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Abstract—This study provides a comparative analysis of deep
learning models—UNet, Res-UNet, Attention Res-UNet, and
nnUNet—evaluating their performance in brain tumour, polyp,
and multi-class heart segmentation tasks. The analysis focuses on
precision, accuracy, recall, Dice Similarity Coefficient (DSC), and
Intersection over Union (IoU) to assess their clinical applicability.
In brain tumour segmentation, Res-UNet and nnUNet signifi-
cantly outperformed UNet, with Res-UNet leading in DSC and
IoU scores, indicating superior accuracy in tumour delineation.
Meanwhile, nnUNet excelled in recall and accuracy, which are
crucial for reliable tumour detection in clinical diagnosis and
planning. In polyp detection, nnUNet was the most effective,
achieving the highest metrics across all categories and proving it-
self as a reliable diagnostic tool in endoscopy. In the complex task
of heart segmentation, Res-UNet and Attention Res-UNet were
outstanding in delineating the left ventricle, with Res-UNet also
leading in right ventricle segmentation. nnUNet was unmatched
in myocardium segmentation, achieving top scores in precision,
recall, DSC, and IoU. The conclusion notes that although Res-
UNet occasionally outperforms nnUNet in specific metrics, the
differences are quite small. Moreover, nnUNet consistently shows
superior overall performance across the experiments. Particularly
noted for its high recall and accuracy, which are crucial in clinical
settings to minimize misdiagnosis and ensure timely treatment,
nnUNet’s robust performance in crucial metrics across all tested
categories establishes it as the most effective model for these
varied and complex segmentation tasks.

Index Terms—deep learning, UNet, Res-UNet, Attention Res-
UNet, nnUNet, medical imaging segmentation, clinical application

I. INTRODUCTION

Medical image segmentation, the process of partitioning an
image into multiple segments to identify regions of interest,
plays a crucial role in various clinical applications, including
disease diagnosis, treatment planning, and computer-assisted
surgery [1]–[4]. However, accurate and robust segmentation
is a challenging task due to the complexity and variability of
medical images, often complicated by factors such as noise,
intensity inhomogeneity, and low contrast [5], [6]. Traditional
segmentation techniques, such as thresholding, region grow-
ing, and active contours, have limitations in handling these
challenges [7], motivating the development of advanced meth-
ods. In recent years, deep learning techniques have emerged
as powerful tools for medical image analysis, offering the
potential to address these challenges effectively [8].

Deep learning, particularly convolutional neural networks
(CNNs), has emerged as a powerful tool for medical image
segmentation, demonstrating superior performance over con-
ventional approaches [4], [9], [10]. Among the various CNN
architectures, the UNet [11] and its variants, like Res-UNet
[12], Attention Res-UNet [13] and nnUNet [14] have gained

significant attention due to their ability to capture multi-scale
features and effectively segment complex structures.

While these models have demonstrated promising results
in various applications, their relative performance on specific
medical image segmentation tasks remains an area of active
research. Evaluating and comparing these approaches is crucial
for selecting the most suitable model for a given task and
identifying potential areas for further improvement.

This study aims to comprehensively evaluate the perfor-
mance of the UNet, Res-UNet, Attention Res-UNet, and
nnUNet models on three medical image segmentation tasks:
brain tumour segmentation, polyp segmentation, and cardiac
segmentation. Through comparative analysis, this research
seeks to identify the strengths and weaknesses of each model,
determining which performs best across various segmentation
scenarios. Such insights aim to set a benchmark in the field of
medical image segmentation and provide practical guidance to
future researchers on key considerations when applying UNet
and its variants to medical image analysis.

The paper is structured as follows: Section 2 reviews related
work in medical image segmentation and deep learning. Sec-
tion 3 outlines experimental setup on brain tumour, colorectal
polyp, and cardiac segmentation. Sections 4 to 6 present
results. Section 7 provides the discussion, and Section 8
presents the conclusions of this study.

II. BACKGROUND

With the advent of advanced medical imaging modalities,
such as X-ray (including mammography), computed
tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), and ultrasound,
physicians have access to highly detailed and informative
visual representations of the human body’s internal structures
and physiological processes. Nonetheless, the pathway to
becoming a radiologist involves years of specialized training
and extensive clinical practice, leading to a notable shortage of
professionals in this field [15], [16]. This upsurge in demand
has consequentially amplified the workload for radiologists,
potentially heightening the incidence of diagnostic errors and
misdiagnoses due to fatigue and burnout [15]–[17].

Alternatively, the endeavor of accurately and reliably seg-
menting regions of interest from these varied imaging modal-
ities presents considerable challenges. These challenges stem
from the inherent complexity and variability of medical im-
ages, further complicated by factors like noise, uneven inten-
sity distributions, low contrast, and the presence of artifacts
[5], [6]. For instance, X-ray and CT images may suffer from
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beam hardening and scatter artifacts, while MRI images can
be affected by intensity inhomogeneities and geometric dis-
tortions. Ultrasound images, on the other hand, are frequently
plagued by speckle noise and shadowing artifacts, rendering
segmentation a daunting task.

Historically, segmentation techniques such as thresholding,
region growing, and active contours have seen considerable
application [17]. While these methods have demonstrated
utility in certain scenarios, they often falter when dealing
with the intricacies of complex medical images, particularly
in the presence of noise, intensity variations, and ambiguous
boundaries [7]. Moreover, these approaches typically rely on
hand-crafted features and prior knowledge, limiting their gen-
eralizability and adaptability to diverse imaging modalities and
anatomical structures [7]. Statistical methods have also been
extensively applied to medical image segmentation, including
probabilistic modelling [18], [19], Markov Random Field [20],
graph-cut [21]–[24], level set [25], [26].

In recent years, deep learning techniques, particularly con-
volutional neural networks (CNNs), have revolutionized the
field of medical image analysis, offering powerful solutions
for segmentation tasks across various imaging modalities [1],
[27]. CNNs possess the remarkable ability to automatically
learn hierarchical feature representations from raw image data,
enabling accurate and robust segmentation of complex anatom-
ical structures [28], [29]. This data-driven approach alleviates
the need for hand-crafted features and prior knowledge, mak-
ing it more generalizable and adaptable to various imaging
modalities and anatomical structures. Automated segmentation
methods based on deep learning can alleviate the workload
on radiologists, improve efficiency, and reduce the risk of
misdiagnosis, ultimately enhancing the clinical workflow and
patient care. Among the various CNN architectures, the UNet
[11] and its variants, like Res-UNet [12], Attention Res-UNet
[13] and nnUNet [14] have gained significant attention due
to their ability to capture multi-scale features and effectively
segment complex structures.

Despite the remarkable progress made by deep learning
models in medical image segmentation, several challenges
persist. Existing models may struggle with accurately seg-
menting small or irregularly shaped lesions, preserving fine
details, and maintaining robustness across diverse imaging
modalities and clinical scenarios. Additionally, the successful
deployment of these models often requires substantial compu-
tational resources, large-scale annotated datasets, and extensive
manual tuning of hyperparameters, hindering their widespread
adoption in clinical settings.

III. METHODS

This section conducts detailed experiments on various deep
learning models such as UNet, Res-UNet, Attention Res-
UNet, and nnUNet. It explores their network architectures,
layer filter characteristics, layer interconnections, and specific
functionalities.

A. UNet
UNet [11] was a pioneering CNN architecture specifically

designed for biomedical image segmentation. It features an
encoder-decoder structure with skip connections that allow

low-level details from the encoder to be fused with high-level
semantic features from the decoder. The contracting encoder
path consists of repeated convolution, batch normalization,
and max-pooling layers to extract abstract representations. The
expansive decoder path comprises transposed convolutions and
upsampling layers to recover the original resolution. Skip
connections concatenate encoder and decoder features at each
level, preventing loss of spatial information and enabling
precise boundary localization. In this project, the architecture’s
kernel size and filter count are set at 3 across all convolution
layers, suited for image segmentation. The network begins
with 64 filters in the first layer, increasing progressively in
deeper layers to promote hierarchical learning. After 4 decod-
ing layers, the output moves through a final fully connected
convolutional layer, where the kernel size adjusts based on the
number of classes in the mask to meet specific task needs. The
output is then activated using a function that varies with the
number of labels, ensuring customized results for each task.

B. Res-UNet

Res-UNet [12] extended the UNet by incorporating residual
connections into its encoder path. Each encoder block contains
residual units with identity mappings, facilitating gradient
flow and enabling training of deeper networks. The decoder
mirrors the encoder with upsampling and concatenation of
skip connections. Residual blocks aid in reusing and refining
features across layers.

C. Attention Res-UNet

Attention Res-UNet [13] further enhanced the Res-UNet
by integrating attention gates after each decoder stage. These
compute attention maps highlighting salient regions, which are
element-wise multiplied with features from skip connections.
This focuses the model on relevant areas and suppresses noise,
improving segmentation of fine details. The encoder follows
the Res-UNet design, while the decoder incorporates attention
gates and skip connections.

D. nnUNet

nnUNet [14] is a deep learning framework designed for
medical image segmentation, aiming to simplify model con-
figuration and optimization while improving performance.
nnUNet is a self-configuring framework based on the UNet
architecture and robust training schemes. Compared to the
original UNet model, nnUNet has undergone only minor
modifications. For example, it employs instance normalization
instead of batch normalization, and replaces the standard
ReLU activation function with leaky ReLUs. Moreover, the
framework explicitly outlines a series of steps required for
model training. These steps have a significant impact on the
model’s performance. For instance, in the preprocessing stage,
operations like resampling and regularization are included to
improve data quality and model robustness. During training,
aspects such as the selection of loss functions, configuration
of optimizers, and application of data augmentation strategies
are involved to enhance the model’s learning efficacy and
generalization ability.
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The general settings of the UNet, Res-UNet, Attention Res-
UNet, and nnUNet models in our experiments are described
as follow.

For brain tumour and polyp segmentation, the preprocessing
includes resizing to 256×256, standardizing, and normalizing
to a 0-1 range. These images are fed into the UNet, Res-UNet,
and Attention Res-UNet, all using an Adam optimizer with a
1e-5 learning rate and callbacks like Early Stopping. For car-
diac segmentation, due to MRI’s grayscale, output masks are
(128, 128, 4) with inputs at (128, 128, 1), using a Softmax for
multi-class segmentation. The nnUNet model follows identical
data processing steps. As previously mentioned, nnUNet can
automatically specify settings for all phases of segmentation
tasks, achieving task-specific optimization without the need
for manual adjustments. In this project, the default nnUNet
was adopted as the primary network architecture due to
its outstanding performance in numerous segmentation tasks.
The nnUNet architecture consists of an encoder, a decoder
and transposed convolutions. Additionally, nnUNet applies
normalization to the target voxels of each dataset (image)
by subtracting the mean and dividing by the standard devi-
ation, while the non-target (background) voxels are kept at 0.
Aligning with nnUNet’s initial configurations, downsampling
is performed using strided convolutions, and upsampling is
executed through transposed convolutions. The input patch
size is chosen as 128×128×128, with a batch size of 2. The
process includes five downsampling stages, culminating in
a bottleneck feature map size of 4×4×4. The initial count
of convolutional kernels starts at 32 and doubles after each
downsampling stage, reaching up to a maximum of 320. The
decoder’s kernel count mirrors that of the encoder. Leaky
ReLUs are selected for nonlinear activation, and instance
normalization is employed for normalizing the feature maps.
The training extends over 1000 epochs.

IV. BRAIN TUMOUR SEGMENTATION

In the medical field, brain tumour segmentation is consid-
ered one of the most challenging tasks. Accurately delineating
the tumour boundaries is crucial not just for diagnosis but
also plays a pivotal role in developing treatment plans and
monitoring treatment progress, thereby significantly enhancing
the quality of patient care [30]–[32]. This experiment aims to
explore the accuracy of delineating the shape and boundaries
of lower-grade gliomas (LGGs) , which are slowly developing
brain tumours that are generally less aggressive and have a
better prognosis compared to higher-grade tumours, in brain
MRI scans using models such as UNet, Res-UNet, Attention
Res-UNet, and nnUNet.

A. Dataset
The brain tumour segmentation data, sourced from

Kaggle (https://www.kaggle.com/datasets/mateuszbuda/lgg-
mri-segmentation) and originally from The Cancer Imaging
Archive (TCIA), features MRI brain images from 110
patients, totaling 7858 images. These images are evenly
divided between brain images and their FLAIR abnormality
segmentation masks. For the experiment, 1200 images and
masks were randomly selected. To focus on abnormality
segmentation, images and masks without low-grade gliomas

TABLE I
BRAIN TUMOUR SEGMENTATION: PERFORMANCE METRICS FOR UNET,

RES-UNET, ATTENTION RES-UNET AND NNUNET ON TESTING DATASET.

Model Precision Recall Accuracy DSC IoU
UNet 0.884 0.767 0.990 0.821 0.697

Res-UNet 0.873 0.853 0.992 0.863 0.759
Attention Res-UNet 0.842 0.806 0.989 0.824 0.700

nnUNet 0.856 0.881 0.994 0.850 0.757

abnormalities (referred to as negative) were excluded, leaving
only positive image-mask pairs. The dataset was then divided
into training, testing, and validation sets in an 8:1:1 ratio,
resulting in training, validation, and testing cases for the
UNet, Res-UNet, and Attention Res-UNet models. The
nnUNet model, employing 5-fold cross-validation, drew on
the combined cases from the training and validation sets of
the other models, automatically partitioning them for training
and validation. In all four models, the testing set is consistent.

B. Result
In this experiment, the performance metrics include the

precision, recall, accuracy, DSC and IoU. The following
Table I displays information related to these performance
metrics. From the performance metrics for four different
neural network models, deductions can be made based on the
information provided in the table.

1) UNet: It demonstrates high precision, effectively identi-
fying true positives among its predictions. Yet, its recall
is lower than other models, indicating it may overlook
more true positives (false negatives). Additionally, both
its DSC and IoU scores are the lowest, reflecting poorer
overlap with the ground truth compared to other models.

2) Res-UNet: it has the highest DSC score (0.863) and
IoU (0.759), indicating the best segmentation overlap,
making it a strong model for tasks where accurate
delineation of tumour boundaries is crucial.

3) Attention Res-UNet: It has the lowest precision at 0.842
and the lowest accuracy at 0.989. Despite this, an
accuracy of 0.989 is still very high, indicating that the
model performs well overall, albeit slightly less so than
its counterparts in these particular metrics.

4) nnUNet: It stands out with the highest recall (0.881)
and accuracy (0.994), suggesting it is the most reli-
able at identifying true positives and overall prediction
correctness. This makes it a potentially valuable model
for clinical applications, where missing the presence
of a tumour (false negatives) could have significant
consequences.

5) Similarity in Precision, Accuracy, and DSC Scores:
Despite minor differences in precision, accuracy, and
DSC scores among the models, their close perfor-
mance indicates all are capable of accurately predicting
true positives, identifying cases, and matching tumour
boundaries well. This suggests any model could be fit
for brain tumour segmentation, with selection dependent
on factors like computational speed and implementation
ease.
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6) Significant Variability in Recall and IoU: The models
show notable differences in recall and IoU, indicating
varied effectiveness in capturing all relevant tumour
cases and accurately outlining tumour areas against
ground truth. High recall is essential in clinical set-
tings to avoid missing tumours, essential for treatment
planning, pointing to some models (e.g., nnUNet) as
more appropriate for this task. IoU variations reveal
differences in segmentation precision, critical for precise
treatment or surgical planning, with models like Res-
UNet and nnUNet showing superior accuracy in delin-
eating tumour boundaries.

7) Generally Lower IoU Scores: IoU scores being not quite
high across all models could be due to several factors
inherent to the task of brain tumour segmentation: com-
plexity of tumour shapes(irregular and complex shapes);
variability in tumour appearance; image quality and res-
olution; overlap with non-tumour tissues (tumours might
have similar intensity values to surrounding tissues).

8) DSC Coefficient vs. IoU: Minor variations in DSC
scores compared to IoU suggest models capture tu-
mours well but differ more in precisely outlining tu-
mour boundaries, as IoU indicates. This is crucial
for treatment planning and monitoring tumour growth,
highlighting IoU’s importance in model evaluation. In
essence, despite DSC and IoU assessing overlap, IoU’s
calculation highlights more significant boundary delin-
eation differences among models, essential for clinical
application insights. Improving IoU scores might involve
incorporating more sophisticated image processing tech-
niques, enhancing the models with additional contextual
information, or using higher-quality imaging data. It
may also benefit from more advanced training strategies
that specifically target the improvement of segmentation
boundary accuracy, such as utilizing more refined loss
functions or incorporating post-processing techniques to
refine the segmentation outputs.

Four examples were selected to demonstrate the predictive
results of the four models throughout the experiment, including
the provided images and their corresponding ground truth
masks (see Fig. 1).

V. POLYP SEGMENTATION

Polyps are a leading cause of colorectal cancer, with
colonoscopy being the preferred detection and removal
method. Accurately identifying polyps is key to diagnosing
and treating colorectal cancer, yet segmenting them during
colonoscopy is difficult due to their varied shapes, sizes, and
color contrasts [33], [34]. This study focuses on precisely
defining intestinal polyps’ contours and boundaries using mod-
els like UNet, Res-UNet, Attention Res-UNet, and nnUNet.

A. Dataset
CVC-ClinicDB [35] is a dataset of frames from colonoscopy

videos, containing original images and corresponding polyp
masks (ground truth). It comprises 612 original images paired
with 612 masks. In this experiment, the data is split into
training, validation, and test sets in an 8:1:1 ratio. Similarly to
the previous brain segmentation experiment, all models (UNet,

Fig. 1. Brain tumour segmentation: Four examples showing segmentation by
four models. From left to right: input images, ground-truth, and segmentation
by UNet, Res-UNet, Attention Res-UNet, nnUNet, in order.

Res-UNet, Attention Res-UNet, and nnUNet) use the same
dataset. During nnUNet training, it receives the combined
training and validation data from the other models. In all four
models, the testing set is consistent.

B. Result
The following Table II displays performance metrics includ-

ing precision, recall, accuracy, DSC, and IoU for four different
models. Deductions can be made based on the information
provided in the table.

TABLE II
POLYP SEGMENTATION: PERFORMANCE METRICS FOR UNET, RES-UNET,

ATTENTION RES-UNET AND NNUNET ON TESTING DATASET.

Model Precision Recall Accuracy DSC IoU
UNet 0.868 0.764 0.969 0.813 0.685

Res-UNet 0.907 0.751 0.971 0.821 0.697
Attention Res-UNet 0.902 0.754 0.971 0.821 0.697

nnUNet 0.940 0.949 0.993 0.941 0.895

1) Precision and Accuracy: All four models excel in preci-
sion and accuracy, although UNet has the lowest scores
(0.868 precision and 0.969 accuracy, but the values are
still quite high). Yet, the minor differences in these
metrics among the models imply a consistent strength
in identifying true positives across tested datasets.

2) Recall, DSC, and IoU: The UNet, Res-UNet, and At-
tention Res-UNet models show similar recall, DSC,
and IoU scores, evaluating their ability to detect all
relevant cases (recall) and their segmentation accuracy
against the ground truth (DSC and IoU). Despite being
lower than nnUNet’s scores, they remain acceptable.
Nonetheless, in critical fields like medical imaging
where overlooking a true positive can be crucial, even
minor discrepancies matter.

3) nnUNet Performance: The nnUNet excels, showing
the highest precision (0.940), recall (0.949), accuracy
(0.993), DSC (0.941) and IoU (0.895) scores, markedly
surpassing other models. Its recall indicates a stronger
capability in identifying actual positives, minimizing
missed polyp cases. The nnUNet’s DSC and IoU, sig-
nificantly higher than its counterparts, suggests a closer
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Fig. 2. Polyp segmentation: Four examples showing segmentation by four
models. From left to right: input images, ground-truth, and segmentation by
UNet, Res-UNet, Attention Res-UNet, nnUNet, in order.

match to the ground truth in predictions. This accuracy
is critical in medical tasks for precise area segmentation.

In summary, nnUNet outperforms in all aspects, especially in
recall, DSC and IoU, crucial for accurate detection and seg-
mentation. It emerges as the top choice for polyp segmentation,
provided its computational demands are manageable. Other
models, while effective, serve as alternatives under nnUNet’s
resource or speed constraints, or specific clinical needs. Based
on the results of the above polyp segmentation experiment,
four examples were selected to demonstrate the performance
of the four models in polyp segmentation. From these four
examples, it is clear that nnUNet has the best performance
(see Fig. 2).

VI. HEART SEGMENTATION

Medical imaging of the heart is essential for diagnosing
and treating cardiovascular diseases, offering key insights
into cardiac structure and function. Precise segmentation is
critical for accurately measuring features like chambers, wall
thickness, and blood flow dynamics, essential for diagnosing
heart failure, arrhythmias, and other cardiac conditions [36],
[37]. Yet, this process is challenging due to the heart’s complex
anatomy and motion artifacts from dynamic imaging. Manual
segmentation, while precise, is time-consuming and subject to
variability [38], [39]. Addressing this, our study evaluates deep
learning models—UNet, Res-UNet, Attention Res-UNet, and
nnUNet—for automating heart image segmentation.

A. Dataset
This study utilized the ACDC dataset [40] from the Uni-

versity Hospital of Dijon, featuring cardiac MRI of 150
patients for cardiac segmentation. It spans diastole and systole
phases, with 100 and 50 patients in the training and testing
sets, respectively. Sets include original images and masks
for the diastole phase, categorizing heart parts from 0 to 3
for background, RV, Myo, and LV. The goal was multi-class
segmentation during the diastole phase. After preprocessing,
the dataset comprised 951 images and masks, divided into
training, validation, and testing sets in an 8:1:1 ratio. The
UNet, Res-UNet, Attention Res-UNet, and nnUNet models
were trained on these sets, with nnUNet utilizing combined

Fig. 3. Heart segmentation: Four examples showing segmentation by four
models. From left to right: input images, ground-truth, and segmentation by
UNet, Res-UNet, Attention Res-UNet, nnUNet, in order.

training and validation sets. All models were tested using a
consistent set of images and masks.

B. Result

From performance metrics of precision, recall, DSC, and
IoU for four different models, deductions can be made based
on the information provided in the Table III:

1) Background (Class 0): Not surprisingly, all models excel
at identifying the background class due to its larger
area and simpler texture, making it easier to learn and
segment compared to anatomical structures.

2) Right Ventricle (RV, Class 1): The nnUNet’s lower
scores in precision, recall, DSC, and IoU for RV
segmentation suggest it is less suitable for this task
compared to others. Res-UNet and Attention Res-UNet
both excel in heart segmentation, with Res-UNet slightly
outperforming Attention Res-UNet in certain metrics.

3) Myocardium (Myo, Class 2): Segmenting the My-
ocardium (Myo) proves more difficult for the models,
showing lower metrics than the background, RV, and LV
classes, likely due to Myo’s smaller size and complex
shape. However, the nnUNet stands out for its superior
Myo segmentation, indicating its adaptive architecture
and training strategy successfully tackle Myo’s unique
features.

4) Left Ventricle (LV, Class 3): Res-UNet and Attention
Res-UNet indeed have similar, high performance metrics
for LV segmentation. UNet and nnUNet also perform
well, with only slight differences compared to the other
two models. This implies that the LV, while segmented
reasonably well by all models, benefits from the features
of the Res-UNet and Attention Res-UNet architectures.

Based on the results of the above heart segmentation ex-
periment, four examples were selected to demonstrate the
performance of the four models in heart segmentation (see
Fig. 3).

VII. DISCUSSION

This study provides a thorough comparison of four deep
learning models—UNet, Res-UNet, Attention Res-UNet, and
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TABLE III
HEART SEGMENTATION: PRECISION, RECALL, DSC AND IOU SCORE FOR EACH CLASS BY FOUR MODELS.

Precision Recall DSC IoU
Model 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
UNet 0.99 0.93 0.87 0.97 0.99 0.92 0.86 0.94 0.993 0.924 0.869 0.956 0.987 0.860 0.768 0.916

Res-UNet 0.99 0.95 0.89 0.98 1.00 0.92 0.85 0.94 0.994 0.936 0.869 0.961 0.988 0.879 0.769 0.924
Attention Res-UNet 0.99 0.94 0.89 0.96 0.99 0.92 0.86 0.96 0.994 0.930 0.874 0.960 0.988 0.869 0.777 0.924

nnUNet 1.00 0.82 0.89 0.95 1.00 0.81 0.90 0.95 0.996 0.812 0.894 0.953 0.992 0.776 0.818 0.921

nnUNet—on three medical imaging tasks: brain tumour, polyp,
and multi-class heart segmentation.

1) Brain Tumour Segmentation: In brain tumour segmenta-
tion, Res-UNet and nnUNet excelled, showing superior
performance in critical metrics. Res-UNet achieved the
highest DSC and IoU scores, indicating exceptional
accuracy in tumour boundary delineation. nnUNet was
notable for its high recall and accuracy, proving to be
highly reliable in identifying tumour presence, which
is vital for effective clinical diagnosis and treatment
planning. These models’ advanced architectures allow
for superior capture of complex image details, crucial
for accurate medical image analysis. Despite nnUNet’s
intensive computational demands, its outstanding overall
performance highlights its significant potential in medi-
cal applications.

2) Polyp Segmentation: The nnUNet model outperformed
others, exhibiting exemplary precision and recall, in-
dicating its potential as a reliable tool for endoscopic
analysis, provided the computational resources for its
extensive training are available.

3) Heart Multi-Class Segmentation: In the segmentation
of cardiac structures, Res-UNet and Attention Res-
UNet showed promising results, especially in LV seg-
mentation, where precision in anatomical delineation is
paramount. As for segmenting the RV, Res-UNet stands
out as the best performer in this class, suggesting that the
residual connections in its architecture are beneficial for
capturing the complex features of the RV. The nnUNet’s
performance, particularly in segmenting the myocardium
with high DSC and IoU scores, suggests its utility in
scenarios where the most detailed tissue differentiation
is required.

VIII. CONCLUSIONS

The discussion above separately addresses brain segmen-
tation, polyp segmentation, and heart multi-class segmenta-
tion. From the three experiments, it is evident that Res-
UNet performs better than UNet and Attention Res-UNet,
achieving higher scores in certain performance metrics than
nnUNet. Nevertheless, when combining the results from all
three experiments, nnUNet emerges as the best model for the
following reasons:

1) Although nnUNet requires considerable computational
resources, in clinical applications, high diagnostic ac-
curacy and low misdiagnosis rates are paramount. For
example, missing a tumour in a patient can lead to
delayed treatment with serious consequences.

2) In brain segmentation, the DSC score (0.863) and IoU
(0.759) for Res-UNet are higher than those for nnUNet

(0.850 and 0.757, respectively), though the margins are
very small. However, the values of recall and accuracy
for nnUNet are higher than those for Res-UNet.

3) In polyp detection, all performance metrics for nnUNet
are higher than the other three models, especially recall,
DSC, and IoU, where nnUNet’s scores (0.949, 0.941,
and 0.895, respectively) far surpass those of the others.

4) In heart multi-class segmentation, nnUNet’s metrics for
RV are the lowest at 0.82, 0.81, 0.812, and 0.776, but
still high and acceptable. nnUNet leads in myocardial
segmentation with the highest scores, including a notable
recall of 0.90 and an IoU of 0.818. In LV segmenta-
tion, while Res-UNet and Attention Res-UNet perform
slightly better, nnUNet’s results are closely comparable,
nearly matching those models.

This study sets a benchmark in the field of medical image
segmentation and offers insights to future researchers on key
considerations when applying UNet and its variants to medical
image analysis. By systematically comparing models such
as UNet, Res-UNet, Attention Res-UNet, and nnUNet, the
research highlights their respective strengths and potential
applications in segmenting MRI and endoscopic images, as
well as in binary and multi-class tasks.

However, despite notable progress in two-dimensional im-
age segmentation, there are limitations in the types of data
handled. In real medical scenarios, many critical datasets
typically exist in three-dimensional forms, yet all experiments
conducted in this study are limited to two-dimensional data.
This limitation could restrict the models’ ability to address
real medical imaging challenges effectively. Future research
could also explore more extended models similar to nnUNet,
and develop or fine-tune large AI models, to enhance their
capability to process and analyze three-dimensional medical
images. Additionally, this experiment faces a data leakage
issue due to the division of data at the image level rather
than the patient level. To prevent such problems in future
work, it is recommended: 1. Strict data segmentation ensures
that all images from the same patient are contained within
a single dataset (training, validation, or test) before training
begins. 2. Proper data handling before augmentation to ensure
that enhancements are only applied to the training set, thus
avoiding indirect data leaks into validation or test sets.
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