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Abstract—Wireless Body Area Networks (WBANs), as an
effective technology for electronic health monitoring, have trans-
formed traditional consumer electronics (CE) into the next gener-
ation of devices with enhanced connectivity and intelligence. The
improved interconnectivity between sensor nodes, coordinators,
and other consumer devices has increased data availability and
enabled autonomous monitoring within CE networks. However,
due to the time-sensitive nature of physiological data transmission
in WBANs and the urgency of sensor node data, addressing real-
time data transmission under dynamic link conditions remains
a significant challenge. To tackle this issue, we propose a
joint optimization scheduling strategy that considers both data
urgency and freshness. Our proposed strategy consists of two
key components: a Sink Channel Allocation (SCA) strategy
and a Node Scheduling Selection (NSS) strategy. By integrating
deep reinforcement learning (DRL), we overcome the challenges
posed by the large action space in channel allocation and
timeslot selection, thereby improving scheduling efficiency. Both
theoretical analysis and simulation results demonstrate that our
method significantly outperforms traditional approaches in terms
of real-time data transmission and scheduling optimization.

Index Terms— Consumer Electronics, Wireless Body Area
Network, Data Urgency, Age of Information, Scheduling, Re-
inforcement Learning.

I. INTRODUCTION

CONSUMER electronics (CE) are now integral to various
aspects of modern society. These include electronic en-

tertainment, daily health monitoring, medical fitness tracking,
and individual combat operations, as shown in Fig. 1. A
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common characteristic of these applications is the integration
of sensing devices with the human body. The rapid develop-
ment of the Internet of Things (IoT) has enabled seamless
connectivity between devices and people [1]. Simultaneously,
the increasing number of chronic disease patients globally
has made it difficult for individuals to receive timely med-
ical evaluations and advice, driving the demand for daily
health monitoring services [2]. Wireless Body Area Networks
(WBANs), as a key physiological data monitoring solution,
have garnered significant attention in the personal consumer
electronics sector. WBANs are now recognized as a central
theme in next-generation CE and consumer technology (CT)
research and are widely regarded as a critical solution for
future human-machine integration [3], [4].

As the preferred technology for future CE, WBANs are
networks specifically designed for human-centric applications,
enabling real-time, continuous, and long-term monitoring of
physiological data. These networks facilitate timely diagnosis
and provide valuable information to healthcare professionals
[5], [6]. By utilizing low-power, miniaturized physiological
sensor nodes, WBANs collect various physiological data and
vital signs from the body [7]. Depending on the type of appli-
cation, this data is transmitted via a single-hop star topology to
a coordinator (Sink) within the WBAN (intra-WBAN), which
then forwards the information to Remote Monitoring Center
(RMC) or cloud platforms for health monitoring services
(beyond-WBAN).

The time sensitivity of physiological data transmission is
of paramount importance in WBAN systems, similar to other
key performance indicators in CE. Communication metrics,
particularly real-time data transmission and the urgency of
data from sensor nodes, are critical [8]. Delayed physiological
data can lead to unnecessary energy consumption or severe
consequences, such as impacting medical decisions or causing
accidents in emergencies. However, traditional delay metrics
are insufficient to meet the stringent time-sensitivity require-
ments of WBANs [9].

To address this issue, the Age of Information (AoI) has been
introduced as a novel metric [10]. AoI considers transmission
time, queue waiting time, and the duration that data remains
after being received to measure the freshness of information
[11], [12]. It has been widely adopted to mitigate queuing
delays in the transmission of physiological data packets [13],
[14]. Numerous studies [15]–[20] use AoI to evaluate wireless
network performance, including scheduling algorithms that
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minimize average AoI [15], cooperative scheduling methods
for sensor nodes [16], and strategies that minimize average
AoI while maintaining throughput constraints [17], [18]. These
studies also explore transmission scheduling strategies, link
scheduling strategies in noisy channels [19], and considera-
tions of average peak AoI in IoT contexts with deadlines [20].

Despite the progress in AoI research, most studies focus
on enhancing network system performance without fully con-
sidering the specific scenarios of WBANs. Moreover, existing
methods often lack to address the urgency of physiological
data in WBAN systems. For instance, transmitting abnormal
Electrocardiogram (ECG) signals immediately to RMC is
critical for emergency decision making [21]. However, most
scheduling strategies simply categorize physiological data into
broad classes such as urgent or periodic, leading to resource
wastage from transmitting irrelevant data. This exacerbates
the delay problem and highlights the need to prioritize and
improve the freshness of received physiological data in WBAN
systems.

To overcome this difficulty, we propose a scheduling strat-
egy that jointly optimizes data urgency and freshness, with
the goal of maximizing the urgency of received data while
minimizing AoI. The novelty and contribution of this study
are highlighted as follows.

• We formulated a joint optimization problem that focuses
on both data urgency and AoI. By considering the inter-
relationship between these two factors, we introduce the
Urgency Level to AoI Ratio (ULAR) as our performance
metric. ULAR measures the system’s ability to transmit
urgent data while maintaining data freshness. Our primary
objective is to maximize ULAR, thereby ensuring timely
and prioritized delivery of critical physiological data.

• We decomposed the scheduling strategy into two interre-
lated strategies: the Sink Channel Allocation (SCA) strat-
egy and the Node Scheduling Selection (NSS) strategy,
to efficiently solve this optimization problem. This de-
composition facilitates an effective solution. Considering
the dynamic nature of the AoI, we introduced a two-stage
scheduling strategy based on deep reinforcement learning
(DRL) to tackle the challenge of a large action space and
effectively reduce its size.

• To evaluate the performance of the proposed scheduling
algorithm, we conducted comparative experiments with
different algorithms to ensure a comprehensive assess-
ment of our simulation results. The results validate the
effectiveness of the proposed method.

The remainder of this paper is organized as follows: Section
II reviews related work on scheduling strategies. Section
III presents the system model. The problem formulation is
introduced in Section IV. Section V details the joint scheduling
policy. Section VI evaluates the performance of the proposed
algorithms through simulations. Finally, Section VII concludes
the paper.

II. RELATED WORK

The field of health monitoring has seen extensive research,
and this section aims to briefly review and summarize the
related work on transmission scheduling strategies in WBANs.

Fig. 1: Remote Monitoring System for Consumer Electronics.

Early transmission scheduling schemes typically involve
prioritizing and ranking nodes based on various criteria [22]–
[27]. For example, The authors [22] designed a utility function
for nodes, which calculates the utility to improve network
performance. The authors [23] considered different parameters
of sensor nodes to calculate their importance, achieving a
reduction in packet loss probability. Liu et al. [24] dynamically
adjusted the transmission order and duration of nodes based on
channel conditions and application context to optimize quality
of service. Ullah et al. [25] proposed a link scheduling method
based on sensor clustering and cooperative routing protocols.
In [26] developed a data forwarding strategy that uses data
compression to balance the network performance of sensor
nodes. In [27] introduced a mixed cost parameter to evaluate
the effectiveness of quality of service. Additionally, some
studies focused on prioritizing and scheduling based on health
parameters and data types, Liang et al. [28] designed a multi-
level priority scheme and used a step-based timeslot allocation
method for scheduling node data. Kim et al. [29] proposed
a multi-criteria decision-making method for link scheduling
of node data. However, these studies mainly focus on node
prioritization and do not adequately consider the urgency of
the data.

In terms of scheduling strategies for urgent data, existing re-
search often involves redesigning superframe structures [30]–
[37]. For instance, Deepak et al. [30] proposed a channel ac-
cess scheme for nodes carrying urgent data frames to enhance
network performance. Misra et al. [31] addressed urgent data
scheduling by adjusting the data rates of different nodes. In
[32] introduced an adaptive medium access control (MAC)
algorithm that adjusts the MAC frame payload of WBAN
sensor nodes according to the severity of the sensed health
parameters, in compliance with the IEEE 802.15.4 protocol.
In [33] developed an energy-efficient medium access control
protocol that modifies the superframe structure and allocates
priority levels to detect and handle urgent events from in-body
sensors. The author [34] designed an emergency-prioritized
timeslot allocation scheme where relay nodes perform channel
sensing and handle urgent data. The author [35], [36] pro-
posed coordinated superframe duty cycle hybrid MAC (SDC-
HYMAC) and multi-channel hybrid MAC (MC-HYMAC)
protocols to ensure the network performance of urgent critical
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TABLE I: Description of Key Notations

Notation Description

C Number of available channels
S Number of Sinks
s Index of the Sink
χ Set of all Sinks
γs Set of sensor nodes associated with Sink s
Ns Number of sensor nodes associated with Sink s
ns Index of a sensor node associated with Sink s
t Index of time slot
Y Set of data packet sizes for sensor nodes
Yj Specific data packet size in Y

Yns (t) Actual data packet size transmitted by sensor node ns

in time slot t
p
Yj
ns Probability that sensor node ns samples a data packet

of size Yj

pdns
Probability that sensor node ns samples data with
urgency level d

ϱns (t) Whether the sensor node ns occupies the channel
for data transmission in time slot t

ξns (t) Sampling timeslot of data transmission for sensor
node ns in time slot t

lns (t) Urgency of physiological data transmitted by sensor
node ns in time slot t

dN Number of slots required for sensor node ns

to transmit a data packet
Rs Symbol rate of the transmission channel

pASlotRes Length of allocated unit slots for a sensor node
mns (t) Number of slots needed for sensor node ns to

complete the transmission
NPre Length of the preamble

NHeader Length of the PLCP header
Nj Length of the PSDU

SPLCPHeader
Spreading factor of the PLCP header

M Cardinality of the constellation in a modulation scheme
π A feasible scheduling strategy
Λ̄π Average urgency of received physiological data under

scheduling policy π
Āπ Average AoI of received physiological data under

scheduling policy π

physiological data transmission. In [37] introduced a deep
deterministic policy gradient algorithm inspired by random
graphs, formulating the problem as a Markov decision process
to ensure the transmission performance of urgent critical
physiological data. These methods have achieved some suc-
cess in the urgent transmission of anomalous data and have
considered performance metrics such as delay. However, they
rarely address the freshness of the data during the scheduling
process. Although some studies mention data freshness (e.g.,
[38], [39]), they do not comprehensively consider the urgency
of the data.

Despite the progress made in transmission scheduling,
there remains a lack of strategies that jointly optimize data
urgency and freshness. Unlike the aforementioned studies,
our work comprehensively considers the health monitoring
needs of WBANs. By integrating data urgency and freshness,
we achieve adaptive transmission. Additionally, to address
the issue of large action spaces in existing algorithms, we
decompose the scheduling strategy into two parts: one for Sink
channel allocation and the other for timeslot selection, aiming
to balance data urgency with the average AoI in the system.

Fig. 2: System Model.

III. SYSTEM MODEL

We investigate a typical slot-based WBAN system. The
system consists of a RMC and S WBANs. Each WBAN
includes a Sink, denoted by s ∈ χ = {1, 2, . . . , S}, where
each Sink is equipped with Ns sensor nodes tasked with
collecting physiological data. Each sensor node is indexed
by ns ∈ γs = {1, 2, . . . , Ns}. These sensor nodes transmit
data wirelessly to the Sink in a star topology configuration.
Subsequently, the Sink forwards the physiological data to the
RMC using WiFi or 5G wireless channels, as illustrated in
Fig. 2. Given that data forwarding from Sink to RMC falls
under the category of beyond-WBAN, our primary focus is on
the process of sensor nodes transmitting data to the Sink (intra-
WBAN).Some key notations in the optimization problem are
listed in Table I.

In this system, we assume that the number of available wire-
less channels is C. During each time slot, up to C channels can
be allocated for uplink data transmission, where the number of
active Sinks S satisfies C ≤ S. To avoid transmission conflicts
among sensor nodes within a single WBAN, we adopt a Time
Division Multiple Access (TDMA) protocol. Time is divided
into discrete and equal length slots denoted as t ∈ {1, 2, ..., T}.
In each time slot, each Sink selects only one sensor node ns for
data transmission. Regarding the upload of physiological data
from sensor nodes, not all sensor nodes access the wireless
channel in every time slot. Therefore, we adopt a generalized
model similar to that in [15]. Specifically, for sensor nodes
assigned a channel in time slot t, data sampled before time
slot t is discarded, and only the most recent data sampled in
time slot t is uploaded. This process continues until the data
is successfully transmitted, at which point the Sink sends an
acknowledgment (ACK) to release the allocated channel.

Due to the heterogeneity of sensor nodes, different sensor
nodes exhibit different traffic patterns, as listed in Table
II, including continuous or periodic data transmission, or
transmission triggered by sudden events (e.g., heart attack).
Therefore, the Sink must allocate slots that precisely match the
traffic generation time of each node to avoid delays or wasted
bandwidth. Additionally, accurate calculations of the required
round-trip time for data transmission, as well as physical layer
(PHY) functions and data lengths, are essential. To model the
data packet sizes for sensor nodes, let j ∈ {1, 2, . . . , J} denote
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TABLE II: Different Types of Medical Sensors

Sensing type Data rate Bandwidth

Electromyography (EMG) 320 kbps 0-10000 Hz
Electrocardiogram (ECG) 288 kbps 100-1000 Hz
Electroencephalogram (EEG) 42.3 kbps 0-150 Hz
Glucose 1600 bps 0-50 Hz
Temperature 120 bps 0-1 Hz
Cochlear implant 100 kbps -
Voice 50-100 kbps -

the index of packet sizes, where Yj ∈ Y represents a specific
size within the set Y = {Y1, Y2, . . . , YJ}. The data packet
size Yj can be expressed as

Yj = NPre +NHeader · SPLCPHeader
+

Nj

log2 M
(1)

where NPre, NHeader, and Nj represent the length of the
preamble, the physical layer convergence protocol (PLCP)
header, and the PLCP service data unit (PSDU), respectively.
SPLCPHeader

and M denote the spreading factor of the PLCP
header and the cardinality of the constellation of a given
modulation scheme, respectively.

Let dN denote the number of slots required for sensor node
ns to complete the upload of physiological data packets, i.e.,
dN = ⌈ Yj

Rs·pASlotRes⌉, where Rs and pASlotRes denote the
symbol rate and the length of the allocated unit slots requested
by the sensor node, respectively. Assume that sensor node ns

has a probability p
Yj
ns of sampling data packets of size Yj ,

where Y = {Y1, Y2, . . . , YJ} is the set of packet sizes. The
actual data packet size sampled or transmitted by sensor node
ns during a specific time slot is denoted as Yns

(t), which
corresponds to one value Yj in the set Y, determined by the
probability distribution p

Yj
ns . By definition, the probabilities

satisfy
∑J

j=1 p
Yj
ns = 1,∀ns ∈ γs.

For each sensor node ns, let ϱns
(t) ∈ {0, 1} indicate

whether it occupies the channel for data transmission in a
given timeslot. Specifically, if sensor node ns transmits data
during timeslot t, ϱns

(t) is set to 1; otherwise, it is set to
0. The variable ξns(t) denotes the sampling timeslot for data
transmission of sensor node ns in timeslot t. In this context,
mns

(t) represents the number of timeslots needed for the
complete transmission of the data packet Yns

(t). The required
number of timeslots to complete the transmission is given by

mns
(t) = ⌈ Yns

(t)

Rs · pASlotRes
⌉ (2)

This formula calculates the minimum number of times-
lots required for sensor node ns to successfully upload a
data packet of size Yns

(t), considering the allocated channel
resources. The precise allocation of these timeslots ensures
efficient utilization of the channel and minimizes potential de-
lays. By integrating this calculation into the overall scheduling
framework, the system can dynamically adapt to the varying
data sizes and transmission requirements of individual sensor
nodes.

IV. PROBLEM FORMULATION

A. Urgency of Data

We categorize the urgency of physiological data within the
WBAN system into D levels. The urgency of physiological
data transmitted by sensor node ns in timeslot t is denoted by
lns

(t) ∈ {1, 2, . . . , D}, where higher levels indicate greater ur-
gency of the physiological data. The urgency of data received
by the Sink from sensor node ns in timeslot t is represented
by Λns

(t) ∈ {0, 1, 2, . . . , D}. When ϱns
(t) = 1, sensor node

ns begins sampling data in timeslot t, and the probability
distribution of the urgency level of the sampled data is denoted
as Pr(lns

(t) = d) = pdns
, where d ∈ {1, 2, . . . , D} and∑D

d=1 p
d
ns

= 1, ∀ns ∈ γs. If the data from the sensor node
is successfully transmitted to the Sink by the end of timeslot
t, then Λns

(t) equal lns
(t). The dynamic nature of Λns

(t) is
expressed as

Λns
(t) =

{
lns(t)ϱns(t), t+ 1− ξns(t) = mns(t)

0, t+ 1− ξns
(t) ̸= mns

(t)
(3)

Therefore, the urgency level of physiological data received
by the Sink at timeslot t is represented as

Λs(t) =
1

SNs

S∑
s=1

Ns∑
ns=1

Λns(t) (4)

B. Age of Information

AoI is a critical metric for the evaluation of time-sensitive
networks handling physiological data in WBAN systems. In
this context, AoI is defined as the time elapsed since the most
recent packet was received by the Sink at time slot t, which
was generated at time slot t̄. Specifically, AoI is the difference
between the current time slot t and the time slot t̄ when the
last physiological data packet was generated by the sensor
node, represented as Ans

(t) = t − t̄. Considering that the
sampling and scheduling of physiological data from sensor
node ns occurs in time slot t, and sensor node ns completes
data transmission by the end of time slot t, then the AoI at
time slot t+1 for the Sink can be represented as mns(t) = t+
1− ξns(t), otherwise, it increases by one unit. The expression
for Ans

(t) is as follows

Ans(t+ 1) =


mns

(t), t+ 1− ξns
(t) = mns

(t)

and ϱns
(t) = 1

Ans
(t) + 1, t+ 1− ξns

(t) ̸= mns
(t)

or ϱns
(t) = 0

(5)

Therefore, the AoI of the physiological data received by the
Sink at time slot t is given by

As(t) =
1

SNs

S∑
s=1

Ns∑
ns=1

Ans(t) (6)

C. Optimization Problem

The aim of this study is to devise a scheduling strat-
egy that jointly optimizes the urgency of physiological data
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and the AoI. Let Λ̄π and Āπ denote, respectively, the av-
erage urgency and average AoI of received physiological
data under a feasible scheduling strategy π, where Λ̄π =
lim

T→∞
1
T

∑T
t=1 E [Λs(t)] and Āπ = lim

T→∞
1
T

∑T
t=1 E [As(t)].

The performance metric utilized is the ULAR, which signifies
the ratio of the urgency of the received data to the long-term
average AoI. A higher ULAR value indicates that the received
physiological data in each time slot is more urgent, leading to
higher data freshness. The scheduling strategy π is represented
as a feasible scheduling policy, where at the beginning of each
time slot t, π assigns channels to sensor nodes, samples data,
and initiates data transmission. Consequently, the optimization
objective can be formulated as follows

P1 : max
π

H =
Λ̄π

Āπ

s.t. C1 :
S∑

s=1

Ns∑
ns=1

ϱns
(t) ≤ C, ∀t

C2 :

Ns∑
ns=1

ϱns(t) ≤ 1, ∀s, t

(7)

where C1 denotes the constraint on the number of channels,
ensuring that where at most C channels are allocated per
time slot for uplink transmission of physiological data from
sensor nodes. C2 represents the link contention constraint
within each Sink, allowing at most one sensor node to transmit
physiological data to the Sink in each time slot. Next, we
present the proposed scheduling strategy.

V. JOINT SCHEDULING POLICY

Let H∗ represent the optimized value of H. Therefore,
H∗ = Λ̄π∗

Āπ∗
, where Λ̄π∗ and Āπ∗ are the values correspond-

ing to the optimal policy π∗. For the nonlinear fractional
programming problem defined by the objective function P1,
the optimality, denoted as H∗, is attained if and only if the
condition stipulated in [40] is satisfied

max
π

{Λ̄π −H∗Āπ} = Λ̄π∗ −H∗Āπ∗ = 0 (8)

Hence, problem P1 can be reformulated equivalently as
equation (9)

P2 : max
π

{Λ̄π −H∗Āπ}, s.t. C1, C2 (9)

Due to the unknown value of H∗, P2 remains challenging
to solve. To simplify the solution, we introduce equation (10)
as a surrogate for the unknown H∗ in P2

H(t) =
1
t

∑t
τ=1 E [Λs(τ)]

1
t

∑t
τ=1 E [As(τ)]

=
Λ̄π(t)

Āπ(t)
(10)

where H(1) = 0, and the value of H(t) depends on prior
scheduling decisions. By utilizing H(t) instead of H∗, prob-
lem P2 can be reformulated as

P3 : max
π

{Λ̄π −H(t)Āπ}, s.t. C1, C2 (11)

In problem P3, the number of possible scheduling decisions
for each timeslot is given by

∑C
c=1

(
S
c

)
N c

s , which results in
a large action space due to the dynamic nature of AoI. This

poses a challenge for existing algorithms to efficiently solve
the optimization problem. To tackle this issue, we decompose
the scheduling policy into two strategies: SCA Strategy and
NSS Strategy. The SCA strategy is responsible for determining
the allocation of idle channels to Sink, while the NSS strategy
focuses on selecting time slot for sensor nodes.

Algorithm 1 illustrates the NSS-SCA strategy. The al-
gorithm begins by initializing all necessary parameters and
networks, including the state, experience buffer, online net-
work, target network, update interval, discount factor, and
exploration rate (Step 1). For each time slot, the algorithm
retrieves the current state, employs the NSS scheduling strat-
egy to obtain the action and reward, and stores the transition
information. Subsequently, it updates the Q-network using the
SCA scheduling strategy (Steps 2-7). This iterative process
in a dynamic environment progressively optimizes scheduling
decisions, enhancing data transmission efficiency and resource
utilization.

Algorithm 1 NSS-SCA Strategy

1: Initialize: State s(t), experience buffer, the online network
Q with weights δ, target network Q̄ with weights δ̄, update
interval Z, discount factor ϕ, and exploration rate ϵ.

2: for each time slot t = 1, 2, . . . , T do
3: Obtain current state s(t),
4: Execute NSS Scheduling Strategy (Algorithm 3) to

get action w(t) and reward ε(t)
5: Perform action w(t) and observe new state s(t+ 1)
6: Store transition (s(t), w(t), ε(t)s(t+1)) in experience

buffer
7: Execute SCA Scheduling Strategy (Algorithm 2) to

update Q-network
8: end for

A. SCA Strategy
SCA strategy employs DRL techniques for optimal chan-

nel allocation among Sink. Specifically, it utilizes a method
known as Dueling Double Deep Q-learning Network (D3QN),
which learns the optimal policy through iterative interaction
between the agent and the environment to maximize long-term
discounted rewards. D3QN takes the system’s state as input
and generates Q-values for each state-action pair. Compared to
traditional Deep Q-Networks (DQN), D3QN offers enhances
training stability by mitigating issues like Q-value overestima-
tion, which can occur in standard DQN models. This results in
more accurate value estimates and improved performance in
decision-making tasks [14]. It enhances learning efficiency by
enabling the agent to simultaneously learn the value of being
in a specific state and the advantage of taking a particular
action. Moreover, D3QN facilitates the discovery of optimal
strategies by exploring the state-action space effectively, uti-
lizing a combination of the state-action value function and the
advantage function to output Q-values.

Our goal is to maximize the objective function. We define
the system state, action and cost function as follows.

• System state: We define the state space of the system at
time slot t as s(t) = (A(t), ξ̂(t),m(t), l(t),H(t)), which
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consists of five elements: freshness, sampling time slot,
allocated time slots, urgency level, and optimal value.
Each state vector is listed as follows

A(t) = (As(t))s∈χ (12)

ξ̂(t) = (ξ̂s(t))s∈χ (13)

m(t) = (ms(t))s∈χ (14)

l(t) = (ls(t))s∈χ (15)

For each sub-state vector, As(t), ξ̂s(t), ms(t), and ls(t)
can be expressed as follows

As(t) = [An1(t), An2(t), · · · , Ans(t)] (16)

ξ̂s(t) = (t− 1 + ξ̂ns(t))s∈χ (17)

ms(t) = [mn1
(t),mn2

(t), · · · ,mns
(t)] (18)

ls(t) = [ln1
(t), ln2

(t), · · · , lns
(t)] (19)

• Action: Let w(t) = (ws(t))s∈χ denote the channel
allocation action at timeslot t, where ws(t) = {0, 1} and
ws(t) = 1 indicates the allocation of an idle channel to
Sink at timeslot t. With C available channels, the feasible
actions that can be selected at each decision are limited
to at most

∑C
c=1

(
S
c

)
, representing the size of the action

space.
• Cost function: The reward obtained in timeslot t is then

defined as

ε(t) =

S∑
s=1

Ns∑
ns=1

Λns(t)−H(t)

S∑
s=1

Ns∑
ns=1

Ans(t) (20)

The value function V (s, w) and the advantage function
A(s, w) are derived from the output of the hidden layer
of the D3QN network. Subsequently, following equation
(20) in [41], the Q-value for each state-action pair is
determined

Q(s, w) = V (s)+

(
A(s, w)− 1∑C

c=1

(
S
c

) ∑
w

A(s, w)

)
(21)

D3QN architecture comprises an online network Q and a
target network Q̄ [14]. To improve training stability, the weight
vectors of the target network Q̄, denoted as δ and δ̄, are
periodically updated from the online network Q at intervals of
Z steps. Q(s, w|δ) and Q̄(s, w|δ̄) represent the value functions
for state-action pairs in the online network Q and the target
network Q̄, respectively. The target values are calculated as
follows

F(t) = ε(t) + ϕQ̄
(
s(t+ 1), argmax

w
Q(s(t+ 1), w|δt)|δ̄t

)
(22)

where 0 < ϕ ≤ 1 is the discount factor, and the loss function
is defined as

L(δt) = (F(t)−Q(s(t), w(t)|δt))2 (23)

to update the loss function, gradient descent is employed

∇δtL(δt) = (F(t)−Q(s(t), w(t)|δt))×∇δt(s(t), w(t)|δt)
(24)

During the learning process of D3QN, a balanced
exploration-exploitation strategy is employed through an ϵ-
greedy approach to avoid local optima. With probability ϵ, the
agent randomly selects one of all feasible actions to explore the
policy. For the remaining probability 1− ϵ, the agent exploits
by choosing the action with the minimum Q-value among
the feasible actions [42]. To ensure sufficient exploration, an
initially high value is assigned to the exploration parameter
ϵ at the outset of the training process. This value gradually
decreases towards 0 as the number of iterations increases
to facilitate convergence. Additionally, historical experiences
are stored in an experience buffer to enhance training ef-
fectiveness. During each training step, a batch of historical
experiences is randomly selected for learning.

Algorithm 2 illustrates the SCA strategy. This algorithm
takes as input the current state, action, reward, and next
state. It begins by randomly sampling a batch of experiences
from the experience buffer (lines 1-2). For each sampled
experience, the target value is computed to update the Q-
network. Specifically, the loss function L(δt), which measures
the discrepancy between the current network output and the
target value, is calculated. The network weights δt are then
updated using gradient descent, and the target network is
periodically synchronized with the updated weights (lines 3-
7). Finally, the exploration parameter ϵ is decayed according to
a predefined schedule to ensure effective policy convergence
and long-term optimization.

Algorithm 2 SCA Scheduling Strategy

1: Input: State s(t), action w(t), reward ε(t), next state s(t+
1)

2: Sample a batch from experience buffer
3: for each sample (s, w, ε, s′) do
4: Compute target value F(t) by (22)
5: Compute loss function L(δt) by (23)
6: Perform gradient descent to update δt by (24)
7: if the current step is a multiple of Z then
8: Update target network weights: δ̄ = δ
9: end if

10: Decay the exploration parameter ϵ according to the
exploration schedule

11: end for

B. NSS Strategy

The NSS strategy devises a combined scheduling policy
to optimize the objective after the SCA strategy determines
the channel allocation at the Sink. This policy comprises
scheduling selection decisions of the Sink aimed at allocating
idle channels. In each schedulable time slot t, the NSS strategy
selects scheduling decisions that maximize the expected value
of Λ̄π(t+1)−H(t)Āπ(t+1). However, due to the transmission
delay of physiological data, executing scheduling decisions
may not immediately reduce the AoI in subsequent time
slots. Therefore, directly maximizing the expected value of
Λ̄π(t + 1) − H(t)Āπ(t + 1) is infeasible. To address this
issue, the expected reduction in AoI is designed to be related
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to ηns
(t), where ηns

(t) = mns
(t) − t + ξns

(t), and ηns
(t)

represents the remaining time slots until the corresponding AoI
decreases. Assuming that the transmission of sensor nodes in
time slot t can reduce the AoI by αns

(t) in time slot t + 1,
this is expressed as follows

αns(t) =

{
Ans (ξns (t))

ηns (t)
, ϱns(t) = 1

0, otherwise
(25)

where Ans
(ξns

(t)) represents the expected reduction in AoI
following the completion of the corresponding physiological
data packet transmission. Note that if the respective data
packet does not complete uplink transmission in time slot
t, then in time slot t + 1, the Sink’s AoI does not actually
decrease. Therefore, Ans

(ξns
(t)) can be regarded as a virtual

AoI reduction. The Sink’s AoI then needs to be adjusted
by the corresponding bias term ζns(t + 1) = αns(t) in the
subsequent time slot t+2. If the corresponding physiological
data packet completes uplink transmission in time slot t, then
αns

(t) = Ans
(ξns

(t)) denotes the actual AoI reduction at the
Sink in time slot t+1, with a bias term of 0. This is expressed
as follows

ζns(t+ 1) =


0, t+ 1− ξns(t) = mns(t)

and ϱns(t) = 1

αns(t), otherwise
(26)

Based on the above analysis, we can construct a virtual
queue as defined in Equation

qns
(t+ 1) = Ans

(t) + 1 + ζns
(t)− αns

(t) (27)

According to Theorem 1 in [13], as t tends to infinity,
1
t

∑t
τ=1 Ans

(τ) and 1
t

∑t
τ=1 qns

(τ) become equal. This im-
plies that under any feasible scheduling strategy, the time-
averaged virtual queue length is equivalent to the time-average
AoI. Hence, we can substitute q̄π(t) for Āπ(t) in Equation
(28), denoted as

q̄π(t) =
1

t

T∑
τ=1

E

[
1

SNs

S∑
s=1

Ns∑
ns=1

qns(τ)

]
(28)

It is also noteworthy that if a sensor node occupies the wire-
less channel for uplink transmission in time slot t, the urgent
level Λns(t) of physiological data packets received by the Sink
remains zero during the data transmission process, and only
becomes lns

(t) after the completion of packet transmission in
time slot t+mns

(t)− 1. It is important to emphasize that the
urgent level lns

(t) remains constant during the transmission of
physiological data packets. Therefore, to evaluate the schedul-
ing strategy in the corresponding scheduling time slot ϱns(t),
an equivalent variable can be constructed to assign the urgent
level of its physiological data packets ahead of time in time
slot ϱns

(t) + 1. The expression for this equivalent variable is
as follows

σns
(t+ 1) = (1− ϱns

(t− 1))ϱns
(t)lns

(t) (29)

it can be observed that as t approaches infinity, we can obtain
equation (30)

σ̄π(t) =
1

t

T∑
τ=1

E

[
1

SNs

S∑
s=1

Ns∑
ns=1

σns(τ)

]

=
1

t

T∑
τ=1

E

[
1

SNs

S∑
s=1

Ns∑
ns=1

lns
(τ)

] (30)

As each Sink’s scheduling decision is mutually independent
and unrelated to others, the NSS strategy needs to select the
strategy combination in each time slot t that maximizes the
value of σ̄π(t+ 1)−H(t)q̄π(t+ 1). Based on this principle,
the NSS strategy pairs sensor nodes within the Sink with their
corresponding idle channels as illustrated below.

n∗
s = arg max

ns∈γs

D∑
d=1

pdns
d+Hs(t)

Ans
(t)∑Y

j=1 p
Yj
nsdN

(31)

Algorithm 3 outlines the detailed steps of the NSS strategy.
Initially, the algorithm takes the current state s(t) as input
and selects an action using the ϵ-greedy strategy (steps 1-2).
Then, it schedules each sensor node to maximize the objective
function (steps 3-7). Finally, it calculates the relevant values
and outputs the action w(t) and reward ε(t) for the current
time slot (steps 10-14).

The link selection process for each Sink operates inde-
pendently and without interdependency. According to equa-
tions (25)-(27), during the scheduling process, when an idle
channel is assigned to a Sink, the sensor node ns with the
highest value of

∑D
d=1 p

d
ns
d + Hs(t)

Ans (t)∑Y
j=1 p

Yj
nsdN

is selected

to maximize the objective function σ̄π(t+1)−H(t)q̄π(t+1).
The time complexity for each Sink is primarily determined
by the process of selecting maximum value. If a binary
search method is used to find the maximum value, the time
complexity becomes O(logNs). Therefore, after T iterations,
the total computational complexity of the NSS strategy for
the entire system is O(T log N̂s), where N̂s represents the
maximum number of sensor nodes served by each Sink, i.e.,
N̂s = max(N1, N2, . . . , NS).

Based on the above analysis, we incorporate the NSS strat-
egy into the SCA framework. After each bandwidth allocation
action, the Sink assigned to the bandwidth schedules sensor
nodes for sampling and data transmission according to the
NSS strategy, thereby constructing the proposed NSS-SCA
strategy. Compared to directly applying the D3QN algorithm
to solve problem P3, the NSS-SCA strategy reduces the feasi-
ble action space of the neural network from

∑C
c=1

(
S
c

)
N c

s to∑C
c=1

(
S
c

)
, significantly decreasing the problem’s complexity.

This enhancement enables the DRL-based scheduling strategy
to solve problem P3 more efficiently, improving the overall
performance of the algorithm.

VI. SIMULATION RESULTS

The proposed scheme is simulated using Python 3.8.2. The
computational environment includes a Windows 10 operating
system, an Intel Core i7-10700 CPU, and 32GB of RAM.
The NSS-SCA algorithm is implemented with PyTorch 1.6.0,
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Algorithm 3 NSS Scheduling Strategy

1: Input: Current state s(t)
2: Select action w(t) using ϵ-greedy strategy
3: for each sensor node s = 1, 2, . . . , S do
4: if ws(t) = 1 then
5: Schedule node n∗

s to maximize
∑D

d=1 p
d
ns
d +

Hs(t)
Ans (t)∑Y
j=1 p

Yj
nsdN

6: else
7: Do not schedule sensor node
8: end if
9: end for

10: Calculate AoI reduction αns
(t)

11: Compute bias term ζns(t+ 1)
12: Update virtual queue qns(t+ 1)
13: Calculate equivalent variable σns

(t+ 1)
14: Compute reward ε(t)
15: Output: Action w(t), reward ε(t)

TABLE III: D3QN Hyper-Parameters

Parameter Value Parameter Value

Discount factor ϕ 0.98 Replay memory size 2000
Learning rate 0.0001 Initial exploration rate ϵ 0.3
Number of timeslot T 5×104 Batch size 32
Update step Z 10 Activation function ReLU

TABLE IV: Common Simulation Parameters

Parameter Value Parameter Value

Frequency band 2.4 GHz Rs 600 Kbps
Modulation DBPSK M 4
ACK policy I-ACK D 4
pASlotRes 500 µs J 5
SPLCPHeader

4 Npre 90 bit
Nj 50-250 bytes NHeader 31 bit

featuring a network architecture with two hidden layers con-
taining 80 and 40 ReLU activation units, respectively. The
specific system parameters utilized in the analysis are detailed
in Table III.

To validate the effectiveness of the proposed scheme in
optimizing the three key performance indicators (data urgency,
AoI, and ULAR), we first compare two scheduling mecha-
nisms: the AoI-aware scheduling mechanism (AoI-AS) [38],
which focuses on AoI, and the i-MAC sorting algorithm (i-
MAC) [33], which considers only data urgency. Specifically,
Fig. 3 illustrates the performance differences between these
two algorithms as the number of sensor nodes increases in a
single Sink scenario. We set the number of WBAN users to
S = 1 and the available channels to C = 1, with the number
of sensor nodes ranging from ns ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}.
The data urgency level was set to D = 4, and the proba-
bility parameters pdns

and p
Yj
ns were generated using random

functions. Other relevant parameters are shown in Table IV.
As shown in Fig. 3(a), when considering only data urgency,

the data urgency values of all three algorithms decrease
as the number of sensor nodes Ns increases. This decline
occurs because the increase in sensor nodes reduces each

node’s scheduling opportunities. However, the i-MAC from
[33] outperforms the other methods in terms of data urgency
optimization, followed by our proposed algorithm, while the
AOI-AS from [38] performs the worst. This is because the
i-MAC algorithm is specifically designed to optimize data
urgency, whereas the AOI-AS does not consider data urgency,
leading to suboptimal results. Our proposed algorithm achieves
a balanced performance by considering both AoI and data
urgency simultaneously.

Fig. 3(b) presents the comparison of AoI performance, with
the same experimental parameters as Fig. 3(a). As the number
of sensor nodes Ns increases, the AoI values of all algorithms
exhibit an upward trend. However, the AOI-AS achieves
the lowest AoI values due to its explicit consideration of
data expiration rates, while the i-MAC maintains consistently
higher AoI values as it disregards AoI. Our proposed algorithm
strikes a balance between AoI and data urgency, positioning its
AoI performance at an intermediate level, thereby achieving a
more balanced overall performance.

Fig. 3(c) shows the comparison of average ULAR values
across different numbers of sensor nodes, with experimental
settings consistent with those in Fig. 3(a) and Fig. 3(b). As
the number of sensor nodes increases, the average ULAR
values of all algorithms gradually decline, which is expected
since more nodes reduce the scheduling opportunities for
individual nodes to perform uplink transmission. Nonetheless,
our proposed strategy demonstrates superior average ULAR
performance, primarily due to our joint optimization of data
urgency and AoI, which significantly enhances the overall sys-
tem performance. Compared with the i-MAC, which focuses
only on urgency, and the AOI-AS, which prioritizes AoI, our
method exhibits a more comprehensive performance advantage
in WBAN system.

At the same time, we compare the proposed scheduling
strategy with several existing mechanisms to analyze their
respective strengths, weaknesses, and distinguishing charac-
teristics. This comparative analysis not only demonstrates
the effectiveness of our approach but also highlights the
performance differences of each strategy in specific application
scenarios.

1) Greedy Strategy: This strategy prioritizes scheduling
the sensor node with the highest Ans(t) value at each
time slot t to ensure optimal data freshness.

2) Max-Ratio (MR) Strategy: This strategy accounts for
uplink transmission delay by prioritizing the scheduling
of the sensor node with the highest Ans (t)∑J

j=1 p
Yj
nsdN

value

at each time slot t, aiming to optimize data freshness
under transmission delay conditions.

3) MRUD Strategy: The Maximum Ratio based on Ur-
gency Degree (MRUD) strategy further considers the
urgency of physiological data, building upon the MR
strategy. It prioritizes scheduling the sensor node with
the highest

Ans (t)
∑D

d=1 pd
ns

d∑J
j=1 p

Yj
nsdN

value at each time slot t,

taking into account the impact of data urgency on the
average AoI.

Fig. 4 shows the comparison of data urgency levels under
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(a). Comparison of average data urgency levels
under different No. of nodes.

2 3 4 5 6 7 8 9 10
Number of Nodes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Av
er

ag
e 

Ao
I

NSS-SCA
i-MAC
AOI-AS

(b). Comparison of average AoI under different
No. of nodes.
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(c). Comparison of average ULAR under dif-
ferent No. of nodes.

Fig. 3: Comparison of algorithm performance in data urgency, AoI and ULAR.

different strategies with different numbers of sensor nodes per
Sink. The experimental setup includes S = 3 Sinks, C = 2
available channels, and varying numbers of sensor nodes in
each Sink ns ∈ {3, 4, 5, 6, 7, 8, 9}. The level of urgency is
divided into D = 4 levels. The probability parameters pdns

and p
Yj
ns for the sensor nodes are generated using a random

function, with other relevant parameters detailed in Table IV.
The figure illustrates that as the number of sensor nodes Ns in-
creases across all algorithms, the data urgency levels gradually
decrease. This decline is attributed to the increased number of
sensor nodes, which reduces the scheduling opportunities for
each individual node.

Furthermore, the NSS-SCA strategy demonstrates superior
performance in terms of average data urgency over time com-
pared to other strategies. The greedy and MR strategies do not
consider data urgency in the system, so their performance in
terms of data urgency is similar to random decisions, resulting
in the lowest time-averaged urgency among the four strate-
gies. Although the MRUD strategy considers data urgency,
the dynamic changes in the AoI affect the corresponding
scheduling decisions, thereby affecting the dynamic changes in
the received data urgency. Consequently, the MRUD strategy
achieves a lower time-averaged data urgency compared to the
NSS-SCA strategy because it does not consider the impact of
these dynamic changes.

Additionally, we examined the effect of varying the number
of Sinks on data urgency, as shown in Fig. 5. In the setting
where each Sink has 4 sensor nodes, the NSS-SCA strategy
again demonstrates superior performance in terms of average
data urgency over time. In summary, by thoroughly consider-
ing data urgency and system dynamics, the NSS-SCA strategy
exhibits high efficiency and superior performance in various
settings.

In Fig. 6, we compare the average AoI for different strate-
gies under different numbers of sensor nodes per Sink. The
experimental parameters are the same as in Fig. 4. It is
evident from the figure that as the number of sensor nodes Ns

increases, the average AoI also increases for all algorithms.
However, the NSS-SCA strategy consistently shows superior
performance in terms of average AoI compared to other strate-
gies. This is primarily because the Greedy strategy considers
the reduction in AoI that would result from completing the
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Fig. 4: Comparison of average data urgency levels under
different No. of nodes in each Sink.
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Fig. 5: Comparison of average data urgency levels under
different No. of Sinks.

data transmission, but neglects the effect of the transmission
delay on AoI, resulting in poorer AoI performance. The MR
and MRUD strategies fail to account for the dynamic changes
in AoI, resulting in their lower time-averaged AoI performance
compared to the NSS-SCA strategy, which is based on deep
reinforcement learning.

Additionally, we examined the effect of varying the number
of Sinks on the average AoI, as shown in Fig. 7. In a
setting where each Sink has 4 sensor nodes, the NSS-SCA
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Fig. 6: Comparison of average AoI under different No. of
nodes in each Sink.
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Fig. 7: Comparison of average AoI under different No. of
Sinks.

strategy again demonstrates superior average AoI performance.
Overall, the NSS-SCA strategy exhibits high efficiency and
superior performance in various settings due to its comprehen-
sive consideration of data urgency and system dynamics. This
highlights the importance of accounting for dynamic changes
in AoI to ensure optimal system performance, and underscores
the superiority of the NSS-SCA strategy in achieving the best
time-averaged AoI.

Fig. 8 illustrates the comparative results of the average
ULAR values for each unit sink under different strategies.
The experimental parameters remain the same as in Fig. 4.
Observing the graph, we note a gradual decrease in the average
ULAR as the number of sensor nodes Ns increases across all
algorithms. This decline stems from the increased number of
sensor nodes, which leads to a higher count of sensor nodes
per unit Sink, consequently reducing the opportunities for each
sensor node to be scheduled for uplink transmission.

However, the NSS-SCA strategy outperforms other strate-
gies in terms of average ULAR performance. This superiority
can be attributed to two main factors: Firstly, the NSS-SCA
strategy directly optimizes the time-averaged ULAR. Hence,
compared to the myopic Greedy and MR strategies, which
solely consider AoI, NSS-SCA yields superior ULAR values.
Secondly, while the MRUD strategy jointly considers data
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Fig. 8: Comparison of average ULAR under different No. of
nodes in each Sink.
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Fig. 9: Comparison of average ULAR under different No. of
Sinks.

urgency and AoI, it neglects the dynamic nature of AoI,
resulting in inferior performance in terms of time-averaged
ULAR compared to the NSS-SCA strategy based on DRL.

Similarly, a horizontal comparison of the effect of varying
the number of Sinks on the average ULAR is shown in
Fig. 9. In the setting where the number of sensor nodes per
unit Sink is 4, the NSS-SCA strategy also shows superior
performance. In summary, the NSS-SCA strategy exhibits high
efficiency and superior performance in various settings due to
its comprehensive consideration of data urgency and system
dynamics.

VII. CONCLUSION AND FUTURE WORK

To support long-term, efficient electronic health monitoring
while integrating with CE, this paper proposes a joint opti-
mization scheduling strategy based on data urgency and fresh-
ness. Specifically, the strategy consists of two components:
SCA and NSS. Our DRL-based approach efficiently handles
large action spaces in channel allocation and timeslot selec-
tion, leading to improved scheduling performance. Simulation
results demonstrate that the proposed strategy outperforms
existing methods by enhancing the average urgency of received
data and reducing the average AoI.
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While the proposed joint optimization strategy has demon-
strated significant performance gains in simulated environ-
ments, further validation under real-world conditions is essen-
tial to fully assess its practical applicability. WBAN systems
operate in dynamic and often unpredictable environments,
where factors such as interference, energy constraints, and
patient mobility can significantly impact performance. Imple-
menting the proposed method in real-world WBAN setups,
using commercially available wearable sensors and healthcare
systems, is a critical next step. However, this requires access
to specialized hardware and collaboration with healthcare
institutions or research laboratories. Future work will focus
on addressing these challenges by designing experiments that
evaluate the method’s performance in practical scenarios.
Metrics such as data transmission latency, energy efficiency,
and robustness to interference will be key to understanding its
behavior under realistic conditions. Furthermore, we plan to
explore how the proposed approach can be adapted to account
for the dynamic nature of WBANs. For instance, adjustments
in the scheduling algorithm could ensure robustness in the
presence of node mobility or unpredictable network condi-
tions. By addressing these real-world challenges, we aim to
further refine the proposed optimization strategy and enhance
its applicability in practical WBAN environments.
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