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Li Wang, Zidong Wang,Fellow, IEEE, Chao Xu, Yiming Xu and Liang Hua

Abstract—This paper focuses on the crucial role of reliable
DC-DC converter operation for the stability of modern power
electronic devices. Addressed is a common issue in the fault
diagnosis of DC-DC converters: the tendency to rely on local
feature fitting while the temporal continuity of electrical signals
is neglected. An innovative diagnostic method that utilizes an
Adaptive Wavelet Transform (AWT) from a data processing
perspective is proposed. This technique can dynamically adjust
the scale and translation parameters to adapt to the contin-
uous changes in electrical signals caused by varying circuit
conditions. From the standpoint of model improvement, the
Extended Convolutional Capsule Network (XCCN) model is
designed. Through multi-scale feature extraction, integration of
global-local attention mechanisms, and global vector analysis,
this model effectively diagnoses fault features. It is demonstrated
that our method is effective in extracting the time-continuity
features of electrical signals, and exhibits significant advantages
in diagnostic accuracy, performance metrics, and application
generalisation capability. Consequently, this study presents a
holistic and effective approach for fault diagnosis in DC-DC
converters.

Index Terms—Fault diagnosis, DC-DC converter, hidden fault,
adaptive wavelet transform, capsule network.

I. I NTRODUCTION

SWITCHING power converters, notably those of the DC-
DC type, are pivotal for electronic systems and are ex-

tensively utilized in areas such as renewable energy systems,
electric vehicles, and computer power management [1]. The
performance of these systems is directly influenced by the
reliability of these converters. As a result, fault diagnosis,
particularly of hidden faults caused by changes in component
parameters, has emerged as a significant area of research
[2]. The rapid development of machine learning technology
has led to an increasing number of studies employing this
sophisticated technique for the diagnosis of hidden faultsin
DC-DC converters [3]. Current research primarily concentrates
on two aspects: data processing methods and techniques for
model improvement.

Data processing methods are aimed at enhancing the ac-
curacy of fault diagnosis by improving both the quantity and
quality of the collected data [4]. For example, literature [5]
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presents a method using Generative Adversarial Networks
(GAN) to simulate circuit fault diagnosis. This approach
enriches training data by combining original data with data
generated by the GAN. Another study [6] introduces a method
employing Cross Wavelet Transform (XWT) to convert one-
dimensional signals into two-dimensional images, effectively
increasing the data dimensions. Moreover, a Sensitive Feature
Mahalanobis Distance (SFMD) extraction method has been
proposed in [7], tailored for pre-identifying key fault features
in analog circuits. However, a common limitation of these
methods is their lack of consideration for the temporal conti-
nuity of electrical signals during the data processing stage,
leading to data being processed in a discrete manner [8].
This oversight can result in the loss of continuity featuresat
the initial feature extraction phase, potentially impacting the
overall efficacy of fault diagnosis.

Model improvement methods focus on boosting fault diag-
nosis performance by refining model architecture and modify-
ing iteration strategies [9]. For instance, a technique utilizing
one-dimensional Convolutional Neural Networks (CNN) has
been investigated in [10] to analyze temporal data, enabling
fault detection by evaluating the output data from test circuits.
In [11], an innovative approach has been introduced that
combines the Short-Time Fourier Transform with ResNet net-
works. Moreover, an advanced fault diagnosis method has been
presented in [12] by employing a multi-level fusion network
based on the inception architecture. This method creates a
comprehensive feature extraction framework by integrating
convolutional kernels of different sizes at the input layer. Last-
ly, a fault diagnosis strategy has been detailed in [13] [14]by
incorporating transfer learning, which significantly enhances
the ability to recognize offset fault features, especiallyin
response to variations in the distribution of fault data.

The aforementioned models primarily rely on CNNs to
enhance fault diagnosis capabilities. In processing electrical
signals, they achieve classification and diagnosis throughthe
convolutional segmentation and pooling of data [15]. This
method, based on convolutional kernels, focuses mainly on
local feature matching and overlooks the temporal continuity
of analog circuit signals [16] [17]. This limitation results in the
model performing poorly in practical circuit applicationsdue
to its sensitivity to local variations. Specifically, it is prone to
misjudgments when the operational state or load of the circuit
changes.

To address the issues discussed above, this paper introduces
a novel approach that specifically focuses on the temporal
continuity of electrical signals in DC-DC converters. We pro-
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pose an innovative Extended Convolutional Capsule Network
(XCCN) strategy for fault detection. On the data processing
level, an Adaptive Wavelet Transform (AWT) technique has
been developed, tailored to effectively capture the continuous
features of electrical signals. For model improvement, we em-
ploy a design based on Capsule Networks (CCN), which excels
in conducting global feature analysis, thereby significantly
enhancing the accuracy of fault detection [18].

The primary contributions of this study are outlined as
follows:

1) AWT Method Design: This paper presents an innovative
approach to overcoming the scale parameter limita-
tions inherent in the Continuous Wavelet Transform
(CWT). By introducing a dynamic parameter adjustment
mechanism that leverages Empirical Mode Decomposi-
tion (EMD) and Hilbert-Huang Transform (HHT), the
method achieves adaptability in scale and shift parame-
ters for different state signals.

2) XCCN Model Improvement: A key development in this
paper is the MishXception module, which substantially
enhances the model’s ability to extract features. Addi-
tionally, the integration of the CloFormer mechanism
markedly improves the model’s capacity to process both
global and local features comprehensively.

3) Dual Loss Function: In this study, a reconstruction loss
function is constructed based on the Maximum Mean
Discrepancy (MMD) theory. By introducing three types
of kernel functions, we enhance the importance of global
features during the model’s iterative learning process.
The reconstruction loss complements the Margin Loss,
further boosting the overall performance of the model.

II. DATA PROCESSING ANALYSIS

A. DC-DC Converter Hidden Fault Characteristics

To thoroughly investigate the hidden fault characteristics
of DC-DC converters, this study extends the analysis starting
from second-order Buck converters, with their circuit topology
shown in Fig. 1.

The operating principle of the Buck converter is as follows.
When the switch device is on, the inductor starts charging,
leading to an increase in the inductor current. When the switch
device is off, the inductor discharges its energy to the output
capacitor and load, resulting in a decrease in inductor current.
Assuming the currentiL flowing out of the inductor remains
dynamically stable when outputting to the load, this dynamic
inductor currentiL passing through output capacitorCo will
produce a voltage rippleVro. This voltage ripple consists of
two parts: one is the voltage change across the ideal capacitor
C, and the other is the voltage drop across the Equivalent
Series Resistance (ESR) ofC. The formula is as follows:

Vro = ∆VC +∆VESR = ∆iin

(

ESR+
1

8 · fs · C

)

(1)

It is evident that the total output voltage rippleVro is influ-
enced byiL, C, ESR, and switching frequencyfs. Among
these factors, the ESR of the output capacitor and the inductor
currentiL have the most significant impact.
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Fig. 1: DC-DC converters equivalent analysis.

Further, this conclusion can be extended to other DC-
DC converter topologies, including Boost converters, Buck-
Boost converters, Cuk converters, and fourth-order Superbuck
converters. As illustrated by the equivalent circuit in Fig. 1, the
outputs of these converters can all be represented as current
source circuits. The primary differences lie in the sourcesof
current flowing to the output capacitor during each switching
cycle.

In summary, by analyzing the output voltage ripple of
a power supply, we can detect the aging condition of its
components. The output voltage ripple exhibits dual tempo-
ral continuity. The changes in the high-frequency part are
synchronized with the switching frequency, while the low-
frequency part relates to the overall steady-state characteristics
of the converter system. This characteristic dictates thata com-
plete temporal continuity must be incorporated when analyzing
the output signals of DC-DC converters to accurately represent
their data features.

B. Adaptive Wavelet Transform

When analyzing hidden faults in DC-DC converters, the
temporal signals often exhibit distinct non-linear and time-
varying characteristics. These characteristics make it challeng-
ing for traditional signal processing methods to accurately
capture the key fault features in the signals. The Continuous
Wavelet Transform (CWT) is considered as an effective an-
alytical tool due to its unique advantages in time-frequency
analysis [19]. The standard definition of CWT is:

CWTx =
1

√

|a|

∫

x(t)ψ

(

t− b
a

)

dt (2)

wherex(t) is the input signal,ψ is the wavelet basis function,
a is the scale parameter, andb is the translation parameter.

The direct application of the CWT in the data processing
phase of this study does not fully address the challenges
outlined in the introduction. The traditional CWT relies on
predetermined parameters ‘a’ (scale) and ‘b’ (translation),
leading to a uniformity in scale that cannot adapt to the
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continuous variations in the signal caused by changes in circuit
conditions.

To address this issue, our study proposes an adaptive
wavelet transform, incorporating a dynamic parameter adjust-
ment mechanism based on EMD [20] and HHT. Through this
mechanism, our method is capable of dynamically adjusting
the scale and translation parameters to more accurately align
with the characteristics of the input signal. This adaptability
is key to effectively capturing and representing the subtle
variations and crucial features in the output signals of DC-
DC converters. The methodology is described as follows.

Firstly, we use EMD to decompose the input signal into a
set of Intrinsic Mode Functions (IMFs). Each IMF captures the
characteristics of the signal at a specific scale. The formula is
given by

x(t) =

N
∑

n=1

IMFn(t) +R(t) (3)

whereIMFn(t) represents the nth Intrinsic Mode Function,
R(t) is the residual trend term, andN is the number of IMFs.
Subsequently, for eachIMFn(t), an HHT of the analytic
signal is constructed. The formula is as follows:

H(IMFn(t)) =
1

π
P · V ·

∫ ∞

−∞

IMFn(τ)

t− τ dτ. (4)

Here, P.V. denotes the principal value (Cauchy principal
value) integral andτ denotes the integral variable. At this
point, the amplitudean(t) and phaseθn(t) of the target signal
can be obtained as follows:

an(t) =
√

IMFn(t)2 +H(IMFn(t))2 (5)

θn(t) = arctan

(

H(IMFn(t))

IMFn(t)

)

(6)

The local energyEl(t) and instantaneous frequencyFc(t)
can be calculated using the amplitude and frequency. The
formulas are as follows:

El(t) = an(t)
2 (7)

Fc(t) =
1

2π

dθn(t)

dt
(8)

Subsequently, the scale parametera and the translation pa-
rameterb are dynamically adjusted based on the local energy
El(t) and the instantaneous frequencyFc(t) as follows:

a(t) = α/Fc(t) (9)

b(t) = t− β · sgn(dEl(t)

dt
) ·

√

|El(t)| (10)

Here,α andβ are adjustable parameters used to control the
sensitivity of scale and translation (experimental values: α =
1, β = 0.3), respectively,sgn represents the direction function
given as follows:

sgn(x) =







1 x < 0
0 x = 0
−1 x > 0

(11)

Finally, the dynamically adjusted parametersa(t) and b(t)
are incorporated into the CWT, resulting in the following
improvements:

AWTx =
1

√

|a(t)|

∫

x(τ)ψ(
τ − b(t)
a(t)

)dτ (12)

The AWT method precisely captures the time-frequency
dynamics of the input signal. For the scale parametera(t),
it automatically increases when the input signal’s frequency
is low, to better capture low-frequency global characteristics;
conversely, when the signal’s frequency is high, the scale pa-
rameter automatically decreases, refining the capture of high-
frequency local features. Regarding the translation parameter
b(t), AWT reduces the adjustment magnitude when the signal
is stable, ensuring that the overall translation of the signal
remains smooth. Conversely, when there are abrupt changes
in the signal, AWT adjustsb(t) towards the direction of
significant energy changes to enhance the temporal resolution
near the points of change.

III. M ODEL IMPROVEMENT ANALYSIS

After data processing with AWT, the output signal is en-
capsulated in continuous time-frequency images, necessitating
the design of a network model capable of analyzing global
features. This study has improved upon the capsule network,
enhancing the model’s ability to extract and utilize global
features. Fig. 2 illustrates the structure of the improved model.
This model, based on the original capsule network, incorpo-
rates advancements like multi-scale convolution MishXception
module, Cloformer module, and global reconstruction module.
A. MishXception Module

In this study, recognizing that capsule vector neurons are not
inherently capable of directly extracting features from input
data, we have designed a specialized module to address this
limitation. As depicted in Fig. 2, the MishXception module,
inspired by the Xception architecture, is introduced to act
as a pre-extraction module for the capsule network. The
design of this module includes specific improvements aimed
at enhancing its feature extraction capabilities, ensuring that
it effectively prepares the data for subsequent processingby
the capsule network. The details of these improvements are as
follows.

• Dual-Layer Convolution: At the input end, three dif-
ferent sizes of dual-layer depthwise separable convolu-
tions(DSconv) are performed in parallel, along with a
max pooling operation. This enhances the model’s feature
extraction performance at small local, medium local, and
global levels.

• Mish Activation Function: In the early stages of feature
extraction, to retain more effective information, we re-
place ReLU with Mish as the activation function for
depthwise separable convolutions. The Mish function
exhibits a linear-like increase whenx > 0, but is not
completely zero whenx ≤ 0, rather it approaches zero.
This allows for a smoother gradient flow, enabling deeper
penetration of information into the neural network.

• Residual Connections: As multi-layer, multi-scale convo-
lutions progress, the initial features of the input are prone
to information deviation during propagation. To address
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Fig. 2: The developed XCCN with new structure framework.

this, we have introduced residual connections, which add
the input directly to the output, ensuring the expressive
capability of the output features.

B. Cloformer Module

The CloFormer module, as illustrated in Fig. 2, is a new
hybrid attention mechanism comprised of Clo blocks and
ConvFFN [21]. This method efficiently achieves the fusion
and attention of both global and local features.

The Clo block serves as a hybrid attention module. The
global attention computes attention over the entire input,while
the local attention performs attention calculations within a
fixed-size window on localized areas.

Global attention is achieved by downsampling Key (K) and
Value (V ) using an average pooling layer. Then, attention
scores are calculated using Query (Q) and the downsam-
pled K. Subsequently, these scores are used to weight the
downsampledV , resulting in a low-frequency global attention
output. The specific formulas are as follows:

Xglobal = Attntion (Qg,Pool (Kg) ,Pool (Vg)) (13)

Local attention aggregates local information by applying
depthwise convolution (DWConv) to theQ andK within the
window. Furthermore, the introduction ofTanh and Swish
non-linear operators enables stronger context-aware weighting.
The specific formulas are as follows:

Ql = DW conv(Q)
Kl = DW conv(K)
Attnt

= FC (Swish (FC (Ql ⊙Kl)))

Attn = Tanh
(

Attnt√
d

)

Xlocal = Attn⊙Vs

(14)

Here,d represents the number of channels in the token, and
the⊙ symbol denotes the Hadamard product operation.

Finally, the outputs of both are concatenated and integrated
with a fully connected layer to achieve information aggrega-
tion.

Xt = Concat (Xlocal , Xglobal )
Xout = FC (Xt)

(15)

The ConvFFN is a convolution-based feedforward neural
network, consisting of two convolution layers, one depthwise
convolution layer, and a dropout layer. The purpose of this
design is to further extract features and to regularize through
the use of the dropout layer, thereby avoiding overfitting.

C. Improved Capsule Network

Capsule networks are a vector neuron-based network ar-
chitecture that consists of an encoder and a decoder [22].
The encoder includes a convolutional input layer, primary
capsule layer, and digit capsule layer, primarily functioning
to extract features from images and convert them into a set
of dynamic vectors. The decoder comprises a fully connected
layer, decoding capsule layer, and reconstruction layer, tasked
with inversely reconstructing the vectors produced by the
encoder back into images.

In the encoder phase, the capsule network utilizes a dy-
namic routing mechanism, as illustrated in Fig. 3, completed
iteratively. This method implements vector clustering through
a special squash(s) function, detailed in Algorithm. 1.

In the decoder phase, the original capsule network employs
three fully connected layers to reconstruct the output vector
to the input size, primarily comparing parameter values. This
method, focusing solely on parameter differences between the
reconstructed and input data, overlooks structural discrepan-
cies. To resolve this, we’ve developed a three-layer deconvolu-
tion reconstruction module that captures both quantitative and
structural information in its results.

D. Loss Functions

Capsule networks use feature vectors from the digit cap-
sule layer for classification and reconstruction, involving both
classification and reconstruction losses. This study redesigns
the reconstruction loss, using Maximum Mean Discrepancy
(MMD) to better incorporate global features into the output
vectors.
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Fig. 3: Dynamic routing iteration logic.

Classification Loss: The classification loss continues to
utilize the originally designed Margin Loss, which has demon-
strated good performance in multi-class classification forcap-
sule networks. The detailed formula is as follows.

Margin Loss= Tk max
(

0,m+ − ‖vk‖
)2

+λ (1− Tk)max
(

0, ‖vk‖ −m−)2
(16)

• ‖vk‖ represents the magnitude of the output vector of
the capsule for categoryk. The larger the magnitude, the
higher the probability of predicting that category.

• Tk is an indicator that takes the value of1 when category
k is the correct predicted category, otherwise takes0.

• m+ and m− are predefined hyperparameters that rep-
resent the threshold activation values for positive and
negative classes, respectively. In this study,m+ is set
to 0.9 to ensure that the capsule neurons of the correct
category have sufficiently high activation levels, thereby
strengthening the model’s confidence in recognizing the
correct category;m− is set to 0.1 to ensure that the acti-
vation levels of capsule neurons for incorrect categories
remain low, reducing misclassification.

• λ is a balancing coefficient used to weigh the contri-
butions of positive and negative categories in the total
loss. Considering that the number of positive and negative
categories in this study is equal, its value is set to 0.5.

The Margin Loss effectively enhances the model’s recognition
efficiency for different categories by adjusting the activation
levels of the capsules for each category, thereby improvingthe
model’s learning performance and robustness.

Reconstruction Loss: The reconstruction loss in this study
is designed based on MMD with a global measure kernel
function. MMD is specifically used to measure the difference
between two data distributions.

For two given sets of samplesxi andyi, originating from
distributionsP andQ respectively, MMD is defined based on
the mean difference in feature space, as follows.

MMD2(P,Q) =

∥

∥

∥

∥

∥

1

n

n
∑

i=1

φ (xi)−
1

m

m
∑

i=1

φ (yi)

∥

∥

∥

∥

∥

2

(17)

Here, φ is a function that maps to the Reproducing Kernel
Hilbert Space (RKHS). Thus, MMD can compute the distance
between the mean of samples from two distributions in feature
space. By introducing the kernel functionk(x, y), MMD

can be simplified to calculate the sample disparity between
distributionsP andQ.

MMD2(P,Q) =
1

n2

n∑

i=1

n∑

j=1

K (xi, xj)−
2

nm

n∑

i=1

m∑

j=1

K (xi, yj)

+
1

m2

m∑

i=1

m∑

j=1

K (yi, yj)

(18)

In this study, based on the sample characteristics and design
requirements, we have co-designed three types of kernel
functions to map the local, global, and dynamic similarities
between targets.

Local Similarity: We use the Gaussian kernel to calculate
local similarity differences due to its high sensitivity tothe
Euclidean distance between input points. The value of the
Gaussian kernel approaches1 when points are close and
quickly decreases to0 as their distance increases. The formula
is as follows:

kGaussian(x, y) = exp

(

−‖x− y‖
2

2σ2

)

(19)

where the parameterσ is taken as1.0 for the width index of
the nucleus.

Global Similarity: By incorporating a polynomial kernel to
calculate the high-order interaction characteristics of points,
data is elevated to a higher-dimensional space, effectively
capturing the global structure and non-linear relationships of
the data. The specific formula is as follows:

kPolynomial(x, y) =
(

xT y + c
)d (20)

c is a linear constant (usually set to 1), andd is the degree
of the polynomial. In this experiment, based on the three-
dimensional features (time, frequency, amplitude) of the time-
frequency image,d is set to3.0.

Dynamic Similarity: In this study, we capture the frequency
components of the original signal by introducing a Fourier
kernel, facilitating the processing of dynamic patterns intime
series signals. The specific formula is as follows:

kFourier(x, y) = exp
(

iωT (x− y)
)

(21)

Finally, by integrating these three kernel functions, we
obtain the MMD Loss designed in this study.

kout =
kGaussian· kPolynomial · kFourier

kGaussian+ kPolynomial+ kFourier
(22)

MMD Loss=
1

n2

n∑

i=1

n∑

j=1

kout (xi, xj)−
2

nm

n∑

i=1

m∑

j=1

kout (xi, yj)

+
1

m2

m∑

i=1

m∑

j=1

kout (yi, yj)

(23)

Loss Consolidation: Due to the different magnitudes of
these two loss functions, to ensure that the reconstructed
features effectively influence the classification results without
overshadowing the original classification mechanism, thiss-
tudy employs a logarithmic function to normalize the MMD
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Algorithm 1 Dynamic Routing

1: Input: output vectorsui for all capsulesi in layer l,
number of routing iterationsr

2: Output: activation vectorsvj for all capsulesj in layer
l + 1

3: Initialize log priorsbij ← 0 for all capsule pairsi, j
4: for t = 1 to r do
5: for each capsulei in layer l do
6: Predicted vectorsxij ← uiWij

7: end for
8: for each capsulei in layer l do
9: Compute coupling coefficientscij ← softmax(bij)

10: end for
11: for each capsulej in layer l + 1 do
12: Compute total input vectorssj ←

∑

i cijxij
13: Apply squash functionvj ← squash(sj)
14: end for
15: if t < r then
16: for each capsulei in layer l and capsulej in layer

l + 1 do
17: Update log priorsbij ← bij + xij · vj
18: end for
19: end if
20: end for
21: Define squash function: squash(s) =

‖S2

j‖
1+‖S2

j‖
Sj

‖Sj‖

loss. This approach allows for a more balanced consideration
of the impacts of both types of losses when they are integrated.

Reconstruction Loss= ln
(√

MMD Loss
)

(24)

Loss= Margin Loss+ a · Reconstruction Loss (25)

where a denotes the reconstruction ratio. Through the in-
teraction of the two types of losses, we achieve a global
supervision of local effects, ensuring that the output vector
contains both high-frequency and low-frequency features of
the original signal.

IV. EXPERIMENTAL VERIFICATION

A. Experimental Environment

Hardware Environment: The model training was conduct-
ed on a platform equipped with an NVIDIA GeForce RTX
3090 GPU and an Intel Core i9-12900K CPU.

Software Environment: The experiments were executed
on a Linux operating system. The development environment
was based on the Pytorch 2.0-GPU framework, selected for
its comprehensive library support and GPU capabilities.

Model Parameters: Lion optimizer was employed for
its robust performance characteristics. The model underwent
training with a batch size of 32 over 50 epochs. An initial
learning rate of 0.0002 was set, with a learning rate decay of
0.8 implemented every 10 epochs to ensure steady convergence
of the model.

The experimental circuit is built using the LM2596S in-
tegrated chip, with component parameters detailed in Table
I. The parasitic aging parameters of the components are
monitored using an LCR Meter. The experimental platform

TABLE I: CIRCUIT COMPONENT PARAMETERS

Circuit fs Co Cb L1 L2 R
Buck 100kHz 47µF \ 220µH \ 5Ω

Superbuck 100kHz 47µF 100µF 220µH 220µH 5Ω

Fig. 4: Hardware experimental platform.

is illustrated in Fig. 4. During the data acquisition phase,
a DSOX3024T oscilloscope is used to capture the output
ripple voltage of the circuit under various operating conditions.
Model testing is conducted on an edge computing platform,
built around the NVIDIA JETSON Nano and NI-6001 data
acquisition card.

B. Fault Data Definition

To ensure that the dataset accurately reflects the actual state
of the DC-DC converter at different stages of failure, this
experiment was conducted based on the Arrhenius thermal
aging test for output capacitors. The Arrhenius equation is
expressed as follows:

k = A− Ea/(R · T ) (26)

wherek represents the reaction rate constant,A is the pre-
exponential factor,Ea is the activation energy,R is the
universal gas constant (8.314J/mol ·K), andT represents the
temperature. In our study, we use the reaction rate constant
k to describe the ratio of the aging capacitor’s circuit output
voltage ripple a to the initial thermal aging time. Utilizing this
function, we were able to derive the fitted values ofk(Buck)
andk(Superbuck) and calculate the predicted aging time at
any given temperature. In this study, we set 423.15K as the
accelerated aging temperature. The range where the output
voltage ripple ratio changes from 1% to 10% is defined as
the hidden fault state. Voltage ripple ratio (Vrr) below 1%
is considered normal, while above 10% indicates complete
damage to the DC-DC power supply. The data collection
results for the two circuits at different fault levels are presented
in Table II.

For each of the ten states of each circuit type, a10ms
output signal was collected and subjected to adaptive wavelet
transformation, converting it into a time-frequency image
dataset, as shown in Fig. 5.

C. Data Processing Experiment

To validate the scientific soundness and effectiveness of the
AWT for time-frequency transformations, this study introduces
a distinctiveness measureD based on the theory of gray-level
co-occurrence matrices (GLCM) [23].
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TABLE II: CONVERTERS FAILURE RATINGS DATA

Circuit Level Time(h) C(µF) ESR(Ω) Vrr(%)

Buck

0 0 43.82 0.297 0.667
1 14.10 42.93 0.693 1.552
2 22.50 41.51 1.301 2.531
3 30.25 40.89 2.112 3.482
4 36.30 39.86 3.382 4.523
5 39.75 38.92 4.850 5.496
6 43.10 36.92 6.123 6.473
7 46.25 36.52 7.439 7.528
8 48.60 35.23 8.961 8.498
9 49.50 35.13 9.830 9.513

Superbuck

0 0 114.89 0.114 0.502
1 8.75 113.65 0.380 1.513
2 14.50 112.16 0.625 2.526
3 19.25 110.47 0.913 3.544
4 22.50 106.82 1.253 4.517
5 25.00 103.20 1.408 5.533
6 27.10 100.68 1.936 6.496
7 29.25 96.37 2.484 7.521
8 31.00 93.17 3.361 8.548
9 32.30 91.84 4.103 9.552

k(Buck): A=2.295,Ea =10790.53J/mol
k(Superbuck): A=2.352,Ea =9077.45J/mol
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Fig. 5: Converters fault time-frequency image.

Initially, for each time-frequency imageP , we compute the
statistical measures from its GLCM, including contrast (CO),
dissimilarity (DI), homogeneity (HO), and energy (EN ) [24],
to form a feature vectorF.

F = [CO (P ) , DI (P ) , HO (P ) , EN (P )] (27)

Next, calculate the intra-class and inter-class distancesrespec-
tively:

Intra =
1

N(N − 1)

N
∑

i=1

N
∑

j=i+1

‖Fi − Fj‖ (28)

Inter =
2

C(C − 1)

C
∑

a=1

C
∑

b=a+1

1

N2

N
∑

i=1

N
∑

j=1

∥

∥

∥
F

i
a − F

j
b

∥

∥

∥ (29)

In the formula,N represents the number of samples within a
class,C denotes the total number of classes, and the term
represents the Euclidean distance between feature vectors.
From this, the distinctivenessD can be calculated.

D =
Inter

1

C

∑

Intra
(30)

The greater the distinctivenessD, the better the transformation
effect, making the time-frequency images more conducive for
the model to perform classification and diagnosis. In the exper-
iments, Short-Time Fourier Transform (STFT), Wigner-Ville
Transform, CWT, and AWT are compared. The Buck circuit
dataset is used as an example to transform and compute 100
time-frequency images for each category. The experimental
results are shown in Fig 6. For clarity in presentation, the
image resolution displayed here is 2000×2000, while the
actual input image size for the model is 64×64.

The STFT has poor time-frequency resolution and performs
inadequately on datasets, failing to effectively reveal fault
characteristics. Although the Wigner-Ville Transform intro-
duces cross-terms, which increase the amount of features, this
also complicates the calculation of distinctiveness, resulting
in suboptimal performance. The CWT demonstrates better
performance, particularly offering higher frequency resolution
in the low-frequency components of the signal, thus reflecting
a certain degree of fault discrimination. However, the fixed-
scale wavelet computation in CWT leads to the loss of fault
point information, failing to comprehensively reflect changes
in the signal. In contrast, the AWT method shows excellent
time-frequency focusing in both high and low frequency parts,
effectively displaying the distinctiveness of electricalsignal
faults in the time-frequency domain, thereby better capturing
fault characteristics.

D. Model Validation Experiment

In the initial training stages, the model was influenced
by two hyperparameters: the number of dynamic routing
iterations and the reconstruction loss coefficient. Preliminary
experiments using Buck circuit data helped determine the
optimal settings, detailed in Table III.

Taking into account the loss and accuracy of the validation
set, we observed that the optimal performance is achieved with
three iterations of dynamic routing, and the best results are
obtained when the reconstruction loss coefficient is set to 0.4.

The pre-training process of the model is illustrated in Fig 7
and Fig 8. In these two datasets, the XCCN model essentially
completed its iterative learning between 15 to 20 epochs, with
accuracy rising to 96%. Due to the slightly higher complexity
of the Superbuck dataset compared to the Buck dataset, its
training progress was delayed by about 5 epochs. When the
training rounds reached 50 epochs, the model achieved its
highest validation accuracy, at 99.28% and 98.72% respec-
tively. Additionally, the loss function of the model steadily
decreased throughout the training phase, confirming that the
loss function settings were appropriate and that the model did
not exhibit overfitting during the training process.

To comprehensively evaluate and compare the XCCN model
proposed in this study with other models, in addition to
conventional accuracy, we also introduced the following three
key indicators:







P = TP/(TP + FP )
R = TP/(TP + FN)
HA = 2P ×R/(P +R)

(31)

Among these, Harmonic Accuracy (HA) is the harmonic
mean of Precision Ratio (P ) and Recall Rate (R). The calcu-
lations forP andR are based on the identification of True
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TABLE IV: MODEL PERFORMANCE COMPARISON DATA SHEET

Model Buck Superbuck Performance Indicators
Accuracy(%) Time(s) P R HA Accuracy(%) Time(s) P R HA PS(MB) IT(s/100)

SVM 93.35 0.31 93.28 92.13 92.70 88.13 0.29 85.05 84.14 84.59 2.71 1.159
1DCNN 96.43 5.58 96.42 94.82 95.61 90.93 6.81 83.27 86.79 84.99 8.76 5.282
LSTM 81.58 7.32 80.25 83.64 81.91 79.88 8.96 76.94 77.68 73.78 6.21 7.465
GRU 92.61 8.48 91.08 89.84 90.46 87.62 11.12 77.64 75.93 82.31 4.76 2.173
CNN 97.03 168.64 96.59 96.51 96.55 95.04 193.49 93.33 92.09 92.71 24.54 7.908
VIT 95.43 225.51 93.28 91.63 93.87 93.57 249.35 94.82 90.25 91.64 35.13 8.313
CCN 90.83 297.45 88.98 90.04 89.51 91.01 342.22 89.85 90.15 90.00 33.25 8.143

XCCN 99.28 328.82 99.61 98.93 99.27 98.72 401.55 97.82 97.24 97.53 41.23 9.125
One-dimensional data processing model: SVM, 1DCNN, LSTM, GRU.
Two-dimensional image processing model: CNN, VIT, CCN,XCCN.
PS: Parameter Size, used to measure the complexity and scaleof a model.
IT: Inference Time, used to gauge the model’s real-time performance and efficiency.
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Fig. 6: Comparison of distinctiveness.

TABLE III: HYPERPARAMETER PERFORMANCE

Iterations Reconstruction ratio Accuracy(%) Loss
1 0.3 96.2 0.8532
1 0.4 97.5 0.7858
1 0.5 97.1 0.8038
2 0.3 97.5 0.7769
2 0.4 98.3 0.6823
2 0.5 97.8 0.7657
3 0.3 98.6 0.6325
3 0.4 99.28 0.6113
3 0.5 98.9 0.6234
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Fig. 7: Traing and validation acc.
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IV. In the one-dimensional data processing model, 1DCNN
demonstrated superior performance, achieving an accuracyof
96.43% on the Buck circuit and 90.93% on the Superbuck
circuit, outperforming SVM, GRU, and LSTM. However, two-
dimensional image processing models generally showed higher
diagnostic accuracy than one-dimensional models. Among
them, CNN slightly outperformed VIT due to its tendency
to ”overfit” local features, which provides an advantage when
the dataset is simple. In contrast, the original CCN performed
poorly in direct diagnostics, with accuracies only around
90% for both circuits. Conversely, the XCCN model made a
significant breakthrough in accuracy, exceeding 98% on both
the Buck and Superbuck circuits.

Additionally, performance indicators show that two-
dimensional image processing models are generally more
complex than one-dimensional models. The XCCN model has
slightly more parameters than other two-dimensional models.
In terms of execution speed, XCCN’s Inference Time (IT) is
about 1 second slower on average than other two-dimensional
models, but the difference per image is only 0.01 seconds.
Experimental results demonstrate that the XCCN model out-
performs existing deep learning models used in fault diagnosis
in terms of overall model performance.

E. Hardware Comparison Experiment

In this experiment, the diagnostic performance of the AWT-
XCCN method was tested under varying load conditions.
Under the fault conditions set in Table II, we adjusted the load
size of the converter to simulate changes in the operating state,
conducting a variable load experiment. The structure of the
diagnostic tasks is detailed in Table V. A comprehensive com-
parison of four methodsCWT-CNN, CWT-VIT, CWT-XCCN,
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TABLE V: VARIABLE LOAD DIAGNOSTIC TASKS

Datasets Loads
STSE DTSE

Train Test Train Test
A 2.5Ω A BC AB C
B 5Ω B AC AC B
C 7.5Ω C AB BC A

STSE: Single-training-set experiment
DTSE: Dual-training-set experiment

and AWT-XCCNwas carried out, with the experimental results
presented in Fig 9.

In the single dataset experiment, the traditional CWT-CNN
method only achieved an average accuracy of 67.65% due to
its inability to effectively match the learned local features, par-
ticularly when there was a significant load difference between
the dataset and the test set. However, when the diagnostic
model was switched to XCCN and VIT, there was a significant
improvement in diagnostic performance, with XCCN slightly
outperforming VIT. Ultimately, with the introduction of the
AWT method, forming the AWT-XCCN approach of this
study, the average accuracy reached 93.04%.

In the dual dataset experiment, the overall trends were simi-
lar to those of the single dataset experiment. With the addition
of more datasets and types, providing a greater number of local
similar features, both the traditional CWT-CNN method and
the CWT-XCCN method, which used CWT data processing
method, improved their accuracy by 4%. CWT-VIT, which
was most sensitive to the number of datasets, achieved 93.25%
accuracy. In contrast, the AWT-XCCN method of this study
ultimately reached an average accuracy of 96.33%.

In summary, the hardware comparison experiment results
demonstrate that the methods developed in this study achieve
the highest average accuracy when circuit operational states
change, better adapting to fault conditions that occur during
actual circuit operations. This shows superior generalization
capability and robustness.

V. CONCLUSION

This study has addressed a key issue in fault diagnosis
of DC-DC converters, which is the neglect of the temporal
continuity of electrical signals. We have introduced the AWT
method, integrating EMD, HHT with CWT for dynamic ad-
justment of scale and translation parameters. A specialized
XCCN has been developed, focusing on global features and
enhancing fault diagnosis through advanced processing tech-
niques. Tests on Buck and Superbuck circuits have validated
the XCCN model’s superiority in diagnostic accuracy, harmon-
ic accuracy, and recall rate. Overall, our developed innovative
approach has shown significant improvements over traditional
methods, paving the way for future research on its application
to other converters and real-time fault detection in various
industries.

Future work will focus on evaluating the adaptability of this
method across different types of converters and exploring its
capabilities for real-time fault detection in various industrial
settings. This includes using spectral residual-based anoma-
ly detection [25], implementing privacy-preserving federated
learning [26] [27], and optimizing residual generators [28]
[29]. The goal is to improve the reliability and security of
industrial systems through multi-agent systems and data-driven
approaches [30] [31] [32].
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