305 -35.13 0.74

sum SPARC Executable 305,919 97,635 403,554 134,505 42 358,250 358,292 -17.12 0.85

trans Transcript of terminal session 749,559 372,119 1,121,678 373,880 41 1,026,973 1,027,014 -37.02 0.73

world192.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 9,903,121 71 27,242,157 27,242,228 -37.68 0.73

xargs.1 GNU manual page 33,814 17,701 51,515 17,148 74 47,252 47,326 -39.96 0.71

169

Original File MANS C=6 - Solution I - Flag Information

File Name Category File size/Bits Number of
switches/Bits MANS/Bits

Number of
processed
segments

DE/Bits Flags
info/Bits Total/Bits Compression

% Ratio

a.txt The letter 'a' 7 2 9 0 7 0 7 0.00 1.00

aaa.txt The letter 'a', repeated 100,000
times. 799,999 399,998 1,199,997 299,969 125 1,180,341 1,180,466 -47.56 0.68

alice29.txt English text 1,216,708 604,973 1,821,681 455,391 121 1,795,795 1,795,916 -47.60 0.68

alphabet.txt
Enough repetitions of the
alphabet to fill 100,000
characters

799,999 430,767 1,230,766 307,662 122 1,214,584 1,214,706 -51.84 0.66

asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 379,033 131 1,494,992 1,495,123 -49.30 0.67

bible.txt Bibliography (refer format) 32,379,135 16,162,217 48,541,352 12,135,308 124 47,833,098 47,833,222 -47.73 0.68

bible.txt The King James version of the
bible 32,379,135 16,162,217 48,541,352 12,135,308 124 47,833,098 47,833,222 -47.73 0.68

book1 Fiction book 6,150,166 3,116,671 9,266,837 2,316,678 129 9,171,829 9,171,958 -49.13 0.67

book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 1,845,063 127 7,293,449 7,293,576 -49.25 0.67

cp.html HTML source 196,822 98,909 295,731 73,905 115 291,711 291,826 -48.27 0.67

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 13,916,040 121 54,728,921 54,729,042 -47.48 0.68

fields.c C source 89,198 44,627 133,825 33,427 121 131,330 131,451 -47.37 0.68

geo Geophysical data 819,199 277,687 1,096,886 274,197 102 1,035,882 1,035,984 -26.46 0.79

grammar.lsp LISP source 29,766 14,837 44,603 11,118 135 43,801 43,936 -47.60 0.68

kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 2,510,077 94 8,801,579 8,801,673 -6.84 0.94

lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 1,290,910 133 5,092,667 5,092,800 -49.17 0.67

news USENET batch file 3,016,870 1,546,897 4,563,767 1,140,911 127 4,503,305 4,503,432 -49.27 0.67

obj1 Object code for VAX 172,028 60,703 232,731 58,165 75 217,341 217,416 -26.38 0.79

obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 677,536 131 2,605,719 2,605,850 -31.98 0.76

paper1 Technical paper 425,286 216,497 641,783 160,415 127 633,175 633,302 -48.91 0.67

paper2 Technical paper 657,590 336,453 994,043 248,480 127 981,384 981,511 -49.26 0.67

paper3 Technical paper 372,206 191,713 563,919 140,948 131 555,853 555,984 -49.38 0.67

paper4 Technical paper 106,286 54,559 160,845 40,180 129 159,305 159,434 -50.00 0.67

paper5 Technical paper 95,630 48,451 144,081 35,989 129 141,974 142,103 -48.60 0.67

paper6 Technical paper 304,838 153,543 458,381 114,565 125 453,440 453,565 -48.79 0.67

pic Black and white fax picture 4,071,671 90,951 4,162,622 1,040,638 74 2,955,561 2,955,635 27.41 1.38

plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 1,449,930 133 5,732,241 5,732,374 -48.70 0.67

progc Source code in "C" 316,886 159,267 476,153 119,007 129 468,862 468,991 -48.00 0.68

progl Source code in LISP 573,166 288,491 861,657 215,384 125 850,586 850,711 -48.42 0.67

progp Source code in PASCAL 395,031 192,299 587,330 146,801 130 572,007 572,137 -44.83 0.69

ptt5 CCITT test set 4,071,671 90,951 4,162,622 1,040,638 74 2,955,561 2,955,635 27.41 1.38

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 313,060 130 1,257,159 1,257,289 -57.16 0.64

SHA1SUM SPARC Executable 6,886 3,389 10,275 2,539 123 10,116 10,239 -48.69 0.67

sum SPARC Executable 305,919 97,635 403,554 100,869 82 372,871 372,953 -21.91 0.82

trans Transcript of terminal session 749,559 372,119 1,121,678 280,402 74 1,102,756 1,102,830 -47.13 0.68

world192.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 7,427,326 131 29,269,278 29,269,409 -47.92 0.68

xargs.1 GNU manual page 33,814 17,701 51,515 12,849 123 50,743 50,866 -50.43 0.66

170

Original File MANS C=7 - Solution I - Flag Information

File Name Category File size/Bits Number of
switches/Bits MANS/Bits Number of

processed segments DE/Bits Flags
info/Bits Total/Bits Compression

% Ratio

a.txt The letter 'a' 7 2 9 0 7 0 7 0.00 1.00

aaa.txt The letter 'a', repeated 100,000
times. 799,999 399,998 1,199,997 239,954 232 1,449,075 1,449,307 -81.16 0.55

alice29.txt English text 1,216,708 604,973 1,821,681 364,294 216 2,194,451 2,194,667 -80.38 0.55

alphabet.txt
Enough repetitions of the
alphabet to fill 100,000
characters

799,999 430,767 1,230,766 246,106 241 1,480,567 1,480,808 -85.10 0.54

asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 303,204 244 1,831,737 1,831,981 -82.94 0.55

bible.txt Bibliography (refer format) 32,379,135 16,162,217 48,541,352 9,708,224 237 58,501,809 58,502,046 -80.68 0.55

bible.txt The King James version of the
bible 32,379,135 16,162,217 48,541,352 9,708,224 237 58,501,809 58,502,046 -80.68 0.55

book1 Fiction book 6,150,166 3,116,671 9,266,837 1,853,321 237 11,179,607 11,179,844 -81.78 0.55

book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 1,476,028 240 8,909,802 8,910,042 -82.33 0.55

cp.html HTML source 196,822 98,909 295,731 59,102 226 356,016 356,242 -81.00 0.55

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 11,132,810 232 66,237,740 66,237,972 -78.49 0.56

fields.c C source 89,198 44,627 133,825 26,720 230 161,053 161,283 -80.81 0.55

geo Geophysical data 819,199 277,687 1,096,886 219,339 196 1,276,663 1,276,859 -55.87 0.64

grammar.lsp LISP source 29,766 14,837 44,603 8,873 243 53,287 53,530 -79.84 0.56

kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 2,008,043 188 11,198,058 11,198,246 -35.93 0.74

lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 1,032,706 244 6,234,671 6,234,915 -82.63 0.55

news USENET batch file 3,016,870 1,546,897 4,563,767 912,708 232 5,510,086 5,510,318 -82.65 0.55

obj1 Object code for VAX 172,028 60,703 232,731 46,519 141 270,684 270,825 -57.43 0.64

obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 542,006 246 3,200,664 3,200,910 -62.11 0.62

paper1 Technical paper 425,286 216,497 641,783 128,310 238 774,213 774,451 -82.10 0.55

paper2 Technical paper 657,590 336,453 994,043 198,762 238 1,200,210 1,200,448 -82.55 0.55

paper3 Technical paper 372,206 191,713 563,919 112,736 244 680,091 680,335 -82.78 0.55

paper4 Technical paper 106,286 54,559 160,845 32,121 245 193,673 193,918 -82.45 0.55

paper5 Technical paper 95,630 48,451 144,081 28,767 251 173,761 174,012 -81.96 0.55

paper6 Technical paper 304,838 153,543 458,381 91,630 236 552,319 552,555 -81.26 0.55

pic Black and white fax picture 4,071,671 90,951 4,162,622 832,497 142 3,931,521 3,931,663 3.44 1.04

plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 1,159,923 239 7,000,115 7,000,354 -81.60 0.55

progc Source code in "C" 316,886 159,267 476,153 95,183 243 576,240 576,483 -81.92 0.55

progl Source code in LISP 573,166 288,491 861,657 172,284 242 1,040,531 1,040,773 -81.58 0.55

progp Source code in PASCAL 395,031 192,299 587,330 117,417 250 707,814 708,064 -79.24 0.56

ptt5 CCITT test set 4,071,671 90,951 4,162,622 832,497 142 3,931,521 3,931,663 3.44 1.04

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 250,428 231 1,531,701 1,531,932 -91.49 0.52

SHA1SUM SPARC Executable 6,886 3,389 10,275 2,009 235 11,946 12,181 -76.90 0.57

sum SPARC Executable 305,919 97,635 403,554 80,682 149 461,649 461,798 -50.95 0.66

trans Transcript of terminal session 749,559 372,119 1,121,678 224,308 143 1,355,437 1,355,580 -80.85 0.55

world192.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 5,941,840 236 35,851,699 35,851,935 -81.19 0.55

xargs.1 GNU manual page 33,814 17,701 51,515 10,257 235 61,980 62,215 -83.99 0.54

171

Appendix C

The Figures below show that all tested files for Solution I of the Canterbury Corpus follow the

same pattern, the Number of processed segments decrease as increases and results from Data 𝐶
𝑙

Extraction and flag information increase as increases from when . The lowest 𝐶
𝑙

𝐶
𝑙

≥ 5

generated results for Data Extraction occur when for all tested files. Compression 𝐶
𝑙

= 4

occurs for both pic and ptt5 files by ~3.4% to ~26% across the variation of C.

172

173

174

Appendix D

Original file MANS Data Extraction - Solution II - Flag to Flag- C=3

File Name Category
Original
file
size/Bits

Number of
switches/Bits MANS/Bits

Number of
processed
segments

Data
Extraction/
Bits

Compression
before
conversion

Compression
%

Number
of flags
(f)

DE to
Binary

Compression
after
conversion

%

a.txt The letter 'a' 7 2 9 1 9 -2 -28.57 0 7 0 0.00

aaa.txt The letter 'a', repeated 100,000
times. 799,999 399,998 1,199,997 183,672 1,016,326 -216,327 -27.04 119,107 518,742 281,257 35.16

alice29.txt English text 1,216,708 604,973 1,821,681 279,815 1,541,867 -325,159 -26.72 180,926 786,938 429,770 35.32

alphabet.txt Enough repetitions of the alphabet
to fill 100,000 characters 799,999 430,767 1,230,766 180,381 1,050,386 -250,387 -31.30 119,053 527,984 272,015 34.00

asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 228,620 1,287,640 -286,212 -28.58 149,210 653,454 347,974 34.75

bib Bibliography (refer format) 890,086 473,065 1,363,151 201,604 1,363,151 -473,065 -53.15 132,462 585,273 304,813 34.25

book1 Fiction book 6,150,166 3,116,671 9,266,837 1,406,231 7,860,607 -1,710,441 -27.81 915,225 4,003,131 2,147,035 34.91

book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 1,116,273 6,264,103 -1,377,257 -28.18 727,703 3,184,225 1,702,621 34.84

cp.html HTML source 196,822 98,909 295,731 45,136 250,596 -53,774 -27.32 29,333 127,752 69,070 35.09

fields.c C source 89,198 44,627 133,825 20,316 113,510 -24,312 -27.26 13,223 58,229 30,969 34.72

geo Geophysical data 819,199 277,687 1,096,886 202,760 894,127 -74,928 -9.15 120,934 488,016 331,183 40.43

grammar.lsp LISP source 29,766 14,837 44,603 6,838 37,766 -8,000 -26.88 4,441 19,318 10,448 35.10

pic Black and white fax picture 4,071,671 90,951 4,162,622 1,219,171 2,943,452 1,128,219 27.71 542,542 1,825,358 2,246,313 55.17

ptt5 CCITT test set 4,071,671 90,951 4,162,622 1,219,171 2,943,452 1,128,219 27.71 573,670 2,505,396 1,566,275 55.17

kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 2,184,226 7,856,173 381,775 4.63 1,186,600 4,486,966 3,750,982 45.53

lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 778,227 4,385,543 -971,515 -28.46 508,078 2,229,430 1,184,598 34.70

news USENET batch file 3,016,870 1,546,897 4,563,767 689,650 3,874,188 -857,318 -28.42 449,556 1,964,765 1,052,105 34.87

obj1 Object code for VAX 172,028 60,703 232,731 42,290 190,442 -18,414 -10.70 24,905 129,179 42,849 24.91

obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 481,898 2,228,374 -253,885 -12.86 289,328 1,197,036 777,453 39.37

paper1 Technical paper 425,286 216,497 641,783 96,875 544,909 -119,623 -28.13 63,318 277,729 147,557 34.70

paper2 Technical paper 657,590 336,453 994,043 150,025 844,019 -186,429 -28.35 97,871 428,863 228,727 34.78

paper3 Technical paper 372,206 191,713 563,919 84,837 479,083 -106,877 -28.71 55,355 243,121 129,085 34.68

paper4 Technical paper 106,286 54,559 160,845 24,228 136,618 -30,332 -28.54 15,783 69,437 36,849 34.67

paper5 Technical paper 95,630 48,451 144,081 21,798 122,284 -26,654 -27.87 14,230 62,378 33,252 34.77

paper6 Technical paper 304,838 153,543 458,381 69,681 388,701 -83,863 -27.51 45,419 198,435 106,403 34.90

pi.txt The first million digits of pi 7,999,998 3,800,828 11,800,826 11,800,826 9,953,360 -1,953,362 -24.42 1,186,834 5,138,891 2,861,107 35.76

plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 882,612 4,917,238 -1,062,354 -27.56 573,670 2,505,396 1,349,488 35.01

progc Source code in "C" 316,886 159,267 476,153 72,352 403,802 -86,916 -27.43 47,244 206,604 110,282 34.80

progl Source code in LISP 573,166 288,491 861,657 131,207 730,451 -157,285 -27.44 85,531 372,668 200,498 34.98

progp Source code in PASCAL 395,031 192,299 587,330 90,881 496,450 -101,419 -25.67 58,688 255,628 139,403 35.29

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 178,741 1,073,626 -273,627 -34.20 119,244 533,436 266,563 33.32

SHA1SUM SPARC Executable 6,886 3,389 10,275 1,581 8,695 -1,809 -26.27 1,026 4,456 2,430 35.29

sum SPARC Executable 305,919 97,635 403,554 81,237 322,318 -16,399 -5.36 45,516 212,991 92,928 30.38

trans Transcript of terminal session 749,559 372,119 1,121,678 173,616 948,063 -198,504 -26.48 111,628 481,584 267,975 35.75

xargs.1 GNU manual page 33,814 17,701 51,515 7,658 43,858 -10,044 -29.70 5,070 22,197 11,617 34.36

bible.txt The King James version of the
bible 32,379,135 16,162,217 48,541,352 7,435,023 41,106,330 -8,727,195 -26.95 4,844,342 25,826,847 6,552,288 20.24

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 8,496,073 47,168,205 -10,058,686 -27.11 5,537,354 29,633,262 7,476,257 20.15

world.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 4,537,172 25,172,260 -5,385,062 -27.21 2,945,115 12,842,324 6,944,874 35.10

175

Original file MANS Data Extraction - Solution II - Flag to Flag- C=4

File Name Category
Original
file
size/Bits

Number of
switches/Bits MANS/Bits

Number of
processed
segments

Data
Extraction/
Bits

Compression
before
conversion

Compression
%

Number
of flags
(f)

DE to
Binary

Compression
after
conversion %

a.txt The letter 'a' 7 2 9 1 9 -2 -28.57 0 7 0 0%
aaa.txt The letter 'a', repeated 100,000

times. 799,999 399,998 1,199,997 115,808 968,383 -168,384 -21.05 78,436 541,008 258,991 32%
alice29.txt English text 1,216,708 604,973 1,821,681 160,401 1,500,881 -284,173 -23.36 112,261 851,369 365,339 30%
alphabet.txt Enough repetitions of the alphabet

to fill 100,000 characters 799,999 430,767 1,230,766 108,425 1,013,978 -213,979 -26.75 75,939 560,326 239,673 30%
asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 129,202 1,257,857 -256,429 -25.61 91,451 710,026 291,402 29%
bib Bibliography (refer format) 890,086 473,065 1,363,151 114,299 1,134,555 -244,469 -27.47 81,400 634,308 255,778 29%
book1 Fiction book 6,150,166 3,116,671 9,266,837 801,479 7,663,881 -1,513,715 -24.61 565,357 4,336,553 1,813,613 29%
book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 635,253 6,109,871 -1,223,025 -25.03 449,714 3,449,918 1,436,928 29%
cp.html HTML source 196,822 98,909 295,731 25,994 243,745 -46,923 -23.84 18,207 137,983 58,839 30%
fields.c C source 89,198 44,627 133,825 11,823 110,181 -20,983 -23.52 8,245 62,629 26,569 30%
geo Geophysical data 819,199 277,687 1,096,886 122,963 850,962 -31,763 -3.88 78,177 519,193 300,006 37%
grammar.lsp LISP source 29,766 14,837 44,603 4,008 36,589 -6,823 -22.92 2,790 20,747 9,019 30%
pic Black and white fax picture 4,071,671 90,951 4,162,622 809,980 2,542,664 1,529,007 37.55 355,963 1,797,920 2,273,751 56%
ptt5 CCITT test set 4,071,671 90,951 4,162,622 830,363 2,501,898 1,569,773 38.55 347,133 2,111,405 1,960,266 48%
kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 1,333,775 7,372,850 865,098 10.50 768,407 4,773,987 3,463,961 42%
lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 441,538 312,456 3,101,572 90.85 312,456 2,418,554 995,474 29%
news USENET batch file 3,016,870 1,546,897 4,563,767 394,321 3,775,127 -758,257 -25.13 278,724 2,125,169 891,701 30%
obj1 Object code for VAX 172,028 60,703 232,731 24,726 183,281 -11,253 -6.54 15,648 127,876 44,152 26%
obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 284,697 2,140,879 -166,390 -8.43 180,708 1,289,885 684,604 35%
paper1 Technical paper 425,286 216,497 641,783 55,172 531,441 -106,155 -24.96 39,130 300,799 124,487 29%
paper2 Technical paper 657,590 336,453 994,043 84,800 824,445 -166,855 -25.37 60,115 465,871 191,719 29%
paper3 Technical paper 372,206 191,713 563,919 48,029 467,863 -95,657 -25.70 33,972 263,987 108,219 29%
paper4 Technical paper 106,286 54,559 160,845 13,640 133,567 -27,281 -25.67 9,681 75,517 30,769 29%
paper5 Technical paper 95,630 48,451 144,081 12,426 119,231 -23,601 -24.68 8,789 67,582 28,048 29%
paper6 Technical paper 304,838 153,543 458,381 39,774 378,835 -73,997 -24.27 28,075 214,901 89,937 30%
pi.txt The first million digits of pi 7,999,998 3,800,828 11,800,826 1,056,121 9,688,586 -1,688,588 -21.11 735,451 5,571,236 2,428,762 30%
plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 502,386 4,795,079 -940,195 -24.39 356,573 3,071,722 783,162 20%
progc Source code in "C" 316,886 159,267 476,153 41,609 392,937 -76,051 -24.00 29,398 223,146 93,740 30%
progl Source code in LISP 573,166 288,491 861,657 76,580 708,499 -135,333 -23.61 53,703 400,661 172,505 30%
progp Source code in PASCAL 395,031 192,299 587,330 53,416 480,500 -85,469 -21.64 36,951 274,037 120,994 31%

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 178,741 1,073,626 -273,627 -34.20 119,244 533,436 266,563 33%

SHA1SUM SPARC Executable 6,886 3,389 10,275 896 8,485 -1,599 -23.22 623 4,855 2,031 29%
sum SPARC Executable 305,919 97,635 403,554 50,091 303,374 2,545 0.83 30,098 208,101 97,818 32%
trans Transcript of terminal session 749,559 372,119 1,121,678 103,337 915,006 -165,447 -22.07 70,822 514,103 235,456 31%
xargs.1 GNU manual page 33,814 17,701 51,515 4,310 42,897 -9,083 -26.86 3,126 24,125 9,689 29%
bible.txt The King James version of the

bible 32,379,135 16,162,217 48,541,352 4,433,968 39,673,418 -7,294,283 -22.53 3,074,735 25,438,004 6,941,131 21%

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 5,364,511 44,935,257 -7,825,738 -21.09 3,631,592 28,746,307 8,363,212 23%

world.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 2,596,413 24,516,607 -4,729,409 -23.90 1,824,494 13,898,401 5,888,797 30%

176

Original file MANS Data Extraction - Solution II - Flag to Flag- C=5

File Name Category
Original
file
size/Bits

Number of
switches/Bits MANS/Bits

Number of
processed
segments

Data
Extraction/
Bits

Compression
before
conversion

Compression
%

Number
of flags
(f)

DE to
Binary

Compression
after
conversion

%

a.txt The letter 'a' 7 2 9 1 9 -2 -28.57 0 7 0 0%
aaa.txt The letter 'a', repeated 100,000

times. 799,999 399,998 1,199,997 60,511 1,018,467 -218,468 -27.31 46,691 616,724 183,275 23%
alice29.txt English text 1,216,708 604,973 1,821,681 92,741 1,543,461 -326,753 -26.86 71,320 934,329 282,379 23%
alphabet.txt Enough repetitions of the alphabet

to fill 100,000 characters 799,999 430,767 1,230,766 58,764 1,054,477 -254,478 -31.81 45,912 625,727 174,272 22%
asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 74,845 1,291,727 -290,299 -28.99 57,986 776,645 224,783 22%
bib Bibliography (refer format) 890,086 473,065 1,363,151 65,916 1,165,406 -275,320 -30.93 51,318 693,750 196,336 22%
book1 Fiction book 6,150,166 3,116,671 9,266,837 463,329 7,876,853 -1,726,687 -28.08 358,075 4,752,671 1,397,495 23%
book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 366,607 6,280,557 -1,393,711 -28.52 2,833,964 3,783,911 1,102,935 23%
cp.html HTML source 196,822 98,909 295,731 14,832 251,238 -54,416 -27.65 11,485 151,900 44,922 23%
fields.c C source 89,198 44,627 133,825 6,700 113,728 -24,530 -27.50 5,152 69,060 20,138 23%
geo Geophysical data 819,199 277,687 1,096,886 71,443 882,560 -63,361 -7.73 51,053 583,793 235,406 29%
grammar.lsp LISP source 29,766 14,837 44,603 2,217 37,955 -8,189 -27.51 1,713 23,095 6,671 22%
pic Black and white fax picture 4,071,671 90,951 4,162,622 535,345 2,556,590 1,515,081 37.21 254,721 2,012,494 2,059,177 51%
ptt5 CCITT test set 4,071,671 90,951 4,162,622 541,188 2,539,061 1,532,610 37.64 248,563 2,249,920 1,821,751 45%
kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 834,916 7,535,653 702,295 8.53 534,877 5,293,146 2,944,802 36%
lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 255,382 4,397,626 -983,598 -28.81 197,716 2,646,898 767,130 22%
news USENET batch file 3,016,870 1,546,897 4,563,767 226,899 3,883,073 -866,203 -28.71 175,651 2,333,505 683,365 23%
obj1 Object code for VAX 172,028 60,703 232,731 15,003 187,725 -15,697 -9.12 10,268 122,903 49,125 29%
obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 169,536 2,201,666 -227,177 -11.51 119,618 1,421,454 553,035 28%
paper1 Technical paper 425,286 216,497 641,783 31,790 546,416 -121,130 -28.48 24,660 329,820 95,466 22%
paper2 Technical paper 657,590 336,453 994,043 49,569 845,339 -187,749 -28.55 38,373 508,375 149,215 23%
paper3 Technical paper 372,206 191,713 563,919 27,825 480,447 -108,241 -29.08 21,565 288,644 83,562 22%
paper4 Technical paper 106,286 54,559 160,845 7,962 136,962 -30,676 -28.86 6,197 82,365 23,921 23%
paper5 Technical paper 95,630 48,451 144,081 7,214 122,442 -26,812 -28.04 5,590 73,962 21,668 23%
paper6 Technical paper 304,838 153,543 458,381 22,839 389,867 -85,029 -27.89 17,702 236,067 68,771 23%
pi.txt The first million digits of pi 7,999,998 3,800,828 11,800,826 617,309 9,948,902 -1,948,904 -24.36 470,969 6,106,167 1,893,831 24%
plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 291,144 4,926,420 -1,071,536 -27.80 225,785 3,200,772 654,112 17%
progc Source code in "C" 316,886 159,267 476,153 23,848 404,612 -87,726 -27.68 18,522 245,016 71,870 23%
progl Source code in LISP 573,166 288,491 861,657 42,845 733,125 -159,959 -27.91 33,201 444,523 128,643 22%
progp Source code in PASCAL 395,031 192,299 587,330 30,177 496,802 -101,771 -25.76 23,241 326,373 68,658 17%

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 57,589 1,079,602 -279,603 -34.95 45,480 631,581 168,418 21%

SHA1SUM SPARC Executable 6,886 3,389 10,275 527 8,697 -1,811 -26.30 402 5,292 1,594 23%
sum SPARC Executable 305,919 97,635 403,554 28,951 316,704 -10,785 -3.53 19,483 226,667 79,252 26%
trans Transcript of terminal session 749,559 372,119 1,121,678 57,729 948,494 -198,935 -26.54 43,860 573,221 176,338 24%
xargs.1 GNU manual page 33,814 17,701 51,515 2,480 44,078 -10,264 -30.35 1,942 26,480 7,334 22%
bible.txt The King James version of the

bible 32,379,135 16,162,217 48,541,352 2,456,550 41,171,705 -8,792,570 -27.16 1,899,407 26,825,980 5,553,155 17%

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 2,805,328 47,248,296 -10,138,777 -27.32 2,162,810 30,777,928 6,331,591 17%

world.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 1,496,969 25,218,527 -5,431,329 -27.45 115,431 15,258,879 4,528,319 23%

177

Original file MANS Data Extraction - Solution II - Flag to Flag- C=6

File Name Category
Original
file
size/Bits

Number of
switches/Bits MANS/Bits

Number of
processed
segments

Data
Extraction/
Bits

Compression
before
conversion

Compression
%

Number of
flags (f)

DE to
Binary

Compressi
on after
conversion

%

a.txt The letter 'a' 7 2 9 1 9 -2 -28.57 0 7 0 0%
aaa.txt The letter 'a', repeated 100,000

times. 799,999 399,998 1,199,997 37,816 1,048,737 -248,738 -31.09 31,135 657,645 142,354 18%
alice29.txt English text 1,216,708 604,973 1,821,681 48,998 1,625,693 -408,985 -33.61 41,561 1,029,963 186,745 15%
alphabet.txt Enough repetitions of the alphabet

to fill 100,000 characters 799,999 430,767 1,230,766 33,651 1,096,166 -296,167 -37.02 28,436 675,543 124,456 16%
asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 39,194 1,359,487 -358,059 -35.75 33,426 853,860 147,568 15%
bib Bibliography (refer format) 890,086 473,065 1,363,151 34,578 1,224,843 -334,757 -37.61 29,575 760,977 129,109 15%
book1 Fiction book 6,150,166 3,116,671 9,266,837 243,683 8,292,109 -2,141,943 -34.83 207,372 5,228,259 921,907 15%
book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 191,803 6,613,167 -1,726,321 -35.33 163,479 4,163,634 723,212 15%
cp.html HTML source 196,822 98,909 295,731 7,995 263,755 -66,933 -34.01 6,728 166,596 30,226 15%
fields.c C source 89,198 44,627 133,825 3,641 119,265 -30,067 -33.71 3,057 75,475 13,723 15%
geo Geophysical data 819,199 277,687 1,096,886 40,805 933,670 -114,471 -13.97 32,602 649,450 169,749 21%
grammar.lsp LISP source 29,766 14,837 44,603 1,202 39,799 -10,033 -33.71 1,005 25,256 4,510 15%
pic Black and white fax picture 4,071,671 90,951 4,162,622 366,678 2,695,914 1,375,757 33.79 206,385 2,246,154 1,825,517 45%
ptt5 CCITT test set 4,071,671 90,951 4,162,622 357,033 2,734,494 1,337,177 32.84 192,142 2,502,169 1,569,502 39%
kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 479,900 8,120,802 117,146 1.42 352,865 6,074,183 2,163,765 26%
lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 133,765 4,628,713 -1,214,685 -35.58 113,374 2,910,581 503,447 15%
news USENET batch file 3,016,870 1,546,897 4,563,767 119,537 4,085,623 -1,068,753 -35.43 101,724 2,565,873 450,997 15%
obj1 Object code for VAX 172,028 60,703 232,731 8,321 199,451 -27,423 -15.94 6,024 137,205 34,823 20%
obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 97,285 2,321,135 -346,646 -17.56 76,851 1,570,148 404,341 20%
paper1 Technical paper 425,286 216,497 641,783 16,666 575,123 -149,837 -35.23 14,210 362,589 62,697 15%
paper2 Technical paper 657,590 336,453 994,043 25,717 891,179 -233,589 -35.52 21,947 560,586 97,004 15%
paper3 Technical paper 372,206 191,713 563,919 14,637 505,375 -133,169 -35.78 12,494 317,003 55,203 15%
paper4 Technical paper 106,286 54,559 160,845 4,114 144,393 -38,107 -35.85 3,516 90,800 15,486 15%
paper5 Technical paper 95,630 48,451 144,081 3,772 128,997 -33,367 -34.89 3,221 81,421 14,209 15%
paper6 Technical paper 304,838 153,543 458,381 11,978 410,473 -105,635 -34.65 10,239 259,574 45,264 15%
pi.txt The first million digits of pi 7,999,998 3,800,828 11,800,826 325,891 10,497,266 -2,497,268 -31.22 274,829 6,743,662 1,256,336 16%
plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 152,271 5,190,769 -1,335,885 -34.65 130,230 3,407,924 446,960 12%
progc Source code in "C" 316,886 159,267 476,153 12,646 425,573 -108,687 -34.30 10,797 269,292 47,594 15%
progl Source code in LISP 573,166 288,491 861,657 23,478 767,749 -194,583 -33.95 19,773 485,041 88,125 15%
progp Source code in PASCAL 395,031 192,299 587,330 16,653 520,722 -125,691 -31.82 13,935 331,510 63,521 16%

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 34,262 1,115,322 -315,323 -39.42 28,901 675,647 124,352 16%

SHA1SUM SPARC Executable 6,886 3,389 10,275 270 9,199 -2,313 -33.59 230 5,854 1,032 15%
sum SPARC Executable 305,919 97,635 403,554 16,135 339,018 -33,099 -10.82 11,844 248,807 57,112 19%
trans Transcript of terminal session 749,559 372,119 1,121,678 32,650 991,082 -241,523 -32.22 27,116 624,442 125,117 17%
xargs.1 GNU manual page 33,814 17,701 51,515 1,215 46,659 -12,845 -37.99 1,032 29,387 4,427 13%
bible.txt The King James version of the

bible 32,379,135 16,162,217 48,541,352 1,392,275 42,972,256 -10,593,121 -32.72 1,165,651 28,267,229 4,111,906 13%

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 1,750,362 48,662,833 -11,553,314 -31.13 1,440,067 31,961,867 5,147,652 14%

world.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 792,425 26,539,735 -6,752,537 -34.13 672,187 16,781,422 3,005,776 15%

178

Original file MANS Data Extraction - Solution II - Flag to Flag- C=7

File Name Category
Original
file
size/Bits

Number of
switches/Bits MANS/Bits

Number of
processed
segments

Data
Extraction/
Bits

Compression
before
conversion

Compression
%

Number of
flags (f)

DE to
Binary

Compressi
on after
conversion

%

a.txt The letter 'a' 7 2 9 1 9 -2 -29 0 7 0 0%
aaa.txt The letter 'a', repeated 100,000

times. 799,999 399,998 1,199,997 17,461 1,112,697 -312,698 -39 15,721 720,837 79,162 10%
alice29.txt English text 1,216,708 604,973 1,821,681 26,787 1,687,751 -471,043 -39 24,123 1,094,723 121,985 10%
alphabet.txt Enough repetitions of the alphabet

to fill 100,000 characters 799,999 430,767 1,230,766 16,726 1,147,141 -347,142 -43 15,170 725,921 725,921 9%
asyoulik.txt Shakespeare 1,001,428 514,831 1,516,259 21,692 1,407,804 -406,376 -41 19,614 903,899 97,529 10%
bib Bibliography (refer format) 890,086 473,065 1,363,151 18,819 1,269,061 -378,975 -43 17,017 806,319 83,767 9%
book1 Fiction book 6,150,166 3,116,671 9,266,837 133,430 8,599,692 -2,449,526 -40 120,306 5,547,956 602,210 10%
book2 Non-fiction book (troff format) 4,886,846 2,493,529 7,380,375 105,514 6,852,810 -1,965,964 -40 95,281 4,412,248 474,598 10%
cp.html HTML source 196,822 98,909 295,731 4,282 274,326 -77,504 -39 3,866 177,421 19,401 10%
fields.c C source 89,198 44,627 133,825 1,935 124,155 -34,957 -39 1,741 80,422 8,776 10%
geo Geophysical data 819,199 277,687 1,096,886 22,004 986,871 -167,672 -20 19,088 709,041 110,158 13%
grammar.lsp LISP source 29,766 14,837 44,603 651 41,353 -11,587 -39 585 26,836 2,930 10%
pic Black and white fax picture 4,071,671 90,951 4,162,622 248,199 2,921,632 1,150,039 28 157,128 2,554,835 1,516,836 37%
ptt5 CCITT test set 4,071,671 90,951 4,162,622 263,675 2,844,252 1,227,419 30 173,130 2,622,805 1,448,866 36%
kennedy.xls Excel Spreadsheet 8,237,948 1,802,450 10,040,398 287,966 8,600,573 -362,625 -4 231,988 6,664,076 1,573,872 19%
lcet10.txt Technical writing 3,414,028 1,749,741 5,163,769 73,541 4,796,069 -1,382,041 -40 65,977 3,083,439 330,589 10%
news USENET batch file 3,016,870 1,546,897 4,563,767 64,960 4,238,972 -1,222,102 -41 58,617 2,725,426 291,444 10%
obj1 Object code for VAX 172,028 60,703 232,731 4,894 208,266 -36,238 -21 3,508 147,142 24,886 14%
obj2 Object code for Apple Mac 1,974,489 735,782 2,710,271 55,848 2,431,036 -456,547 -23 49,600 1,689,894 284,595 14%
paper1 Technical paper 425,286 216,497 641,783 9,238 595,598 -170,312 -40 8,351 383,837 41,449 10%
paper2 Technical paper 657,590 336,453 994,043 14,055 923,773 -266,183 -40 12,725 594,384 63,206 10%
paper3 Technical paper 372,206 191,713 563,919 7,977 524,039 -151,833 -41 7,214 336,279 35,927 10%
paper4 Technical paper 106,286 54,559 160,845 2,317 149,265 -42,979 -40 2,095 95,873 10,413 10%
paper5 Technical paper 95,630 48,451 144,081 2,037 133,901 -38,271 -40 1,848 86,481 9,149 10%
paper6 Technical paper 304,838 153,543 458,381 6,509 425,841 -121,003 -40 5,873 275,600 29,238 10%
pi.txt The first million digits of pi 7,999,998 3,800,828 11,800,826 179,788 10,901,891 -2,901,893 -36 161,274 7,171,958 828,040 10%
plrabn12.txt Poetry 3,854,884 1,944,965 5,799,849 83,796 5,380,874 -1,525,990 -40 75,610 3,551,580 303,304 8%
progc Source code in "C" 316,886 159,267 476,153 6,807 442,123 -125,237 -40 6,153 286,467 30,419 10%
progl Source code in LISP 573,166 288,491 861,657 12,275 800,287 -227,121 -40 11,068 517,980 55,186 10%
progp Source code in PASCAL 395,031 192,299 587,330 8,760 543,535 -148,504 -38 7,868 355,064 39,967 10%

random.txt
100,000 characters, randomly
selected from [a-z|A-Z|0-9|!|]
(alphabet size 64)

799,999 452,367 1,252,366 16,309 1,170,826 -370,827 -46 14,852 728,980 71,019 9%

SHA1SUM SPARC Executable 6,886 3,389 10,275 151 9,525 -2,639 -38 131 6,203 683 10%
sum SPARC Executable 305,919 97,635 403,554 9,239 357,364 -51,445 -17 7,102 264,910 41,009 13%
trans Transcript of terminal session 749,559 372,119 1,121,678 16,969 1,036,838 -287,279 -38 15,266 671,453 78,106 10%
xargs.1 GNU manual page 33,814 17,701 51,515 712 47,960 -14,146 -42 642 30,709 3,105 9%
bible.txt The King James version of the

bible 32,379,135 16,162,217 48,541,352 711,467 44,984,022 -12,604,887 -39 640,576 29,785,748 2,593,387 8%

E.coli Complete genome of the E. Coli
bacterium 37,109,519 18,554,758 55,664,277 810,660 51,610,982 -14,501,463 -39 730,357 34,163,869 2,945,650 8%

world.txt The CIA world fact book 19,787,198 9,922,233 29,709,431 431,855 27,550,161 -7,762,963 -39 389,432 17,831,007 1,956,191 10%

179

Appendix E

The Figures below show that all tested files for Solution II of the Canterbury Corpus follow the

same pattern, the Number of processed segments decrease as increases and results from Data 𝐶
𝑙

Extraction increase as increases from when . The lowest generated results for Data 𝐶
𝑙

𝐶
𝑙

≥ 5

Extraction occur when for all tested files. Compression occurs for both pic and ptt5 files 𝐶
𝑙

= 4

by ~29% to ~38% across the variation of C, while Kennedy.xls compression results are from

1.5% to 11% the values 3, 4, 5 and 6 of C.

180

181

182

Appendix F

183

184

185

	Abstract
	Acknowledgement
	Table of contents
	
	List of Figures
	List of Tables
	Table 3.9: The IANS - Decoding the binary string 𝑆 ……………………….…………..………….

	
	List of Symbols
	Chapter 1
	1.1. Introduction
	1.2. Background and Motivation
	1.3. Summary

	Chapter 2
	2.1. Introduction
	2.2. Earlier Work on Lossless Compression
	2.3. Information Theory and Algorithmic Information
	2.4. Contemporary Lossless Compression Techniques
	2.4.1. Huffman Coding
	Figure 2.1(a)
	Figure 2.1(b)
	Figure 2.1(c)
	Figure 2.1(d)
	
	Figure 2.1(e)
	Figure 2.1(f)
	Figure 2.1(g)
	Figure 2.1(h)
	Figure 2.1(i)
	Figure 2.1: Building a Huffman tree
	Table 2.1: Huffman code for word “Compression”
	
	Table 2.2: Huffman code for Source 𝐴

	2.4.2. Run-Length Encoding
	2.4.3. Burrows-Wheeler Transform
	Table 2.3: Burrows-Wheeler Transform for word DATA

	2.4.4. Fibonacci Code
	2.4.5. Arithmetic Coding
	Figure 2.2: Subdivision of the interval [0,1) based on the probabilities of the source alphabet 𝐴

	2.4.6. Integer Arithmetic Coding
	2.4.7. Asymmetric Numeral Systems
	Table 2.4: tANS for symbols E, B, S

	2.5. Summary

	Chapter 3
	3.1. Introduction
	3.2. Symbol Representation Variations in Binary Encoding Processes
	3.3. Adaptive Numeral System (ANS)
	3.3.1. Encoding Process using the ANS
	Table 3.1: Encoding the binary stream 𝑆

	3.3.2. Decoding Process using the ANS
	Table 3.1(a): Decoding the first bit for (𝐷𝑖=11, 𝐷𝑖−1=7)
	Table 3.1(b): Decoding the second bit for (𝐷𝑖=11, 𝐷𝑖−1=7)
	Table 3.1(c): Decoding the third bit for (𝐷𝑖=11, 𝐷𝑖−1=7)
	Table 3.1(d): Decoding the fourth bit for (𝐷𝑖=11, 𝐷𝑖−1=7)
	Table 3.1(e): Decoding the fourth bit for (𝐷𝑖=11, 𝐷𝑖−1=7)
	Table 3.1(f): Decoding the fourth bit for (𝐷𝑖=11, 𝐷𝑖−1=7)
	Table 3.2: Decoding (𝐷𝑖=11, 𝐷𝑖−1=7)

	3.3.3. Analysis and observations of the ANS
	Table 3.3: Encoding the combinations of a 4-bit string
	
	Figure 3.1: Solution II, halting after generating 4 bits of information
	Table 3.4: Encoding the binary stream 1010 by initialising the encoder to 1 and 2
	Table 3.5: Variable-length code of the integers from Table 3.3
	21
	11
	41
	23
	Table 3.6: Encoding “H” using ANS
	Table 3.7: Encoding “I” from the compressed results of “H” using ANS

	3.4. Improved Adaptive Numeral System (IANS)
	3.4.1. Encoding Process using the IANS
	Table 3.8: The IANS - Encoding the binary string 𝑆

	
	3.4.2. Decoding Process using the IANS
	Table 3.9(a): The IANS - Decoding 𝑠4 of the binary string 𝑆
	Table 3.9(b): The IANS - Decoding 𝑠3 of the binary string 𝑆
	Table 3.9(c): The IANS - Decoding 𝑠2 of the binary string 𝑆
	Table 3.9: The IANS - Decoding the binary string 𝑆

	3.4.3. Analysis and observations of the IANS
	Table 3.10: Encoding the combinations of 4-bit string using IANS
	Figure 3.2: IANS - Encoding 4-bits of information
	Figure 3.3: ANS - Encoding 4-bits of information
	Figure 3.4: ANS vs IANS - Encoding 4-bits of information
	Figure 3.5: ANS vs IANS vs Fibonacci vs Direct Binary - Bits required to encode a set of values

	

	3.5. Summary

	Chapter 4
	4.1. Introduction
	4.2. The Application of the Adaptive Numeral Systems in Data Compression
	4.3. The IANS
	4.3.1. Compression using the IANS
	
	Table 4.1: Encoding and subtracting the combination of 2 bits using IANS
	Table 4.2: Encoding 𝐴 𝑎𝑛𝑑 𝐵 and the NO.
	Table 4.3: The first segment: encoding the first two bits from the message 𝑆 using IANS
	Table 4.4: Reducing the generated values of segment 1.
	Table 4.5: The second segment, setting up the third bit from the message 𝑆 using the reduced values of segment 1
	Table 4.6: The second segment, encoding the third bit from the message 𝑆 using IANS.
	Table 4.7: Reducing the generated values of segment 2.
	
	Table 4.8: The third segment, setting up the fourth bit from the message 𝑆 using the reduced values of segment 2
	Table 4.9: The third segment, encoding the fourth bit from the message 𝑆 using IANS.
	Table 4.10: Reducing the generated values of segment 3.
	

	4.3.2. De-compression using the IANS
	Table 4.11: Decoding
	Table 4.12: Segment 3, generating the IANS values from the received message {11}.
	Table 4.13: Segment3, decoding using the IANS.
	Table 4.14: Segment 2, generating the IANS values from NO, 𝐴 and 𝐵 of segment 3.
	Table 4.15: Segment 2, decoding using the IANS.
	Table 4.16: Segment 1, generating the IANS values from NO, 𝐴 and 𝐵 of segment 2.
	Table 4.17: Segment 1, decoding with the IANS.

	
	4.3.3. Observations
	Figure 4.1: Compression steps using the IANS.
	Figure 4.2: The IANS reduction results when the initialisation for A=0 and B=1.
	Figure 4.3: The IANS reduction results when the initialisation for A=1 and B=0.

	4.4. The Leading Bit
	Figure 4.4: Replacing the NO and the order of A and B with Table 1 and Table 2
	Figure 4.5: Encoding the first two bits of the message {101}by using the leading bit
	Figure 4.6: Encoding the first bit of Table 2 as the leading bit and following this with the third bit of the message {101}
	Figure 4.7: Feedback process of a repeated bit
	Figure 4.8: Leading Bit process

	4.5. Summary

	Chapter 5
	5.1. Introduction
	5.2. Data Extraction (DE)
	5.2.1. Flags
	5.2.2. Flags order
	5.2.3. Flag systems

	5.3. Summary

	Chapter 6
	6.1. Introduction
	6.2. Modified Adaptive Numeral System for Data Extraction
	6.2.1. Analysis and observations of the MANS
	Table 6.1: Encoding combinations of 4-bit string using MANS
	Figure 6.1: Direct Binary vs Fibonacci code vs assigned MANS - Bits required to encode a set of values
	
	Figure 6.2: Direct Binary vs Fibonacci code vs Unassigned MANS - Bits required to encode a set of values

	6.2.2. Encoding Data Extractions using MANS
	6.2.3. Decoding Data extractions using MANS

	6.3. Summary

	Chapter 7
	7.1. Introduction
	7.2. Flag order system for Data Extraction using MANS
	7.2.1. Flag Information (FI) - Solution I:
	Table 7.1: Tests results using Solution I.
	Figure 7.1: Solution I - Data Extraction using flag information string (U.txt)
	Figure 7.2: Solution I - Data Extraction using flag information
	string (Garden.jpeg)
	
	Figure 7.3: Solution I - Data Extraction using flag information string (Clip.mp4)
	
	Figure 7.4: Solution I - Data Extraction using flag information string (DE.m4a)
	Figure 7.5: Solution I - Data Extraction using flag information string (Canterbury Corpus using C = 4, 5, 6 and 7)
	7.2.1.1. Flag Information - Analysis and future development
	Table 7.2: Solution I - the occurrences of flags distance from C for U.txt
	Table 7.3: Possible compression yield per segment.

	7.3. Flag to Flag (F2F) - Solution II:
	Table 7.4: Test results using Solution II.
	 Figure 7.6: Solution II Data Extraction results for U.txt ​ Figure 7.7: Solution II Data Extraction results for Garden.jpeg
	Figure 7.8: Solution II - Data Extraction results for Clip.mp4 Figure 7.9: Solution II - Data Extraction results for DE.m4a
	Figure 7.10: Data Extraction results for Solution II (Canterbury Corpus using 𝐶𝑙 = 3, 4, 5, 6 and 7)
	Table 7.5: Test results using Solution II post-conversion of DE to Binary.
	Figure 7.11: Data Extraction Results in Variable-Length Codes for Solution II (Canterbury Corpus using 𝐶𝑙= 3, 4, 5, 6 and 7)
	Figure 7.12: Data Extraction Results in Variable-Length Codes for Solution II (Kennedy.xls file using 𝐶𝑙=3, 4, 5, 6 and 7)
	7.3.1. Comparative analysis of Data Extraction - Flag to Flag with other compression methods
	7.3.2. Compression results
	Figure 7.13: DE-FTF Results in MANS, (ptt5, Kennedy.xls, sum and pic files using 𝐶𝑙=3 and 4)
	
	Figure 7.14: DE-FTF Results in MANS, (Canterbury Corpus, files in Canterbury folder, 𝐶𝑙=3 and 𝐶𝑙=4)
	Figure 7.15: DE-FTF Results in MANS, (Canterbury Corpus, files in Artificial folder - 𝐶𝑙=3 and 𝐶𝑙=4)
	Figure 7.16: DE-FTF Results in MANS, (Canterbury Corpus, files in Calgary folder - 𝐶𝑙=3 and 𝐶𝑙=4)
	Figure 7.17: DE-FTF Results in MANS, (Canterbury Corpus, file in Misc folder - 𝐶𝑙=3 and 𝐶𝑙=4)
	Figure 7.18: DE-FTF Results in MANS, (Canterbury Corpus, files in Large folder - 𝐶𝑙=3 and 𝐶𝑙=4)

	7.3.3. Compression analysis
	Table 7.6: Test results using flag to flag.
	Table 7.7: Correlation Between MANS Overhead and DE Compression

	7.3.4. Quantitative Analysis on Complexity and Space Usage
	Table 7.8: Compression speed results (sorted by increasing average compression time)
	Table 7.9: De-compression speed results (sorted by increasing average compression time)
	Table 7.10: Memory usage for DE F2F C=4

	7.4. Flag to flag with flag information (Solution III):
	Table 7.11: Test results using Solution III.
	Figure 7.19: Solution III, Data Extraction results for U.txt, Garden.jpeg, Clip.mp4 and DE.m4a using solutions one and two

	7.3. Summary

	Chapter 8
	8.2. Conclusions
	8.2. Future Directions:

	References
	
	
	
	
	
	
	
	Appendices
	Appendix A
	1.​Text to ASCII to MANS.
	2.​Flag Information, Solution I.
	3.​Flag to Flag, Solution II.
	4.​Flag to Flag including Flag Information, Solution III.

	Appendix B
	Appendix C
	Appendix D
	
	
	Appendix E

	
	Appendix F

