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Unscented Kalman Filtering Over Full-Duplex Relay
Networks Under Binary Encoding Schemes

Licheng Wang, Zidong Wang, Shuai Liu, and Daogang Peng

Abstract—In this paper, a modified unscented Kalman filter design
algorithm is proposed for discrete-time stochastic nonlinear systems
over full-duplex relay networks with binary encoding schemes. In order
to enhance the transmission reliability, a full-duplex relay is deployed
between sensors and the filter, and a self-interference cancellation scheme
is introduced to eliminate the interference caused by the relay itself.
To accommodate the digital communication manner, a binary encoding
scheme is adopted, and a sequence of random variables obeying Bernoulli
distribution is introduced to characterize statistical behaviors of the
random bit flips. The objective of the addressed problem is to design
an unscented Kalman filter over full-duplex relay networks with binary
encoding schemes that reflects the impacts of the decoding error, the bit
flips, and the full-duplex relay on the filtering performance. A sufficient
condition is developed using the matrix inverse lemma to guarantee the
exponential mean-square boundedness of the filtering error. Finally, a
simulation study is carried out to demonstrate the effectiveness of the
developed binary-encoding-based unscented Kalman filter over a full
duplex network.

Index Terms—Unscented Kalman filtering, full-duplex relay networks,
binary encoding schemes, bit flips, exponential mean-square boundedness.

I. INTRODUCTION

Considerable increase in research on the filtering problem has been
witnessed in the past few decades from both the control systems
and the signal processing communities [5], [13], [40]–[44]. Various
filtering techniques have been proposed and applied to a variety of
areas including target tracking, missile guidance and control systems,
and fault detection [30], [31], [33], [38], [47]. Notably, the Kalman
filtering algorithms have been recognized as an optimal filtering
strategy for linear systems under the assumption of Gaussian noises
in the sense of least mean square. However, for nonlinear systems, the
traditional Kalman filtering algorithm is no longer applicable, which
may lead to severe deterioration of filtering performance. As a result,
alternative filtering schemes have been put forward for nonlinear
systems with Gaussian noises, such as the extended Kalman filter
(EKF) method, unscented Kalman filter (UKF) algorithm, and particle
filter strategy [2], [9], [14]–[17], [19], [22].

Compared to the EKF algorithm, the UKF algorithm has proven
to be an extremely powerful method for stochastic nonlinear sys-
tems. The UKF algorithm has obvious advantages including 1)
effectively avoiding the decrease of filtering performance caused
by the linearization error, 2) approximating the probability density
function (rather than approximating the nonlinear function itself), 3)
suiting for nondifferentiable nonlinearities, and 4) circumventing the
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calculation of the Jacobian matrix. As a result, the UKF algorithm
has attracted ever-growing research attention, and various modified
UKF algorithms have been proposed to cope with imperfect signal
transmissions [12], [20]. For instance, in [25], the Round-Robin
protocol has been incorporated with the UKF algorithm to decrease
the communication traffic of the resource-constrained network, where
the period scheduling characteristic of the Round-Robin protocol has
been reflected. In [26], the UKF algorithm has been applied to the
neural networks, where the remote estimator can only receive partial
components of the measurement output.

In the remote estimation problem, the measurement signals usually
need to be transmitted over a long-distance transmission channel
[28], [39]. However, because the sensor’s communication capacity
is limited and the path loss is nonnegligible, the remote estimator
may fail to receive the signal sent by the sensor. In this case, relays
are typically deployed between the sensor and the estimator, which
are used to amplify and forward the measurement signal. Various
relays are commonly used, including amplify-and-forward relays,
decode-and-forward relays, and so on [1], [11], [18], [23], [32],
which have been pervasively put into practice in various networked
systems. For example, in [35], the recursive filtering problem has
been discussed for stochastic uncertain systems under the amplify-
and-forward relays.

On the other hand, the mobile communication system is usually
divided into simplex communication, full-duplex communication, and
half-duplex communication [8], [45]. In recent years, full-duplex
relays have attracted some research attention, where the relays can
receive and send signals at the same time. Consequently, it is of vital
importance to appropriately deal with the self-inference signal sent
by the relay itself. For example, in [34], a self-inference cancellation
technique has been adopted to eliminate the impact of the self-
inference caused by the full-duplex relays.

With the popularity of network technology, the digital commu-
nication era has arrived with evident advantages in strong anti-
interference capability and high reliability compared to the analog
pathway [3], [6], [27], [46]. For digital communication equipment,
only a finite number of bits can be processed at each execution
point, and therefore, the signal needs to be truncated to meet the
bit requirement/constraint. After truncation, the signal is encoded into
binary codewords to follow the digital communication manner, which
is usually referred to as the binary encoding scheme. This encoding
technique has been recognized as the most effective and has attracted
much research attention [36], [37].

Due to the complicated and noisy communication circumstance,
the communication quality cannot be guaranteed during the codeword
transmission. As such, bit flips often occur in a random fashion, which
can be viewed as one of the main reasons for data distortion that
deserves further investigation. Recently, the binary encoding scheme
with random bit flips has gained some primary research attention
in the filtering problem [21], [48]. For example, in [24], the binary
encoding scheme has been expanded to address the moving-horizon
estimation problem for linear networks, while in [7], it has been
applied to the consensus control problem for multi-agent systems.

Summarized from the above discussions, this paper focuses on
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Fig. 1: Block diagram for the remote state estimation problem

the unscented Kalman filtering problem for a class of discrete-
time stochastic nonlinear systems over a full-duplex network with
the binary encoding scheme subject to random bit flips. The main
challenges stem from the following two aspects: 1) establishing a
unified measurement model for stochastic nonlinear systems over full-
duplex relays with the binary encoding scheme is essentially difficult;
and 2) designing an unscented Kalman filter to reflect the impacts
of full-duplex replay and the binary encoding scheme on filtering
performance is nontrivial. To overcome these two challenges, the
main contributions of this paper can be highlighted as follows.

• A rather comprehensive system model is considered, which cov-
ers general nonlinearities, Gaussian noises, full-duplex relays,
binary encoding schemes, and random bit flips.

• A new unscented Kalman filter algorithm is proposed to account
for the impacts of full-duplex relay and binary encoding errors
on the filtering error.

• A sufficient condition is established using the matrix inverse
lemma to guarantee the exponential mean-square boundedness
(EMSB)of the filtering error.

II. PROBLEM FORMULATION

A. System Model

In this paper, the following stochastic nonlinear system is consid-
ered:

{

uk+1 =Akuk + f(uk) + wk

yk =h(uk) + vk
(1)

where uk ∈ R
n and yk ∈ R

m denote, respectively, the system state
to be estimated and the measurement output. wk ∈ R

n and vk ∈
R

m are unrelated zero-mean Gaussian white noise sequences with
variances R1,k = E{wkw

T
k } and R2,k = E{vkvTk } where R1,k

and R2,k are known positive-definite matrices. f(·) : R
n → R

n

and h(·) : R
n → R

m are nonlinear functions with f(0) = 0 and
h(0) = 0. Ak is a known time-varying matrix.

It should be noted that the focus of this paper is the remote state
estimation issue for a stochastic nonlinear system over a full-duplex
relay network equipped with a binary encoding scheme, as shown
in Fig. 1. Specifically, the measurement signal is first transmitted to
the relay side via a digital communication channel with a certain
transmission power, and the binary encoding scheme is employed
to encode the transmission signal into binary codewords. However,
due to the unreliability of the digital network and undesired channel
noises, probabilistic bit flips are taken into consideration in the binary
encoding process. At the relay side, the received binary codewords
are decoded, amplified, and then forwarded to the filter side. Based
on the above discussions, the following mathematical descriptions are
provided.

The measurement signal is first transmitted to the relay side
with certain transmission power and the transmitted signal is then
characterized by the following form:

zk =
√

lskt
sr
k yk + v

s
k (2)

where zk ∈ R
m is the transmitted signal, lsk is the transmission

power, tsrk denotes the stochastic channel coefficient for the sensor-
to-relay network with E{tsrk } = t̄srk and E{(tsrk − t̄srk )2} = σsr

k

where t̄srk and σsr
k are known positive scalars. vsk ∈ R

m stands for
the transmission noise satisfying the Gaussian distribution E{vsk} = 0
and E{vsk(vsk)T } = R3,k with R3,k being a known positive-definite
matrix.

B. Binary Encoding Scheme

Suppose that a scalar signal gk falls into a given interval G ,

[−ḡ, ḡ]. Here, G is uniformly grouped into 2L − 1 small intervals
denoted by [x1,i, x2,i] where x1,i can be represented as x1,i = −ḡ+

2ḡ
2L−1

(i − 1) (i = 1, 2, . . . , 2L − 1) and the length of each interval
is expressed as π ,

2ḡ
2L−1

.
Because of the limited communication bandwidth, only finite bits

can be transmitted to the communication network. This means that
the original signal gk needs to be truncated to meet the bandwidth
constraint. Without loss of generality, we assume that L bits are
permitted for transmission at each time instant. Different from the
traditional fixed truncation technique, in this paper, a stochastic
truncation function R : gk → qk(gk, L) is utilized to map gk to
a truncated signal qk(gk, L) obeying the following law:

{

Prob{qk(gk, L) = x1,i} = 1− ξk

Prob{qk(gk, L) = x2,i} = ξk
(3)

where ξk =
gk−x1,i

π
∈ [0, 1).

Defining the truncation error as δk(gk, L) , gk − qk(gk, L) and
considering gk = x1,i + ξkπ, we can easily obtain from (3) that

{

Prob{δk(gk, L) = ξkπ} = 1− ξk

Prob{δk(gk, L) = (ξk − 1)π} = ξk.
(4)

Then, it follows from (4) that the mean of the truncation er-
ror δk(gk, L) is 0 and its variance is bounded by π2

4
, that is,

E{δk(gk, L)} = 0 and E{δ2k(gk, L)} ≤ π2

4
.

In what follows, denote qk(gk, L) as a linear combination of
the first L terms of the series {2i−1π}, that is, qk(gk, L) =
−ḡ +

∑L

i=1 li,gk2
i−1π. Moreover, introduce the notation Lgk ,

{l1,gk , l2,gk , . . . , lL,gk} as the codeword sequence with li,gk ∈
{0, 1} (i = 1, 2, . . . , L).

During the transmission of the codeword sequence Lgk via a
memoryless binary symmetric channel, assume that the bit flip occurs
in a random manner due to the noisy channel environment. To this
end, a Bernoulli distributed random sequence ζi,k (i = 1, 2, . . . , L)
is introduced which obeys the following distribution:

Prob{ζi,k = 1} = ζ̄, Prob{ζi,k = 0} = 1− ζ̄ (5)

where ζ̄ ∈ [0, 1] is a known scalar. ζi,k = 1 means that the codeword
li,k flips and ζi,k = 1 indicates that no flip occurs for the ith
codeword. Denote the actually received codeword sequence of the
relay as

L̄gk , {l̄1,gk , l̄2,gk , . . . , l̄L,gk} (6)

with l̄i,gk = (1 − ζi,k)li,gk + ζi,k(1 − li,gk ), based on which the
decoded signal of gk can be denoted as

q̄(L̄gk , L) , −ḡ +
L
∑

i=1

l̄i,gk2
i−1

π. (7)
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Specifically, if there is no flip occurring, one has q̄k(L̄gk , L) = gk.
Based on the results in [24], it is not difficult to obtain that the mean

and the variance of the decoding signal q̄k(gk, L) are, respectively,

E{q̄k(L̄gk , L)} = (1− 2ζ̄)qk(gk, L) (8)

and

Var{q̄k(L̄gk , L)} = ζ̄(1− ζ̄)
4ḡ2(22L − 1)

3(2L − 1)2
. (9)

Here, the expectation has been taken with respect to the random
variables ζi,k. It should be pointed out that, due to the bit flips, there
exists a distortion between qk(gk, L) and q̄k(L̄gk , L). To this end,
we define a new signal q̂k(L̄gk , L) , 1

1−2ζ̄
q̄k(L̄gk , L) instead of

using q̄k(L̄gk , L) to keep the unbiasedness of the distortion.
By now, we have explained the main transmission principles of the

binary encoding scheme for scalar signals. It should be noted that this
scheme is also suitable for vector signals in a componentwise man-
ner, i.e. qk(gk, L) = vec{qk(g1,k, L), qk(g2,k, L), . . . , qk(gm,k, L)}
where gi,k is the ith component of the vector gk. Therefore, for
a vector bk ∈ R

m, qk(bk, L) ∈ R
m, q̄k(L̄bk , L) ∈ R

m and
q̂k(L̄bk , L) ∈ R

m.
Lemma 1: Define the decoding error as dk , qk(zk, L) −

q̂k(L̄zk , L). dk satisfies E{dk} = 0 and

Var{dk} =
1

(1− 2ζ̄)2
Var{q̄k(L̄zk , L)}. (10)

Proof: It follows readily from dk , qk(zk, L) − q̂k(L̄zk , L)
and E{q̄k(L̄zk , L)} = (1 − 2ζ̄)qk(zk, L) as well as q̂k(L̄zk , L) ,

1
1−2ζ̄

q̄k(L̄zk , L) that

E{dk} = E{qk(zk, L)− q̂k(L̄zk , L)}

= E{qk(zk, L)−
1

1− 2ζ̄
q̄k(L̄zk , L)}

= E{qk(zk, L)} −
1

1− 2ζ̄
E{q̄k(L̄zk , L)}

= 0.

(11)

Then, one has

Var{dk}
=E{(qk(zk, L)− q̂k(L̄zk , L))(qk(zk, L)− q̂k(L̄zk , L))

T }
=E{qk(zk, L)qTk (zk, L)} − E{qk(zk, L)q̂Tk (L̄zk , L)}

− E{q̂k(L̄zk , L)q
T
k (zk, L)}+ E{q̂k(L̄zk , L)q̂

T
k (L̄zk , L)}

=E{qk(zk, L)qTk (zk, L)}

− 1

1− 2ζ̄
E{qk(zk, L)q̄Tk (L̄zk , L)}

− 1

1− 2ζ̄
E{q̄k(L̄zk , L)q

T
k (zk, L)}

+
1

(1− 2ζ̄)2
E{q̄k(L̄zk , L)q̄

T
k (L̄zk , L)}.

(12)

Based on the fact Var{x} = E{x2} − (E{x})2, one has

Var{dk}
=− E{qk(zk, L)qTk (zk, L)}

+
1

(1− 2ζ̄)2
E{q̄k(L̄zk , L)q̄

T
k (L̄zk , L)}

=− E{qk(zk, L)qTk (zk, L)}

+
1

(1− 2ζ̄)2
Var{q̄k(L̄zk , L)}

+
1

(1− 2ζ̄)2
E{q̄k(L̄zk , L)}E{q̄Tk (L̄zk , L)}

=
1

(1− 2ζ̄)2
Var{q̄k(L̄zk , L)}.

(13)

This lemma is proofed.

C. Full-duplex relay Network

In this paper, the full-duplex relay-assisted communication scheme
is employed to enhance the quality of the data transmission from the
sensor to the filter. Moreover, taking the binary encoding as well
as bit flips into consideration, the diagram of the signal transmission
from the sensor to the filter is illustrated in Fig. 1, from which we can
see that zk is the input of the encoder and q̂k(zk, L) is the output of
the decoder. After obtaining the decoding signal q̂k(gk, L), because
of the self-interference caused by the full-duplex relay, the signal
received by the relay can be described as

z̄k = q̂k(L̄zk , L) +
√

lrk−1t
rr
k mk +m

c
k (14)

where mk ∈ R
m and mc

k ∈ R
m are the self-interference and the

self-interference cancellation, lrk is the transmission power of the full-
duplex relay and trrk is the stochastic coefficient of the relay-to-relay
channel satisfying E{trrk } = t̄rrk and E{(trrk − t̄rrk )2} = σrr

k with
t̄rrk and σrr

k being known parameters.
Inspired by [10], [34], mk satisfies the following condition:

mk =

{

0, k = 0

βk−1z̄k−1, k > 0
(15)

with βk being a known amplification factor. To remit the negative
effect of the self-interference, mc

k is introduced with the following
form:

m
c
k =







0, k = 0

−
√

lrk−1t̄
rr
k mk, k > 0.

(16)

Remark 1: Due to the influence of the self-inference, the actual
signal received by the relay, which is denoted as z̄k, not only contains
the decoded signal q̂k(L̄zk , L), but also involves the signal mk sent
by the relay itself at the last time step k − 1 (i.e., the self inference
term mk , βk−1z̄k−1). Since the self-inference signal mk is one
time-step delayed, the transmission power of the full-duplex relay is
accordingly set as the one at the time step k − 1, namely, lrk−1.

Next, the signal z̄k is amplified and forwarded to the remote
estimator, and the signal actually received by the remote estimator
can then be described as follows:

~zk = βk

√

lrk−1t
rf
k z̄k + v

f
k (17)

where ~zk ∈ R
m is the filter input and t

rf
k is the stochastic coefficient

of the relay-to-filter channel, which satisfies E{trfk } = t̄
rf
k and

E{(trfk − t̄
rf
k )2} = σ

rf
k with t̄

rf
k and σ

rf
k being given scalars.

v
f
k ∈ R

m is a white noise sequence which is Gaussian and satisfies
E{vfk} = 0 and E{vfk (v

f
k )

T } = R4,k with R4,k being a known
positive-definite matrix.

It is assumed that all random variables u0, wk, vk , vsk, vfk , tsrk ,
trrk , trfk and ζi,k (i = 1, 2, . . . , 2L−1) are unrelated with each other.

It is not difficult to conclude from the definitions of dk and
δk(zk, L) that q̂k(L̄zk , L) = zk − δk(zk, L) − dk. For the sake of
the sequel expression convenience, we use δk to replace δk(zk, L).
Then, according to (14), one has

~zk =bkh(uk) + βkl
r
k−1t

rf
k (trrk − t̄

rr
k )mk

− βk

√

lrk−1t
rf
k δk − βk

√

lrk−1t
rf
k dk + ω̄k.

(18)

where bk , βk

√

lrk−1l
s
kt

rf
k tsrk and ω̄k , βk

√

lrk−1l
s
kt

rf
k tsrk vk +

βk

√

lrk−1t
rf
k vsk + v

f
k .

Remark 2: Compared with the existing remote state estimation
issue, the main novelties of the considered problem lie in that
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1) the full-duplex relay is used to send and forward the signal
measured by the sensor for the long-distance transmission and 2)
the binary encoding scheme is employed to comply with the digital
network in the sensor-to-relay channel. To be more specific, the signal
transmission mainly divides into the following steps. First, the raw
measurement signal yk is converted to the signal zk according to
(2) by endowing certain transmission power. Then, zk is encoded by
using the binary encoding scheme so as to comply with the digital
channel and a stochastic truncation scheme is proposed in (3)–(4).
Subsequently, a sequence of Bernoulli distributed random variables
is introduced to cope with bit flits caused by the complicated and
noisy channel in (5)–(7). After then, the full-duplex relay receives
the decoding signal q̂k(zk, L) and the self-inference signal. As
such, a self-inference cancellation scheme (15)–(16) is introduced
to eliminate the effect of the self-inference of the relay. Finally, the
filter receives the signal sent by the relay, i.e., ~zk in (17).

III. UNSCENTED KALMAN FILTER DESIGN

In this section, we are going to propose a modified unscented
Kalman filter algorithm for the stochastic nonlinear systems over the
full-duplex relay network with the binary encoding scheme subject
to random bit flips.

Before proceeding, we give the following lemma.
Lemma 2: By defining Mk , E{mkm

T
k }, one derives

Mk+1 =β
2
kl

r
k−1σ

rr
k Mk +

β2
k

(1− 2ζ̄)2
Var{q̄k(L̄zk , L)}

+ β
2
kqk(zk, L)q

T
k (zk, L).

(19)

Proof: It follows readily from (14)-(15) that

Mk+1 =β
2
kE{z̄kz̄Tk }

=β
2
kE{(q̂k(L̄zk , L) +

√

lrk−1t
rr
k mk −m

c
k)

× (q̂k(L̄zk , L) +
√

lrk−1t
rr
k mk −m

c
k)

T }

=β
2
kE{(q̂k(L̄zk , L) +

√

lrk−1(t
rr
k − t̄

rr
k )mk)

× (q̂k(L̄zk , L) +
√

lrk−1(t
rr
k − t̄

rr
k )mk)

T }

=β
2
kE{q̂k(L̄zk , L)q̂

T
k (L̄zk , L)}+ β

2
kl

r
k−1σ

rr
k Mk

=
β2
k

(1− 2ζ̄)2
E{q̄k(L̄zk , L)q̄

T
k (L̄zk , L)}

+ β
2
kl

r
k−1σ

rr
k Mk.

(20)

According to the fact Var{x} = E{x2} − (E{x})2, one has

β2
k

(1− 2ζ̄)2
E{q̄k(L̄zk , L)q̄

T
k (zk, L)}

=
β2
k

(1− 2ζ̄)2
(Var{q̄k(L̄zk , L)}

+ E{q̄k(L̄zk , L)}E{q̄Tk (L̄zk , L)})

=
β2
k

(1− 2ζ̄)2
Var{q̄k(L̄zk , L)}+ β

2
kqk(zk, L)q

T
k (zk, L).

(21)

Therefore, the proof is complete.
Denote by ûk+1|k and ûk+1 the one-step prediction and the

estimation for the state uk+1, respectively. Then, define the initial
values E{u0} = ū0 and P̂0 = E{(u0 − û0)(u0 − û0)

T }.
Based on the obtained signal ~zk, next, we shall provide a modified

algorithm to design the unscented Kalman filter for the stochastic
nonlinear system (1) over the full-duplex relay network with the
binary encoding scheme. The following four steps of the algorithm
are summarized.

Step 1. At each time instant k (k ≥ 0), select 2n+1 sigma points
̺i,k (i = 0, 1, 2, . . . , 2n) based on the known values ûk and P̂k with
the following rule:

̺i,k =











ûk, i = 0

ûk +̟φi,k, i = 1, 2, . . . , n

ûk −̟φi−n,k, i = n+ 1, n+ 2, . . . , 2n

(22)

where ̟ is a positive scaling parameter and φi,k = (
√

nP̂k)i
stands for the ith column the square root of nP̂k by the Cholesky
decomposition.

Step 2. Predict the one-step estimation and its error variance for
the state as follows:











































̺i,k+1|k =Ak̺i,k + f(̺i,k), i = 0, 1, . . . , 2n

ûk+1|k =
2n
∑

i=0

νi̺i,k+1|k

P̂k+1|k =

2n
∑

i=0

νi(̺i,k+1|k − ûk+1|k)(̺i,k+1|k − ûk+1|k)
T

+R1,k.

(23)

Then, it follows from (23) and (14) that the prediction measurement
and its error covariance are obtained as follows:







































































































ẑi,k+1|k =b̄k+1h(̺i,k+1|k), i = 0, 1, . . . , 2n

žk+1|k =
2n
∑

i=0

νiẑi,k+1|k

P̂
zz
k+1 =

2n
∑

i=0

νi(ẑi,k+1|k − žk+1|k)(ẑi,k+1|k − žk+1|k)
T

+ (βk+1l
r
k)

2
σ̄
rf
k+1σ

rr
k+1Mk+1

+ β
2
k+1l

r
kσ̄

rf
k+1R3,k+1 +

1

4
β
2
k+1l

r
kσ̄

rf
k+1π

2
I

+ β
2
k+1l

r
kl

s
k+1σ̄

rf
k+1σ̄

sr
k+1R2,k+1

+ β
2
k+1l

r
kσ̄

rf
k+1Var{dk+1}+R4,k+1

P̂
uz
k+1 =

2n
∑

i=0

νi(̺i,k+1|k − ûk+1|k)(̺i,k+1|k − ûk+1|k)
T

(24)

where b̄k , βk

√

lrk−1l
s
k t̄

rf
k t̄srk , σ̄rf

k , (t̄rfk )2 +σ
rf
k , σ̄sr

k , (t̄srk )2 +

σsr
k , ν0 , 1− 1

̟2 and νi ,
1

2n̟2 (i = 1, 2, . . . , 2n).
Step 3. Based on the obtained ~zk+1 and the traditional Kalman

filter structure, we have the following update formula:










Ǩk+1 =P̂
uz
k+1(P̂

zz
k+1)

−1

ûk+1 =ûk+1|k + Ǩ(~zk+1 − žk+1|k)

P̂k+1 =P̂k+1|k − Ǩk+1(P̂
uz
k+1)

T
.

(25)

Step 4. Repeat the above three steps at next time instant.

IV. BOUNDEDNESS ANALYSIS

By now, we have developed a new unscented Kalman filtering
algorithm for the stochastic nonlinear systems over the full-duplex
relay network with the binary encoding scheme. Next, we shall pay
our attention on the boundedness analysis of the filtering error.

Denote by ũk+1|k , uk+1 − ûk+1|k, ũk+1 , uk+1 − ûk+1 and
z̃k+1 , ~zk+1−žk+1|k the one-step prediction error, the filtering error
and the measurement prediction error, respectively. Then, by means
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of the linearization technique, the following error dynamics can be
derived























ũk+1|k =(Ak +ΘkCk)ũk + wk

z̃k|k−1 =b̄kΥkHkũk|k−1 + (bk − b̄k)h(uk)

+ βkl
r
k−1t

rf
k (trrk − t̄

rr
k )mk

− βk

√

lrk−1t
rf
k δk − βk

√

lrk−1t
rf
k dk + ω̄k

(26)

where Ck ,
∂f(u)
∂u

∣

∣

u=ûk
and Hk ,

∂h(u)
∂u

∣

∣

u=ûk|k−1

are two

Jacobian matrices. Θk , diag{θ1,k, θ2,k, . . . , θn,k} and Υk ,

diag{γ1,k, γ2,k, . . . , γm,k} are used to characterized the linearization
errors.

Assumption 1: The nonlinear function h(·) : R
n → R

m satisfies
the condition ‖h(x)‖ ≤ c1‖x‖ + c2, where c1 and c2 are known
positive scalars.

It is not difficult to see from (25) that

ũk+1 = ũk+1|k − Ǩk+1z̃k+1|k. (27)

Combining (26) and (27) yields

ũk+1 =(I − b̄k+1Ǩk+1Υk+1Hk+1)ũk+1|k

− (bk+1 − b̄k+1)Ǩk+1h(uk+1)

− βk+1l
r
kt

rf
k+1(t

rr
k+1 − t̄

rr
k+1)Ǩk+1mk+1

+ βk+1

√

lrkt
rf
k+1Ǩk+1δk+1 − Ǩk+1ω̄k+1

+ βk+1

√

lrkt
rf
k+1Ǩk+1dk+1

(28)

and further gives

ũk+1 =(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)ũk

+ (I − b̄k+1Ǩk+1Υk+1Hk+1)wk

− (bk+1 − b̄k+1)Ǩk+1h(uk+1)

− βk+1l
r
kt

rf
k+1(t

rr
k+1 − t̄

rr
k+1)Ǩk+1mk+1

+ βk+1

√

lrkt
rf
k+1Ǩk+1δk+1

+ βk+1

√

lrkt
rf
k+1Ǩk+1dk+1

− Ǩk+1ω̄k+1.

(29)

Then, let the covariance of ũk+1 be denoted as Pk+1, which can be
derived from (29) as follows:

Pk+1 =(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)Pk

× (Ak +ΘkCk)
T (I − b̄k+1Ǩk+1Υk+1Hk+1)

T

+ (I − b̄k+1Ǩk+1Υk+1Hk+1)R1,k

× (I − b̄k+1Ǩk+1Υk+1Hk+1)
T

+ b̃k+1Ǩk+1E{h(uk+1)h
T (uk+1)}ǨT

k+1

+ β
2
k+1(l

r
k)

2
σ̄
rf
k+1σ

rr
k+1Ǩk+1Mk+1Ǩ

T
k+1

+ β
2
k+1l

r
kσ̄

rf
k+1Ǩk+1E{δ2k+1}ǨT

k+1

+ β
2
k+1l

r
kσ̄

rf
k+1Ǩk+1Var{dk+1}ǨT

k+1

+ Ǩk+1Ω̄k+1Ǩ
T
k+1

(30)

where b̃k+1 , β2
k+1l

r
kl

s
k+1σ̄

rf
k+1σ̄

sr
k+1, Ω̄k+1 ,

β2
k+1l

r
kl

s
k+1σ̄

rf
k+1σ̄

sr
k+1R1,k+1 + β2

k+1l
r
kσ̄

rf
k+1R3,k+1 +R4,k+1.

It is inferred from Assumption 1 that there exists a positive scalar

ǫ such that

E{h(uk+1)h
T (uk+1)}

≤E{‖h(uk+1)‖2I}
≤E{(c1‖uk+1‖+ c2)}I
≤2[c21tr{uk+1u

T
k+1}+ c

2
2]I

≤2[c21tr{(1 + ǫ)ûk+1|kû
T
k+1|k

+ (1 + ǫ
−1)ũk+1|kũ

T
k+1|k}+ c

2
2]I

=2[c21tr{(1 + ǫ)ûk+1|kû
T
k+1|k

+ (1 + ǫ
−1)((Ak +ΘkCk)P̂k(Ak +ΘkCk)

T

+R1,k)}+ c
2
2]I

,κkI.

(31)

Due to the existence of the E{h(uk)h
T (uk)} and E{δ2k}, it is

impossible to obtain the precise error covariance Pk+1. Therefore,
to facilitate the subsequent analysis, an upper bound for the error
covariance is derived, which is defined as follows:

Σk+1 =(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)Σk

× (Ak +ΘkCk)
T (I − b̄k+1Ǩk+1Υk+1Hk+1)

T

+ (I − b̄k+1Ǩk+1Υk+1Hk+1)R1,k

× (I − b̄k+1Ǩk+1Υk+1Hk+1)
T

+ β
2
k+1(l

r
k)

2
σ̄
rf
k+1σ

rr
k+1Ǩk+1Mk+1Ǩ

T
k+1

+
1

4
π
2
β
2
k+1l

r
kσ̄

rf
k+1Ǩk+1Ǩ

T
k+1

+ β
2
k+1l

r
kσ̄

rf
k+1Ǩk+1Var{dk+1}ǨT

k+1

+ Ǩk+1Ω̄k+1Ǩ
T
k+1 + b̃k+1κkǨk+1Ǩ

T
k+1.

(32)

From (30)-(31), we can draw a conclusion that Pk+1 ≤ Σk+1.
Denoting P̃k+1 , P̂k+1 − Σk+1, one derives from (29) that

P̂k+1 =(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)P̂k

× (Ak +ΘkCk)
T (I − b̄k+1Ǩk+1Υk+1Hk+1)

T + Yk+1.

(33)

where

Yk+1 =P̃k+1 − (I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)P̃k

× (Ak +ΘkCk)
T (I − b̄k+1Ǩk+1Υk+1Hk+1)

T

+ (I − b̄k+1Ǩk+1Υk+1Hk+1)R1,k

× (I − b̄k+1Ǩk+1Υk+1Hk+1)
T

+ β
2
k+1(l

r
k)

2
σ̄
rf
k+1σ

rr
k+1Ǩk+1Mk+1Ǩ

T
k+1

+
1

4
π
2
β
2
k+1l

r
kσ̄

rf
k+1Ǩk+1Ǩ

T
k+1

+ β
2
k+1l

r
kσ̄

rf
k+1Ǩk+1Var{dk+1}ǨT

k+1

+ Ǩk+1Ω̄k+1Ǩ
T
k+1 + b̃k+1κkǨk+1Ǩ

T
k+1.

To proceed further, some preliminary knowledge is introduced to
ensure the EMSB of the filtering error ũk.

Lemma 3: [29]. For the stochastic process ũk, if there exist p̄ > 0,
p > 0, η0 > 0 and 0 < η1 < 1 such that, for ∀k > 0,

p‖ũk‖2 ≤ Vk(ũk) ≤ p̄‖ũk‖2 (34)

and

E{Vk(ũk)|ũk−1} ≤ (1− η1)Vk−1(ũk−1) + η0, (35)

then, the stochastic process ũk is said to achieve the EMSB, i.e.

E{‖ũk‖2} ≤ p̄

p
E{‖ũ0‖2}(1− η1)

k +
η0

p

k
∑

i=1

(1− η1)
i
. (36)
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We are now in a position to derive a sufficient condition to ensure
the EMSB of the filtering error and, to achieve this goal, the following
assumptions are introduced.

Assumption 2: There exist positive scalars ā, c̄, h̄, θ̄, γ̄, y, p
1
, p̄1,

r4, r̄1, ŭ and ω̌ such that the following conditions

‖Ak‖ ≤ ā, ‖Ck‖ ≤ c̄, ‖Hk‖ ≤ h̄, Θk ≤ θ̄I

Υk ≤ γ̄I, Yk ≥ yI, p
1
I ≤ P̂k+1|k ≤ p̄1I

r4I ≤ R4,k+1, ‖Mk‖ ≤ á, R1,k+1 ≤ r̄1I

ûk+1|kû
T
k+1|k ≤ ŭI, Ω̄k ≤ ω̌I

(37)

hold. In addition, we fix βk = β, b̄k = b̄, b̃k = b̃, lrk = lr , σ̄rf
k = σ̄rf

and σrr
k = σrr for any k.

Theorem 1: Under Assumption 2, for the nonlinear stochastic sys-
tem (1) over the full-duplex relay network with the binary encoding
scheme, the filtering error ũk is exponentially mean-square bounded.

Proof: Noting the boundedness of P̂k+1|k and the fact P̂0 > 0,
there must exist two scalars p̄ > 0 and p > 0 such that

pI ≤ P̂k ≤ p̄I, (38)

which satisfies the condition (34) of Lemma 3.
Next, we rewrite (29) as the following form:

ũk+1 = (I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)ũk + ỹk+1

(39)

where

ỹk+1 , − βk+1l
r
kt

rf
k+1(t

rr
k+1 − t̄

rr
k+1)Ǩk+1mk+1

+ (I − b̄k+1Ǩk+1Υk+1Hk+1)wk

− (bk+1 − b̄k+1)Ǩk+1h(uk+1)

+ βk+1

√

lrkt
rf
k+1Ǩk+1δk+1

+ βk+1

√

lrkt
rf
k+1Ǩk+1dk+1 − Ǩk+1ω̄k+1.

(40)

Based on (23)–(24) and the conclusion obtained from [4], we have

P̂
uz
k+1 = P̂k+1|k b̄k+1H

T
k+1Υ

T
k+1. (41)

Then, it is concluded from (24), (25) and Assumption 2 that

‖Ǩk+1‖ =‖P̂uz
k+1(P̂

zz
k+1)

−1‖
≤‖P̂k+1|k b̄k+1H

T
k+1Υ

T
k+1R

−1
4,k+1‖

≤ p̄1b̄h̄γ̄

r4
, ǎ.

(42)

Considering the independence among the noises, it is easily known
from (40) that

E{ỹT
k+1ỹk+1}

=E{wT
k (I − b̄k+1Ǩk+1Υk+1Hk+1)

T

× (I − b̄k+1Ǩk+1Υk+1Hk+1)wk}
+ b̃k+1E{hT (uk+1)Ǩ

T
k+1Ǩk+1h(uk+1)}

+ β
2
k+1(l

r
k)

2
σ̄
rf
k+1σ

rr
k+1E{mT

k+1Ǩ
T
k+1Ǩk+1mk+1}

+ β
2
k+1l

r
kσ̄

rf
k+1E{δTk+1Ǩ

T
k+1Ǩk+1δk+1}

+ β
2
k+1l

r
kσ̄

rf
k+1E{d

T
k+1Ǩ

T
k+1Ǩk+1dk+1}

+ E{ω̄T
k+1Ǩ

T
k+1Ǩk+1ω̄k+1}.

(43)

Taking into account (19) and (31), we arrive at

κk =2[c21tr{(1 + ǫ)ûk+1|kû
T
k+1|k

+ (1 + ǫ
−1)((Ak +ΘkCk)P̂k(Ak +ΘkCk)

T

+R1,k)}+ c
2
2]

≤2[c21tr{(1 + ǫ)ŭ+ (1 + ǫ
−1)((ā+ θ̄c̄)2p̄+ r̄1) + c

2
2]

,κ̄

(44)

and

‖Mk+1‖ ≤ á. (45)

According to Assumption 2, (44) and (45), one immediately has

E{ỹT
k+1ỹk+1}

≤(1 + b̄ǎγ̄h̄)2nr̄1 + b̃κ̄ǎ
2
m

+ β
2(lr)2σ̄rf

σ
rr
á
2
m+

1

4
β
2
l
r
σ̄
rf
ǎ
2
π
2

+ β
2
l
r
σ̄
rf
ǎ
2Var{dk}+ ǎ

2
ω̌ , à.

(46)

It is easy to see from (25) and the fact P̂ zz
k+1 > 0 that

P̂k+1 =P̂k+1|k − Ǩk+1(P̂
uz
k+1)

T

=P̂k+1|k − P̂
uz
k+1(P̂

zz
k+1)

−1(P̂uz
k+1)

T

≤P̂k+1|k.

(47)

Constructing Vk(ũk) , ũT
k P̂

−1
k ũk, it follows from (39) that

E{Vk+1(ũk+1)} − Vk(ũk)

=E{[(I − b̄k+1Ǩk+1Υk+1Hk+1)

× (Ak +ΘkCk)ũk + ỹk+1]
T
P̂

−1
k+1

× [(I − b̄k+1Ǩk+1Υk+1Hk+1)

× (Ak +ΘkCk)ũk + ỹk+1]} − ũ
T
k P̂

−1
k ũk

=ũ
T
k [(Ak +ΘkCk)

T (I − b̄k+1Ǩk+1Υk+1Hk+1)
T

× P̂
−1
k+1(I − b̄k+1Ǩk+1Υk+1Hk+1)

× (Ak +ΘkCk)− P̂
−1
k ]ũk + E{ỹT

k+1P̂
−1
k+1ỹk+1}.

(48)

With the help of the noted matrix inverse lemma, one has

P̂
−1
k − [(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)]

T

× P̂
−1
k+1(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)

={P̂k + P̂k[(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)]
T

× Y
−1
k+1[(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)]P̂k}−1

={I + [(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)]
T
Y

−1
k+1

× [(I − b̄k+1Ǩk+1Υk+1Hk+1)(Ak +ΘkCk)]P̂k}−1
P̂

−1
k

≥
[

1 +
(1 + b̄ǎγ̄h̄)2(ā+ θ̄c̄)2p̄

y

]−1

P̂
−1
k .

(49)

Letting ε ,

[

1 + (1+b̄ǎγ̄h̄)2(ā+θ̄c̄)2p̄
y

]−1

and ϑ , à
p

, we can derive
from (48) that

E{Vk+1(ũk+1)} − Vk(ũk) ≤ −εVk(ũk) + ϑ, (50)

which verifies the condition (35) of Lemma 3. To this end, we can
conclude from Lemma 3 that the filtering error ũk has the expected
EMSB, which completes the proof of this theorem.

Remark 3: In the unscented Kalman filter design algorithm (22)–
(25), there are four primary factors that increase the filter design
complexity, that is, the relay, the full-duplex communication, the
binary encoding and the random bit flips. Besides, all these factors
are reflected in the sufficient condition (i.e. Theorem 1) that ensures
the EMSB of the filtering error.

Remark 4: In this paper, the first attempt has been made to address
the remote state estimation problem for the stochastic nonlinear
systems over a full-duplex network with binary encoding scheme
subject to random bit flips. The main novelties include 1) the
considered model is comprehensive which involves the nonlinearities,
the stochastic noises, the full-duplex relay, the binary encoding and
the random bit flips; and 2) the proposed unscented Kalman filter
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Fig. 2: State u1,k and its estimates û1,k.

algorithm is complicated, which accounts for the impact from the
full-duplex relay and the binary encoding scheme.

V. AN ILLUSTRATIVE EXAMPLE

This section presents a numerical simulation to showcase the
validity of the proposed UKF algorithm over the full-duplex relay
network with the binary encoding scheme. For the considered system
(1), the following parameter are given:

Ak =





0.3 0.2 0.7
−0.6 0.2 0.1
0 0 0.7



 , f(uk) =





1.4 tanh(u1(k))
− tanh(u2(k))

1.1 tanh(0.5u3(k))





and h(uk) =

[

0.5u1(k) + 0.4 sin(u2(k))
1.3u2(k)− 0.6 sin(u3(k))

]

. The covariances of the

noises wk, vk , vsk and v
f
k are selected as R1 = R2 = R3 =

R4 = 4 × 10−4. The initial values are u(0) =
[

0 0 0
]T

,

û(0) =
[

0.2 −0.1 0.6
]T

and m0 =
[

0 0
]T

.
For the binary encoding scheme with bit flips, set ḡ = 6, L = 8

and ζ̄ = 0.01. For the UKF, the weighted coefficient is ̟ =
√
2

and the initial covariance is P̂0 = 0.1I . For the full-duplex relay
network, the related parameters are set as lsk = lrk = 2, t̄srk =
0.5, t̄rrk = 0.95, βk = 1, t̄rfk = 0.95, σsr = σrr = σrf = 0.0001.
The stochastic channel coefficients tsrk , trrk and t

rf
k are assumed to

obey the normal distribution. Figs. 2–4 present the simulation results,
depicting the trajectories of the actual state and its estimate for each
component of the state, thereby confirming the effectiveness of the
proposed UKF algorithm.

VI. CONCLUSIONS

The unscented Kalman filter design issue for a class of discrete-
time stochastic nonlinear systems over a full-duplex relay with the
binary encoding scheme has been addressed in this paper. To describe
the phenomenon of bit flips resulting from the complicated and noisy
communication environment, a sequence of Bernoulli distributed
random variables has been introduced. A full-duplex relay has been
employed between the sensor and the filter to improve the reliability
of the signal transmission. The proposed UKF algorithm has account-
ed for the impacts of the full-duplex relay and the binary encoding
scheme on the filtering performance. A sufficient condition has been
established using the matrix inverse lemma to ensure the EMSB of the
filtering error. Finally, the effectiveness of the proposed filter design
algorithm has been confirmed through a numerical simulation.
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Fig. 3: State u2,k and its estimates û2,k .
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Fig. 4: State u3,k and its estimates û3,k .
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