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Abstract—In this paper, the problem of ultimately bounded
state estimation is investigated for discrete-time multi-rate singu-
larly perturbed complex networks under the bit rate constraints,
where the sensor sampling period is allowed to differ from
the updating period of the networks. The facilitation of com-
munication between sensors and the remote estimator through
wireless networks, which are subject to bit rate constraints,
involves the use of a coding-decoding mechanism. For efficient
estimation in the presence of periodic measurements, a specialized
impulsive estimation method is developed, which aims to carry
out impulsive corrections precisely at the instants when the
measurement signal is received by the estimator. By employing
the iteration analysis method under the impulsive mechanism, a
sufficient condition is established that ensures the exponential
boundedness of the estimation error dynamics. Furthermore,
an optimization algorithm is introduced for addressing the
challenges related to bit rate allocation and the design of desired
estimator gains. Within the presented theoretical framework,
the correlation between estimation performance and bit rate
allocation is elucidated. Finally, a simulation example is provided
to demonstrate the validity of the proposed estimation approach.

Index Terms—Singularly perturbed systems, multi-rate com-
plex networks, impulsive estimation, constrained bit rate, bit rate
allocation.

I. INTRODUCTION

Complex networks (CNs) are defined as intricate systems
composed of numerous nodes connected by edges, which
represent the relationships, interactions, or connections be-
tween them. The inherent complexity of CNs is a result
of the complex coupling among the multitude of network
nodes. Over the past decade, various models of CNs, such
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as switching CNs [48], time-varying CNs [47], time-delayed
CNs [9], and CNs with incomplete measurements [46], have
garnered widespread attention within research communities.
Based on these models, substantial advancements have been
achieved in areas such as state estimation, stability, synchro-
nization control, and other dynamics analysis problems [4],
[6]. Furthermore, CNs are applied in a variety of practical
scenarios including social networks, transportation networks,
power grids, computer networks and biological networks [8],
[13], [19], [22].

The prevailing literature commonly presupposes that the
states of CNs evolve uniformly on the same time scale, but
this might not be true for specific CNs, where the presence
of differing time scales is a notable characteristic. In fact, as
a unique category of CNs, the so-called singularly perturbed
complex networks (SPCNs) are distinguished by their complex
dynamics and structures. The singularly perturbed parameter
(SPP) plays a crucial role in defining these multiple time
scales. It typically represents a small parameter that separates
the fast and slow dynamics within the system. By introducing
the SPP, one can model systems where certain states or
processes evolve much more rapidly than others [23], [32],
[36]. In recent years, considerable interest has been devoted
to the study of SPCNs due to their extensive applications in
various practical domains, such as power grids, robots and
vehicles systems. Moreover, SPCNs have been applied in state
estimation and synchronization control problems [20], [25],
[26]. These investigations lay the groundwork for ongoing
research into SPCNs, particularly in relation to diverse phe-
nomena.

Current research on SPCNs commonly assumes that net-
work and sensor measurements are sampled at uniform rates.
Unfortunately, this assumption often does not reflect practical
scenarios, as different system components typically have dis-
tinct sampling periods due to their varied physical properties.
For instance, in certain industrial processes such as aluminum
electrolysis, where the system state changes slowly, there is
no pressing need to sample measurements synchronously with
every state update [29], [30], [38]. On the other hand, in
scenarios like wireless transmission channels, which are char-
acterized by limited network resources, intermittent sampling
and transmission of sensor data become crucial for conserving
network resources. The significance of multi-rate CNs lies
in the fact that they are common and crucial in practical
applications. They can more accurately capture the dynamic
characteristics of various parts of a system, allowing for
optimized resource utilization and improved system efficiency
[7], [11], [12], [28], [52].
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In real-world applications, accurately capturing the internal
states of CNs is challenging due to factors like measurement
errors and sensor noises, and this highlights the need for
effective state estimation strategies especially for dynamic
analysis tasks in multi-rate systems, see some recent studies
[5], [10], [45], [51]. The lifting technique has been applied
to multi-rate systems to develop estimation algorithms by
constructing state equations at each measurement sampling
point [34], [37], [49]. Furthermore, the use of switching
concepts and impulsive structures in estimators for multi-rate
systems has been explored in [2], [3], [14], [50]. However, the
specific challenge of estimating multi-rate SPCNs using these
methods remains an area that needs further research.

The rapid advancements in digital network technology have
triggered a significant change in communication mechanisms
within control systems [1], [18]. Traditional analog com-
munication methods are increasingly seen as insufficient for
the needs of modern control systems, leading to the rise of
digital communication strategies as a more suitable alternative
[35]. However, digital networks often face inherent bandwidth
constraints, which can cause issues like signal fading and
packet dropouts during wireless transmission [16], [39]. A
key aspect lies in the consideration of bit rate, a parameter
delineating the volume of data transmissible in a given unit of
time over a digital network. This rate is crucial for defining the
communication bandwidth. However, due to limited bandwidth
resources, the bit rate is often restricted, posing challenges for
ensuring fast and reliable data transmission in wireless digital
networks [27], [33], [40]. Therefore, effectively allocating the
bit rate to each node to prevent data collision becomes a
critical concern in managing these networks [15].

Recently, scholarly attention has been directed towards
investigating the dynamics of systems operating under con-
strained bit rates. Notably, the work [17] delves into the realm
of distributed filtering in wireless sensor networks, particularly
when confronted with limited bit rates, where a novel bit rate
allocation protocol is introduced to address these challenges.
In [24], the investigation centers on the stabilization problem
of an event-triggered system operating within the constraints
of a bit-rate constrained network, where the analysis encom-
passes considerations for both bounded transmission delay and
Markov feedback dropout. It is important to note, however,
that most existing studies focus primarily on common net-
worked systems with limited bit rates. In contrast, the bit-rate-
constrained estimation problem in multi-rate SPCNs has not
received adequate attention despite its practical relevance. This
lack of research underscores a significant gap and highlights
the need for further investigation into this specific area, partic-
ularly to address the unique challenges presented by multi-rate
SPCNs.

Derived from the aforementioned discourse, our investiga-
tion revolves around the following three key challenges.

1) Modeling Multi-Rate SPCNs: Developing a model that
captures the impact of bit rate constraints on multi-rate
SPCNs, addressing the practical limitations imposed by
transmission channel capacities.

2) Novel Estimation Method Design: Creating an estimation
method tailored for multi-rate SPCNs, which utilizes
intermittent measurement reception to accommodate var-
ied data collection and transmission frequencies.

3) Optimizing Estimator Gain and Bit Rates: Designing
estimator gains to align with impulsive characteristics
under bit rate limitations, while simultaneously optimiz-
ing bit rate allocation and gain co-design to enhance
network performance.

Addressing these challenges is essential to improve state
estimation in multi-rate SPCNs, which is crucial for their
reliability and efficiency in practical scenarios. In response to
the identified challenges, the main contributions of this paper
are highlighted as follows.

1) Model construction. For the first time, the constrained
bit rate is incorporated into the modeling of discrete-
time multi-rate SPCNs. A coding-decoding model is
established, focusing on the fast and slow states of the
networks, thereby providing a more realistic representa-
tion of these systems under bit rate constraints.

2) Estimate method design. An impulsive estimation
method is devised, which capitalizes on the periodic
transmission nature of the sensor network. Compared
with the existing methods [21], [50], this method in-
volves executing impulse updates at the moments when
measurements are received by the estimator, avoiding
the conversion from a multi-rate system to a single-rate
system.

3) Gain design and optimization. The interaction between
estimation performance, bit rate, and sampling period
is analyzed under the impulse mechanism. To enhance
network performance, a co-optimization algorithm is
introduced. This algorithm is aimed at optimizing the
allocation of bit rates and designing the gains for the
impulsive estimator, striking a balance between effective
data transmission and accurate state estimation.

This paper is divided into five parts, which are organized as
follows. Section II provides a comprehensive description of
multi-rate SPCNs, including details on the coding-decoding
process under bit-rate constraints, the structure of the adopted
impulsive estimator, and an overview of the impulsive error
dynamics. Section III presents the main boundedness analysis
results, the methodology for designing estimator gains, as
well as the collaborative approach for co-designing bit-rate
allocation and estimator gains. In Section IV, a numerical
example is provided, along with explanatory notes, to validate
the correctness of the derived theoretical results. Section V
draws the conclusion.

Notations: Throughout this article, we define the represen-
tation of some symbols. Rm, Rm×n, and N+ represent the
m-dimensional Euclidean space, the m×n real matrices, and
the positive integers, respectively. The symbol ∥ · ∥ refers
to the Euclidean norm, and | · | stands for the absolute
value. For a matrix X , its transpose is denoted by XT , and
λmin(X) signifies its minimum eigenvalue. An n-elements
column vector is expressed by coln·. The diagonal matrix is
articulated as diag· · ·. The Kronecker product is represented
by the symbol ⊗.

II. PROBLEM FORMULATION

A. Multi-Rate Singularly Perturbed Complex Networks
Consider a class of multi-rate SPCNs of the following form:

xi(pt) =Aεxi(pt−1) + J̃ε(xi(pt−1))
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+Hiϑ(pt−1) +

N∑
j=1

ωijΓεxj(pt−1) (1)

with

xi(pt) ,
[
xif (pt)

xis(pt)

]
, Hi ,

[
Hi1

Hi2

]
,

Aε ,
[
A1 A2

εA3 εA4

]
, Γε ,

[
Γ1 Γ2

εΓ3 εΓ4

]
,

J̃ε(xi(pt)) ,
[

g̃(xif (pt)) +Dxis(pt)

ε
(
h̃(xis(pt)) + Fxis(pt)

)] .
Here, i represents the node number, defined as i ∈ N ,
[1, 2, . . . , N ]; the state of SPCNs denoted by xi(pt) ∈ Rn,
encompasses both the fast state xif (pt) ∈ Rnf and the slow
state xis(pt) ∈ Rns with nf+ns = n; the variable pt (with t ∈
N+) represents the t-th updating instant of the state, and the
state update period of SPCNs is indicated by ~ , pt−pt−1; ε
serves as a small positive constant governing the separation of
the fast and slow time scales; the external disturbance ϑ(pt) ∈
Rς adheres to the constraint ∥ϑ(pt)∥ ≤ ϑ0; g̃(·) and h̃(·) are
the nonlinear functions that will be introduced later.

In (1), Aε is a parameter matrix characterized by its
components, namely A1 ∈ Rnf×nf , A2 ∈ Rnf×ns , A3 ∈
Rns×nf , and A4 ∈ Rns×ns ; the coupled configuration matrix
W = ωij ∈ Rn×n adheres to the constraint

∑N
j=1 ωij = 0 for

each i ∈ N , signifying that node i can receive information
from node j if ωij > 0, otherwise, ωij = 0; the inner
coupling matrix Γε defines the relationships among the various
components within a node, delineated by Γ1 ∈ Rnf×nf ,
Γ2 ∈ Rnf×ns , Γ3 ∈ Rns×nf , and Γ4 ∈ Rns×ns ; additionally,
D ∈ Rnf×ns , F ∈ Rns×ns , Hi1 ∈ Rnf×ς , and Hi2 ∈ Rns×ς

are some constant matrices.
The nonlinear functions g̃(·) ∈ Rnf and h̃(·) ∈ Rns satisfy

[31](
g̃(á)− g̃(à)−ψ̃1(á− à)

)T
×
(
g̃(á)− g̃(à)− ψ̃2(á− à)

)
≤ 0, (2)(

h̃(ć)− h̃(c̀)−χ̃1(ć− c̀)
)T

×
(
h̃(ć)− h̃(c̀)− χ̃2(ć− c̀)

)
≤ 0 (3)

where á, à ∈ Rnf and ć, c̀ ∈ Rns are some vectors, and ψ̃ı ∈
Rnf×nf and χ̃ı ∈ Rns×ns (ı ∈ {1, 2}) are known matrices.

In this paper, we are concerned with multi-rate SPCNs
whose sensor sampling frequency is lower than the state update
frequency, where the measurement output is represented by

yi(km) =Cixi(km) +Miϑ(km), i ∈ N (4)

with

yi(km) ,
[
yif (km)

yis(km)

]
, Mi ,

[
Mi1

Mi2

]
, Ci , diag{Cif , Cis}.

Here, km (m ∈ N+) is the sampling instant of sensors, and
b~ , km − km−1 signifies the sampling period with a known
integer b > 1; Mi1, Mi2, Cif and Cis are known constant
matrices; yi(km) ∈ Rv consisting of yif (km) ∈ Rvf and
yis(km) ∈ Rvs (vf+vs = v) denotes the measurement output.
Without loss of generality, we assume that 1) the state update

state updating instants

sensor sampling instants (b=2)

sensor sampling instants (b=3)

Fig. 1. Schematic diagram of the multi-rate sampling mechanism.

period ~ is a fixed constant, and 2) the initial updating instants
of state and the initial sampling instants of sensor are equal
(i.e. p0 = k0). Fig. 1 illustrates the state updating and sensor
sampling rules with different integer b.

B. Data Transmission Under Constrained Bit Rate

The available bandwidth in wireless networks is commonly
limited, imposing constraints on sustained high-speed da-
ta transmission. Consequently, the bit rate, representing the
quantity of data transmitted per unit of time through the
channel, is inherently restricted. This limitation underscores
the necessity for judicious resource allocation, given that all
sensors are constrained in the number of bits available for
data transmission at sampling instants km. Hence, it becomes
essential to allocate appropriate bits to each sensor, aiming to
prevent data collisions during wireless transmission. Sensor i
is assigned bit rate denoted by Bi (a positive integer), and the
subsequent expression delineates this allocation [17],

B ≥
N∑
i=1

Bi (5)

where B is the available bit rate of the entire communication
network.

To enhance the transmission of sensor data within the
confines of a bandwidth-limited channel, the implementation
of data compression becomes imperative. This can be effec-
tively accomplished through a uniform quantizer. With a scalar
σi > 0, determined by the sensor’s range, the quantization
region of the i-th sensor node is characterized by∣∣y(j)i (km)

∣∣ ≤ σi, j ∈ [1, 2, . . . , v] (6)

where y(j)i (km) represents the j-th element of the measure-
ment yi(km).

Upon selecting a quantization level qi for sensor node
i, the quantization region can be uniformly divided into
sub-hyperrectangles. Subsequently, the ranges of these sub-
hyperrectangles are designated by

Q(i,j)
1 (σi) : −σi ≤ y

(j)
i (km) < −σi +

2σi
qi
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Q(i,j)
2 (σi) : −σi +

2σi
qi

≤ y
(j)
i (km) < −σi +

4σi
qi

...

Q(i,j)
qi (σi) : σi −

2σi
qi

≤ y
(j)
i (km) ≤ σi. (7)

The maximum quantization level q́i of sensor node i is
limited by allocated bits, i.e.,

q́i =
⌊v
√
2Bi

⌋
(8)

where the symbol ⌊·⌋ stands for the rounding down function.
Give the dispersion of sensor measurements within the

quantization region defined in (7). Denote the quantization
region that each element of sensor node i is mapped to
by the sequence

{
d
(1)
i , . . . , d

(v)
i

}
. In the coder, it employs

binary characters, 0 and 1, for encoding the sequence of
numbers. Depending on the diverse time scales inherent in
SPCNs, the resulting codeword generated by the coder is
articulated as Yi(km) ,

(
Yif (km),Yis(km)

)
with Yif (km) =

η̂i

(
d
(1)
if , . . . , d

(vf )
if

)
and Yis(km) = η̂i

(
d
(vf+1)
is , . . . , d

(v)
is

)
,

where η̂i(·) is the coding function.
In the decoder, the codewords transmitted over the wireless

network are decoded to an approximation to the original signal.
The central value of sub-hyperrectangle is denoted by

ὴi
(
Yi(km)

)
,

[
z
(1)
i . . . z

(v)
i

]T
(9)

where ὴi(·) is a decoding function, and the central value is
deduced by

z
(j)
i , −σi +

(
2d

(j)
i − 1

)
σi

q́i
, j ∈ [1, 2, . . . , v].

Subsequently, the quantization error of the measurement
output is given as∥∥yi(km)− ὴi

(
Yi(km)

)∥∥ ≤
√
vσi
q́i

. (10)

For simplicity, the decoding vector is expressed by the
following form:

y⃗i(km) ,
[
y⃗if (km)

y⃗is(km)

]
=

[
ὴi
(
Yif (km)

)
ὴi
(
Yis(km)

)] (11)

where the decoding error is defined as

δi(km) , yi(km)− y⃗i(km). (12)

Remark 1: In wireless communication networks, bit rate
allocation can be managed using dynamic or static approaches.
Dynamic methods adjust bit rates according to the chang-
ing demands of user devices, improving the efficiency of
individual data transfers. On the other hand, static methods
assign bit rates based on predetermined rules. It particularly
suitable for environments where multiple users must share
limited bandwidth, promoting fair data distribution. This study
adopts a static bit rate allocation approach within SPCNs
to maintain consistent and equitable bandwidth distribution
across all network nodes.

Remark 2: In our study, sensors are assumed to sample and
transmit data periodically over a wireless network, a common

practice in bandwidth-limited communication environments.
Adopting a periodic sampling strategy helps reduce the volume
of data transmission, which in turn mitigates network load
and effectively alleviates network congestion. However, this
approach inherently involves a trade-off: it may compromise
the accuracy of state estimation due to the reduced frequency
of sensor measurements. This scenario underscores the need
for developing efficient state estimators. Such estimators are
crucial to achieve satisfactory estimation performance, balanc-
ing the limitations imposed by network bandwidth constraints
with the requirement for accurate and reliable state estimation.
The challenge lies in designing these estimators to function
optimally within the constraints of periodic data transmission
while maintaining high estimation accuracy.

C. Impulsive State Estimator
Based on the insights from Section II-A, we observe that

the sensor’s sampling rate in SPCNs is slower than the rate at
which the system’s state updates. This discrepancy implies that
the estimator cannot perform corrections at every state update
instant pt. To address this challenge, this paper introduces an
innovative impulse-based approach. Within the sensor sam-
pling interval (km−1, km], the estimator leverages the system
dynamic model and the previous state estimate to predict the
state. Subsequently, the estimator performs impulsive update
utilizing sensor measurements at the specific sensor sampling
instants km. As such, the design of impulsive estimator is
divided into two parts. During the interval (km−1, km], the
estimator is represented by

x̂i(pt) =Aεx̂i(pt−1) + J̃ε(x̂i(pt−1))

+
N∑
j=1

ωijΓεx̂j(pt−1), pt ∈ (km−1, km] (13)

where x̂i(pt) ,
[
x̂Tif (pt) x̂Tis(pt)

]T
denotes the state esti-

mate of the node i.
At the sensor sampling instant km (m ∈ N+), the remote

estimator successfully receives the measurement. Adhere to
the output y⃗i(km) of the decoder, the estimator is constructed
as

x̂+i (km) = x̂i(km) + Li

(
y⃗i(km)− Cix̂i(km)

)
(14)

where x̂+i (km) represents the impulsive update state and Li ,
diag{Lif , Lis} denotes the estimator gain to be designed with
Lif ∈ Rnf×vf and Lis ∈ Rns×vs .

Remark 3: In addressing the state estimation challenges
of multi-rate systems, most existing studies utilize methods
like the lifting technique [21] and the pseudo measurement
approach [50] to transform multi-rate systems into single-rate
systems. However, the lifting technique is primarily effective
only for linear multi-rate systems, and the pseudo measure-
ment method necessitates the introduction of an additional
time judgment function, which can add complexity. In this
paper, we introduce a novel approach in tackling the state
estimation issue for multi-rate nonlinear SPCNs by employing
the impulsive method. Unlike previous methods, this approach
involves designing an impulse updating estimator that operates
at both the state updating instant, pt, and the sensor sampling
instant, km. This strategy allows us to circumvent the need for
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state augmentation, thereby reducing computational complex-
ity.

D. Impulsive Error Dynamics
Define the state estimation error of the i-th node as

ei(pt) , xi(pt)− x̂i(pt) =
[
eTif (pt) eTis(pt)

]T
.

During the time interval pt ∈ (km−1, km] of the sensor
sampling, we have

ei(pt) =Aεei(pt−1) + Jε(ei(pt−1))

+

N∑
j=1

ωijΓεej(pt−1) +Hiϑ(pt−1) (15)

where

eif (pt) , xif (pt)− x̂if (pt),

eis(pt) , xis(pt)− x̂is(pt),

Jε(ei(pt)) ,
[
g(eif (pt)) +Deis(pt)

ε
(
h(eis(pt)) + Feis(pt)

)] ,
g(eif (pt)) , g̃(xif (pt))− g̃(x̂if (pt)),

h(eis(pt)) , h̃(xis(pt))− h̃(x̂is(pt)).

At the specific time instant km, the error dynamics in
our model exhibits impulsive behavior, which is a direct
consequence of the estimator employing an impulsive update
method. The nature of this impulsive behavior is characterized
by a sudden change in the error dynamics at each km, which
reflects the instantaneous incorporation of new sensor data into
the estimation process. This impulsive update is a key feature
of our approach, differentiating it from traditional continuous
update methods. The detailed mathematical representation of
this impulsive behavior is given as follows:

e+i (km) =xi(km)− x̂+i (km)

=ei(km)− Li

(
Ciei(km)− δi(km) +Miϑ(km)

)
.

(16)

By denoting e(pt) ,
[
eT1 (pt) eT2 (pt) . . . eTN (pt)

]T ,
the error dynamics is rewritten as the following compact form:

e(pt) =(IN ⊗Aε + IN ⊗Fε)e(pt−1)

+ φε(e(pt−1)) + (W ⊗ Γε)e(pt−1)

+Hν(pt−1), pt ∈ (km−1, km] (17)

and

e+(km) =e(km)− LCe(km) + Lϕ(km)− LMν(km) (18)

where ⊗ denotes the Kronecker product and

Fε ,
[
0 D

0 εF

]
, M , diag{M1, . . . ,MN},

H , diag{H1, . . . , HN}, ν(pt) , colN{ϑ(pt)},
L , diag{L1, . . . , LN}, C , diag{C1, . . . , CN},

ϕ(km) ,
[
δT1 (km) δT2 (km) . . . δTN (km)

]T
,

φε(e(pt)) ,
[
φT
ε,1(e1(pt)) . . . φT

ε,N (eN (pt))
]T
,

φε,i(ei(pt)) ,
[
gT (eif (pt)) εhT (eis(pt)

]T
.

Let a row-switching elementary matrix be R ,
∏N

i Ri

with Ri ∈ RnN×nN (i ∈ N ). According to the properties of
row-switching elementary transformation, one has Ri = R−1

i .
Defining Re(pt) , ẽ(pt), we pre-multiply (17) by the elemen-
tary matrix R to obtain

ẽ(pt) =Λεẽ(pt−1) + φ̃ε(e(pt−1)) + H̃ν(pt−1). (19)

Similarly, we derive from (18) that

ẽ+(km) =ẽ(km)− L̃C̃ẽ(km) + L̃ϕ̃(km)− L̃M̃ν(km) (20)

where

Λε ,
[
Λ11 Λ12

Λ21
ε Λ22

ε

]
, L̃ ,

[
Lf 0

0 Ls

]
,

Cf , diag{C1f , C2f , . . . , CNf},
Cs , diag{C1s,C2s, . . . ,CNs},
Lf , diag{L1f , L2f , . . . , LNf},
Ls , diag{L1s, L2s, . . . , LNs},
Λ11 , IN ⊗A1 +W ⊗ Γ1,

Λ21
ε , ε(IN ⊗A3 +W ⊗ Γ3),

Λ12 , IN ⊗A2 + IN ⊗D +W ⊗ Γ2,

Λ22
ε , ε(IN ⊗A4 + IN ⊗ F +W ⊗ Γ4),

H̃ ,
[
HT

1 HT
2

]T
, M̃ ,

[
MT

1 MT
2

]T
,

Mı , diag{M1ı,M2ı, . . . ,MNı},
Hı , diag{H1ı,H2ı, . . . , HNı}, ı ∈ {1, 2},

φ̃ε(e(pt)) ,
[
ğT (ef (pt)) εh̆T (es(pt))

]T
,

ğ(ef (pt)) ,
[
gT (e1f (pt)) . . . gT (eNf (pt))

]T
,

h̆(es(pt)) ,
[
hT (e1s(pt)) . . . hT (eNs(pt))

]T
,

ϕ̃(km) ,
[
δ̃Tf (km) δ̃Ts (km)

]T
, C̃ ,

[Cf 0

0 Cs

]
,

δ̃f (km) ,


y1f (km)− y⃗1f (km)

...
yNf (km)− y⃗Nf (km)


T

,

δ̃s(km) ,


y1s(km)− y⃗1s(km)

...
yNs(km)− y⃗Ns(km)


T

.

Lemma 1: [31] For a positive scalar έ, and Ω1 and Ω2

be symmetric matrices with compatible dimensions. Then, the
following inequality

Ω1 + εΩ2 < 0, ε ∈ (0, έ] (21)

holds if and only if Ω1 ≤ 0 and Ω1 + έΩ2 < 0.
Definition 1: The estimation error dynamics of SPCNs is

said to be ultimately exponentially bounded if there exist
scalars 0 < ā1 < 1, ā2 > 0 and ā3 > 0 such that the following
inequality holds:

∥ẽ(pt)∥2 ≤ āpt

1 ā2 + ā3 (22)

where ā3 is an asymptotic upper bound of the error ∥ẽ(pt)∥2.
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III. MAIN RESULTS

A. Boundedness Analysis

In the following theorem, a sufficient condition is given to
analyze the ultimate boundedness of the error dynamics.

Theorem 1: Let the scalars β1 > 1, 0 < β2 < 1, ε >
0, the positive integers Bi (i ∈ N ) and the estimator gains
be given. If there exist positive scalars ϵ1, ϵ2, τ1, τ2, τ3 and
positive definite matrix Pε such that the following inequalities
hold: [

Π11 Π12

∗ −P−1
ε

]
< 0 (23)[

Ω11 Ω12

∗ −P−1
ε

]
< 0 (24)

0 < βb
1β2 < 1 (25)

where

Π11 ,


−β1Pε − J11 J12 J13 0

∗ −ϵ1InfN 0 0

∗ ∗ −ϵ2InsN 0

∗ ∗ ∗ −τ1IςN

 ,
Π12 ,

[
Λε Zf εZs H̃

]T
,

Ω11 ,

−β2Pε 0 0

0 −τ2IvN 0

0 0 −τ3IςN

 ,
Ω12 ,

[
InN − L̃C̃ L̃ −L̃M̃

]T
,

J11 , ϵ1Zfψ
T
1 ψ2Z

T
f + ϵ2Zsχ

T
1 χ2Z

T
s ,

J12 , ϵ1Zf
ψT
1 + ψT

2

2
, J13 , ϵ2Zs

χT
1 + χT

2

2
,

ψı , IN ⊗ ψ̃ı, χı , IN ⊗ χ̃ı, ı ∈ {1, 2},

Zf ,
[

InfN

0nsN×nfN

]
, Zs ,

[
0nfN×nsN

InsN

]
,

then the estimation error dynamics is ultimately exponentially
bounded.

Proof: Choose the Lyapunov-like functional candidate as

V (pt) = ẽT (pt)Pεẽ(pt). (26)

Let the difference of V (pt) at the time interval pt ∈
(km−1, km] be

∆V (pt) , V (pt)− β1V (pt−1).

Combining (19) and (26), one has

∆V (pt) =ẽ
T (pt−1)Λ

T
ε PεΛεẽ(pt−1) + φ̃T

ε (e(pt−1))Pε

× φ̃ε(e(pt−1)) + 2ẽT (pt−1)Λ
T
ε Pεφ̃ε(e(pt−1))

+ νT (pt−1)H̃TPεH̃ν(pt−1)− β1ẽ
T (pt−1)Pε

× ẽ(pt−1) + 2ẽT (pt−1)Λ
T
ε PεH̃ν(pt−1)

+ 2φ̃T
ε (e(pt−1))PεH̃ν(pt−1). (27)

Letting φ̃ε(e(pt)) , Zf ğ(ef (pt)) + εZsh̆(es(pt)), we
rewrite (27) as follows:

∆V (pt) =ẽ
T (pt−1)Λ

T
ε PεΛεẽ(pt−1) + ğT (ef (pt−1))Z

T
f

× PεZf ğ(ef (pt−1)) + ε2h̆T (es(pt−1))Z
T
s Pε

× Zsh̆(es(pt−1)) + 2εğT (ef (pt−1))Z
T
f PεZs

× h̆(es(pt−1)) + 2ẽT (pt−1)Λ
T
ε PεZf ğ(ef (pt−1))

+ 2εẽT (pt−1)Λ
T
ε PεZsh̆(es(pt−1))

+ 2εh̆T (es(pt−1))Z
T
s PεH̃ν(pt−1) + νT (pt−1)

× H̃TPεH̃ν(pt−1) + 2ẽT (pt−1)Λ
T
ε PεH̃

× ν(pt−1) + 2ğT (ef (pt−1))Z
T
f PεH̃ν(pt−1)

− β1ẽ
T (pt−1)Pεẽ(pt−1). (28)

It follows from the nonlinearity conditions in (2) and (3)
that, for any scalars ϵ1 > 0 and ϵ2 > 0, the following are true:

ϵ1
(
ğ(ef (pt))− ψ1ef (pt)

)T (
ğ(ef (pt))− ψ2ef (pt)

)
≤ 0,

ϵ2
(
h̆(es(pt))− χ1es(pt)

)T (
h̆(es(pt))− χ2es(pt)

)
≤ 0.

(29)

Substituting ef (pt) = ZT
f ẽ(pt) and es(pt) = ZT

s ẽ(pt) into
(29), we have ẽ(pt)

ğ(ef (pt))

h̆(es(pt))


T J11 −J12 −J13

∗ ϵ1InfN 0

∗ ∗ ϵ2InsN


 ẽ(pt)

ğ(ef (pt))

h̆(es(pt))

 ≤ 0.

(30)

Define an augmented vector as

ξ(pt) ,
[
ẽT (pt) ğT (ef (pt)) h̆T (es(pt)) νT (pt)

]T
.

Combining the difference function (28) and nonlinear con-
straint (30), we obtain

∆V (pt) ≤ ξT (pt−1)Π̃ξ(pt−1) + τ1ν
T (pt−1)ν(pt−1) (31)

where

Π̃ ,


Π̃11 Π̃12 Π̃13 Π̃14

∗ Π̃22 Π̃23 Π̃24

∗ ∗ Π̃33 Π̃34

∗ ∗ ∗ Π̃44

 ,
Π̃11 , ΛT

ε PεΛε − β1Pε − J11, Π̃12 , ΛT
ε PεZf + J12,

Π̃13 , εΛT
ε PεZs + J13, Π̃14 , ΛT

ε PεH̃,
Π̃22 , ZT

f PεZf − ϵ1InfN , Π̃23 , εZT
f PεZs,

Π̃24 , ZT
f PεH̃, Π̃33 , ε2ZT

s PεZs − ϵ2InsN ,

Π̃34 , εZT
s PεH̃, Π̃44 , H̃TPεH̃ − τ1IςN .

Applying Schur Complement Lemma to (23) in Theorem 1,
we have Π̃ < 0, which implies

∆V (pt) < τ1ν
T (pt−1)ν(pt−1). (32)

For the sake of simplicity, we denote π̃1 , τ1Nϑ
2
0.

Subsequently, the inequality (32) is further expressed as

V (pt) < β1V (pt−1) + π̃1, pt ∈ (km−1, km]. (33)

Let us continue to analyze the difference function at the
time instant pt = km. Denoting

∆V +(km) , V +(km)− β2V (km),
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ξ̂(km) ,
[
ẽT (km) ϕ̃T (km) νT (km)

]T
,

one obtains

∆V +(km) =ξ̂T (km)Ω̃ξ̂(km) + τ2ϕ̃
T (km)ϕ̃(km)

+ τ3ν
T (km)ν(km) (34)

where

Ω̃ ,


Ω̃11 Ω̃12 Ω̃13

∗ Ω̃22 Ω̃23

∗ ∗ Ω̃33

 ,
Ω̃11 , (InN − L̃C̃)TPε(InN − L̃C̃)− β2Pε,

Ω̃13 , −(InN − L̃C̃)TPεL̃M̃, Ω̃23 , −L̃TPεL̃M̃,

Ω̃22 , L̃TPεL̃ − τ2IvN , Ω̃12 , (InN − L̃C̃)TPεL̃,
Ω̃33 , M̃T L̃TPεL̃M̃ − τ3IςN .

We derive Ω̃ < 0 by using the Schur Complement Lemma
to (24) and, furthermore, we obtain

V +(km) <β2V (km) + τ2ϕ̃
T (km)ϕ̃(km)

+ τ3ν
T (km)ν(km). (35)

From the quantization error (10), it follows that

∥ϕ̃(km)∥2 ≤
N∑
i=1

vσ2
i /q́

2
i (36)

and we can further conclude from (35) and (36) that

V +(km) < β2V (km) + π̃2 (37)

with π̃2 , τ2
∑N

i=1 vσ
2
i

/⌊
v
√
2Bi

⌋2
+ τ3Nϑ

2
0.

In view of inequalities (33) and (37), the energy function is
derived through a series of iterations. The following relations
are established over the interval (k0, k2]:

V (pt) <β
t
1V (p0) +

t−1∑
ȷ=0

βȷ
1π̃1, pt ∈ (k0, k1],

V +(k1) <β
b
1β2V (p0) + β2

b−1∑
ȷ=0

βȷ
1π̃1 + π̃2,

V (pt) <β
b
1β2V (p0) +

t−b−1∑
ȷ=0

βȷ
1π̃1 + βt−b

1 π̃2

+ β2

t−1∑
ȷ=t−b

βȷ
1π̃1, pt ∈ (k1, k2],

V +(k2) <β
2b
1 β

2
2V (p0) + β2

b−1∑
ȷ=0

βȷ
1π̃1

+ β2
2

2b−1∑
ȷ=b

βȷ
1π̃1 + βb

1β2π̃2 + π̃2.

Similarly, utilizing mathematical induction (a method of
logical deduction), we conclude the relation in an arbitrary
interval (km−1, km] as

V (pt) < βt
1β

m−1
2 V (p0) +

t−km−1−1∑
ȷ=0

βȷ
1π̃1

+ β2

t−km−2−1∑
ȷ=t−km−1

βȷ
1π̃1 + . . .+ βm−1

2

t−1∑
ȷ=t−k1

βȷ
1π̃1

+
m∑

τ=2

βm−τ
2 β

t−kτ−1

1 π̃2, pt ∈ (km−1, km]. (38)

Based on the nature of the coefficients β1 and β2, we
perform a further operation on (38) as follows:

V (pt) <β
t
1β

m−1
2 V (p0) +

t−(m−1)b−1∑
ȷ=0

βȷ
1π̃1

+ β2

t−(m−2)b−1∑
ȷ=t−(m−1)b

βȷ
1π̃1 + . . .+ βm−1

2

mb−1∑
ȷ=t−b

βȷ
1π̃1

+
(
βm−2
2 βt−b

1 + βm−3
2 βt−2b

1 + . . .+ β
t−(m−1)b
1

)
π̃2

=β1
(
βb
1β2

)m−1
V (p0) +

m−1∑
τ=0

(
βb
1β2

)τ b−1∑
ȷ=0

βȷ
1π̃1

+ β1π̃2

m−2∑
τ=0

(
βb
1β2

)τ
+ βb

1π̃2 − β1π̃2, (39)

which further indicates

V (pt) <β1
(
βb
1β2

)m−1
V (p0) +

(
1

1− βb
1β2

− 1

)
β1π̃2

+ βb
1π̃2 +

1

1− βb
1β2

b−1∑
ȷ=0

βȷ
1π̃1, m→ ∞. (40)

According to the expression of Lyapunov-like functional
candidate in (26), one can conclude that

∥ẽ(pt)∥2 <
β1

(
βb
1β2

)m−1

λmin(Pε)
V (p0) + õ (41)

where

õ ,

(
1

1−βb
1β2

− 1
)
β1π̃2 + βb

1π̃2 +
1

1−βb
1β2

∑b−1
ȷ=0 β

ȷ
1π̃1

λmin(Pε)
.

Reviewing the condition (25), when pt goes to infinity (i.e.
km → ∞, m→ ∞), we have

∥ẽ(pt)∥2 < õ, (42)

which ends the proof.
Remark 4: As indicated by the parameter π̃2 of the estima-

tion error bound, we can infer that the error bound õ is in-
fluenced by various factors, including bounded noise, coding-
decoding parameters σi, bit rate Bi, sampling parameter b, and
convergence coefficients β1 and β2. When all system parame-
ters, σi and b are fixed, the error bound is directly determined
by the bit rate Bi of each node. Specifically, an increasing
Bi results a higher maximum quantization level q̂i, leading to
reduced decoding errors and, consequently, a decreasing error
bound. This relation emphasizes the critical role of bit rate in
reducing estimation errors in digital communication networks.
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B. Impulsive Estimator Gain Design

Based on Theorem 1 and Lemma 1, the following theorem
is presented to highlight the basic procedure in obtaining the
desired estimator gains.

Theorem 2: Let scalars β1 > 1, 0 < β2 < 1, έ > 0
and positive integers Bi (i ∈ N ) be given. The error
dynamics is ultimately bounded if there exist positive scalars
ϵ1, ϵ2, τ1, τ2, τ3, matrices P̂ , P̆ , K, and non-singular matrix Q
such that (25) and the following inequalities hold:[

Π̆11 Π̆12

∗ Q

]
≤ 0 (43)[

Π̂11 Π̂12

∗ Q̂

]
< 0 (44)[

Ω̆11 Ω̆12

∗ Q

]
≤ 0 (45)[

Ω̂11 Ω̂12

∗ Q̂

]
< 0 (46)

P̆ ≥ 0, P̆ + έP̂ > 0 (47)

where

Π̆11 ,


−β1P̆ − J11 J12 J13 0

∗ −ϵ1InfN 0 0

∗ ∗ −ϵ2InsN 0

∗ ∗ ∗ −τ1IςN

 ,

Π̂11 ,


−β1(P̆ + έP̂ )− J11 J12 J13 0

∗ −ϵ1InfN 0 0

∗ ∗ −ϵ2InsN 0

∗ ∗ ∗ −τ1IςN

 ,

Ω̆11 ,

−β2P̆ 0 0

0 −τ2IvN 0

0 0 −τ3IςN

 ,
Ω̂11 ,

−β2(P̆ + έP̂ ) 0 0

0 −τ2IvN 0

0 0 −τ3IςN

 ,
Π̆12 ,

[
ΥT

0 QZf 0 QH̃
]T
,

Π̂12 ,
[
ΥT

0 + έΥT
1 QZf έQZs QH̃

]T
,

Ω̆12 ,
[
Q−KC̃ K −KM̃

]T
, Q , diag{Qf , Qs},

Υ0 ,
[
(Λ11)TQT

f 0

(Λ12)T 0

]
, K , diag{Kf ,Ks},

Υ1 ,
[
0 (IN ⊗A3 +W ⊗ Γ3)

T

0 (IN ⊗A4 + IN ⊗ F +W ⊗ Γ4)
TQT

s

]
,

Q , P̆ −Q−QT , Q̂ , (P̆ + έP̂ )−Q−QT ,

Qf , diag{Q1f , . . . , QNf}, Qs , diag{Q1s, . . . , QNs},
Kf , diag{K1f , . . . ,KNf}, Ks , diag{K1s, . . . ,KNs}.

Furthermore, the gains of the impulsive estimator are given by
Lif = Q−1

if Kif , and Lis = Q−1
is Kis.

Proof: From (43), (44) and Lemma 1, one has[
Ξ̃11 Ξ̃12

∗ Q+ εP̂

]
< 0 (48)

where

Ξ̃11 ,


−β1(P̆ + εP̂ )− J11 J12 J13 0

∗ −ϵ1InfN 0 0

∗ ∗ −ϵ2InsN 0

∗ ∗ ∗ −τ1IςN

 ,
Ξ̃12 ,

[
ΥT

0 + εΥT
1 QZf εQZs QH̃

]T
.

Define Pε , P̆ + εP̂ , ε ∈ (0, έ]. It follows from (47) and
Lemma 1 that

P̆ + εP̂ > 0. (49)

Based on the relation (Pε−Q)P−1
ε (Pε−Q)T ≥ 0, we have

Pε −Q−QT ≥ −QP−1
ε QT . (50)

Let I denote the identify matrix with proper dimension, and
K , QL̃. By applying (50) into (48), and pre-multiplying
it with Q , diag{I, Q} and post-multiplying it with QT , we
can conclude that the inequality (48) holds under the condition
(23). The similar method is employed to prove the conditions
(45) and (46). The proof is now complete.

C. Co-design of Bit Rate Allocation Strategy and Estimator
For each sensor node i (i ∈ N ), the impulsive estimator

is designed by allocating specific bit rates, as detailed in
Theorem 2. As highlighted in equation (41), the selected
bit rate Bi for each sensor significantly affects the upper
bound of the estimation error, thereby influencing the overall
performance of the state estimation. The primary goal of
this section is to improve the overall estimation performance,
which is achieved by jointly optimizing the bit rate allocation
for each sensor and the gains of the estimator. The optimiza-
tion process is approached as a minimization problem, aiming
to find the optimal combination of bit rates and estimator gains
that minimizes the error upper bound, thereby enhancing the
accuracy and efficiency of the state estimation process in the
network.

Corollary 1: According to Theorem 2, when the assigned bit
rate Bi (i ∈ N ) is the variable to be designed, the optimization
problem for the error upper bound is reformulated as the
following minimization task:

min
Z1

(
τ2

∑N
i=1 vσ

2
i

/⌊
v
√
2Bi

⌋2
+ τ3Nϑ

2
0

)
+ Z2

λmin(Pε)

s.t. (5), (25), (43) − (47), 0 ≤ Bi ≤ B (51)

where

Z1 ,
(
1/(1− βb

1β2)− 1
)
β1 + βb

1,

Z2 ,1/
(
1− βb

1β2
) b−1∑
ȷ=0

βȷ
1π̃1.

Within this framework, the impulsive estimator gains are
designed as Lif = Q−1

if Kif and Lis = Q−1
is Kis.
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Proof: The proof is similar to that of Theorem 2, and is
therefore omitted here for space saving.

The minimization problem formulated in (51) is character-
ized as non-convex, which presents a significant challenge for
traditional solution methods. To address this complexity, we
propose a novel co-design approach that combines the particle
swarm optimization (PSO) algorithm with the linear matrix
inequality (LMI) technique, allowing for a more effective and
reliable solution to the optimization of bit rate allocation and
estimator gains.

Considering that the above minimization problem contains
the constraint term 0 ≤ Bi ≤ B, we transform (51) into the
following form by introducing a penalty function:

min
Z1

(
τ2

∑N
i=1 vσ

2
i

/⌊
v
√
2Bi

⌋2
+ τ3Nϑ

2
0

)
+ Z2

λmin(Pε)
+ ηJ (B̄)

s.t. (25), (43) − (47) (52)

where J (B̄) , max
{
0,
∑N

i=1Bi −B
}

is the exterior penal-

ty function with B̄ , [B1, B2, . . . , BN ], and η is a constant
called penalty coefficient. The fitness function of PSO algo-
rithm is the error upper bound, which is defined as

F(B̄) ,
Z1

(
τ2

∑N
i=1 vσ

2
i

/⌊
v
√
2Bi

⌋2
+ τ3Nϑ

2
0

)
+ Z2

λmin(Pε)

+ ηJ (B̄). (53)

Derived from the aforementioned objective function, Algo-
rithm 1 presents a comprehensive framework for estimator
design, seamlessly combining the PSO algorithm with the
LMI technique. This algorithm is devised to address the
minimization problem associated with the objective function,
accounting for constraints and nonlinearity. In Algorithm 1,
Xı , [Xı,1,Xı,2, . . . ,Xı,N ] and Vı , [Vı,1,Vı,2, . . . ,Vı,N ]
denote the position and velocity of the ı-th particle, respec-
tively; N is the number of particles in the search space, and
the maximum number of iterations is represented by I. The
update of particle velocity and position obeys the following
equations:

Vı(κ+ 1) =wVı(κ) + c1ξ1
(
Pı(κ)−Xı(κ)

)
+ c2ξ2

(
Pg(κ)−Xı(κ)

)
, (54)

Xı(κ+ 1) =Xı(κ) +Vı(κ) (55)

where κ ∈ [1, 2, . . . , I] indicates the iteration number; w
stands for the inertia weight; the acceleration constants c1
and c2 denote the self-learning factor and the group learning
factor, respectively; ξ1 and ξ2 are two stochastic integers
distributed in the interval [1, 2]. Pı denotes the position of
particle ı after updating. Pg represents the particle position
corresponding to the historical minimum fitness function of
the particle swarm. In order to avoid the particle’s search
position from surpassing the limited interval and prevent an
unproductive search, well-defined boundaries are established
for both position and velocity. These boundaries, denoted as
XT (upper bound), XL (lower bound) for position, as well
as VT (upper bound), VL (lower bound) for velocity, play a
crucial role in constraining the particle’s movement within a
controlled and purposeful range.

By applying this algorithm, an optimal bit rate allocation
strategy can be obtained, which can further advance a compre-
hensive analysis of different bit rates’ effects on the estimation
performance of multi-rate SPCNs.

Algorithm 1: Co-design assisted by PSO Algorithm

Step 1. Parameter initialization: Initialize parameters
N, I, w, c1, c2, position Xı, and velocity Vı

of each particle
(
ı ∈ {1, 2, . . . ,N}

)
.

Step 2. Fitness update: For each particle, update the
fitness function F(Xı) if the feasible solu-
tions for LMIs (43)-(47) exist; otherwise, set
F(Xı) = ∞.

Step 3. Select the particle with the minimum fitness
function in the population and record its po-
sition Pı.

Step 4. Particle swarm update: Update the velocity and
position of the particle swarm according to
formulas (54) and (55), and correct it based on
the boundary constraints.

Step 5. Fitness function and position update: Solve
LMIs (43)-(47) using the updated positions in
Step 4, and obtain the updated fitness function
F(Xı) if there is a feasible solution, otherwise,
set F(Xı) as infinity. Record updated particle’s
position Pı.

Step 6. Search for particle swarm history minimum
fitness and its corresponding position Pg .

Step 7. Bit rate allocation protocol design: Repeat
Steps 4 to 6 in a loop until the iteration is
terminated. Get the particle with the minimum
fitness, whose corresponding position is the
optimal bit-rate allocation scheme.

Step 8. Design the impulsive estimator: The estimator
gains Lif and Lis are obtained by solving
LMIs (43)-(47) under optimal bit rate allocation
protocol (i.e. position Pg).

Remark 5: This paper introduces several novel contributions
to the field of state estimation for SPCNs, particularly dis-
tinguishing itself from existing research in the following key
ways. 1) For the first time, this study addresses discrete-time
multi-rate SPCNs within the context of digital communication
networks, placing a special emphasis on the constrained bit
rate of wireless networks. 2) We pioneer the use of the
impulsive method for designing state estimators in multi-rate
systems. This method allows us to derive upper bounds on
error dynamics within the framework of impulse analysis. The-
orem 2 provides insights into the derivation of estimator gains,
which are determined based on a specific allocation of bit rates
to each sensor. 3) By employing the PSO algorithm, the paper
focuses on minimizing an objective function that encompasses
the error upper bound. 4) A co-design approach is proposed
that involves both the optimization of estimator gains and the
development of a bit-rate allocation protocol. This strategy is
aimed at enhancing the overall estimation performance of the
network, demonstrating a comprehensive approach to tackling
the challenges posed by multi-rate SPCNs.
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IV. NUMERICAL SIMULATION

In this section, a simulation example is presented to demon-
strate the effectiveness of the employed impulsive estimator
under constrained bit rates.

We consider a multi-rate SPCN with the state update period
~ = 1, which has the following parameters:

A1 =

[
0.36 0.2

0.13 0.15

]
, Γ1 =

[
0.3 0.2

0.4 0.4

]
,

A2 =
[
0.31 0.15

]T
, A3 =

[
0.83 0.73

]
, A4 = 0.6,

H1 =
[
0.16 0.15 0.2

]T
, H2 =

[
0.26 0.25 0.3

]T
,

H3 =
[
0.21 0.22 0.25

]T
, M1 =

[
0.1 0.2 0.2

]T
,

M2 =
[
0.5 0.3 0.2

]T
, M3 =

[
0.2 0.3 0.1

]T
,

Γ2 =
[
0.2 0.3

]T
, Γ3 =

[
0.35 0.46

]
,Γ4 = 0.6,

W =

−0.3 0.1 0.2

0.1 −0.3 0.2

0.1 0.2 −0.3

 , C1 =

0.8 0.1 0

0.2 1.1 0

0 0 1

 ,
C2 =

1.1 0 0

0 0.8 0

0 0 0.9

 , C3 =

0.8 0 0

0 1 0

0 0 0.9

 ,
D =

[
0.5 0.5

]T
, F = 2.

Let the external disturbance be ϑ(pt) = 0.8 cos(pt), which
implies ϑ0 = 0.8. The nonlinear functions are chosen as

g̃(xif (pt)) = 0.45

tanh(0.2x(1)if (pt)
)

tanh
(
0.2x

(2)
if (pt)

)
h̃(xis(pt)) = 0.36

(
|xis(pt) + 1| − |xis(pt)− 1|

)
where x(1)if (pt) and x(2)if (pt) represent the first and the second
component of the state xif (pt), respectively.

Let the attenuation coefficients be β1 = 1.02, β2 = 0.56 and
the SPP be ε ∈ (0, 0.07]. Assume that the sampling period of
sensor is b = 2. The initial values of the SPCN’s state are set
to be

x1(p0) =
[
0.4 0.2 0.1

]T
, x2(p0) =

[
0.2 0.2 0.3

]T
,

x3(p0) =
[
0.1 0.1 0.1

]T
, x̂1(p0) = −

[
0.1 0.3 0.2

]T
,

x̂2(p0) =
[
0.1 0.1 0.4

]T
, x̂3(p0) = −

[
0.3 0.2 0.1

]T
.

Based on the aforementioned parameter settings, the esti-
mation performance of SPCNs is analyzed under impulsive
estimation method and various bit rate allocation protocols.

Firstly, we employ an average allocation strategy (AAS)
for computing the impulsive estimator gains. This strategy
ensures that each node in the network is assigned with identical
bit rates, thereby guaranteeing an equitable distribution of
network resources. Assume that the available bit rates of
the entire wireless network are B = 30 bps. We have
B1 = B2 = B3 = ⌊B/3⌋ = 10 bps by AAS. The parameters
of the uniform quantizer are given as σ1 = 0.3, σ2 = 0.5 and

TABLE I
EFFECT OF DIFFERENT SAMPLING PARAMETERS ON THE ERROR BOUND

Sampling period b 2 3 5 7 9
Bound

√
õ 2.987 3.2566 3.7324 4.1496 4.5273

5 10 15 20 25 30 35 40 45 50 55 60
-0.4

-0.2

0

0.2

5 10 15 20 25 30 35 40 45 50 55 60

-0.2

0

0.2

5 10 15 20 25 30 35 40 45 50 55 60
-0.2

0

0.2

Fig. 2. State and estimation for the node 1.

σ3 = 1. In this example, we choose the SPP as ε = 0.06, and
obtain the gains of the impulsive estimator as

L1 =

 0.9118 −0.031 0

−0.1251 0.7382 0

0 0 0.7904

 ,
L2 =

0.7246 −0.0165 0

−0.006 0.8852 0

0 0 0.8282

 ,
L3 =

0.9101 0.0034 0

0.0011 0.7839 0

0 0 0.8244

 .
The system states and their estimates are depicted in Figs. 2-
4, where xij(pt) denotes the j-th component of the state of
node i. The error norm ∥ẽ(pt)∥ and the estimation error bound√
õ = 2.987 are plotted in Fig. 5, which verifies that the

estimation error is indeed ultimately bounded.
The sampling period of sensor determines the frequency of

estimator updates, hence the integer b has a significant impact
on the estimation performance. keeping the system parameters
constant, we analyze the relationship between different integer
b and the upper bound of estimation error, as shown in Table I.
When the sensor sampling period decreases (the impulse trig-
gering times more frequent), the bound

√
õ becomes smaller,

indicating better system estimation performance.
Reflecting on the inequality (42), it becomes evident that the

estimation error is intricately related to the allocation of bit
rates to individual nodes. The AAS mentioned above serves
as a conventional approach to bit rate allocation, however, it
may not be the optimal allocation scheme. This is particularly
true in practical scenarios where certain nodes may require
higher transmission speeds to execute more complex tasks
compared to others. Therefore, we employ the PSO algorithm
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Fig. 3. State and estimation for the node 2.
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Fig. 4. State and estimation for the node 3.
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Fig. 5. Estimate error and bound.

TABLE II
EFFECT OF DIFFERENT PROTOCOLS ON THE ERROR BOUND

Parameters B (bps) Protocol
Bit rate allocation

Bound
B1, B2, B3 (bps)

50 AAS 16, 16, 16 3.2324
σ1=0.3 50 PSO 14, 16, 20 3.2315
σ2=0.5 30 AAS 10, 10, 10 3.2566
σ3=0.1 30 PSO 8, 10, 12 3.2482

10 AAS 3, 3, 3 3.8328
10 PSO 1, 3, 6 3.6286
50 AAS 16, 16, 16 3.2476

σ1=1 50 PSO 14, 17, 19 3.2398
σ2=2 30 AAS 10, 10, 10 3.491
σ3=3 30 PSO 7, 10, 13 3.4262

10 AAS 3, 3, 3 7.4073
10 PSO 1, 3, 6 6.5549

to dynamically adjust the bit rate allocation strategy. The
superiority of the PSO-based approach over the conventional
AAS becomes apparent in the subsequent analysis.

Setting b = 3, and given the quantization parameters as
σ1 = 0.3, σ2 = 0.5 and σ3 = 0.1, the error bound is obtained
using both the AAS and PSO-based allocation methods in
Table II. The variation of the error bound is also analyzed for
a set of different quantization parameters σ1 = 1, σ2 = 2 and
σ3 = 3. The PSO algorithm is observed to not only maximize
the utilization of network resources but also optimize bit
rate allocation according to the specific demands of each
node, thereby enhancing the estimation performance of the
SPCNs. Additionally, it is inferred that an increase in available
bit rates B correlates with a gradual decrease in the error
bound. The quantization parameters play a crucial role in
determining the decoding accuracy of the data, and a more
suitable parameter setting is expected to result in an overall
reduction in estimation errors.

V. CONCLUSION

This work has addressed the ultimately bounded state esti-
mation in multi-rate SPCN with bit rate constraints. Tailoring
our approach to the multi-rate nature of the system, we have
employed an impulsive method to tackle the inconsisten-
cy between the system state update period and the sensor
sampling period. Utilizing the structural characteristics of
SPCN and the features of the coding-decoding mechanism, an
estimator with impulsive dynamics behavior has been devised.
Within this framework, a sufficient condition ensuring the
exponential boundedness of the estimation error dynamics has
been derived. By iterating the Lyapunov functions obtained
at two rates, we have established an upper bound on the
error dynamics. The collaborative design of the impulsive
estimator and bit rate allocation strategy has been facilitated
by introducing the PSO algorithm. Finally, the effectiveness
of the proposed impulsive strategy has been demonstrated,
and a detailed analysis of the relationship between estimation
performance and constrained bit rates has been provided.

In the future, to deal with the characteristics of the SPCNs
with different time scales (e.g. fast and slow states), a dif-
ferential coding process tailored to these dynamics could be
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introduced, which would enable further data compression and
help conserve limited bandwidth. Also, we could extend the
main results of this paper to more general systems with more
specific application insights [41]–[44].
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