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Abstract— Segmentation is a critical step in analyzing
the developing human fetal brain. There have been vast
improvements in automatic segmentation methods in the
past several years, and the Fetal Brain Tissue Annotation
(FeTA) Challenge 2021 helped to establish an excellent stan-
dard of fetal brain segmentation. However, FeTA 2021 was
a single center study, limiting real-world clinical applica-
bility and acceptance. The multi-center FeTA Challenge
2022 focused on advancing the generalizability of fetal brain
segmentation algorithms for magnetic resonance imag-
ing (MRI). In FeTA 2022, the training dataset contained
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images and corresponding manually annotated multi-class
labels from two imaging centers, and the testing data
contained images from these two centers as well as two
additional unseen centers. The multi-center data included
different MR scanners, imaging parameters, and fetal brain
super-resolution algorithms applied. 16 teams participated
and 17 algorithms were evaluated. Here, the challenge
results are presented, focusing on the generalizability of
the submissions. Both in- and out-of-domain, the white
matter and ventricles were segmented with the highest
accuracy (Top Dice scores: 0.89, 0.87 respectively), while
the most challenging structure remains the grey matter
(Top Dice score: 0.75) due to anatomical complexity. The
top 5 average Dices scores ranged from 0.81-0.82, the top
5 average 95th percentile Hausdorff distance values ranged
from 2.3-2.5mm, and the top 5 volumetric similarity scores
ranged from 0.90-0.92. The FeTA Challenge 2022 was able
to successfully evaluate and advance generalizability of
multi-class fetal brain tissue segmentation algorithms for
MRI and it continues to benchmark new algorithms.

Index Terms— Deep learning, domain generalization, fetal
brain MRI, multi-class image segmentation.

I. INTRODUCTION

IN-UTERO Magnetic Resonance Imaging (MRI) of the fetal
brain allows clinicians and researchers to visualize the

development of the human brain. The brain development of
fetuses can be investigated with MRI starting in the second
trimester up until birth, and can be used in fetuses with
both typical neurodevelopment and neurological congenital
disorders [1]. It can aid in the future development of clinical
perinatal planning tools for early interventions, treatments,
and clinical counseling, and can be used to explore complex
neurodevelopment of different structures within the brain.
Large-scale acquisition and analysis of in-utero fetal brain
MRI requires collaboration from specialized clinical centers as
image cohorts of various patient populations tend to be small
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at each center. A crucial step of analyzing these MR images
involves quantifying the volume and morphology of different
anatomical structures in the developing brain, necessitating
image segmentation. Manual segmentation is time-intensive,
susceptible to variability between observers and centers, mak-
ing it impractical for extensive collaborative efforts. However,
many challenges exist where the focus is on developing
automatic segmentation tools that will work across data from
different imaging centers.

Existing deep learning-based methods work well when they
are tested on similar data to which they were trained on
(i.e. in-domain data), but struggle when facing testing data
that is different from the training data (i.e. unseen, or out-
of-domain (OOD) data), such as images acquired at another
site, with a different scanner, or with different scanning
parameters [2]. Even after careful image processing, classifiers
are able to tell the differences between images acquired
with different scanners [3]. Efforts to standardize fetal MRI
acquisition parameters across different imaging centers or
hospitals have been limited, primarily because fetal imaging
relies on specialized sequences that are fine-tuned locally.
The appearance of MR images is significantly influenced by
various factors, including acquisition parameters, magnetic
field strength, MRI coil type, overall imaging setup, and the
expertise of the technicians performing the image acquisition.
These site differences (or domain shifts) have been shown to
be very challenging for deep learning algorithms to handle
if there is no similar data in the training dataset [2], [4], [5].
Domain generalizability of automatic segmentation algorithms
is an urgent need and is attracting increasing attention in the
medical imaging field [6], [7], [8], [9], [10].

In our previous Fetal Tissue Annotation Challenge (FeTA)
2021, we used the first publicly available dataset of fetal
brain MRI data to encourage teams to develop automatic
fetal brain tissue segmentation methods [11]. However, in this
dataset, the training and testing datasets were from the same
imaging center. For the FeTA Challenge 2022, we launched
a multi-center fetal brain segmentation challenge focused on
model generalizability across different imaging centers includ-
ing two unseen centers.

Here, we describe the multi-center FeTA Challenge
2022 and its organization as well as give an overview of
the submitted algorithms and provide a detailed analysis and
evaluation of the challenge results. This paper adheres to
the transparent reporting guidelines as described in the BIAS
method [12].

The aim of the multi-center FeTA Challenge 2022 is to
promote the development of domain-robust algorithms for
automatically segmenting high-resolution fetal brain MRI
reconstructions between 19-35 gestational weeks into seven
different classes that works on data from different imaging
centers. The challenge includes data from four different imag-
ing centers, further expanding on the FeTA dataset [13]. Two
of the centers are included in the training dataset, and all four
imaging centers are included in the hidden testing dataset on
which the algorithms were evaluated to test on both seen and
unseen data. Examples from each site can be seen in Fig. 1.
The algorithms are evaluated on the hidden testing dataset.

The submitted algorithms are also tested on various subsets of
the testing dataset to determine whether they perform better or
worse on data from different imaging centers or under different
circumstances such as image quality or reconstruction method.

In addition to analyzing the results of the FeTA Challenge
2022, we also propose to investigate the usage of topology as a
new evaluation metric for automatic segmentation algorithms.
Given that a key downstream analysis of segmentation is the
extraction of surface and surface-based metrics (such as thick-
ness and curvature), computational topology of binary masks
(i.e. connected component, holes) are important to evaluate.
We investigate whether topology errors should be added to
current evaluation metrics, as challenge evaluation metrics play
a significant role in challenge results [14]. Topology holds
particular importance for the analysis of the GM segmentation,
which remains one of the most challenging structures to
segment in the developing brain and requires a topologically
correct segmentation for certain analysis, such as determining
gyrification.

The algorithms developed as part of the multi-center FeTA
Challenge 2022 have the potential to transform both the
clinical and research fetal MRI environment, leading to better
antenatal and perinatal tools being developed across hospitals
and research institutions around the world.

II. METHODS

A. Challenge Organization

The FeTA Challenge 2022 (feta.grand-challenge.org) was
held in conjunction with the Medical Image Computing and
Computer Assisted Intervention (MICCAI) 2022. The chal-
lenge was part of a repeated annual event at MICCAI, with a
fixed submission deadline. Participants were asked to submit
a fully automatic segmentation algorithm that would segment
high-resolution fetal brain MRI reconstructions into seven
different tissue types: external cerebrospinal fluid (eCSF), grey
matter (GM), white matter (WM), ventricles, cerebellum, deep
grey matter (deep GM), and brainstem.

In addition to the FeTA training dataset, the participants
were able to use additional data for training only if it was
publicly available and were required to document the usage in
their algorithm description. Participants were able to modify
the provided training data as well. This modification includes
the generation of additional data by image synthesis or various
data augmentation strategies (for example, using numerical
simulations by FaBiAN [15]) as long as everything was
documented, and the synthetic data could be made available
to challenge organizers upon request.

All teams with valid submissions and who presented their
results at MICCAI 2022 were included in this paper. Each
team was allowed three co-authors. Participating teams were
able to publish their algorithms and results independently after
the challenge, but should cite this challenge paper and the data
publication paper [13].

The full results were announced at the MICCAI 2022 con-
ference and were published on the challenge website. The top
three teams received custom-made FeTA chocolate bars as a
prize. Participating teams were able to choose whether they
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Fig. 1. Sample cases from each institution in the testing dataset. Each case is a normally developing fetal brain from gestational week 22, with
a super-resolution quality rating of ‘Excellent’. The histograms of the individual labels vary between each institution (green: Kispi, orange: Vienna,
blue: CHUV, red: UCSF). The inset is an enlarged view of the first peak to visualize the different histograms of the three institutions.

wished to make their submission public. The Dockers of all
submissions with consent to publicly release can be found
here: https://hub.docker.com/u/fetachallenge22. Each team was
required to provide a written description of their algorithm,
which can be found in the Supplementary Information [16].

Participants were asked to submit a Docker container con-
taining their fully automatic segmentation algorithm to the
organizers via email. Members of the organization committee
were allowed to participate but were not eligible for awards.
The organizers ran the Docker container on the testing datasets
using evaluation code available on the challenge website.
No multiple submissions were allowed. Resubmissions were
only allowed in cases of technical errors with the Docker.

The training dataset was released to participants on June 1,
2022, and the Docker submission deadline was August 3,
2022. The top-performing teams were informed that they were
a top-performing team on September 3, 2022, in order for them
to prepare a presentation for the day of the challenge. The
challenge day was September 18, 2022, where the results were
presented at the MICCAI FeTA Challenge 2022 session. For
the complete overview of the challenge, see the final challenge
proposal [17].

B. Mission of the Challenge
The mission of the FeTA Challenge 2022 was to encourage

and facilitate the development of generalizable automatic
multi-class segmentation algorithms that are able to segment
the fetal brain into seven different tissue types plus back-
ground from MRI. To achieve this goal, clinically acquired,
anonymized MRI data were used to represent the target cohort,
pregnant women who underwent fetal MRI. The accuracy

of the fetal brain segmentations was evaluated in the chal-
lenge cohort. Fetal brain MRI scans were acquired clinically
and reconstructed using super-resolution (SR) reconstruction
methods. The gestational age (GA), and a label of nor-
mal neurodevelopment or pathological neurodevelopment was
included for each case in the dataset, and the cases spanned a
GA range of 18-35 weeks.

C. Challenge Dataset
The challenge dataset consisted of fetal brain MRI recon-

structions acquired from four different imaging centers. Data
from two centers (University Children’s Hospital (Kispi),
Medical University of Vienna (Vienna)) was included in
the training dataset, and an additional two centers were
included in the testing dataset (Lausanne University Hospital
(CHUV), University of San Francisco (USCF)), for a total
of four centers. In this challenge, one case consisted of
the following: a SR reconstruction of the fetal brain MRI,
a manually segmented label map consisting of eight labels
(eCSF, GM, WM, ventricles, cerebellum, deep GM, brain-
stem, background), a GA, and the classification of normal
or pathological neurodevelopment. The testing dataset was
hidden from participants. In total, there were 120 cases in
the training dataset and 160 cases in the testing dataset (see
overview in Table I). Multiples of 40 for the dataset were used
as the original FeTA dataset [13] contained 40 cases, and the
first FeTA challenge [11] continued this pattern, containing
80 cases. A separate validation dataset was not provided to the
participants. The distribution of GAs and the split between nor-
mal and pathological neurodevelopment was kept as equal as
possible between the two centers included in both the training
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Fig. 2. Overview of the gestational ages (in weeks) included within the
testing dataset by institution.

and testing dataset. For the two unseen imaging centers,
a range of GAs, pathologies, and normal neurodevelopmental
cases were included to mimic the potential real-world usage of
automatic segmentation algorithms. Each case in the dataset
was manually segmented using the same method. Several
annotators with experience in medical imaging (co-authors
(years of experience): AJako (1), MK (1), AA (1), PM (1),
GG (1), HJ (5), CS (3), KP (6), AJaka (14)) were trained
to segment different labels, and then the individual labels
were automatically combined. All segmentations performed
by individuals with 1 year of experience were reviewed by the
more senior (3 years or more) annotators. Afterwards, three
experts in fetal MRI (KP, CS, AJaka) reviewed and corrected
each label map, where each case was reviewed by two of
the three experts in a two-step process to minimize error.
Exact details of the manual segmentation can be found in
the supplementary information of [13]. An overview of the
GAs included in the challenge’s testing dataset can be found
in Fig. 2.

1) University Children’s Hospital Zurich (Kispi) Data: The
training and testing data from FeTA 2021, acquired at the
University Children’s Hospital Zurich (Kispi), was used in
FeTA 2022, and a detailed description of the image acqui-
sition parameters, post-processing steps, and ethical approval
information can be found in [11]. A clinically acquired dataset
of 120 brain scans (80 training cases and 40 testing cases)
was used as part of the Kispi portion of the FeTA dataset.
Several T2-weighted single shot Fast Spin Echo (ssFSE)
images were acquired for each subject in all three planes
with a reconstructed resolution of 0.5 × 0.5 × 3-5mm3.
The images were acquired on either a 1.5T or 3T clinical
GE whole-body MRI scanners (Signa Discovery MR450 and
MR750) without the use of maternal or fetal sedation using
an 8-channel cardiac or body coil with the following sequence
parameters: TR: 2000–3500ms, TE: 120ms (minimum), flip
angle: 90◦, sampling percentage 55%. Field of view (200–
240mm2) and image matrix (1.5T: 256 × 224; 3T: 320 × 224)
were adjusted depending on the GA and size of the fetus.
The data was acquired at the University Children’s Hospital
Zurich in Zurich, Switzerland by trained radiographers using
clinically defined protocols.

Fetal brain SR reconstructions were performed on the
acquired datasets, with a training/testing split of 40/20 using
both the mial-srtk method [18], [19] and the simple-irtk

method [20]. After reconstruction, each fetal brain volume
had an isotropic resolution of approximately 0.5mm3, with
some deviation in exact dimensions between the SR methods.
Each reconstructed image was then histogram-matched using
Slicer [21], and zero-padded to be 256×256×256 voxels. The
testing cases were considered in-domain, as this site provides
both training and testing cases.

2) University of Vienna (Vienna) Data: The data from the
Medical University of Vienna (Vienna) was acquired using
1.5 T (Philips Ingenia/Intera, Best, the Netherlands) and 3 T
magnets (Philips Achieva, Best, the Netherlands), without
the use of maternal or fetal sedation. All acquisitions were
performed using a five-channel cardiac coil. For each case,
at least 3 T2-weighted ssFSE sequences (TE=80-140ms,
TR=6000-22000ms) in 3 orthogonal (axial, coronal, sagittal)
planes with reference to the fetal brain stem axis and/or the
axis of the corpus callosum were acquired. Overall, slice
thickness was between 3mm and 5mm (gap 0.3-1mm), pixel
spacing 0.65-1.17mm, acquisition time between 13.46 and
41.19 seconds.

The preprocessing pipeline [22] consisted of a data denois-
ing step [23], followed by an in-plane super resolution [24]
and automatic brain masking step [25] and concluded with
a single 0.5 mm3 isotropic slice-wise motion correction and
volumetric SR reconstruction [25]. Subsequently, the result-
ing volumes were rigidly aligned to a common reference
space [26].

Fetal MRI cases were provided by the Medical University
of Vienna. The data was acquired as part of a retrospec-
tive single-center study and was anonymized and approved
by the ethics review board and data clearing department at
the Medical University of Vienna, responsible for validating
data privacy and sharing regulation compliance. There were
40 training cases and 40 testing cases included in the FeTA
Challenge 2022 from this site. As with the Kispi data, these
testing cases were considered in-domain, as this site provided
both training and testing data.

3) Lausanne University Hospital (CHUV) Data: The data from
the Lausanne University Hospital (CHUV) was acquired at
1.5T (MAGNETOM Aera, Siemens Healthcare, Erlangen,
Germany), without the use of maternal or fetal sedation.
Acquisitions were performed with an 18-channel body coil
and a 32-channel spine coil. Images were acquired using T2-
weighted (T2W) Half-Fourier Acquisition Single-shot Turbo
spin Echo (HASTE) sequences in the three orthogonal orienta-
tions (axial, sagittal, coronal); usually at least two acquisitions
were performed in each orientation., TR/TE, 1200ms/90ms;
flip angle, 90◦, echo train length, 224; echo spacing, 4.08ms;
field-of-view, 360 × 360mm2; voxel size, 1.13 × 1.13 ×

3.00mm3; inter-slice gap, 10%, acquisition time between 26 to
36 seconds.

For each subject, the scans were manually reviewed and
the good quality scans were chosen for SR reconstruction,
creating a 3D SR volume of brain morphology [18]. Each
case was zero-padded to 256 × 256 × 256 and reoriented
to a standard viewing plane. Mothers of all other fetuses
included in the current work were scanned as part of their
routine clinical care. Data was retrospectively collected from
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TABLE I
TRAINING AND TESTING DATASET PROPERTIES FROM ALL IMAGING CENTERS

acquisitions done between January 2013 to April 2021. All
images were anonymized. This dataset was part of a larger
research protocol approved by the ethics committee of the
Canton de Vaud (decision number CER-VD 2021-00124) for
re-use of their data for research purposes and approval for the
release of an anonymous dataset for non-medical reproducible
research and open science purposes. As no training cases were
included from this site, the 40 testing cases were considered
out-of-domain.

4) University of California San Francisco (UCSF) Data: The
data from the University of California (UCSF) was acquired
using 3T GE Discovery MR750 or MR750W (wide bore)
without the use of maternal or fetal sedation. Acquisitions
were performed using a 32 channel GE cardiac coil. At least
3 T2-weighted ssFSE sequences were acquired with one scan
per orientation (sagittal, axial, coronal) with the following
parameters: 240 mm2 FOV with 512 × 512 matrix gives
in plane resolution of ∼0.5 × 0.5 mm2 with 3 mm slice
thickness. TR is 2000-3500 ms, TE > 100 ms, 90◦ flip angle.

For each subject, the scans were manually reviewed and the
good quality scans were chosen for SR reconstruction, creating
a 3D SR volume of brain morphology [25]. Each case was
zero-padded to 256 × 256 × 256 and reoriented to a standard
viewing plane.

Fetal MRI was acquired during routine clinical care with
institutional review board approval for anonymized retrospec-
tive analysis by the FeTA team (IRB 21-35930). As no training
cases were included from this site, the 40 testing cases were
considered out-of-domain.

D. Evaluation Metrics
Three complementary types of evaluation metrics were

used to compute the rankings. The overlap was quan-
tified with the dice similarity coefficient (DSC) [27].
The similarity between the two volumes was quantified
with the volume similarly measure (VS) [27]. The con-
tours were evaluated with a boundary-distance-based metric:
the 95th percentile of the Hausdorff distance (HD95)
(https://github.com/deepmind/surface-distance). As the task is
a segmentation task, the DSC was chosen, as it was the
most popular segmentation metric. However, we were not
only interested in the overlap, but also the shape and volume,
as they are often used as clinical biomarkers. Therefore,
we included the HD95 (shape) and VS (volume) metrics. The
final rankings took all three metrics into account.

E. Ranking
The ranking method was the same as in FeTA 2021 [28].

Each of the participating teams was ranked based on each
evaluation metric, and then the final rankings combined the
rankings from all of the metrics (DSC, HD95, VS) for the
complete dataset (both in- and out-of-domain imaging site).
The DSC, HD95, and VS were calculated for each label
within each of the corresponding predicted label maps of
the fetal brain volumes in the complete testing dataset. The
mean and standard deviation of each label for all test cases
was calculated, and the participating algorithms were ranked
from low to high (HD95), where the lowest score received
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the highest scoring rank (best), and from high to low (DSC,
VS), where the highest value received highest scoring rank
(best) based on the calculated mean across all labels and test
cases. If there were missing results, the worst possible value
was used. For example, if a label did not exist in the new
segmentation label map but was present in the ground truth
(GT) label map, it received a DSC and VS score of 0, and the
HD95 score was double the max value of the other algorithms
submitted. This ranking procedure was developed to take three
different metric types equally into account.

Finally, the results of the challenge were run through the
ChallengeR toolkit, specifically designed to calculate and
display imaging challenge results [29].

Additional rankings were created based on the in-domain
and OOD imaging centers, cases with and without neurolog-
ical pathologies, and image reconstruction quality (Excellent,
Good, Poor). These additional rankings were not part of
the determination of the winner of the challenge but were
presented at the FeTA Challenge 2022 event.

F. Topology Analysis
In addition to the rankings mentioned in the previous

section, we assessed the topological correctness as an eval-
uation metric of the predicted label maps. Topology defines
the properties of an object that are preserved through defor-
mation [30]. Given binary maps (tissue labels), computational
topology relies on connectivity of a voxel to its neighbours
to quantify the number of connected components, holes,
or cavities. Topology is relevant for exploring brain tissue
segmentations as topological correctness is needed to quan-
tify biomarkers important for brain development such as
cortical thickness and gyration. However, fetal cortical seg-
mentations (GM) are often discontinuous [31], [32], [33] but
surprisingly topology correctness of predicted segmentations
is rarely reported [34], [35]. Here, we propose a global
topology-integrative ranking (TIR) of the methods, which
includes the Betti Number Error (BNE) ranking in addition
to the current three evaluation metrics (DSC, HD95, VS).

To quantitatively compare the topology of each segmented
structure, we assessed the error of the topological invariant
Betti numbers, also known as the BNE. The k-dimensional
Betti numbers (B Nk) count the topological structures in each
dimension k.More specifically, B N0, B N1, B N2 represented
the number of connected components, the number of holes
and the number of cavities in the 3D binary object respectively.
We define the k-dimensional Betti number error (B N Ek) as
the absolute difference of the GT expected value and the
prediction measure. B N Ek are difference metrics that must
be minimized. The GT expected values are as follows: the
B N1 = 0 and B N2 = 0 for all brain tissue labels. For eCSF,
WM, ventricles, cerebellum, deep GM, and brainstem, B N0 =

1, and for GM, B N0 = 2.
When performing the evaluation of the predicted label maps,

when there was an absence of segmentation for a tissue,
it was attributed twice the value of the worst performing
segmentation of the same label over all submissions, in line
with how missing data was handled with the HD95 evaluation
metric. Once topology was quantified, we also computed the

Fig. 3. Each submission was evaluated separately on the institutional
subsets of the testing data in order to determine if certain algorithms
performed better or worse on data from specific institutions. The rankings
of the participating teams for each institutional subset are shown, with
each connected line corresponding to a single FeTA submission. In-
domain institutions: Vienna, Kispi; Out-of-domain institutions: CHUV,
UCSF.

ranking of methods for each B N E and TIR ranking with
Challenge R toolkit [29].

III. RESULTS

A. Challenge Submissions

There were 17 submissions from 16 different teams to
the FeTA Challenge 2022. One team submitted two algo-
rithms, but they were determined to be substantially different
methodologies and as such was allowed. Each team submit-
ted a written description of their algorithm, which can be
found in the Supplementary Information [16]. Two teams
used only one institution’s dataset rather than the com-
plete training dataset (deepsynth, ajoshiusc). All other teams
used the complete training dataset. Seven teams used addi-
tional publicly available datasets for pre-training or training
(FIT_1, FMRSK, symsense, FIT_2, DBC Pasteur, fudan_zmic,
deepsynth).

All submitted models relied on deep learning. Only
three teams used 2D networks (fudan_zmic, DBC Pasteur,
ajoshiusc), the remainder of the teams used 3D networks.
All teams used PyTorch, or PyTorch-based solutions (such as
nnU-Net [36] or MONAI [37]) for their network. Many teams
used a two-step strategy for segmentation (often classified
as ‘coarse-to-fine’). This often involved first segmenting the
brain from the outlying maternal tissue, and then segment-
ing the fetal brain into different tissues. Each algorithm
is summarized in further detail in Table II. Institutional
ranking differences in the submissions can be found in
Fig. 3.
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TABLE II
FETA 2022 TEAM OVERVIEW

B. In-Domain Results

In-domain evaluation was defined based on the performance
on the subset of data including the Kispi and Vienna data,
as data from these two imaging centers were represented
in the training dataset available to the participants. A summary
of the in-domain evaluation metrics for all teams can be seen in
the top row of Fig. 4. We report two aspects of the in-domain
evaluation results. Firstly, we present in-domain team rankings
and an in-depth evaluation of the FeTA Challenge 2022 results.
Secondly, we cross-reference these rankings with the outcomes
achieved in the FeTA Challenge 2021 [28]. Notably, the
Kispi data included in the FeTA2022 is identical to the FeTA
2021 training dataset (80 cases).

In the overall ranking of the in-domain dataset, the top
three submissions were NVAUTO, FIT_2 and FIT_1.
Specifically, FIT_1 (0.8052), symsense(0.8047), and
NVAUTO(0.8042) were the top three teams according to
the DSC. The top three submissions according to the HD95
were FIT_2(2.31mm), Institut_Pasteur_DBC(2.40mm), and
NVAUTO (2.46mm).

The top three submissions according to the VS were
NVAUTO (0.914), symsense (0.910) and FIT_2 (0.910). It is

worth noting that no statistically significant differences were
found in the rankings for the achieved DSC scores in the
first four teams, (FIT_1, symsense, NVAUTO, Neurophet).
In the HD95, the first ranked submission, FIT_2, was
significantly better performing than the second ranked (Insti-
tut_Pasteur_DBC), while the top two teams in VS (NVAUTO
and symsense) were not significantly different. Further details
about the individual rankings are shown in Fig. 4. Similar to
the FeTA 2021 Challenge, a performance plateau was observed
in the DSC scores, with approximately the first 12 teams
achieving very similar DSC scores (DSC range for the top
12 teams: 0.765 – 0.805), with a large drop off in scores in
the last five submissions (DSC range for the last 5 teams:
0.455 – 0.684). A similar trend was observed for the mean
HD95 (highest ranked 9 submissions: 2.31 to 2.83 mm, lowest
ranked 8 submissions: 3.5 to 41 mm) and for the mean VS
scores (highest ranked 11 submissions: 0.902 – 0.914, lowest
ranked 6 submissions: 0.611 - 0.880).

Not all anatomical structures were segmented equally well,
which is reflected by the heterogeneity of mean DSC, HD95
and VS scores obtained in the in-domain evaluation. The
WM and ventricles were the structures most successfully
segmented. The mean DSC for the top three submissions for
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Fig. 4. In-Domain and Out-of-Domain evaluation metrics by algorithm. In both in- and out-of-domain, as well as for all three evaluation metrics (Dice
Similarity Coefficient, 95th Hausdorff Distance, Volume Similarity), the results plateau for the first 10 teams, after which a drop off is observed. The
ranking of the teams has changed between the In-Domain and Out-of-Domain metrics.

the WM were 0.885 (FIT_1), 0.883 (symsense) and 0.882
(Blackbean), and the ventricles were 0.889 (NVAUTO), 0.889
(symsense) and 0.888 (FIT_1). On the other hand, the GM was
segmented rather poorly, as the mean DSC for the top three
submissions were 0.726 (FIT_1), 0.725 (NVAUTO) and 0.724
(Neurophet). The eCSF spaces, which neighbor the GM, were
similarly poorly segmented.

Compared to the FeTA Challenge 2021 results, segmenta-
tion accuracy improved marginally. The highest DSC in the
FeTA Challenge 2022 in-domain evaluations was 0.805, while
it was 0.786 in 2021. The lowest HD95 in the FeTA2022
in-domain evaluation was 2.31 mm, while it was 14 voxels
in 2021. These two metrics are not directly comparable due
to the change in evaluation tool and unit between the years,
as the tool used in FeTA 2021 was not ideal when outliers
were present. The highest average VS in the FeTA Challenge
2022 was 0.914, while it was 0.885 in 2021. In-domain, the
per-label comparisons yielded similar results: the GM and
the eCSF being the most difficult to segment, while the WM
and the ventricles were the best performing. There were two
teams who submitted to both FeTA 2021 and FeTA 2022 who
ranked very well in the in-domain evaluation: NVAUTO and
Neurophet. NVAUTO maintained a top in-domain ranking in
both years in all three evaluation criteria (2021: DSC 1st place,
HD95 1st place, VS 2nd place, 2022: DSC 3rd place, HD95
3rd place, VS 1st place), as did Neurophet (2021: DSC 3rd
place, VS 5th place, 2022: DSC 4th place, HD95 4th place).

C. Inter-Site Generalizability Assessment:
Out-of-Domain Results

Here, we evaluated the performance of the submissions
on unseen datasets (i.e. on data that was not present in the

training dataset). Therefore, the OOD performance rankings
are presented using the CHUV and the UCSF testing data
subset and compared with the in-domain results. A summary
of the OOD evaluation metrics for all teams can be seen in
the bottom row of Fig. 4.

Some submissions demonstrated equivalent performance for
both the in-domain and OOD subsets such as FIT_1 (ranked
3rd in-domain and 2nd OOD), Symsense (ranking 4th for
both in-domain and OOD), or Dolphins (ranking 9th for both
in-domain and OOD). Interestingly, some methods ranked
better in the OOD subset, such as BlueBrune, which rose from
6th place in-domain to 3rd place OOD, or Blackbean who rose
from 7th rank in-domain to 4th OOD. However, some models
dropped considerably in performance such as FIT_2 (from 2nd

to 7th), NVAUTO (from 3rd to 6th, performing poorly in many
OOD cases, see Fig. 4 bottom row) or Neurophet (from 4th

to 13th). This indicated that the domain shift present in data
from different imaging centers can drastically degrade model
performance when being deployed in heterogenous clinical
datasets.

Overall, the median performance metrics in the OOD setting
remained equivalent to the in-domain, and many of the models
attained a plateau of performance around 0.80, 2.5, 0.90 in
DSC, HD95 and VS respectively. However, the median of
the worst performing methods dropped by a large amount
(dropping to approximately 0 for DSC, or 0.25 for VS) while
in-domain median performance never reached such low scores
(always above 0.50 and 0.75 for DSC and VS respectively for
all methods).

Not all brain tissue labels were equivalent when comparing
in-domain and OOD results. Class-wise performance (see Sup-
plementary Information, Section 12 [16]) indicated that major
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Fig. 5. Examples of the automatic labels created by the top 5 teams for
each of the four institutions (T2w: T2-weighted fetal brain reconstruction;
eCSF: external Cerebrospinal Fluid; GM: Grey Matter; WM: White
Matter).

drops of performance occur in ventricles (in DSC, HD95, VS),
and GM and WM volume (in VS). The achieved performance
by top ranking algorithms in the other tissues (eCSF, deep
GM, cerebellum, brainstem) were even slightly higher OOD
than in-domain (e.g. DSC range of 0.83 to 0.36 OOD while
0.76 to 0.04 in-domain).

D. Global Ranking
The global ranking was the ranking as defined by

using the complete testing dataset from all four imaging
centers. The global ranking was the official ranking which
determined the winners of the FeTA Challenge 2022.

Examples of results from the top 5 teams can be found in
Fig. 5. The team rankings of each evaluation metric can be
seen in Fig. 6, and the rankings based on the different labels
can be found in Fig. 7. The final rankings can be found in
Table III.

The top three teams were FIT_1, Bluebrune, and FMRSK
(with Bluebrune and FMRSK tied for second). FIT_1 main-
tained a top 5 ranking across each of the labels, while the
rankings were variable for all other teams across the different
brain tissues. A plateau in the performance of the top 10-12
teams was observed, in line with the in-domain and out-of-
domain results. The top three global DSC scores were from

teams FIT_1 (0.816), symsense (0.813), and Bluebrune(0.812).
The top three global HD95 scores were from FIT_1 (2.35mm),
Bluebrune (2.38mm), and Institute_Pasteur_DBC (2.39mm).
The top three global VS scores were from team FMRSK
(0.920), NVAUTO (0.915), and FIT_2 (0.913).

In order to investigate factors which may have influenced
the ratings, we looked at rankings based on quality ratings of
the testing dataset (Excellent=3, Good=2, Poor=1, median
rating by 3 experienced raters: MBC, AGG, AJaka), normal
and pathological brains, as well as rankings based on the
SR reconstruction algorithm used (NiftyMIC, mial-srtk, irtk-
simple).

For the excellent quality fetal brain reconstructions, the
top three teams were FIT_1, FMRSK, and 4 teams tied
for 3rd (symsense, NVAUTO, Blackbean, BlueBrune). The
‘Good Quality’ top three teams were FIT_1, FMRSK, and
NVAUTO, and ‘Low Quality’ were BlueBrune, NVAUTO, and
FIT_1. The top three teams for fetal brains with the normal
classification were FMRSK, FIT_1, and NVAUTO and for
pathology were FIT_1, BlueBrune, and FMRSK. The top
three teams for fetal brains reconstructed with the irtk-simple
algorithm [20] were deepsynth, FMRSK, and ajoshiusc; with
mial-srtk algorithm [18] were FMRSK, NVAUTO, and fudan-
zmic; and with the NiftyMIC algorithm [25] were FIT_1,
BlueBrune, and Blackbean. When separating the rankings
based on individual labels, BlueBrune was the top-ranking
team for the eCSF, NVAUTO ranked first for the GM,
FMRSK ranked first for the brainstem, and FIT_1 was the top
team for the remaining labels (WM, ventricles, cerebellum,
deep GM). A complete overview of the rankings per label
can be found in Fig. 7 as well as in the Supplementary
Information [16].

E. Topological Analysis Results

Table IV (A) presents the BNE rankings of the submissions
for each dimension k ∈ {0, 1, 2} and the global TIR. The
topology rankings were similar across the three k-dimensional
BNEs, with a maximum rank difference of less than three with
one exception: FMRSK presented a relatively big change in
its BNE rankings of dimension 1 (rank=4) and 2 (rank=13).
Potentially, such inter-dimension variation may come from
tissue-specific errors. Interestingly, hilab, which does not per-
form well in B N E0 (rank = 10) and B N E1 (rank = 11), is the
best performing submission in B N E2 (rank=8). Nonetheless,
the good B N E2 performance was not sufficient to pass on to
the global BNE ranking.

Changes in the TIR (see Table IV(B)) were small compared
to the global challenge ranking without topology, with a
maximum of one rank difference, with one exception. Team
Blackbean moved from rank 5 in the standard global FeTA
ranking to rank 3 in the TIR. The winner and second-place
teams remained the same.

Table V presents the global topology BNE ranking of the
submissions per tissue class. The TIR of the individual tissues
varied within each team’s algorithm. For instance, hilab ranked
first for the eCSF, but 13th in the WM. Examples of good and
bad topology results in the GM can be found in Fig. 8
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TABLE III
FINAL RANKINGS AND RESULTS OF THE FETA 2022 CHALLENGE. IN ADDITION, THE SEPARATE RANKINGS FOR THE IN-DOMAIN DATASETS

(KISPI, VIENNA) AND THE OUT-OF-DOMAIN DATASETS (CHUV, UCSF) ARE SHOWN

TABLE IV
TOPOLOGY (A) AND GLOBAL (B) RANKINGS OF THE SUBMISSIONS. (A)
BETTI NUMBER ERRORS (BNE) PER DIMENSION AND OVERALL. (B)
COMPARISON OF THE FETA CHALLENGE 2022 RANKING AND THE

TOPOLOGY-INTEGRATIVE RANKING (TIR). TOP 3 SUBMISSIONS ARE

SHOWN IN BOLD

Apart from the top 2 teams according to topology (FIT_1
and BlueBrune), only Blackbean and Dolphins were ranked in
the upper half for all tissue class. The average tissue TIR of
Blackbean was 3.3, while FMRSK (who tied for second place
in the global FeTA ranking) ranked on average 9.1 based on
the individual tissue BNE rankings.

IV. DISCUSSION

The practical value of MRI segmentation methods in clinical
settings depends on their ability to effectively generalize to
previously unseen data. MRI acquisition settings and various
post-processing methods, including image reconstruction, may
increase differences between images of the developing fetal
brain across imaging sites. Additionally, the overall image
quality tends to be lower in comparison to MRI scans of
the adult human brain, leading to less distinct delineation of
anatomical structures.

A. Generalizability of Submitted Algorithms

Our results have shown that generalizability across multiple
sites remains a challenge for fetal brain MRI segmentation,
but resources such as multi-site datasets have the potential
to improve the performance of such methods. For example,
the top scoring team of the Kispi dataset (ajoshiusc) did not
train on the second site’s available training dataset, and subse-
quently performed poorly on the data from the three additional
sites, leading us to assume that this network was overfitted. For
some methods (but not all), there seemed to be a preference for
a given SR method in the rankings. The winning team (FIT_1)
ranked first in the Vienna and UCSF datasets, which were
both reconstructed with the NiftyMIC SR algorithm. Teams
NVAUTO and FMRSK performed similarly well on the CHUV
and Kispi dataset, which included reconstructions performed
using the mial-srtk SR method.

Our findings further indicate that image augmentation is
a critical factor in achieving good domain generalization.
Traditional techniques (i.e. affine transformations, contrast
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Fig. 6. Rankings of participating teams for each metric from top to bottom (left to right). Left column: Global DSC; Middle Column: HD95; Right
Column: VS. The first row are box plots of the evaluation data; the middle row visualizes the ranking stability based on bootstrap sampling, and the
bottom row displays the significance maps for the ranking stability, where blue cells indicate no significant differences. All plots were generated with
the ChallengeR Toolkit. DSC: Dice Similarity Coefficient: HD95: 95th Hausdorff Distance: VS: Volume Similarity.

adjustments) have demonstrated their effectiveness within
established segmentation frameworks, including nnU-Net.
However, the optimum choice of augmentation techniques
remains unclear. As highlighted in Table II, it is noteworthy
that the leading teams, especially FMRSK and FIT_1, utilized
random bias field and motion artifact augmentations (such as
MR spikes). Such data augmentation strategies are specific to
MRI images and can mimic potential real-world image differ-
ences between scanners and centers. A deeper analysis of the
top-performing teams approaches reveals that style and photo-
metric augmentations (contrast, blur, sharpness, etc.), known
for their ability to induce significant intensity distribution
variations, could be pivotal for enhancing model generalization
in fetal MRI. This concept aligns with previous research into
generalizable cardiac structure segmentation [38], [39]. Impor-
tantly, a potential trade-off between in-domain and OOD data

generalization should be acknowledged [40]. For instance, the
NVAUTO team, which scored first place in the in-domain data
performance, did not use any specialized domain generaliza-
tion techniques, yet fell to fourth place for OOD data. Notable
in NVAUTO’s solution is that they used ensembling with
15 models. Conversely, FIT_1, initially third for in-domain
data, rose to first place in the overall ranking, underscoring the
indispensability of domain generalization in the development
of robust image segmentation models. FIT_1 also integrated
ensembling in their solution, but with 5 models, plus an
additional model that handled post-processing. It would be
interesting to test if FIT_1’s would improve if they had also
used a 15-model ensemble strategy, especially considering the
time and energy it takes to train such a large number of models.

Interestingly, the performance metrics of the OOD images
for some algorithms were not worse than the metrics for the
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TABLE V
TOPOLOGY (BNE) RANKING OF THE SUBMISSIONS PER TISSUE CLASS AND ON AVERAGE

Fig. 7. The submissions were evaluated and ranked based on the seg-
mentation results from each of the seven brain tissue labels (1: external
Cerebrospinal Fluid, 2: Grey Matter, 3: White Matter, 4: Ventricles, 5:
Cerebellum, 6: deep Grey Matter, 7: Brainstem), with each connected
line corresponding to a single team’s FeTA submission.

in-domain images. Fig. 4 shows that the range of evaluation
metrics for the in-domain results was much larger than the
OOD results. This is primarily driven by the quality of the
fetal brain reconstructions, as the average quality ratings of
the OOD datasets (UCSF: 2.33; CHUV: 2.35) were higher
than the average in-domain dataset quality ratings (Kispi:
2.18, Vienna: 1.95). Therefore, the quality of the fetal brain
reconstructions played a large role in the success of the
automatic segmentations.

B. Overview of Top Three Teams
The top scoring teams all incorporated explicitly

domain-robust solutions for the multi-site task. Teams FIT_1
and Bluebrune both incorporated domain generalization
strategies into their networks. Specifically, FIT_1 used Painter
by Numbers for style transfer training and Bluebrune used
a domain adversarial approach in their training strategy.
Transformer models did not seem to considerably help with
domain generalization in our challenge data, as the highest-
scoring team with a transformer model was Blackbean,

who ranked 5th and used a transformer model (ViT) as
well as an nnU-Net. The results of the FeTA22 challenge
indicate that existing model architectures and specialized data
augmentation strategies can be used successfully to generalize
segmentation networks. Short descriptions of the top three
submissions can be found in the following sections, and the
complete algorithm descriptions can be found in [16].

1) FIT_1: Team FIT_1used a three-step process. Firstly,
they used data-augmentation-based domain generalization, fol-
lowed by network ensembling, and an output-level denoising
autoencoder that corrects implausible predicted segmenta-
tions [41]. FIT_1 used nnU-Net as the network frame-
work [36], and they trained five different models, each with
their own data augmentation strategy. Model 1 used the default
nnU-Net data augmentation steps. Model 2 added bias-field
augmentation, an MR-specific data augmentation step. Model
3 adds style augmentation to the default nnU-Net and random
bias field augmentations. Model 4 uses photometric augmen-
tation, and model 5 uses MR-specific motion artifacts from
moving subjects, simulated by TorchIO. These 5 networks
were then ensembled based on average logit predictions. The
final post-processing step is a rule-based post-processing with
a denoising autoencoder (DAE), which takes the ensembled
result as an input, and outputs a refined segmentation. The
DAE model was trained using a self-generated dataset with
noisy segmentations, and randomly dropping out features. The
DAE was found to improve the segmentations when the input
was poor, therefore the DAE step was only utilized with
the large changes to the predictions occurred. In the training
process, they generated three synthetic datasets for validation
based on 24 cases, using default nnU-Net augmentation, ran-
dom style augmentation [42], and bias-field augmentation [38].

2) Bluebrune: Team Bluebrune utilized a domain adversarial
approach [43] to train this network, with nnU-Net as the
framework. Their method involves two steps: a 3D nnU-Net
segmentation network [36], followed by a domain discrimi-
nator network. The goal of the discriminator is to determine
which site the input originates from (as there were two sites
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Fig. 8. Examples of high and low topology scores of the grey matter segmentations in the challenge results. Left Column: Coronal view of a 34.6 GA
fetus with no known neuropathology; Right Column: a 30.9 GA fetus with severe ventriculomegaly and other abnormalities. In the segmentations
with high topology scores a continuous cortical ribbon can be observed. In cases with low scores, a gap in the grey matter can be observed in
both examples, as well as holes in the segmentation in the ventriculomegaly example, leading to poor scores (where higher numerical BNE scores
correspond with poorer results). A perfect BNE score for the cortical grey matter is (2/0/0). The corresponding Betti numbers are displayed in
parentheses next to each example. GA: Gestational Age; BNE: Betti Number Error.

in the training data). They trained two different discriminator
models, the first of which takes the outputted feature map
before the soft-max layer from the 3D nnU-Net segmentation
network as input in order to learn domain invariant features.
The second discriminator takes the outputted feature map from
the bottleneck layer of the Segmentation network as input in
order to learn domain invariant features in the U-Net’s encoder.
The discriminator networks output domain-class labels, and
there is a gradient reversal layer inserted just before the
discriminator networks, ensuring that the gradient passing to
the segmentation networks is negative during backpropagation,
ensuring adversarial network training. The two networks are
trained separately. The discriminator networks are only used
for training, and the two nnU-Net segmentation networks
are used for inference and are combined with the softmax
prediction average. They used standard nnU-Net preprocessing
and data augmentation steps.

3) FMRSK: Team FMRSK took on a semi-supervised
approach to train the networks. Firstly, they trained a standard
3D U-Net (using the MONAI framework [37]) to perform
brain extraction. Next, they reviewed and rated the training
data, scoring each case based on the quality of the labels. They
then used the high-quality labels to train an initial Attention U-
Net (again using the MONAI framework), and created labels
with this network for the remaining cases. Manual corrections
were made on these predicted labels. This iterative process was
repeated three times. They utilized standard data augmentation

steps, plus MR Spikes, bias fields, and random intensity
shifts. They used an external dataset, using 19 developing
Human Connectome Project (dHCP) neonates [44] who were
scanned between 26.6-32.4 weeks, as well as a spina bifida
atlas [45]. For training the final dataset, they used both the
brain-extracted dataset and a version of the dataset with more
of the surrounding structures, as well as flipping. They trained
two attention U-Nets and averaged the predictions from the
two models.

C. Individual Labels

The top team (FIT_1) performed extraordinarily well across
all labels, ranking first for four out of seven labels. The
rankings of the other top teams were not as stable when
looking at the individual fetal brain tissue labels, and no
pattern could be found. As in the global rankings, the OOD
volumes typically had better evaluation metrics for each indi-
vidual label, apart from the ventricles and brainstem. It is
uncertain why these two labels trended differently when com-
pared to the remaining labels. The GM remains challenging
to segment, which supports the importance of maintaining
topology in automatic segmentations. The deep GM and
brainstem were more challenging labels to segment, likely
as the structures are not as clearly defined as there is not a
strong demarcation and the difference in intensity from sur-
rounding structures is reduced (unlike in structures such as the
ventricles).
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D. Topological Analysis
In the analysis of topology as an evaluation metric,

we demonstrated the importance of considering topology
in the assessment and comparison of automatic segmenta-
tion methods. In the TIR algorithms ranking, the inclusion
of a topology-based metric did not drastically change the
final results, although minor updates are observed, and the
across-tissue reliability of FMRSK in topological accuracy was
rewarded.

V. CONCLUSION

Our first multi-centric fetal brain segmentation challenge
has demonstrated that overall, automated fetal brain segmen-
tation has improved since the first FeTA Challenge [11].
However, there is still room for improvement in the segmen-
tation of certain structures, especially in the cortical GM.

Despite the new challenges relating to generalizability,
algorithms and training strategies have not changed drastically
since FeTA 2021. All entries used deep learning and primarily
3D architecture. nnU-Net remained a popular and effective
tool for medical image segmentation, and the most popular
loss functions were the DSC loss and cross-entropy loss, or a
combination of the two. Extensive data augmentation strategies
are an integral aspect of training, and the addition of external
datasets did not lead to better results. As with FeTA 2021, the
top performing teams demonstrated a plateau in performance,
likely due to the quality of both the SR algorithms and the
quality of the manual segmentations.

Our challenge has demonstrated that the inclusion of
just one additional institution (Vienna) into the training
dataset, algorithms can improve their generalizability. Future
research directions should focus on enhancing the generaliz-
ability of the methods, including the emerging low-field fetal
MRI acquisitions [46], [47], or exploring federated learning
approaches. In that context, conducting a more comprehensive
evaluation of the impact of data augmentation and possible
biases due to SR reconstruction methods would be very
valuable. Furthermore, addressing challenges associated with
inaccurate voxel-wise annotations and establishing standards
of minimal image quality requirements [48], [49], [50] should
be a priority. These endeavors would be crucially important to
increase the clinical acceptance of automated fetal brain MRI
segmentation.
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