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Secure Recursive State Estimation of Networked
Systems Against Eavesdropping: A

Partial-Encryption-Decryption Method
Lei Zou, Zidong Wang, Bo Shen, and Hongli Dong

Abstract—This paper addresses the problem of secure recur-
sive state estimation for a networked linear system, which may
be vulnerable to interception of transmitted measurement data
by eavesdroppers. To effectively protect information security, an
encryption-decryption-based communication scheme can be used,
but encrypting all the measurement data from sensors can result
in significant computational costs. To address this issue, a partial-
encryption-decryption (PED) mechanism is proposed to enhance
information security with relatively low computational costs. In
this mechanism, only part of the transmitted measurement signals
are encrypted, and the remaining signals are transmitted directly
to the estimator. A Jordan-canonical-form-based approach is
developed to select the appropriate parameter for the PED
mechanism, and recursive formulas for the state estimator are
designed based on the principle of minimum mean squared
error. Sufficient conditions are derived to guarantee the ultimate
boundedness of the estimation error variance matrix. Finally,
the proposed PED-based recursive state estimation scheme is
evaluated through two simulation examples to demonstrate its
effectiveness.

Index Terms—Recursive state estimation, eavesdropping,
encryption-decryption scheme, minimum mean squared error,
ultimate boundedness analysis

Notations

ρ(P) The spectral radius of the matrix P

B\A The relative complement of A with respect to B

R
p The p-dimensional Euclidean space

P ≥ Q P − Q is positive semi-definite
P > Q P − Q is positive definite
M T The transpose of M

M−1 The inverse matrix of M

λmax{A } The maximum eigenvalue of A

λmin{A } The minimum eigenvalue of A
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Prob{s} The occurrence probability of the event “s”
E{x} The expectation of the stochastic variable x
E{x|y} The expectation of x conditional on y
rank(A) The rank of a matrix A
I The identity matrix with compatible dimensions
0 The zero matrix with compatible dimensions
diag{. . .} The block-diagonal matrix
⌊a⌋ The largest integer less than or equal to a
mod(a, b) The unique nonnegative remainder on division of

a by positive integer b

I. INTRODUCTION

In recent decades, networked systems have become increas-
ingly prevalent in industrial communities due to the perceived
benefits of network-based communication [3], [13], [18],
[24], [34]. Unlike conventional point-to-point communica-
tion, networked systems transmit data through channel-sharing
communication, and this type of communication can have a
significant impact on signal transmission behavior, leading
to network-induced effects that pose additional challenges to
analysis and synthesis of networked systems [9], [37]. State
estimation (SE), as a crucial research topic in control and
signal processing, is essential for the information perception
of dynamic systems. Accordingly, considerable research effort
has been dedicated to developing SE techniques for a variety
of networked systems over the last few decades, see [11], [15],
[25], [35], [38], [41] and their respective references.

Recursive state estimation (RSE) for networked systems
has garnered significant research attention due to its wide
suitability and outstanding performance in many industrial
applications [28], [30], making it one of the mostly investigat-
ed issues. Based on the estimation performance requirements,
RSE schemes have been divided into three categories, namely,
minimum-variance SE [31], [39], set-membership SE [22],
[46], and finite-horizon H∞ SE [19], [27]. For example, an
event-based distributed set-membership SE strategy has been
developed in [36] for time-varying nonlinear systems over
sensor networks, and a recursive state estimator has been
constructed in [29] for networked discrete-time systems with
packet dropouts. Recently, extensive research attention has
been given to the RSE problem under cyber-attacks, resulting
in rapid development in the field [2], [4], [6], [12], [23].

Eavesdropping is one of the most frequently occurring
cyber-attacks in practical networked systems. Due to the
openness of the communication, potential eavesdroppers can
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hijack the communication links to infer private data, pos-
ing serious threats to the information security of networked
systems [21], [44]. Therefore, protecting private information
from eavesdropping in networked SE problems is of great
significance. Representative results regarding the protection
of information security in networked SE issues have been
reported in the literature, as seen in [7], [45]. From a technical
standpoint, privacy-preserving schemes can be divided into
two categories: transmission-scheduling-based schemes [14],
[17] and encryption-decryption schemes (EDSs) [32], [40]. In
the framework of a transmission-scheduling-based scheme, a
specific mechanism is dedicatedly designed to schedule signal
transmissions to degrade the SE performance for potential
eavesdroppers.

In the framework of an EDS, the prescribed secret key is
used to transform the raw signal into encrypted data before
transmission, thereby making it impossible for potential eaves-
droppers to recover the raw signal from the encrypted data
and achieve information security during signal transmissions.
Compared with the transmission-scheduling-based scheme, the
EDS can achieve better information security if the secret key is
sufficiently safe. However, encryption algorithms in cryptogra-
phy can lead to high consumption in computational resources
at the signal transmitters [8], [26], [33], which greatly affects
the real-time implementation of signal collection. Obviously,
such encryption-induced effects can have a significant impact
on the corresponding SE issues. Nevertheless, the networked
SE problem subject to the encryption-induced effects has not
received sufficient attention due to the complicated behaviors
caused by the encryption process, and this motivates our
current research.

In this paper, we focus our attention on the RSE problem
of networked systems against eavesdropping under the effects
of EDS. The challenges are outlined as follows:

1) how to preserve the information security by designing the
suitable encryption-decryption mechanism with relatively
low computational cost?

2) how to design the recursive state estimator under the
encryption-induced effects? and

3) how to analyze the ultimate boundedness of the SE error
variance?

Regarding the above identified challenges, the main contri-
butions of this article are summarized as follows:

1) a novel partial-encryption-decryption (PED) mechanism
is designed to achieve the desired information security
while alleviating the computational cost in the signal
transmitter,

2) an RSE strategy is developed in the sense of minimum
mean squared error (MMSE) subject to the effects in-
duced by the encryption process and packet dropouts, and

3) the ultimate boundedness is analyzed for the resultant SE
error variance.

The remainder of this paper is organized as follows. In
Section II, the PED-based RSE problem is formulated for
networked systems against eavesdropping. In Section III, the
desired encryptor parameter is devised to protect the infor-
mation security. Then, the recursive formulas for the state

estimator are proposed according to the principle of MMSE.
Moreover, sufficient conditions are established to ensure the
ultimate boundedness of the resultant SE error variance. Two
simulation examples are provided in Section IV to demonstrate
the effectiveness of the proposed PED-based RSE scheme.
Finally, the conclusion of our investigation is drawn in Section
V.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. The plant and encryption-decryption mechanism

Consider a networked SE problem where the signal trans-
missions over the communication channel are overheard by
an eavesdropper. The plant under consideration is a linear
discrete-time system of the following form:

{

xk+1 = Axk + ωk

yk = Cxk + νk
(1)

where xk ∈ R
n and yk ∈ R

m are, respectively, the system
state and measurement output at time instant k; ωk ∈ R

p and
νk ∈ R

m denote the process noise and measurement noise,
respectively; and A and C are real-valued parameter matrices
of appropriate dimensions. Without loss of generality, in this
paper, it is assumed that AAT > 0.

Remark 1: The assumption that AAT > 0 is quite reason-
able for practical engineering. In real-world applications, the
plant (1) is always derived by discretizing certain continuous-
time linear time-invariant system. Specifically, consider the
following continuous-time linear time-invariant system

d~x(t) = ~A~x(t)dt+ d~ω(t)

where ~x(t) ∈ R
n is the state vector, and ~ω(t) stands for a

zero-mean Wiener process (Brownian motion). By discretizing
the above system subject to a sampling period T and letting
xk , ~x(kT ), we can derive a discrete-time linear time-
invariant system of the form (1), in which the parameter A
is calculated by A = e

~AT . Obviously, such a matrix A is
invertible and satisfies AAT > 0.

The initial state x0, the measurement noise νk and the
process noise ωk are mutually uncorrelated Gaussian vectors
and have the following statistical properties:

E{ωk} = 0, E{νk} = 0, E{x0} = x̄0, E{ωkω
T
k } = Q,

E{(x0 − x̄0)(x0 − x̄0)
T } = X0, E{νkν

T
k } = R

where X0 > 0 and Q > 0 are known matrices, R > 0 is
a known diagonal matrix, and x̄0 ∈ R

n is a known vector.
Actually, the condition that R is a diagonal matrix is not
a restrictive assumption. Consider the case that R is not a
diagonal matrix. Obviously, the matrix R can be rewritten
as R = PR̄PT by using the eigen-decomposition technique,
where P is an invertible matrix, and R̄ is a diagonal matrix
composed of the eigenvalues of R. Then, by constructing a
new measurement output ŷk , P−1yk, it is easy to observe
that ŷk = P−1yk = P−1Cxk + ν̄k where ν̄k , P−1νk.
Apparently, the new noise vector ν̄k satisfies the condition
E{ν̄kν̄Tk } = P−1RP−T = R̄. Hence, such a reformulated
measurement noise vector falls into the case that E{ν̄kν̄Tk } is
a known diagonal matrix.
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In this paper, the encryption mechanism is utilized to
protect the information security of the signal transmission
procedure, where the measurement data is first transformed
into encrypted data (i.e., ciphertext) before being transmitted.
A decryption mechanism is adopted at the state estimator side
to recover the measurement data from the received ciphertex-
t. Such encryption-decryption-based communication schemes
have been widely utilized in various industrial applications.
However, encryption on the measurement data will inevitably
result in heavy computational costs, which lead to certain
computation and communication overheads. For example, in
the well-known RSA encryption mechanism, the ciphertext
κ for the plaintext (i.e., the original measurement data) is
calculated using the following procedure:

κ = ψϑ mod χ

where ψ is the integer corresponding to the plaintext, ϑ and
χ are very large positive integers. The integer pair (ϑ, χ) is
referred to as the public key for the RSA encryption.

In practice, RSA keys are typically 1024 to 4096 bits long.
The huge computational cost of such an encryption mechanism
restricts the corresponding usage in many real-time tasks.
Note that the computational cost of the encryption process
depends largely on the dimension of the measurement data.
Inspired by [26], in this paper, a PED mechanism is introduced
in the signal transmission process to enhance the informa-
tion security while alleviating the computational cost in the
signal transmitter. Different from the traditional encryption-
decryption mechanism where the whole measurement data
should be processed, the PED mechanism proposed in this pa-
per only needs to encrypt part of the transmitted measurement
data and thereby reduces the on-line computational cost in the
signal transmitter. Considering the limited computational cost
in the signal transmitter, without loss of generality, we assume
that only m̄ entries in yk will be encrypted by the encryption
mechanism simultaneously. The remained m − m̄ entries in
yk will be transmitted directly to the state estimator over the
communication network.

The PED mechanism utilized in this paper is implemented
according to the following steps:

PED Process:
Step 1. Let the value of m̄ (i.e., the number of encrypted

entries in yk) be given. Divide the measurement
output yk into two parts, namely y1,k and y2,k.
Here, y1,k ∈ R

m̄ denotes the selected measurement
data to be encrypted.

Step 2. Transform the selected measurement data y1,k into
ciphertext by using the given encryption algorithm
(e.g. the widely adopted RSA algorithm). Then,
transmit the ciphertext to the state estimator via
the communication network.

Step 3. Recover the measurement data from the received
ciphertext by using the corresponding decryption
algorithm.

Let ~ξ , {ξi}i=1,2,...,m̄ be the index set of the selected
entries in yk to be encrypted, where ξi ∈ {1, 2, . . . ,m} and

ξi 6= ξj for all i 6= j. In other words, the selected measurement
data y1,k can be described as follows:

y1,k ,
[
yTk (ξ1) yTk (ξ2) . . . yTk (ξm)

]T

where yTk (ξi) represents the ξi-th entry in yk. Here, the value
of the set ~ξ is regarded as the designing parameter for the PED
mechanism. For notation simplicity, we let

Φ(~ξ) ,
[
eT (ξ1) eT (ξ2) . . . eT (ξm̄)

]T
,

in which

e(ξi) ,
[
0 0 . . . 0
︸ ︷︷ ︸

ξi−1

1 0 0 . . . 0
︸ ︷︷ ︸

m−ξi

]

.

Obviously, by letting ξ̂ , {1, 2, . . . ,m} \ ~ξ, we have
{

y1,k = Φ(~ξ)yk

y2,k = Φ(ξ̂)yk
.

According to the above discussion, the networked SE pro-
cess with PED mechanism can be shown by Fig. 1.

Fig. 1: Networked SE with partially encrypted measurements

We are now in a position to introduce the effects induced
by the encryption process and network-based communication.
Before introducing the encryption process, let us introduce the
following assumption on the encryption mechanism.

Assumption 1: The elapsed time of the encryption process
on the data y1,k is d. The encryption on y1,k can be implement-
ed only when the encryption on the previous data is completed.
Furthermore, the first encrypted measurement data is y1,0.

It is easy to observe from Assumption 1 that: 1) the
measurement signal y1,k will only be encrypted at time instants
{0, d, 2d, 3d, . . .}, 2) the encryption on the measurement signal
y1,ld (∀l ∈ {0, 1, 2, . . .}) will be completed at time instant
(l+1)d (due to the elapsed time of the encryption process), and
3) the measurement signals {y1,k}ld<k<(l+1)d (∀l = 0, 1, . . .)
(which are generated during the encryption process) will be
“discarded”. Without loss of generality, let the generated
ciphertext at time instant ld be βld. Then, the time instants
of the encryption process on the measurement signal y1,ld are
described in Fig. 2.

As shown in Fig. 2, we can conclude that

βld = En(y1,(l−1)d), l = 1, 2, . . .
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Fig. 2: Time instants of the encryption process

where En(·) represents the encryption mechanism. According-
ly, the transmitted data at time instant k (which is represented
by β̄k) is described as follows:

β̄k =







y2,k, if mod(k, d) 6= 0
[
βk
y2,k

]

, if mod(k, d) = 0

In this paper, it is assumed that the signal transmission-
s over the communication network would suffer from the
effects of packet dropouts, which can be described by a
sequence of independent and identically distributed (i.i.d.)
random variables {γk}k≥0. More specifically, γk equals to 1
if the signal is successfully transmitted at time instant k and
zero otherwise. The corresponding occurrence probabilities are
Prob{γk = 1} = γ̄ and Prob{γk = 0} = 1− γ̄.

Let De(·) be the decryption mechanism and ȳk be the
received measurement data of the state estimator at time
instant k. Under the effects of packet dropouts, we have

ȳk =







∅, if γk = 0
y2,k, if γk = 1 and mod(k, d) 6= 0
[
De(βk)
y2,k

]

, if γk = 1 and mod(k, d) = 0

=







∅, if γk = 0
y2,k, if γk = 1 and mod(k, d) 6= 0
[
y1,k−d

y2,k

]

, if γk = 1 and mod(k, d) = 0
(2)

where the last step follows from the fact that De(βld) =
De(En(y1,(l−1)d)) = y1,(l−1)d.

Remark 2: Encryption is recognized as one of the most
effective ways to protect information security. In the context of
cryptography, encryption stands for the process that transforms
the representation of the original information into the encrypt-
ed message based on the “secret key”. By doing so, only
authorized parties (i.e., those with knowledge of the secret key)
can infer the original information from the encrypted message
through decryptors, thereby preserving private information
from information leakage. Generally speaking, the strength of
the encryption process is described by the length of the secret
key. However, a secret key with a long length would result in
a high computational cost. In practice, the length of the secret
key can be adjusted to attain a tradeoff between information
security and computational cost.

B. The information security and recursive state estimator

In this subsection, we shall first discuss the information
security of the networked SE issue shown in Fig. 1. Let us
start the discussion with a brief review of the detectability.

Definition 1: [16] A linear time-invariant system is de-
tectable if and only if all the unstable states of the system are
observable.

As shown in Fig. 1, an eavesdropper can acquire the
transmitted signals from the communication channel and es-
timate the system states. In this paper, it is assumed that the
eavesdropper is incapable of recovering the measurement data
from the cyphertext. Accordingly, only partial measurement
data (i.e., y2,k) can be used for SE on the eavesdropper side.
Specifically, the ciphertext provides no information to the
eavesdropper.

According to the above discussions, it is easy to see that
the SE issue from the eavesdropper side is considered for the
following system:

{

xk+1 = Axk + ωk

y2,k = Φ(ξ̂)Cxk +Φ(ξ̂)νk
(3)

The purpose of the eavesdropper is to estimate the sys-
tem state based on the available measurements Ie,k ,

{y̆0, y̆1, . . . , y̆k}, where

y̆k =

{

∅, if γe,k = 0

y2,k, if γe,k = 1
,

and γe,k governs the random nature of the packet dropouts for
the signal transmissions during the eavesdropping process.

To protect the information security of the networked SE
process, in this paper, we would like to select the suitable set
~ξ such that the linear time-invariant system (3) is undetectable.
By doing so, it is nearly impossible for the eavesdropper to
derive an accurate estimate of the system state, even if γe,k =
1 holds for all k ≥ 0 (i.e., all the transmitted signals are
successfully received by the eavesdropper).

Next, let us consider the SE issue for the user side. Con-
sidering the measurement data received by the estimator, in
this paper, the MMSE state estimate x̂k|k at the user side is
calculated by the following scheme:

x̂k|k = argmin
x̂

E{(x̂− xk)
T (x̂− xk)|Ik},

= E{xk|Ik}, (4)

where Ik , {ȳi|i ≤ k, ȳi 6= ∅} represents the available
measurements set.

We are now ready to present the three main objectives of
this paper as follows.

• Design the value of the set ~ξ such that the linear time-
invariant system (3) is undetectable.

• Design the recursive formulas to calculate the desired
state estimate x̂k|k according to the SE scheme (4).

• Analyze the boundedness of the SE error variance
E{(x̂k|k − xk)(x̂k|k − xk)

T }.

III. MAIN RESULTS

A. Design of the set ~ξ

According to the plant (1), we can derive the following
Jordan canonical form by using the similarity transformation.
Without loss of generality, we assume that the matrix A has
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r distinct eigenvalues {λi}i=1,2,...,r. Then, there exists an
invertible matrix T ∈ R

n×n such that
{

χk+1 = Jχk + Bωk

yk = Gχk + νk
(5)

where

χk , T xk, B , T , J , T AT −1 = diag{J1, J2, . . . , Jr},

G , CT −1 =
[
G1 G2 . . . Gr

]
,

Gi ,
[
Gi,1 Gi,2 . . . Gi,αi

]
, Gi,j ,

[

g
(1)
i,j g

(2)
i,j . . .

]

,

Ji ,






Ji,1
. . .

Ji,αi




 , Ji,j ,











λi 1
λi 1

. . .
. . .
. . . 1

λi











,

and αi denotes the geometric multiplicity of the eigenvalue
λi.

Before proceeding further, we introduce the following lem-
ma.

Lemma 1: [47] The linear time-invariant system (5) is
observable if and only if

rank

(

Φ(ξ̂)
[

g
(1)
i,1 g

(1)
i,2 . . . g

(1)
i,αi

])

= αi, ∀1 ≤ i ≤ r.

For notation simplicity, we define

Λ ,
{
λ|λ ∈ {λi}i=1,2,...,r, ρ(A) ≥ 1

}
,

Gi ,

[

g
(1)
i,1 g

(1)
i,2 . . . g

(1)
i,αi

]

.

Based on the definition of Λ, we have the following propo-
sition.

Proposition 1: The linear time-invariant system (3) is un-
detectable if and only if there exists a positive integer i ∈ Λ
such that

rank
(
Φ(ξ̂)Gi

)
< αi. (6)

Proof: The proof follows readily from Definition 1 and
Lemma 1, and is therefore omitted here for space saving.

Corollary 1: The linear time-invariant system (3) is un-
detectable if there exist a positive integer i ∈ Λ such that
rank

(
Φ(ξ̂)

)
< αi.

Proof: The proof is straightforward based on Proposition
1, and is thus omitted here for brevity.

Remark 3: We have now completed the design of the
set ~ξ based on the Jordan canonical form of the plant. As
previously mentioned, the encryption process inevitably incurs
a certain computational cost, which is largely dependent on
the number of elements in the set ~ξ (i.e., the value of m̄). To
minimize the computational cost of the encryption process,
the value of the integer m̄ can be determined by solving the
constrained optimization problem of minimizing m̄ subject to
the feasibility of rank

(
Φ(ξ̂)Gi

)
< αi for certain ξ̂ and i ∈ Λ.

Note that for any m̄ ∈ {1, 2, . . . ,m}, the number of possible
combinations (ξ̂, i) is limited. Hence, the above constrained
optimization problem can be easily solved by the enumeration
method.

B. Design of the MMSE estimator

Before further proceeding, the following lemmas are intro-
duced, which will be used later.

Lemma 2: [1] Let X and Y be random vectors with a jointly
Gaussian distribution. Then, the conditional distribution of X
given Y is of the expectation

E{X |Y } = E{X}+ΣXY Σ
−1
Y (Y − E{Y }) (7)

and conditional variance

E{(X − E{X})(X − E{X})T |Y }

=ΣX − ΣXY Σ
−1
Y ΣYX (8)

where ΣX , E{(X − E{X})(X − E{X})T} and ΣXY ,

E{(X − E{X})(Y − E{Y })T }.
Lemma 3: [1] Suppose that X , Y1, Y2, . . ., Yk are jointly

distributed with Y1, Y2, . . ., Yk mutually uncorrelated, i.e.,
ΣYiYj

= 0 for i 6= j. Then, we have

E{X |Y1, Y2, . . . , Yk} =

k∑

i=1

E{X |Yi} − (k − 1)E{X}. (9)

Lemma 4: [1] Let Zk , {zk}k≥0 be a Gaussian random
sequence. Define z̃0 , z0 − E{z0}, z̃k , zk − E{zk|Zk−1}
and Z̃k , {z̃k}k≥0. Then, with w and Zk jointly distributed,
we have

E{w|Zk} = E{w|Z̃k} =
k∑

l=0

E{w|z̃l}

provided E{w} = 0.
We can now proceed with designing the MMSE estimator

in a recursive form. Let us first consider the case where mod
(k, d) 6= 0. The following theorem proposes the corresponding
estimator design.

Theorem 1: For the case that mod(k, d) 6= 0 or k = 0, the
MMSE state estimate x̂k|k can be calculated according to the
following recursions:







x̂k|k−1 = Ax̂k−1|k−1,

x̂k|k = x̂k|k−1 + γkΣ̃kΣ
−1
ỹk
ỹk

x̂0|−1 = x̄0

(10)

where

ek|k−1 , xk − x̂k|k−1, Σek|k−1
, E{ek|k−1e

T
k|k−1|γ

k−1
0 },

x̂k−i|k−j , E{xk−i|Ik−j}, γ
k
0 ,

[
γ0 γ1 . . . γk

]T
,

Σỹk
, E{ỹkỹ

T
k |γ

k
0 }

= Φ(ξ̂)CΣek|k−1
CTΦT (ξ̂) + Φ(ξ̂)RΦT (ξ̂),

Σ̃k , E{(xk − E{xk})ỹ
T
k |γ

k
0 } = Σek|k−1

CTΦT (ξ̂),

ỹk , γk
(
ȳk − E{ȳk|Ik−1}

)
= γk(ȳk − Φ(ξ̂)Cx̂k|k−1).

Furthermore, the values of {Σek|k−1
}k≥1 can be calculated

recursively according to the following difference equations:






Σek|k−1
= AΣek−1|k−1

AT +Q

Σek|k
= Σek|k−1

− γkΣ̃kΣ
−1
ỹk

Σ̃T
k

Σe0|−1
= X0

(11)
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in which ek|k , xk − x̂k|k and Σek|k
, E{ek|ke

T
k|k|γ

k
0 }.

Proof: First, it is easy to observe from the definition
of ȳk that Ik is consisted of the available measurements
(i.e. {y1,id}0≤i<⌊k/d⌋ and {y2,i}0≤i≤k). Since the initial state
x0, the measurement noise νk and the process noise ωk are
mutually uncorrelated Gaussian vectors, it is easy to conclude
that ȳk is a Gaussian vector whose statistical property depends
on the value of mod(k, d), which indicates that Ik is a
sequence of Gaussian vectors.

According to the definition of Ik, it is observed that

Ik =

{

Ik−1, if γk = 0

Ik−1 ∪ {y2,k}, if γk = 1
.

According to the MMSE estimation scheme (4), we have

x̂k|k = E{xk|Ik} =

{

E{xk|Ik}, if γk = 1

E{xk|Ik−1}, if γk = 0
. (12)

Consider the case that γk = 1 and define wk , xk−E{xk}.
It is obvious that E{wk} = 0. Then, it follows from Lemma
4 that

E{xk|Ik} − E{xk} = E{wk|Ik} = E{wk|Ĩk}

=E{xk|Ĩk} − E{xk},

which implies that E{xk|Ik} = E{xk|Ĩk}. Subsequently, it
follows from (12) that

x̂k|k =

{

E{xk|Ik}, if γk = 1

E{xk|Ik−1}, if γk = 0

=

{

E{xk|Ĩk}, if γk = 1

E{Axk−1 + ωk−1|Ik−1}, if γk = 0
(13)

where Ĩk , {ỹi|i ≤ k, γi 6= 0}. As shown in [1], it is
obvious that the vectors in Ĩk are mutually uncorrelated. Then,
considering the case that γk = 1, the following equalities can
be easily achieved by using Lemma 3:

E{xk|Ĩk} =

k∑

i=1

E{xk|ỹi} − (k − 1)E{xk}

=
k−1∑

i=1

E{xk|ỹi} − (k − 2)E{xk}+ E{xk|ỹk} − E{xk}

=E{xk|Ĩk−1}+ E{xk|ỹk} − E{xk}

=E{xk|Ĩk−1}+ E{xk|ỹk} − E{xk}

= x̂k|k−1 + E{xk|ỹk} − E{xk}.

Subsequently, it follows from Lemma 2, (1) and (12) that

x̂k|k =

{

E{xk|Ik}, if γk = 1

E{xk|Ik−1}, if γk = 0

=

{

x̂k|k−1 + Σ̃kΣ
−1
ỹk
ỹk, if γk = 1

Ax̂k−1|k−1, if γk = 0
. (14)

Noting that

x̂k|k−1 = E{Axk−1 + ωk−1|Ik−1} = Ax̂k−1|k−1,

it can be concluded from (14) that
{

x̂k|k−1 = Ax̂k−1|k−1,

x̂k|k = x̂k|k−1 + γkΣ̃kΣ
−1
ỹk
ỹk
. (15)

For the case that γk = 1, it is easy to observe from the
definition of ỹk that

ỹk = Φ(ξ̂)Cek|k−1 +Φ(ξ̂)νk,

which implies that

Σ̃k = E
{
(xk − E{xk})(Φ(ξ̂)Cek|k−1 +Φ(ξ̂)νk)

T
}

= E
{
(ek|k−1 + x̂k|k−1)e

T
k|k−1C

TΦT (ξ̂)
}

= Σek|k−1
CTΦT (ξ̂),

and

Σỹk
= Φ(ξ̂)CΣek|k−1

CTΦT (ξ̂) + Φ(ξ̂)RΦT (ξ̂).

To obtain a recursive form for the MMSE estimator, we
shall consider the calculation of Σek|k−1

. As shown in [1], it
is obvious that

Σek|k−1
= AΣek−1|k−1

AT +Q,

Σek|k
= Σek|k−1

− γkΣek|k−1
CTΦT (ξ̂)Σ−1

ỹk
Φ(ξ̂)CΣek|k−1

.

The proof is now complete.
Now, we are in the position to consider the case of mod

(k, d) = 0, where the received measurement output is

ȳk =







∅, if γk = 0
[
y1,k−d

y2,k

]

, if γk = 1

Evidently, the measurement data received at the previous
time instant, i.e., y1,k−d, can aid in improving the state
estimate of xk−d, which, in turn, can help “correct” the gen-
erated state estimates of {xi}i=k−d,k−d+1,...,k−1. To generate
the desired state estimates of xk using these corrected state
estimates, we introduce the following sets that describe the
available measurements:

{

Ǐk−d , Ik−d ∪ {y̌k−d},

Ǐk−d+i , Ǐk−d+i−1 ∪ {y̌k−d+i}, i = 1, 2, . . . , d

where

y̌k−d ,

{

y1,k−d, if γk = 1

∅, if γk = 0
,

y̌k−d+i ,

{

y2,k−d+i, if γk−d+i = 1

∅, if γk−d+i = 0
, i = 1, 2, . . . , d.

Now, we shall consider the corrected state estimate of xk−d.
For notation simplicity, we define x̌i|i , E{xi|Ǐi} for i = k−
d, k−d+1, . . . , k. In this paper, the corrected state estimate of
xk−d is calculated by the MMSE E{xk−d|Ǐk−d} = x̌k−d|k−d.

In light of definition of Ǐk−d, the state estimate x̌k−d|k−d

can be calculated in the following theorem.
Theorem 2: For the case that mod(k, d) = 0 and k > 0,

the value of x̌k−d|k−d can be calculated as follows:

x̌k−d|k−d = x̂k−d|k−d + γk~Σk−dΣ
−1
~y1,k−d

~y1,k−d (16)
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where

~y1,k−d , γk
(
y1,k−d − E{y1,k−d|Ik−d}

)

= γk
(
y1,k−d − Φ(~ξ)Cx̂k−d|k−d

)
,

~Σk−d , E{(xk−d − E{xk−d})~y
T
1,k−d|γ

k
0 }

= Σek−d|k−d
CTΦT (~ξ),

Σ~y1,k−d
, E{~yk−d~y

T
k−d|γ

k
0}

= Φ(~ξ)CΣek−d|k−d
CTΦT (~ξ) + Φ(~ξ)RΦT (~ξ).

Furthermore, the value of the corresponding conditional vari-
ance matrix for xk−d− x̌k−d|k−d can be calculated as follows:

Σ̌ek−d|k−d
=Σek−d|k−d

− γkΣek−d|k−d
CTΦT (~ξ)

× Σ−1
~y1,k−d

Φ(~ξ)CΣek−d|k−d
(17)

where

Σ̌ek−d|k−d
, E{(xk−d − x̌k−d|k−d)(xk−d − x̌k−d|k−d)

T |γk0}.

Proof: According to the definition of x̌k−d|k−d, it is
observed from the definition of Ǐk−d that

x̌k−d|k−d = E{xk−d|Ǐk−d} = x̂k−d|k−d (18)

if γk = 0.
For the case of γk = 1, it is concluded that Ǐk−d = Ik−d ∪

{y1,k−d}. Along the similar lines in the proof of Theorem 1,
we have E{xk−d|Ik−d} = E{xk−d|Ĩk−d}, from which we
observe that

x̌k−d|k−d = E
{
xk−d|Ik−d ∪ {y1,k−d}

}

=E{xk−d|~y1,k−d}+ E{xk−d|Ĩk−d} − E{xk−d}

= x̂k−d|k−d + ~Σk−dΣ
−1
~y1,k−d

~y1,k−d (19)

where Ĩk−d , {ỹ0, ỹ1, . . . , ỹk−d} with

~Σk−d

=E
{
(xk−d − E{xk−d})(Φ(~ξ)Cek−d|k−d +Φ(~ξ)νk−d)

T
}

=E
{
(ek−d|k−d + x̂k−d|k−d)e

T
k−d|k−dC

TΦT (~ξ)
}

=Σek−d|k−d
CTΦT (~ξ)

and

Σ~y1,k−d
= Φ(~ξ)CΣek−d|k−d

CTΦT (~ξ) + Φ(~ξ)RΦT (~ξ).

Summarizing the results derived so far, it is concluded that

x̌k−d|k−d = x̂k−d|k−d + γk~Σk−dΣ
−1
~y1,k−d

~y1,k−d. (20)

Now, let us calculate the value of Σ̌ek−d|k−d
as follows:

Σ̌ek−d|k−d

=E{(xk−d − x̌k−d|k−d)(xk−d − x̌k−d|k−d)
T |γk0 }

=E{(ek−d|k−d − γk~Σk−dΣ
−1
~y1,k−d

~y1,k−d)(ek−d|k−d

− γk~Σk−dΣ
−1
~y1,k−d

~y1,k−d)
T |γk0 }

=Σek−d|k−d
− γk~Σk−dΣ

−1
~y1,k−d

~ΣT
k−d

=Σek−d|k−d
− γkΣek−d|k−d

CTΦT (~ξ)Σ−1
~y1,k−d

Φ(~ξ)CΣek−d|k−d
.

The proof is now complete.

The following corollaries, which can be easily obtained
based on Theorem 2, are presented without proof to save
space.

Corollary 2: For the case of mod(k, d) = 0, the values of
{x̌i|i}i=k−d+1,k−d+2,...,k can be calculated as follows:

{
x̌i|i−1 = Ax̌i−1|i−1

x̌i|i = x̌i|i−1 + γi ~̌ΣiΣ̌
−1
~y2,i

~y2,i
(21)

where

ěi|i−1 , xi − x̌i|i−1, Σ̌ei|i−1
, E{ěi|i−1ě

T
i|i−1|γ

k
0 },

~̌Σi , E{(xi − E{xi})~y
T
2,i|γ

k
0 } = Σ̌ei|i−1

CTΦT (ξ̂),

Σ̌~y2,i
, E{~y2,i~y

T
2,i|γ

k
0} = Φ(ξ̂)

(
CΣ̌ei|i−1

CT +R
)
ΦT (ξ̂),

~y2,i , γi(y2,i − E{y2,i|Ǐi−1}) = γi(y2,i − Φ(ξ̂)Cx̌i|i−1).

Furthermore, the values of {Σ̌ei|i−1
}i=k−d+1,k−d+2,...,k and

{Σ̌ei|i}i=k−d+1,k−d+2,...,k can be calculated recursively by
using the following difference equations:

{
Σ̌ei|i−1

= AΣ̌ei−1|i−1
AT +Q

Σ̌ei|i = Σ̌ei|i−1
− γi ~̌ΣiΣ̌

−1
~y2,i

~̌ΣT
i

, (22)

where ěi|i , xi − x̌i|i and Σ̌ei|i , E{ěi|iě
T
i|i|γ

k
0 }.

Corollary 3: For the case of mod(k, d) = 0, the MMSE
state estimate x̂k|k and the corresponding conditional error
variance matrices can be calculated as follows:

{

x̂k|k = E{xk|Ik} = E{xk|Ǐk} = x̌k|k

Σek|k
= Σ̌ek|k

. (23)

Summarizing the above discussions, the detailed implemen-
tation of the whole estimation process can be described as
follows:

Case 1: if mod(k, d) 6= 0 or k = 0






x̂k|k−1 = Ax̂k−1|k−1,

x̂k|k = x̂k|k−1 + γkΣ̃kΣ
−1
ỹk
ỹk

x̂0|−1 = x̄0

where the computations of ỹk, Σ̃k and Σỹk
are given in

Theorem 1.
Case 2: if mod(k, d) = 0 and k > 0







x̌k−d|k−d = x̂k−d|k−d + γk~Σk−dΣ
−1
~y1,k−d

~y1,k−d

x̌i|i−1 = Ax̌i−1|i−1, k − d < i ≤ k

x̌i|i = x̌i|i−1 + γi ~̌ΣiΣ̌
−1
~y2,i

~y2,i, k − d < i ≤ k

x̂k|k = x̌k|k

where the computations of ~y1,k−d, ~Σk−d, Σ~y1,k−d
, ~̌Σi, Σ̌~y2,i

and ~y2,i are given in Theorem 2 and Corollary 2.
Remark 4: It should be pointed out that the estimates at time

instant {k−d+1, k−d+2, . . . , k−1} derived in Corollary 2
can be regarded as the “corrected” version of the estimates
derived in Theorem 1. Actually, Theorem 1 calculates the
real-time MMSE estimate at time instant k for the case that
mod(k, d) 6= 0. For the case that mod(k, d) = 0, Theorem
2 and Corollary 2 calculate a sequence of MMSE estimates
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{x̌i|i}i=k−d,k−d+1,...,k, where {x̌i|i}i=k−d,k−d+1,...,k−1 are
regarded as the “updated” MMSE estimates at time instants
{k − d, k − d + 2, . . . , k − 1}, and x̌k|k is used to generate
the real-time MMSE estimate at time instant k based on those
updated MMSE estimates. Obviously, the derived results in
Corollary 2 are actually the estimates for “historic states”.
Hence, although the results in Corollary 2 might be more
accurate than the estimates derived in Theorem 1, Theorem 1
is of great importance from the aspect of real-time application.

Remark 5: By now, we have completed the design of the
MMSE state estimator and derived the conditional one-step
prediction error variance matrices {Σek|k−1

}k≥1 and condi-
tional estimation error variance matrices {Σek|k

}k≥0, respec-
tively. It should be pointed out that the values of {Σek|k−1

}k≥1

and {Σek|k
}k≥0 are dependent on the sequence {γk}k≥0. To

study the infinite-horizon property of the estimation error, it is
reasonable to analyze ultimate boundedness of the estimation
error variance matrix E{ek|ke

T
k|k} = E{Σek|k

} with the con-
sideration of the statistical distribution of the random variable
sequence {γk}k≥0.

C. Boundedness analysis of E{Σek|k
}

In this subsection, we are in a position to analyze the
ultimate boundedness for the time-varying matrix E{Σek|k

}.
According to the recursions proposed in (11), the following
equalities hold for mod(k, d) 6= 0 or k = 0:
{
Σek|k−1

= AΣek−1|k−1
AT +Q

Σ−1
ek|k

= Σ−1
ek|k−1

+ γkC
TΦT (ξ̂)

(
Φ(ξ̂)RΦT (ξ̂)

)−1
Φ(ξ̂)C

.

(24)

On the other hand, for the case of mod(k, d) = 0 and k >
0, we have






Σ̌−1
ek−d|k−d

= γkC
TΦT (~ξ)

(
Φ(~ξ)RΦT (~ξ)

)−1
Φ(~ξ)C

+Σ−1
ek−d|k−d

Σ̌−1
ei|i

= Σ̌−1
ei|i−1

+ γiC
TΦT (ξ̂)

(
Φ(ξ̂)RΦT (ξ̂)

)−1
Φ(ξ̂)C,

k − d < i < k

Σ̌ei|i−1
= AΣ̌ei−1|i−1

AT +Q, k − d < i ≤ k

Σ−1
ek|k

= Σ̌−1
ek|k−1

+ γkC
TΦT (ξ̂)

(
Φ(ξ̂)RΦT (ξ̂)

)−1
Φ(ξ̂)C

.

(25)

Now, we focus our attention on the lower bounds of the
time-varying matrix Σek|k

.
Proposition 2: The following inequalities hold for any k ≥

0:

Σek|k
≥ φ−1I, Σ̌ek|k

≥ φ−1I (26)

where

φ̂ , min{λmin{X0}, λmin{Q}},

φ , φ̂
−1

+ 2λ−1
min{R}λmax{C

TC}.

Proof: First, it is easy to see from the recursions (24) and
(25) that

{

Σek|k−1
≥ min{λmin{X0}, λmin{Q}}I = φ̂I

Σ̌ek|k−1
≥ λmin{Q}I ≥ φ̂I

. (27)

Noting that Φ(ξ̂)ΦT (ξ̂) = I and ΦT (ξ̂)Φ(ξ̂) ≤ I , it is easy
to see that

{

ΦT (~ξ)
(
Φ(~ξ)RΦT (~ξ)

)−1
Φ(~ξ) ≤ λ−1

min{R}I

ΦT (ξ̂)
(
Φ(ξ̂)RΦT (ξ̂)

)−1
Φ(ξ̂) ≤ λ−1

min{R}I
.

Then, it follows from the calculation of Σ−1
ek|k

that

Σ−1
ek|k

≤ φ̂
−1
I + γkC

TΦT (ξ̂)
(
Φ(ξ̂)RΦT (ξ̂)

)−1
Φ(ξ̂)C

≤ φ̂
−1
I + γkλ

−1
min{R}C

TC < φI, (28)

and
{
Σ̌−1

ei|i
≤ Σ̌−1

ei|i−1
+ λ−1

min{R}C
TC < φI, k − d < i < k

Σ̌−1
ek−d|k−d

≤ Σ−1
ek−d|k−d

+ λ−1
min{R}C

TC ≤ φI,

(29)

which implies that Σek|k
≥ φ−1I and Σ̌ek|k

≥ φ−1I . The
proof is now complete.

According to Proposition 2, we can easily obtain the fol-
lowing proposition.

Proposition 3: For two given positive integers s ≥ 1 and
1 ≤ N ≤ s, the following condition holds:

Σ−1
esd|sd

≥ θ−Nd(A−Nd)TΣ−1
e(s−N)d|(s−N)d

A−Nd

+ θ−NdF
(
γsd(s−N)d+1

)
(30)

where

θ , 1 +
φλmax{Q}

λmin{AAT }
, R(ξ̂) ,

CTΦT (ξ̂)Φ(ξ̂)C

λmax{R}
,

F
(
γsd(s−N)d+1

)
,

Nd−1∑

i=0

(
γsd−i(A

−i)TR(ξ̂)A−i
)

+

N∑

j=1

γ(s−j+1)d(A
−jd)TR(~ξ)A−jd.

Proof: Considering the difference equations (24) and (25),
one can infer that







AΣek−1|k−1
AT ≥ φ−1AAT ≥ φ−1λmin{AA

T }I

Q ≤ λmax{Q}I

AΣ̌ek−1|k−1
AT ≥ φ−1AAT ≥ φ−1λmin{AA

T }I

Q ≤ λmax{Q}I

,

which implies that Σek|k−1
≤ θAΣek−1|k−1

AT and Σ̌ek|k−1
≤

θAΣek−1|k−1
AT hold for all k ≥ 1. Then, it is concluded that







Σ−1
esd|sd

≥ θ−1A−T Σ̌−1
esd−1|sd−1

A−1 + γsdR(ξ̂)

Σ̌−1
esd−1|sd−1

≥ θ−1A−T Σ̌−1
esd−2|sd−2

A−1 + γsd−1R(ξ̂)

Σ̌−1
esd−2|sd−2

≥ θ−1A−T Σ̌−1
esd−3|sd−3

A−1 + γsd−2R(ξ̂)

...

Σ̌−1
esd−d|sd−d

≥ Σ−1
esd−d|sd−d

+ γsdR(~ξ)

.

(31)

According to (31), it is readily obtained that

Σ−1
esd|sd
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≥ θ−d(A−d)TΣ−1
e(s−1)d|(s−1)d

A−d +

d−1∑

i=0

(
θ−iγsd−i(A

−i)T

×R(ξ̂)A−i
)
+ γsdθ

−d(A−d)TR(~ξ)A−d

≥ . . .

≥ θ−Nd

(

(A−Nd)TΣ−1
e(s−N)d|(s−N)d

A−Nd +

Nd−1∑

i=0

(
γsd−i

× (A−i)TR(ξ̂)A−i
)
+

N∑

j=1

γ(s−j+1)d(A
−jd)TR(~ξ)A−jd

)

= θ−Nd(A−Nd)TΣ−1
e(s−N)d|(s−N)d

A−Nd

+ θ−NdF(γsd(s−N)d+1). (32)

Now, we are ready to consider the ultimate boundedness
of E{Σek|k

}. According to (24), it is easy to conclude that
ΣesNd+i|sNd+i

≤ θiAiΣesNd|sNd(Ai)T for any i > 0, which
implies that the ultimate boundedness of E{Σek|k

} can be
achieved if the matrix sequence {E{ΣesNd|sNd

}}s=0,1,··· is
ultimately bounded. Next, let us consider the boundedness of
{E{ΣesNd|sNd

}}s=0,1,··· in the following Theorem.
Theorem 3: Given the occurrence probability γ̄ and positive

integer N > 1, calculate the sequence of positive scalars
{̟s+1}s≥0 according to the following difference equation






̟s+1 =
∑

j∈Ō

π(j)λmax{A
N̄ (AN̄ )T }̟s +

∑

j∈O

π(j)ϑ−1

̟0 = λmax{X0}
(33)

where

O , {η|F(η) > 0, η ∈ ~O}, ϑ , min
η∈O

{
λmin{F(η)}

}
,

π(j) , θN̄
(

γ̄(1N̄ )T ·j(1− γ̄)(1N̄ )T ·(1N̄−j)
)

, Ō , ~O\O,

~O ,
















0
0
0
...
0










,










1
0
0
...
0










,










0
1
0
...
0










,










0
0
1
...
0










, . . . ,










1
1
1
...
1
















.

Then, the mathematical expectation of the time-varying matrix
ΣesN̄|sN̄

is bounded by

E{ΣesN̄|sN̄
} ≤ ̟sI, s = 0, 1, . . . (34)

where N̄ , Nd. Furthermore, the value of ̟s converges
exponentially to the steady value

̟∞ ,

∑

j∈O π(j)ϑ
−1

1−
∑

j∈Ō π(j)λmax{AN̄(AN̄ )T }
(35)

if
∑

j∈Ō π(j)λmax{AN̄ (AN̄ )T } < 1.
Proof: To prove the assertion that E{ΣesN|sN

} ≤ ̟sI

holds for all s = 0, 1, . . ., the mathematical induction is
utilized as follows.

Initial Step: For s = 0, it is immediately known from the
definition of (11) that

Σe0|0 ≤ Σe0|−1
= X0 ≤ λmax{X0}I,

which implies that E{ΣesN̄|sN̄
} ≤ ̟sI holds for s = 0.

Inductive Step: Given the fact that E{ΣesN̄|sN̄
} ≤ ̟sI hold-

s for s = 0, we aim to show that E{ΣesN̄|sN̄
} ≤ ̟sI holds

for s = i based on the condition E{Σe(i−1)N̄ |(i−1)N̄
} ≤ ̟i−1I .

According to Proposition 3, it is concluded that

Σ−1
eiN̄|iN̄

≥ θ−N̄ (A−N̄ )TΣ−1
e(i−1)N̄ |(i−1)N̄

A−N̄

+ θ−N̄F
(
γiN̄(i−1)N̄+1

)
,

from which we have

ΣeiN̄|iN̄

≤







θN̄AN̄Σe(i−1)N̄ |(i−1)N̄
(AN̄ )T , if γiN̄

(i−1)N̄+1
∈ Ō

θN̄F−1
(
γiN̄(i−1)N̄+1

)
, if γiN̄

(i−1)N̄+1
∈ O

.

(36)

Then, it follows from (36) that

E
{
ΣeiN̄|iN̄

}
= E

{
E
{
ΣeiN̄|iN̄

∣
∣γ

(i−1)N̄
0

}}

=E

{
∑

η∈ ~O

Prob
{
γiN̄(i−1)N̄+1 = η

}
Σ∗η

eiN̄|iN̄

}

≤Prob
{
γiN̄(i−1)N̄+1 ∈ Ō

}
θN̄AN̄

E
{
Σe(i−1)N̄ |(i−1)N̄

}
(AN̄ )T

+ Prob
{
γiN̄(i−1)N̄+1 ∈ O

}
θN̄F−1

(
γiN̄(i−1)N̄+1

)

≤Prob
{
γiN̄(i−1)N̄+1 ∈ Ō

}
θN̄AN̄

E
{
Σe(i−1)N̄ |(i−1)N̄

}
(AN̄ )T

+ Prob
{
γiN̄(i−1)N̄+1 ∈ O

}
θN̄ϑ (37)

where Σ∗η
eiN̄|iN̄

represents the value of ΣeiN̄|iN̄
in the case that

γiN̄
(i−1)N̄+1

= η.

For the occurrence probabilities Prob
{
γiN̄
(i−1)N̄+1

∈ Ō
}

and

Prob
{
γiN̄
(i−1)N̄+1

∈ O
}

, we observe that







Prob
{
γiN̄(i−1)N̄+1 ∈ Ō

}
=

∑

j∈Ō

Prob
{
γiN̄(i−1)N̄+1 = j

}

Prob
{
γiN̄(i−1)N̄+1 ∈ O

}
=

∑

j∈O

Prob
{
γiN̄(i−1)N̄+1 = j

} .

It should be pointed out that, for any vector j ∈ Ō or
j ∈ O, the value of j is composed by the scalars 1 and 0.
Obviously, the number of non-zero elements in the vector
j can be calculated by (1N̄ )T · j, and the number of zero
elements in the vector j can be calculated by (1N̄ )T ·(1N̄−j).
Subsequently, it is concluded that

∑

j∈Ō

Prob
{
γiN̄(i−1)N̄+1 = j

}

=
∑

j∈Ō

(

γ̄(1N̄ )T ·j(1 − γ̄)(1N̄ )T ·(1N̄−j)
)

,

and
∑

j∈O

Prob
{
γiN̄(i−1)N̄+1 = j

}

=
∑

j∈O

(

γ̄(1N̄ )T ·j(1 − γ̄)(1N̄ )T ·(1N̄−j)
)

.
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Accordingly, it follows from (37) that

E
{
ΣeiN̄|iN̄

}

≤




∑

j∈Ō

π(j)̟i−1λmax{A
N̄ (AN̄ )T }+

∑

j∈O

π(j)ϑ−1



 I

=̟iI. (38)

Hence, by the induction, it is concluded that E{ΣesN̄|sN̄
} ≤

̟sI holds for all s ≥ 0. Furthermore, it is easy to see that
̟s converges exponentially to the steady value ̟∞ if the
condition

∑

j∈Ō π(j)λmax{AN̄ (AN̄ )T } < 1 holds, where

̟∞ =

∑

j∈O π(j)θ
N̄ϑ−1

1−
∑

j∈Ō π(j)̟i−1λmax{AN̄(AN̄ )T }
.

The proof is now complete.
Remark 6: So far, in Theorems 1-2, the secure RSE problem

is tackled for a class of networked systems in the presence
of eavesdroppers. A novel PED mechanism is developed
to achieve the desired information security while alleviating
the computational cost in the signal transmitter. The effects
induced by the encryption process and packet dropouts are
described using a parameter-dependent model. A dedicated-
ly designed MMSE estimator, which is implemented in a
recursive manner, is developed to generate the desired state
estimates under the effects of PED. Furthermore, in Theorem
3, special attention is paid to the ultimate boundedness anal-
ysis on the resultant time-varying estimation error variance
matrix. It is worth mentioning that the corresponding ultimate
boundedness analysis approach is different from the existing
results concerning the Kalman filtering issues subject to packet
dropouts (where the upper-bounds for the estimation error
variance matrices are calculated based on the solutions to
certain modified algebraic Riccati equations). In this paper, the
upper-bound for the estimation error variance is calculated by
using an inverse-matrix-based approach. Compared with the
existing results (e.g. [4], [39]), the inverse-matrix-based ap-
proach proposed in this paper is implemented without solving
certain matrix-valued equations, which provides a convenient
way to calculate the upper-bound for E{ek|keTk|k}.

Remark 7: This paper has presented a systematic investi-
gation of the secure RSE issue against eavesdropping using a
PED method. The research is novel in the following three
aspects: 1) proposing a novel Jordan-canonical-form-based
approach for designing the PED scheme to protect informa-
tion security; 2) constructing a dedicatedly designed MMSE
estimator to handle the effects induced by the PED mecha-
nism; and 3) presenting sufficient conditions to guarantee the
ultimate boundedness of the estimation error variance matrix.

IV. ILLUSTRATIVE EXAMPLES

In this section, the effectiveness and correctness of the
proposed secure RSE algorithm and PED mechanism are
verified through two illustrative examples.

Example 1: Consider a discrete-time system (1) with the
following parameters:

A =

[
1.01 0
0.32 1.03

]

, C =

[
0.5 0
1 1

]

, Q = 0.64I,

R = I, X0 = I, x̄0 =
[
0.8 −0.7

]T
.

It is easy to see that the matrix A has two distinct eigenval-
ues: λ1 = 1.01 and λ2 = 1.03. Furthermore, it is immediately
known from the matrix A that

Λ = {λ1, λ2}, G1 =

[
0
1

]

, G2 =

[
0.014

−0.4193

]

.

As shown in [47], for i ∈ {1, 2}, the geometric multiplicity of
λi is αi = n− rank(λiI −A) = 1. Then, by setting ~ξ = 2, it
can be derived that rank

(
Φ(ξ̂)G1

)
= 0 < α1, which implies

that the linear time-invariant system (3) is undetectable.
In this paper, the occurrence probability of γk = 1 is

assumed to be γ̄ = 0.92. The elapsed time of the encryption
process is assumed to be d = 2. Then, by using the MMSE
estimator proposed in Section III-B, the simulation results
about the estimation performance at the user side are shown
in Figs. 3-4, which depict the true state trajectories and their
corresponding estimates. Here, x(i)k and x̂(i)k|k represent the i-th
entry in xk and x̂k|k , respectively.
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Fig. 3: The trajectories of x(1)
k

and x̂
(1)
k|k.
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Fig. 4: The trajectories of x(2)
k

and x̂
(2)
k|k.

To verify the effectiveness of the PED scheme, we consider
the case that the eavesdropper implements a standard Kalman
filtering scheme based on its available measurements (i.e.,
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{y2,k}k≥0). Fig. 5 shows the trajectories of the estimation error
for the user and eavesdropper, respectively. Obviously, the
norm of the estimation error for the eavesdropper is divergent
under the effects of our proposed PED mechanism. The sim-
ulation results confirm that the effectiveness and correctness
of our proposed PED mechanism and SE scheme.
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Fig. 5: The trajectories of ‖ek|k‖ for the user and eavesdropper.

Next, we conduct Monte Carlo simulations (with 100 steps
and 200 runs) to verify the boundedness analysis on E{Σek|k

}.
In this example, the value of N is set to be 1. According to
the definition of F

(
γsd(s−N)d+1

)
, the set O can be derived as

follows:

O =

{[
0
1

]

,

[
1
1

]}

,

from which we observe that
∑

j∈Ō π(j)λmax{AN̄(AN̄ )T } =
0.9490 < 1.

According to Theorem 3, the matrix E{ΣesN̄|sN̄
} is bound-

ed by ̟sI and the value of ̟s converges exponential-
ly to a steady value. Fig. 6 plots the trajectories of the
maximum eigenvalues and the minimum eigenvalues of
1

200λmax{
∑200

i=1 Σ
(i)
esN̄|sN̄

}) (where Σ
(i)
esN̄|sN̄

represents the val-
ue of ΣesN̄|sN̄

in the i-th run), from which it can be observed
that E{ΣesN̄|sN̄

} is bounded by ̟s and φ−1.
Example 2: Let us now consider the application of our

developed secure RSE scheme to the maneuvering target
tracking problem. The maneuvering target is modeled by the
following time-invariant system [5]:

xk+1 =







1 T 0 0
0 1 0 0
0 0 1 T

0 0 0 1






xk + ωk

where xk ,
[
px(k) ṗx(k) py(k) ṗy(k)

]T
is the state

vector; px(k) and py(k) denote, respectively, the positions in
dimensions x and y at time k; and T is the sampling period.

The initial state is set to be x0 =
[
10 0.2 8 0.8

]T
, and

the sampling period of the plant is T = 0.2. As proposed in
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i=1 Σe

(i)

sN̄ |sN̄
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ln(̟s)
ln(φ−1)

Fig. 6: The trajectories of ln( 1
200

λmax{
∑200

i=1 Σ
(i)
ek|k

}) and

ln( 1
200

λmin{
∑200

i=1 Σ
(i)
ek|k

}).

[5], the variance of the process noise ωk is given by

Q , σ2
accel








T 3

3
T 2

2 0 0
T 2

2 T 0 0

0 0 T 3

3
T 2

2

0 0 T 2

2 T








where σaccel is the acceleration standard deviation. In this
example, the acceleration standard deviation is set to be
σaccel = 2.

The positions in dimensions x and y are measured by two
radars, i.e.,

yk =

[
1 0 0 0
0 0 1 0

]

xk + νk.

In this example, the values of X0 and R are set to be

P0 = diag{12, 9, 12, 14}, R = 0.81I.

The value of γ̄ is assumed to be γ̄ = 0.85. The elapsed time
of the encryption process is assumed to be d = 2.

It is obvious that the matrix A has only one eigenvalue
λ1 = 1. As shown in [47], the geometric multiplicity of λ1
is determined by α1 = n − rank(λ1I − A) = 2. Then, by
selecting ~ξ = 1, we have rank

(
Φ(ξ̂)

)
< α1, from which it

can be concluded that the linear time-invariant system (3) is
undetectable.

According to the system parameters and the value of ~ξ, the
simulation results about the MMSE state estimation are given
in Fig. 7, which depicts the trajectories of the system states
and the derived state estimates. Obviously, our developed SE
scheme is capable of tracking the positions of the maneuvering
target with satisfactory estimation accuracy.

To examine the effects of our proposed PED mechanism, we
consider the case that the eavesdropper implements a standard
Kalman filtering scheme based on its available measurements
(i.e., {y2,k}k≥0). The corresponding simulation results are giv-
en in Fig. 8, from which it can be found that our proposed PED
mechanism has largely degraded the estimation performance
for the eavesdropper’s estimator.
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Fig. 7: The trajectories of x(i)
k

and x̂
(i)

k|k.
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Fig. 8: The trajectories of the system states and their estimates for
the eavesdropper.

V. CONCLUSION

In this paper, we have addressed the secure RSE problem of
a class of networked systems under the presence of eavesdrop-
pers. We have developed a novel PED mechanism to achieve
the desired information security while reducing the compu-
tational cost at the signal transmitter. A parameter-dependent
model has been constructed to describe the effects induced
by the encryption process and packet dropouts. Subsequently,
we have devised a dedicated MMSE estimator in a recursive
manner to generate the desired state estimates under the effects
of PED. We have also analyzed the ultimate boundedness of
the resultant time-varying estimation error variance matrix.
Finally, we have provided two numerical simulation examples
to demonstrate the effectiveness of our proposed algorith-
m. Potential future research directions include investigating
encryption-decryption-based SE problems for nonlinear sys-
tems [10], [42], [43] and studying the distributed SE problem
against eavesdropping [20], [48].
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