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Abstract—This paper focuses on the crucial role of reliable
DC-DC converter operation for the stability of modern power

electronic devices. Addressed is a common issue in the fault

diagnosis of DC-DC converters: the tendency to rely on local
feature fitting while the temporal continuity of electrical signals
is neglected. An innovative diagnostic method that utilize an

Adaptive Wavelet Transform (AWT) from a data processing

perspective is proposed. This technique can dynamically qaist

the scale and translation parameters to adapt to the contin-
uous changes in electrical signals caused by varying cirdui
conditions. From the standpoint of model improvement, the
Extended Convolutional Capsule Network (XCCN) model is
designed. Through multi-scale feature extraction, integation of

global-local attention mechanisms, and global vector angsis,

this model effectively diagnoses fault features. It is denmstrated

that our method is effective in extracting the time-contintity

features of electrical signals, and exhibits significant achntages
in diagnostic accuracy, performance metrics, and applicabn

generalisation capability. Consequently, this study presnts a
holistic and effective approach for fault diagnosis in DC-BC

converters.

Index Terms—Fault diagnosis, DC-DC converter, hidden fault,
adaptive wavelet transform, capsule network.

|I. INTRODUCTION

presents a method using Generative Adversarial Networks
(GAN) to simulate circuit fault diagnosis. This approach
enriches training data by combining original data with data
generated by the GAN. Another study [6] introduces a method
employing Cross Wavelet Transform (XWT) to convert one-
dimensional signals into two-dimensional images, effetyi
increasing the data dimensions. Moreover, a Sensitiveureat
Mahalanobis Distance (SFMD) extraction method has been
proposed in [7], tailored for pre-identifying key fault teses

in analog circuits. However, a common limitation of these
methods is their lack of consideration for the temporal ont
nuity of electrical signals during the data processing estag
leading to data being processed in a discrete manner [8].
This oversight can result in the loss of continuity featuaes
the initial feature extraction phase, potentially impagtthe
overall efficacy of fault diagnosis.

Model improvement methods focus on boosting fault diag-
nosis performance by refining model architecture and medify
ing iteration strategies [9]. For instance, a techniqukzirtg
one-dimensional Convolutional Neural Networks (CNN) has
been investigated in [10] to analyze temporal data, engblin
fault detection by evaluating the output data from testutisc

WITCHING power converters, notably those of the DCIn [11], an innovative approach has been introduced that

DC type, are pivotal for electronic systems and are egombines the Short-Time Fourier Transform with ResNet net-
tensively utilized in areas such as renewable energy sgstetiorks. Moreover, an advanced fault diagnosis method has bee
electric vehicles, and computer power management [1]. TReesented in [12] by employing a multi-level fusion network
performance of these systems is directly influenced by th@sed on the inception architecture. This method creates a
reliability of these converters. As a result, fault diageps comprehensive feature extraction framework by integgatin
particularly of hidden faults caused by changes in compbne®@nvolutional kernels of different sizes at the input layest-
parameters, has emerged as a significant area of resedfch fault diagnosis strategy has been detailed in [13] [iy]
[2]. The rapid development of machine learning technologgcorporating transfer learning, which significantly enbes
has led to an increasing number of studies employing tHRe ability to recognize offset fault features, especiaty
sophisticated technique for the diagnosis of hidden fainlts response to variations in the distribution of fault data.

DC-DC converters [3]. Current research primarily concatets

The aforementioned models primarily rely on CNNs to

on two aspects: data processing methods and techniquesgittiance fault diagnosis capabilities. In processing rtadt

model improvement.

signals, they achieve classification and diagnosis thrdabgh

Data processing methods are aimed at enhancing the égnvolutional segmentation and pooling of data [15]. This
curacy of fault diagnosis by improving both the quantity anghethod, based on convolutional kernels, focuses mainly on
quality of the collected data [4]. For example, literatut [ local feature matching and overlooks the temporal cortjnui
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of analog circuit signals [16] [17]. This limitation ressiin the
model performing poorly in practical circuit applicatiodse
to its sensitivity to local variations. Specifically, it isqme to
misjudgments when the operational state or load of the itircu
changes.

To address the issues discussed above, this paper inteoduce

a novel approach that specifically focuses on the temporal
continuity of electrical signals in DC-DC converters. We-pr
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pose an innovative Extended Convolutional Capsule Networ S L L
(XCCN) strategy for fault detection. On the data processing
level, an Adaptive Wavelet Transform (AWT) technique has H
been developed, tailored to effectively capture the comtis " 1 7% 4P G | w U 56 { M G|
features of electrical signals. For model improvement, me e
ploy a design based on Capsule Networks (CCN), which exce
in conducting global feature analysis, thereby signifigant
enhancing the accuracy of fault detection [18]. 1y T H
The primary contributions of this study are outlined as T -

follows: U= ~+c 1L fo— o Uy = J_(Cn { ﬂ s b -

o

1) AWT Method DesignThis paper presents an innovative +

approach to overcoming the scale parameter limita
tions inherent in the Continuous Wavelet Transform . < .
(CWT). By introducing a dynamic parameter adjustment / VT = S 3
mechanism that leverages Empirical Mode Decomposi '
tion (EMD) and Hilbert-Huang Transform (HHT), the ¢, L.
method achieves adaptability in scale and shift parame
ters for different state signals.

2) XCCN Model ImprovemenA key development in this Superbuck Equivalent circuit
paper is the MishXception module, which substantially Fig. 1: DC-DC converters equivalent analysis.

enhances the model’s ability to extract features. Addi- i _
tionally, the integration of the CloFormer mechanism Further, this conclusion can be extended to other DC-

markedly improves the model’s capacity to process bolC converter topologies, including Boost converters, Buck
global and local features comprehensively. Boost converters, Cuk converters, and fourth-order Suyodrb

3) Dual Loss Functionin this study, a reconstruction logsconverters. As illustrated by the equivalent circuit in Figthe
function is constructed based on the Maximum Meaputputs of these converters can all be represented as turren

Discrepancy (MMD) theory. By introducing three typesSOUrce circu_its. The primary differe_nces Ii(_e in the soumé;
of kernel functions, we enhance the importance of glob@ent flowing to the output capacitor during each switghin
features during the model's iterative learning procesSYCle- _ _

The reconstruction loss complements the Margin Loss,!n summary, by analyzing the output voltage ripple of

further boosting the overall performance of the model® POWer supply, we can detect the aging condition of its
components. The output voltage ripple exhibits dual tempo-

ral continuity. The changes in the high-frequency part are
[I. DATA PROCESSING ANALYSIS synchronized with the switching frequency, while the low-
) - frequency part relates to the overall steady-state chexniatits
A. DC-DC Converter Hidden Fault Characteristics of the converter system. This characteristic dictatesattam-

To thoroughly investigate the hidden fault characterstidolete temporal continuity must be incorporated when ariagyz
of DC-DC converters, this study extends the analysis stgrtithe output signals of DC-DC converters to accurately regmes
from second-order Buck converters, with their circuit timgy  their data features.
shown in Fig. 1.

The operating principle of the Buck converter is as followd3. Adaptive Wavelet Transform
When the switch device is on, the inductor starts charging,when analyzing hidden faults in DC-DC converters, the
leading to an increase in the inductor current. When theckWwittemporal signals often exhibit distinct non-linear and eim
device is off, the inductor discharges its energy to the @utparying characteristics. These characteristics makesillehg-
capacitor and load, resultlng ina decreasg in |nduct0|ecn_1.rr ing for traditional signal processing methods to accuyatel
Assuming the current;, flowing out of the inductor remains capture the key fault features in the signals. The Contisuou
dynamically stable when outputting to the load, this dymamiyayelet Transform (CWT) is considered as an effective an-
inductor currenti;, passing through output capacitoy, will  ajytical tool due to its unique advantages in time-freqyenc
produce a voltage rippl&;.,. This voltage ripple consists of gnalysis [19]. The standard definition of CWT is:
two parts: one is the voltage change across the ideal capacit

C, and the other is the voltage drop across the Equivalent CWT. — L /:v(t)w (t — b> dt @)
"Vl

Buck-Boost Cuk

Series Resistance (ESR) 6f The formula is as follows: a

1 wherez(t) is the input signaly) is the wavelet basis function,
Vio = AVe + AVisr = Aiyp (ESR + m) (1) 4 is the scale parameter, ands the translation parameter.
° The direct application of the CWT in the data processing
It is evident that the total output voltage ripplg, is influ- phase of this study does not fully address the challenges
enced byir, C, ESR, and switching frequency,. Among outlined in the introduction. The traditional CWT relies on
these factors, the ESR of the output capacitor and the indugbredetermined parameters ‘a’ (scale) and ‘b’ (translation
currenti;, have the most significant impact. leading to a uniformity in scale that cannot adapt to the
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continuous variations in the signal caused by changesdéuitir
conditions.

Finally, the dynamically adjusted parametefs) and b(t)
are incorporated into the CWT, resulting in the following

To address this issue, our study proposes an adapfivgrovements:

wavelet transform, incorporating a dynamic parametersidju

ment mechanism based on EMD [20] and HHT. Through this
mechanism, our method is capable of dynamically adjusting

T —b(t)

AWT, ")

YdT (12)

1
- / ()

the scale and translation parameters to more accurately ali The AWT method precisely captures the time-frequency

with the characteristics of the input signal. This adapitgbi

dynamics of the input signal. For the scale parametey,

is key to effectively capturing and representing the subtig automatically increases when the input signal’s freqyen
variations and crucial features in the output S|gnals of DGs low, to better capture |0w-frequency g|oba| charactiess

DC converters. The methodology is described as follows.
Firstly, we use EMD to decompose the input signal into

conversely, when the signal’s frequency is high, the scale p
Rmeter automatically decreases, refining the capturegbf-hi

set of Intrinsic Mode Functions (IMFs). Each IMF captures thfrequency local features. Regarding the translation patam

characteristics of the signal at a specific scale. The faarsul
given by

N
a(t) = Y IMF,(t) + R(t) (3)

where IM F,,(t) represents the nth Intrinsic Mode Function
R(t) is the residual trend term, and is the number of IMFs.
Subsequently, for eaclidM F,(¢), an HHT of the analytic
signal is constructed. The formula is as follows:

< IMF,(r) |
—dArT.

1
_p.V./
Q0 —0o0

H(IMPF, (1))

(4)

t—1T1

b(t), AWT reduces the adjustment magnitude when the signal
is stable, ensuring that the overall translation of the aign
remains smooth. Conversely, when there are abrupt changes
in the signal, AWT adjust9(¢) towards the direction of
significant energy changes to enhance the temporal resoluti
near the points of change.

After data processing with AWT, the output signal is en-
capsulated in continuous time-frequency images, neetisgjt
the design of a network model capable of analyzing global
features. This study has improved upon the capsule network,

M ODEL IMPROVEMENT ANALYSIS

Here, P.V. denotes the principal value (Cauchy principaq:nhancing_the _model’s ability to extract an_d utilize global
value) integral andr denotes the integral variable. At thisfeatures. Fig. 2 illustrates the structure of the improveniet.

point, the amplitude.,,(¢) and phasé,,(¢) of the target signal
can be obtained as follows:

an(t) = /IMFE,(t)2 + H(IMF,(t))2 (5)
0,,(t) = arctan (%ﬁ}g”) (6)

The local energyF;(¢t) and instantaneous frequené&y(t)

This model, based on the original capsule network, incorpo-
rates advancements like multi-scale convolution MishXicep

W_o%l&%g&rmew&&gle, and global reconstruction medul

ion
In this study, recognizing that capsule vector neuronsate n
inherently capable of directly extracting features fromuh
data, we have designed a specialized module to address this
limitation. As depicted in Fig. 2, the MishXception module,
inspired by the Xception architecture, is introduced to act

can be calculated using the amplitude and frequency. T a pre-extraction module for the capsule network. The

formulas are as follows:

Ei(t) = ay,(t)? @)
Fult) = 5= 220 ®

Subsequently, the scale parameteand the translation pa-

rameterb are dynamically adjusted based on the local energy

E;(t) and the instantaneous frequengy(t) as follows:

a(t) = a/Fc(t)

B, D)

dt

©)

b(t) =t — - sgn( (10)

Here,a and 8 are adjustable parameters used to control the

sensitivity of scale and translation (experimental values-
1, 8 = 0.3), respectivelysgn represents the direction function
given as follows:

1 x <0
0 r=0
-1 >0

sgn(z) = (11)

design of this module includes specific improvements aimed
at enhancing its feature extraction capabilities, engutirat

it effectively prepares the data for subsequent processng
the capsule network. The details of these improvementssare a
follows.

o Dual-Layer Convolution At the input end, three dif-
ferent sizes of dual-layer depthwise separable convolu-
tions(DSconv) are performed in parallel, along with a
max pooling operation. This enhances the model’s feature
extraction performance at small local, medium local, and
global levels.

Mish Activation FunctionIn the early stages of feature
extraction, to retain more effective information, we re-
place ReLU with Mish as the activation function for
depthwise separable convolutions. The Mish function
exhibits a linear-like increase when > 0, but is not
completely zero wher: < 0, rather it approaches zero.
This allows for a smoother gradient flow, enabling deeper
penetration of information into the neural network.
Residual Connection#\s multi-layer, multi-scale convo-
lutions progress, the initial features of the input are pron
to information deviation during propagation. To address
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Fig. 2: The developed XCCN with new structure framework.

this, we have introduced residual connections, which addThe ConvFFN is a convolution-based feedforward neural

the input directly to the output, ensuring the expressiveetwork, consisting of two convolution layers, one depsewi

capability of the output features. convolution layer, and a dropout layer. The purpose of this
B. Cloformer Module design is to further extract features and to regularizeutno

The CloFormer module, as illustrated in Fig. 2, is a ne\s\r/1e use of the dropout layer, thereby avoiding overfitting.

hybrid attention mechanism comprised of Clo blocks and
ConvFFEN [21]. This method efficiently achieves the fusio. Improved Capsule Network
and attention of both global and local features.

The Clo block serves as a hybrid attention module. The Capsule networks are a vector neuron-based network ar-
global attention computes attention over the entire inphtle chitecture that consists of an encoder and a decoder [22].

the local attention performs attention calculations witsi 1h€ encoder includes a convolutional input layer, primary
fixed-size window on localized areas. capsule layer, and digit capsule layer, primarily funcingn

Global attention is achieved by downsampling Kég)@and [ extract features from images and convert them into a set
Value (V) using an average pooling layer. Then, attentiopf dynamic vectors. The decoder comprises a_fuIIy connected
scores are calculated using Quer@)(and the downsam- Ia_yer,_decodmg capsule Ia)_/er, and reconstruction lagsked
pled K. Subsequently, these scores are used to weight With mversely_recc_)nstructlng the vectors produced by the
downsampled”, resulting in a low-frequency global attention€ncoder back into images.

output. The specific formulas are as follows: In the encoder phase, the capsule network utilizes a dy-
namic routing mechanism, as illustrated in Fig. 3, complete

Xgiobal = Attntion (Qg, Pool (K) , Pool (Vy)) (13) iteratively. This method implements vector clusteringotigh

Local attention aggregates local information by applying Special squagh) function, detailed in Algorithm. 1.
depthwise convolution (DWConv) to th@ and K within the In the decoder phase, the original capsule network employs
window. Furthermore, the introduction dfanh and Swish three fully connected layers to reconstruct the outputorect
non-linear operators enables stronger context-awarentiegy  to the input size, primarily comparing parameter valuess Th
The specific formulas are as follows: method, focusing solely on parameter differences betwleen t

Q1 = DW conv(Q) rgconstructed and_ mput' data, overlooks structural disore
B cies. To resolve this, we've developed a three-layer dedanv
K; = DW conv(K) . . L
Ayen, = FC (Swish (FC (Q ® K7))) tion reconstruction mo_du_le that captures both quantieadivd
ttn \ (14)  structural information in its results.
Attn = Tanh (ﬂ)

Vd
Xiocal = Attn OV D. Loss Functions

Here, d represents the number of channels in the token, and

the ® symbol denotes the Hadamard product operation Capsule networks use feature vectors from the digit cap-
Finally, the outputs of both are concatenated and integratsule layer for classification and reconstruction, invodvboth

. . . ! Classification and reconstruction losses. This study rgdss
with a fully connected layer to achieve information ag9regd . reconstruction 10ss using Maximum Mean Discrepancy
tion. '

X; = Concat (Xiocal , Xglobal ) (15) (MMD) to better incorporate global features into the output
Xouwt = FC (X3) vectors.
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o can be simplified to calculate the sample disparity between
@ s zI distributionsP and Q.
X xwt X, C12 ) 1 n n 9 n m
MMD?(P,Q) == > > K (wi,z;) = — > > K (:,9;)
_ i=1 j=1 =1 j=1
(—i—) 52 Squashing zI 1 m m
< W2 +WZZK(yL7yJ)
Xy X, i=1 j=1
(18)
G-) 53 Squashing ZI B¢
In this study, based on the sample characteristics andrdesig

requirements, we have co-designed three types of kernel
functions to map the local, global, and dynamic similasitie
0between targets.

Local Similarity. We use the Gaussian kernel to calculate
local similarity differences due to its high sensitivity the
Euclidean distance between input points. The value of the
Gaussian kernel approachéswhen points are close and
quickly decreases t0 as their distance increases. The formula
(16) is as follows:

z—ull2
kGaussiah®, y) = exp (_%) (19)

Fig. 3: Dynamic routing iteration logic.

Classification Loss: The classification loss continues t
utilize the originally designed Margin Loss, which has demo
strated good performance in multi-class classificationceg-
sule networks. The detailed formula is as follows.

Margin Loss= T} max (0, m* — Hvk||)2
+A (1 — Ti) max (0, [|og]| —m ™)

« ||ug| represents the magnitude of the output vector of
the capsule for category. The larger the magnitude, thewhere the parameter is taken asl.0 for the width index of
higher the probability of predicting that category. the nucleus.

« T} is an indicator that takes the value lofvhen category  Global Similarity By incorporating a polynomial kernel to
k is the correct predicted category, otherwise takes calculate the high-order interaction characteristics ohis,

« m™ and m~ are predefined hyperparameters that replata is elevated to a higher-dimensional space, effegtivel
resent the threshold activation values for positive arghpturing the global structure and non-linear relatiopstaf
negative classes, respectively. In this study’ is set the data. The specific formula is as follows:
to 0.9 to ensure that the capsule neurons of the correct J
category have sufficiently high activation levels, thereby kpolynomia( @, y) = (z7y + ¢) (20)
strengthening the model’s confidence in recognizing thceis a linear constant (usually set to 1), adds the degree

correct categoryin™ is set 10 0.1 to ensure that the aCt!'of the polynomial. In this experiment, based on the three-

vation levels of C?F’S“'e. neurons fc_>r Incorrect Categorl%?mensional features (time, frequency, amplitude) of theet
remain low, reducing misclassification. ; .
frequency imaged is set t03.0.

» A Is a balancing coefficient used to weigh the contr Dynamic Similarity In this study, we capture the frequenc
butions of positive and negative categories in the total y yint uay, ap : q -y
cgmponents of the original signal by introducing a Fourier

loss. Considering that the number of positive and negatiKernel facilitating the processing of dynamic patternsirime
categories in this study is equal, its value is set to 0.5."~ .~ © 9 proc g ordy P )
series signals. The specific formula is as follows:

The Margin Loss effectively enhances the model’s recogmiti
efficiency for different categories by adjusting the adtiva krouriez, y) = exp (iw” (z — y)) (21)
levels of the c_apsules for each category, thereby impratriag Finally, by integrating these three kernel functions, we
model's Iearnlr_lg performance and robu_stness. o obtain t%e I\/)I/MD L%ss dgsigned in this study.

Reconstruction Loss: The reconstruction loss in this study
is designed based on MMD with a global measure kernel [
function. MMD is specifically used to measure the difference out = kGaussiart kpolynomial + KFourier
between two data distributions. A Lo

For two given sets of samples andy;, originating from  MMD Loss — - SN kou(@i, z5) — 2 ST kou (i, y5)
distributionsP and @ respectively, MMD is defined based on n? =1 nm =4
the mean difference in feature space, as follows. 1 ™

+ W ZZ kout(yi, yj)
i=1 j=1

kGaussian’ kPonnomiaI' kFourier

(22)

n m 2

=Y o) - > o)

i=1 =1

(23)

MMD?(P, Q) = (17)

Loss Consolidation: Due to the different magnitudes of

: . . these two loss functions, to ensure that the reconstructed
Here, ¢ is a function that maps to the Reproducing Kern ; ; e .
Hilbert Space (RKHS). Thus, MMD can compute the distanggatures eﬁgctlvely |nfllu§nce the c-:I.ass_lflcanon resgll&lwt.
between the mean of samples from two distributions in featupvershadowing the original classification mechanism, this
space. By introducing the kernel functiot(z,y), MMD tudy employs a logarithmic function to normalize the MMD
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1: Input: output vectorsu; for all capsulesi in layer [, Cifcukit fi( Co C\b Ly L\z R
o ; Buc 100kHz 47F 220uH 50
numbe.r of routing iterations - Superbuck 100kHz 4#F 10QuF 22QuH 220uH  5Q

2: Output: activation vectors; for all capsulesj in layer
I+1

3: Initialize log priorsb;; < 0 for all capsule pairs, j

4: for t =1to r do

5. for each capsule in layer! do

6: Predicted vectors;; < u;W;

7:  end for

8. for each capsule in layer! do = \

o: Compute coupling coefficients; + softmaxb;;) Data
10: end for ~ANE Acquisition
11:  for each capsulg in layer! + 1 do B x :

12: Compute total input vectors; < >, ¢;;zi; LCR Meter

13 Apply squash function; < squaskis;) S

14: end for
15 if t < r then

16: for each capsulé in layer ! and capsulg in layer Fig. 4: Hardware experimental platform.

[+ 1do is illustrated in Fig. 4. During the data acquisition phase,
1 Update log priorsh;; < bi; + ij - v; a DSOX3024T oscilloscope is used to capture the output
18: en_d for ripple voltage of the circuit under various operating coiodis.
19:  end if Model testing is conducted on an edge computing platform,
20: end for 1521 built around the NVIDIA JETSON Nano and NI-6001 data
21: Define squash function: squa&) = 1+”g2” ng:” acquisition card.

B. Fault Data Definition

To ensure that the dataset accurately reflects the acttal sta
loss. This approach allows for a more balanced consideratiof the DC-DC converter at different stages of failure, this
of the impacts of both types of losses when they are integratexperiment was conducted based on the Arrhenius thermal

) aging test for output capacitors. The Arrhenius equation is
Reconstruction Loss In ( MMD Loss) (24)  expressed as follows:

Loss= Margin Loss+ a - Reconstruction Loss (25) k=A-E,/(R-T) (26)

where a denotes the reconstruction ratio. Through the irwhere k represents the reaction rate constaftis the pre-
teraction of the two types of losses, we achieve a globakponential factor,E, is the activation energyR is the
supervision of local effects, ensuring that the output eectuniversal gas constar®.g14.J/mol - K'), andT represents the
contains both high-frequency and low-frequency features ®mperature. In our study, we use the reaction rate constant

the original signal. k to describe the ratio of the aging capacitor’s circuit otitpu
voltage ripple a to the initial thermal aging time. Utiligirthis
IV. EXPERIMENTAL VERIFICATION function, we were able to derive the fitted valuest6Buck)

and k(Superbuck) and calculate the predicted aging time at

. . any given temperature. In this study, we set 42K 1&s the
Hardware Environment: The model training was conduct-gccelerated aging temperature. The range where the output

ed on a platform equipped with an NVIDIA GeForce RTXojtage ripple ratio changes fromflto 10% is defined as

3090 GPU and an Intel Core i9-12900K CPU. the hidden fault state. Voltage ripple rati®,{) below 1%
Software Environment: The experiments were executeds considered normal, while above %0indicates complete

on a Linux operating system. The development envwonmq%mage to the DC-DC power supply. The data collection

was based on the Pytorch 2.0-GPU framework, selected fagits for the two circuits at different fault levels aregented

its comprehensive library support and GPU capabilities. i, Taple 1.

. Model Parameters: Lion optimi;er was employed for o each of the ten states of each circuit typel Oans

its robust performance characteristics. The model U“d‘ww%utput signal was collected and subjected to adaptive wavel

training with a batch size of 32 over 50 epochs. An initigkansformation, converting it into a time-frequency image
learning rate of 0.0002 was set, with a learning rate decay @fi3set as shown in Fig. 5.

0.8 implemented every 10 epochs to ensure steady convergenc ) )
of the model. C. Data Processing Experiment

The experimental circuit is built using the LM2596S in- To validate the scientific soundness and effectivenesseof th
tegrated chip, with component parameters detailed in Tal&V/T for time-frequency transformations, this study intuoes
I. The parasitic aging parameters of the components aadalistinctiveness measurfe based on the theory of gray-level
monitored using an LCR Meter. The experimental platformo-occurrence matrices (GLCM) [23].

A. Experimental Environment
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TABLE Il CONVERTERS FAILURE RATINGS DATA The greater the distinctivenesy the better the transformation

Circuit Level Timeth) CEF) ESRE) V(%) effect, making the time-frequency images more conducive fo
0 0 4382 0.297 0.667 the model to perform classification and diagnosis. In theeexp
1 14.10 42.93 0.693 1.552 . h : ; ¢ , il
2 2950 4151 1301 2531 iments, Short-Time Fourier Transform (STFT), Wigner-#ill
3 30.25 40.89 2.112 3.482 Transform, CWT, and AWT are compared. The Buck circuit
Buck g gg-?g gg-gg i-ggg ‘51-232 dataset is used as an example to transform and compute 100
6 4310 36.92 6123 6.473 time-frequency images _for each category. The expgnmental
7 46.25 36.52 7.439 7.528 results are shown in Fig 6. For clarity in presentation, the
8 48.60 35.23 8.961 8.498 image resolution displayed here is 20000, while the
9 49.50 35.13 9.830 9.513 ; : ; ;
5 3 1185 5112 07 actual input image size for the model is>684.
1 8.75 11365  0.380 1513 The STFT has poor time-frequency resolution and performs
2 14.50 112.16 0.625 2.526 inadequately on datasets, failing to effectively revealltfa
i ;gég icl)g'g; ggég 2-2‘1“7‘ characteristics. Although the Wigner-Ville Transformrant
Superbuck | ¢ 5500 10320 1408 5533 duces cross-terms, which increase thg amount of featmes, t
6 27.10 100.68 1.936 6.496 also complicates the calculation of distinctiveness, Itiegu
7 29.25 96.37 2.484 7.521 in suboptimal performance. The CWT demonstrates better
8 31.00 93.17 3.361 8.548 ; ; ; ;
performance, particularly offering higher frequency taton
2 32.30 91.84 4.103 9552 in the low-frequency components of the signal, thus refbecti
k(Buck): A=2.295,E, =10790.53/mol ! w-irequency ponents ot t ignal, thu Ll
k(Superbuck): A=2.352, E, =9077.45 /mol a certain degree of fault discrimination. However, the fixed
level 0 5 scale wavelet computation in CWT leads to the loss of fault
level 1 s point information, failing to comprehensively reflect chhas
level 2 z

in the signal. In contrast, the AWT method shows excellent
time-frequency focusing in both high and low frequency part
effectively displaying the distinctiveness of electricadjnal
faults in the time-frequency domain, thereby better captur
fault characteristics.

level 3
level 4
level 5

level 6

— level 7
— level 8

level 9

D. Model Validation Experiment

In the initial training stages, the model was influenced
by two hyperparameters: the number of dynamic routing
iterations and the reconstruction loss coefficient. Priekary
experiments using Buck circuit data helped determine the
optimal settings, detailed in Table IlI.

Taking into account the loss and accuracy of the validation
set, we observed that the optimal performance is achievid wi
three iterations of dynamic routing, and the best resulés ar
obtained when the reconstruction loss coefficient is set4o 0

The pre-training process of the model is illustrated in Fig 7
and Fig 8. In these two datasets, the XCCN model essentially

Initially, for each time-frequency imagg, we compute the completed its iterative learning between 15 to 20 epoch, wi
statistical measures from its GLCM, including contrast)), accuracy rising to 9%. Due to the slightly higher complexity
dissimilarity (DI), homogeneity £ O), and energyE N) [24], of the Superbuck dataset compared to the Buck dataset, its
to form a feature vectoF. training progress was delayed by about 5 epochs. When the

_ training rounds reached 50 epochs, the model achieved its
=[CO(P),DI(P),HO(P), EN (P)] (27) highest validation accuracy, at 99%8and 98.7% respec-
Next, calculate the intra-class and inter-class distaresigec- tively. Additionally, the loss function of the model stebdi

level 0| 2
— level 1 || £
level 2

— level 3

Superbuck data

Fig. 5: Converters fault time-frequency image.

tively: decreased throughout the training phase, confirming theat th
loss function settings were appropriate and that the madel d
Intra = Z Z |F: — Fy| (28) not exhibit overfitting during the training process.
i1 jeit1 To comprehensively evaluate and compare the XCCN model

proposed in this study with other models, in addition to
conventional accuracy, we also introduced the followingé¢h

(29) key indicators:

ot - ZZMZEWW
=1 j5=1
In the formula,N represents the number of samples within a P=TP/(TP+ FP)
class,C denotes the total number of classes, and the term R=TP/(TP+ FN) (31)

represents the Euclidean distance between feature vectors HA=2Px R/(P+R)
From this, the distinctivenes® can be calculated. Among these, Harmonic Accuracy{(4) is the harmonic

Inter mean of Precision RatioH) and Recall RateK). The calcu-

D= % S Intra (30) Jations for P and R are based on the identification of True
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TABLE IV: MODEL PERFORMANCE COMPARISON DATA SHEET

Model Buck Superbuck Performance Indicators
Accuracy(%) Time(s) P R HA | Accuracy(%) Time(s) P R HA | PS(MB) T(s/100)
SVM 93.35 0.31 9328 9213 92.70 88.13 0.29 85.05 84.14 8459 271 1.159
1DCNN 96.43 5.58 96.42 94.82 9561 90.93 6.81 83.27 86.79 8499 8.76 5.282
LST™M 81.58 7.32 80.25 83.64 8191 79.88 8.96 76.94 77.68 7378 6.21 7.465
GRU 92.61 8.48 91.08 89.84 90.46 87.62 11.12 7764 7593 823l 4.76 2.173
CNN 97.03 168.64 96.59 96.51  96.5p 95.04 193.49 93.33 92.09 92.71 24.54 7.908
VIT 95.43 22551 93.28 91.63  93.87 93.57 249.35 94.82 90.25 91.64 35.13 8.313
CCN 90.83 297.45 88.98 90.04 89.51 91.01 342.22 89.85 90.15 90.0p 33.25 8.143
XCCN 99.28 328.82 99.61 98.93 99.27 98.72 401.55 97.82 97.24 9753 41.23 9.125
One-dimensional data processing model: SVM, 1DCNN, LSTRUG
Two-dimensional image processing model: CNN, VIT, CC{GCN.
PS: Parameter Size, used to measure the complexity andcfcalenodel.
IT: Inference Time, used to gauge the model's real-timegearance and efficiency.
AWT: D = 1.4498 STFT:D=1.2116 6
140 140 —e—Buck_Train
120 120 0.9 5 -+ Buck_Val

® =
S o
S

Frequency f/kHz

[SEFN
S S

Frequency f/kHz

0.01 0.02
Time t/ms

CWT : D =1.3346

0.01 0.02
Time t/ms

1=y
S

10.8

%
S

10.7

Frequency f/kHz

IS
S

20

0.6

0.03 0 0.01 0.02  0.03
Time t/ms

Winger-Ville : D = 1.1382
140

120

100

Frequency f/kHz

0.03 0 0.01 0.02  0.03
Time t/ms

Fig. 6: Comparison of distinctiveness.

TABLE IlIl: HYPERPARAMETER PERFORMANCE

—e—Superbuck_Train

-4 Superbuck_Val

Loss

0 5 10 15 20 25 30 35 40 45 50
Epochs

Fig. 8: Traing and validation loss.

IV. In the one-dimensional data processing model, 1IDCNN
demonstrated superior performance, achieving an accuafacy
96.43% on the Buck circuit and 90.93 on the Superbuck
circuit, outperforming SVM, GRU, and LSTM. However, two-
dimensional image processing models generally showeathigh

Iterations Reconstruction ratio  Accuracy(%) Loss . . . .
T 03 96,0 08537 diagnostic accuracy than one-dimensional models. Among
1 0.4 97.5 0.7858 them, CNN slightly outperformed VIT due to its tendency
; 8-2 g;-é 8-3(7)28 to "overfit” local features, which provides an advantage whe
2 0.4 98.3 0.6823 the dataset is simple. In contrast, the original CCN peréatm
2 0.5 97.8 0.7657 poorly in direct diagnostics, with accuracies only around
g 8-2 995538 g-gﬁg 90% for both circuits. Conversely, the XCCN model made a
3 0.5 98.9 0.6234 significant breakthrough in accuracy, exceedin§ 9@ both
the Buck and Superbuck circuits.
100% Additionally, performance indicators show that two-
o dimensional image processing models are generally more
complex than one-dimensional models. The XCCN model has
80% slightly more parameters than other two-dimensional mmdel
In terms of execution speed, XCCN’s Inference Time (IT) is
LT about 1 second slower on average than other two-dimensional
< models, but the difference per image is only 0.01 seconds.
60% .
! e Buck_Train Experimental results demonstrate that the XCCN model out-
50% i - Buck_Val performs existing deep learning models used in fault diagno
I o Superbuck_Train in terms of overall model performance.
40% = =& Superbuck_Val . .
ll," E. Hardware Comparison Experiment
e 0 5‘ 10 15 20 25 30 35 40 45 50

Positive instancesI{P), False Positive instanced’f), and

Epochs

Fig. 7: Traing and validation acc.

False Negative instances'(V).
Comparative experimental results are presented in Talplarison of four methodsCWT-CNN, CWT-VIT, CWT-XCCN,

In this experiment, the diagnostic performance of the AWT-
XCCN method was tested under varying load conditions.
Under the fault conditions set in Table II, we adjusted thallo
size of the converter to simulate changes in the operatatg,st
conducting a variable load experiment. The structure of the
diagnostic tasks is detailed in Table V. A comprehensive-com
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TABLE V: VARIABLE LOAD DIAGNOSTIC TASKS

REFERENCES
Datasets Loads - STSE - DTSE . . o o
Train Test Train Test [1] S. Peyghami, Z. Wang and F. Blaabjerg, “A Guideline forli&sility
A 2.5Q A BC AB C Prediction in Power Electronic ConverterdBEE Trans. Power Elec-
B 50 B AC AC B tron., vol. 35, no. 10, pp. 10958-10968, Oct. 2020.
C 7.5 C AB BC A [2] A. Dong, A. Starr and Y. Zhao, “Neural network-based paetric

system identification: a review,Int. J. Syst. Sgi.vol. 54, no. 13,
pp. 2676-2688, 2023.
[38] S. Ye, F. Zhang, F. Gao, Z. Zhou and Y. Yang, “Fault Diagadsr

and AWT-XCCNwas carried out, with the experimental results Multilevel Converters Based on an Affine-Invariant RiemiannMetric
Autoencoder,'EEE Trans. Ind. Informat.vol. 19, no. 3, pp. 2619-2628,

STSE: Single-training-set experiment
DTSE: Dual-training-set experiment

presented in Fig 9. Mar. 2023.
In the single dataset experiment, the traditional CWT-CNN4] X. Zhou, N. Zhai, S. Li and H. Shi, “Time Series Predictidfethod
method only achieved an average accuracy of 6%.6%e to of Industrial Process With Limited Data Based on Transfearbing,”

e o : _ IEEE Trans. Ind. Informat.vol. 19, no. 5, pp. 6872-6882, May 2023.
its inability to effectively match the learned local featsy par [5] W. Luo et al., “Fault Diagnosis Method Based on Two-StagN for

ticularly when there was a significant load difference betwe " pata ImbalancelEEE Sensors J.vol. 22, no. 22, pp. 21961-21973,
the dataset and the test set. However, when the diagnostic Nov. 2022.

model was switched to XCCN and VIT, there was a significanté] W- He, Y. He, B. Li and C. Zhang, “A Naive-Bayes-Based FaDI-
. in di ti £ ith XCCN sliahtl agnosis Approach for Analog Circuit by Using Image-Orienteeature
Improvement in diagnostic performance, wi SIghtly  Extraction and Selection TechniqudEEE Accessvol. 8, pp. 5065-

outperforming VIT. Ultimately, with the introduction of ¢h 5079, July 2019.
AWT method, forming the AWT-XCCN approach of this [71 C. Zhang et al., "An Analog Circuit Fault Diagnosis Appaich Based

on Improved Wavelet Transform and MKELMGCircuits Syst. Signal
study, the average accuracy reached 93.04 Process, vol. 41, pp. 1255-1286, Jan, 2022.

In the dual dataset experiment, the overall trends were simjg] s. Feng, X. Li, S. Zhang, Z. Jian, H. Duan and Z. Wang, “Aieex
lar to those of the single dataset experiment. With the addit state estimation based on hybrid models of Kalman filter aedrai
of more datasets and types, providing a greater number aff Iogg] network,” Syst. Sci. Control Engvol. 11, no. 1, art. no. 2173682, 2023.

- . H. Yang, C. Meng and C. Wang, “Data-Driven Feature Exicac
similar features, both the traditional CWT-CNN method and ™ for Analog Circuit Fault Diagnosis Using 1-D Convolutionleural

the CWT-XCCN method, which used CWT data processing Network," IEEE Accessvol. 8, pp. 18305-18315, Jan. 2020.

method, improved their accuracy by CWT-VIT, which [10] L.Ji, C. Fuand W. Sun, “Soft Fault Diagnosis of AnalogdTits Based
! t itive to th b f dat t h.’ d%3.25 on a ResNet With Circuit Spectrum MapEEE Trans. Circuits Syst. I,
was most sensitive 10 the humbpber or datasets, achieve . Reg. Papersvol. 68, no. 7, pp. 2841-2849, July 2021.

accuracy. In contrast, the AWT-XCCN method of this studgi1] X. Li, S. Wan and S. Liu, “Bearing Fault Diagnosis Meth8dsed on
ultimately reached an average accuracy of 9%.33 Attention Mechanism and Multilayer Fusion Network3A Trans, vol.

. . 128, Part B, pp. 550-564, Sept. 2022.
In summary, the hardware comparison experiment resuﬁﬁ] S. Zhang, Z. Liu, Y. Chen, “Selective Kernel Convolutibeep Residual

demonstrate that the methods developed in this study aehiev Network Based on Channel-Spatial Attention Mechanism aeatufe
the highest average accuracy when circuit operationagstat  Fusion for Mechanical Fault DiagnosidSA Trans, vol. 133, pp. 369-

; e ; 383, Feb. 2023.
change,_bet_ter adap_tmg to ff"‘“'t conditions .that OCC”T@” [13] M. Huang, J. Yin, S. Yan and P. Xue, “A Fault Diagnosis ki of
actual circuit operations. This shows superior generiatina Bearings Based on Deep Transfer Learnir@ifhul. Model. Pract. Th.

capability and robustness. vol. 122, no. 102659, Jan. 2023.
[14] J. Liao, H.-K. Lam, S. Gulati and B. Hayee, “Improved qmuer-aided
diagnosis system for nonerosive reflux disease using divieaself-
V. CONCLUSION supervised learning with transfer learnindgit. J. Netw. Dyn. Intell.
This study has addressed a key issue in fault diagnog%iés] vol. 2, no. 3, art. no. 100010, Sep. 2023.

. . S. Zhang, R. Wang, Y. Si and L. Wang, “An Improved Contiainal
of DC-DC converters, which is the negIeCt of the tempor Neural Network for Three-Phase Inverter Fault DiagnosiEEE Trans.

continuity of electrical signals. We have introduced the RW Instrum. Meas.vol. 71, pp. 1-15, Nov. 2021.
method, integrating EMD, HHT with CWT for dynamic ad-[16] B. Yang, R. Liu and E. Zio, “Remaining Useful Life Pretian Based

. . . on a Double-Convolutional Neural Network Architectur€EEE Trans.
justment of scale and translation parameters. A specthlize | Electron, vol. 66, no. 12, pp. 9521-9530, Dec. 2019.

XCCN has been developed, focusing on global features aag v. zhou, Y. Guo, C. Liu, H. Peng and H. Rao, “Synchroniiat for
enhancing fault diagnosis through advanced processirg tec  Markovian master-slave neural networks: an event-triggygmpulsive

niques. Tests on Buck and Superbuck circuits have validat[elzgiJ zpp'\rﬂojt;:;/'”; J'Lﬁys:" S\/Q"‘,(l(;'u Sgﬁ ”% lééﬁspénﬁsasifi?%:gf;m
the XCCN model’s superiority in diagnostic accuracy, hanmo “Automated Classification of Apoptosis in Phase Contrastricopy

ic accuracy, and recall rate. Overall, our developed intieva Using Capsule NetworkIEEE Trans. Med. Imag.vol. 39, no. 1, pp.
approach has shown significant improvements over tragition,  1-10. Jan. 2020.

. . . .Tlg] J. Gu, Y. Peng, H. Lu, X. Chang, and G. Chen, “A Novel F&ilignosis
methods, paving the way for future research on its appdman Method of Rotating Machinery via VMD, CWT and Improved CNN,”

to other converters and real-time fault detection in vagiou  Measurementvol. 200, no. 111635, Aug. 2022.
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