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 A B S T R A C T

This paper proposes a YOLO-based efficient lightweight network (YOLO-ELWNet) for onboard object detection 
based on the YOLOv3. A channel split and shuffle with coordinate attention module is developed in the 
backbone block, which effectively reduces the size of model parameters and computational cost while 
maintaining the detection accuracy. A new feature fusion network is proposed in the neck block, where a 
cross-stage partial with efficient bottleneck module is put forward to improve the feature extraction ability 
and reduce the computational cost. The Scylla intersection over union-based loss function is utilized in the head 
block, which accelerates the convergence speed of the YOLO-ELWNet. The effectiveness of the proposed YOLO-
ELWNet is validated on the open source KITTI vision benchmark. The performance of YOLO-ELWNet is superior 
to some mainstream lightweight object detection models in terms of detection accuracy and computational cost, 
which demonstrates its applicability for resource-constrained onboard object detection.
1. Introduction

Object detection plays a critical role in a variety of fields such 
as autonomous driving, face recognition, and robot vision [1–4]. In 
the past few decades, a number of object detection techniques have 
been developed based on handcrafted features acquired through expert 
knowledge [5–7]. With the rapid development of deep learning tech-
niques, modern object detection techniques have been introduced based 
on the convolutional neural network (CNN). Currently, popular CNN-
based object detection methods can be classified into two categories: 
one-stage object detectors and two-stage object detectors [8].

One-stage object detection methods predict the class probability of 
the object from the candidate boxes directly. Some widely-used one-
stage object detectors include the single shot multibox detector [8], the 
YOLO methods [9], and the RetinaNet [10], etc. The main procedure 
of existing two-stage object detectors can be summarized into two 
steps: (1) extracting candidate boxes from the image, and (2) obtain-
ing detection results based on the candidate regions. Representative 
two-stage object detection methods include the regions with CNN 
features (R-CNN) [11], the spatial pyramid pooling network [12], the 
fast R-CNN [13], the faster R-CNN [14], and the mask R-CNN [15]. 
Two-stage object detection methods exhibit high recognition accuracy 
with the sacrifice of recognition efficiency. Substantial computational 
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resources are required to build an effective two-stage object detec-
tor, which makes it unsuitable for onboard object detection on low-
performance embedded devices. Compared with the two-stage meth-
ods, the one-stage object detection methods exhibit faster detection 
speed.

Due to the proper balance between the detection speed and accu-
racy, the YOLO methods have been successfully exploited in real-world 
object detection [16–18]. Unfortunately, limited by the computational 
resources and hardware storage, it is difficult to deploy the original 
YOLO methods to onboard devices. To tackle the resource-constrained 
object detection problem, designing lightweight networks has become 
an effective way to build an efficient onboard object detector with satis-
factory detection accuracy while requiring relatively less computational 
resources [19,20].

Up to now, many YOLO-based lightweight networks have been de-
veloped for resource-constrained applications. For example, the
YOLOv3-tiny algorithm has been proposed in [19] which includes 
fewer convolutional layers than the original YOLOv3, thereby requir-
ing much less hardware memory. In [20], an enhanced YOLOv3-tiny 
algorithm has been presented to address the low detection accuracy 
problem in vehicle detection. In [21], an anchor configuration strat-
egy has been presented in the YOLOv4-tiny to address the issue of 
omitting small objects for mobile device object detection. Recently, a 
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Fig. 1. Network structure of the YOLOv3.
modified YOLOv4-tiny has been introduced in [22] by integrating the 
self-attention mechanism and spatial pyramid pooling scheme, which 
achieves higher detection accuracy than the original YOLOv4-tiny 
while maintaining a consistent detection speed. More recently, an im-
proved YOLOv5-based lightweight network has been developed in [23] 
for real-time detection of insulator failures on mobile devices. Very 
recently, a YOLOv5n-based lightweight network has been introduced 
in [24] for railway fastener inspection and localization.

Note that existing lightweight object detection methods still face 
the following challenges: (1) how to achieve a proper balance between 
the detection accuracy and the detection speed for onboard object 
detection? (2) how to maintain the generalization ability of the on-
board object detector? and (3) how to build a reliable onboard object 
detector for handling complex scenes with limited resources? In light of 
the above-mentioned challenges, the YOLO-based efficient lightweight 
network (YOLO-ELWNet) is proposed in this paper based on the original 
YOLOv3 for onboard object detection. In the introduced YOLO-ELWNet, 
we modify the backbone, neck, and head blocks of the original YOLOv3 
in order to boost the performance of the detector in terms of detection 
accuracy and detection speed under resource-constrained conditions.

The main contributions of this paper can be highlighted as follows.

(1) A channel split and shuffle with coordinate attention (CSS-CA) 
module is proposed for the backbone of the YOLO-ELWNet, 
thereby significantly reducing the parameter size and compu-
tational cost of the network while maintaining high detection 
accuracy.

(2) A feature pyramid network with cross stage partial (FPN-CSP) 
block is developed for the neck of YOLO-ELWNet, where a novel 
cross stage partial with efficient bottleneck (CSP-EB) module 
is designed to reduce the memory access cost (MAC) of the 
YOLO-ELWNet.

(3) The Scylla intersection over union (SIoU) loss function is em-
ployed to update the head block, which evidently accelerates the 
convergence speed of the YOLO-ELWNet.

(4) Experimental results demonstrate that the YOLO-ELWNet out-
performs some currently popular lightweight networks and ob-
ject detectors on the KITTI vision benchmark.
2 
The remainder of this paper is organized as follows. Section 2 
presents the preliminaries of the original YOLOv3. A detailed intro-
duction of the proposed YOLO-ELWNet is presented in Section 3. 
Experimental results and discussions are reported in Section 4. Finally, 
the paper ends with the conclusion and future work in Section 5.

2. YOLOv3 preliminaries

YOLOv3 is a popular object detection method which is capable of 
detecting several objects with a single inference, thereby demonstrating 
fast detection speed [2,3,17]. The structure of the YOLOv3 is shown 
in Fig.  1, which includes four components, i.e., the input block, the 
backbone block, the neck block, and the head block. To be specific, 
the backbone block is the main feature extraction network. The neck 
block is the intermediate feature fusion network, and the head is the 
prediction block.

2.1. Input

In the original YOLOv3, the input size of the network is 416 × 416. 
To prevent distortion, gray bars are added to the images, which can 
effectively increase the detection accuracy and improve the compu-
tational speed of the detector. Usually, data augmentation techniques 
(such as random flipping, random scaling, and color space distortion) 
are exploited to expand the training set with the purpose of improving 
the generalization ability of the developed model.

2.2. Backbone

In YOLOv3, the DarkNet53 is employed as the backbone [17]. 
As shown in Fig.  1, the DarkNet53 begins with a combination of 
convolution-batch normalization-leaky ReLU (CBL) module to adjust 
the channel dimension to 32. That is to say, each CBL module consists 
of a convolutional layer, a batch normalization layer, and an activation 
function layer. Next, one CBL module (which is used to further down-
sample the feature map and double the channel dimension) is combined 
with a residual block (Resblock) to generate the feature map F1. The 
combination is repeated by connecting one CBL module with 2, 8, 8, 
and 4 Resblocks, respectively, resulting in feature maps F2, F3, F4, and 
F5. The obtained feature maps are then fed into the neck block.
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Fig. 2. Network structure of the YOLO-ELWNet.
2.3. Neck

The feature pyramid network (FPN) is employed as the neck block 
of YOLOv3, where the feature map F5 containing high-level semantic 
information goes through five CBL blocks. The resulting feature map is 
then split into two branches. One branch serves as the direct output, 
while the other branch undergoes a single CBL module and is upsam-
pled before being concatenated with the F4 feature map. Similarly, both 
F3 and F4 in the YOLOv3 network have similar structures, which is 
depicted in Fig.  1. As such, the semantic information is propagated 
from lower-level feature maps to higher-level feature maps, facilitating 
feature fusion and enhancing the expressive power of the features.

2.4. Head

The prediction head utilizes anchor boxes to compute the center 
coordinates (e.g., width and height) of the predicted bounding box. The 
logistic function is employed to predict the object’s class probability, 
and the intersection over union (IoU) is used to calculate the confidence 
score. Finally, a loss function (which incorporates target localization 
offset loss, target confidence loss, and target classification loss) is 
designed to measure the discrepancy between predicted boxes and 
ground truth boxes, thereby retaining the predicted boxes with the 
highest confidence scores and filtering out redundant objects.

Remark 1.  The YOLOv3 is an efficient and practical method among 
the YOLO family due to the fast detection speed. The subsequent YOLO 
variants are usually optimized based on the network structure of the 
YOLOv3. The main limitation of the YOLOv3 lies in the ‘‘slightly’’ lower 
detection accuracy in comparison with other YOLO algorithms. Owing 
to its merits, we design a new lightweight network by using YOLOv3 
as the baseline in this paper.

3. YOLO-ELWNet

In this paper, a YOLO-based efficient lightweight network (YOLO-
ELWNet) is expressly designed for resource-constrained devices and 
mainly undergoes improvements on three aspects, including the back-
bone, neck, and head of the YOLO-ELWNet. The network structure of 
the proposed YOLO-ELWNet is depicted in Fig.  2.
3 
3.1. Lightweight backbone

In the backbone block, a convolution-batch normalization-
hardswish (CBH) module is employed to reduce the computational 
burden. The Hardswish activation function is utilized in the CBH 
module to improve the training efficiency [25]. A CSS-CA module based 
on the coordinate attention (CA) mechanism [26] is proposed to replace 
the Resblock in the original YOLOv3 backbone. The spatial pyramid 
pooling-fast (SPPF) module [27] is applied to enhance the detection 
speed of the backbone block.

3.1.1. CBH module
In the CBL module of the YOLOv3, the leaky ReLU is chosen as the 

activation function [17]. To tackle the computational limitations of em-
bedded devices, the ReLU6 activation function is frequently employed 
in lightweight networks, which is suitable for low-precision calcula-
tions. However, the ReLU6 activation function would face the gradient 
vanishing problem when the input value of the activation function 
exceeds 6. Note that the Swish activation function combines the advan-
tages of both ReLU and Sigmoid functions, which is widely exploited 
in variant YOLO methods [28]. Owing to the characteristics of smooth 
curve and boundedness, the Swish activation function could prevent 
overfitting. But the exponential operations of the Swish activation 
function would bring computational burden on resource-constrained 
devices. Thus, by integrating the ReLU6 and Swish functions, the 
Hardswish activation function is put forward in [25].

In this paper, the CBH module is established based on the Hardswish 
activation function to replace the CBL module in the original YOLOv3. 
The expression of Hardswish activation function can be formulated as 
follows 

Hardswish(𝑥) =
𝑥 ⋅ ReLU6(𝑥 + 3)

6
. (1)

Remark 2.  In comparison with the ReLU6 and Swish activation 
functions with hard restrictions and expensive computational cost, the 
Hardswish activation function can offer a smooth and bounded curve, 
enabling effective gradient propagation during training while reducing 
the computational burden significantly in lightweight networks.
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Fig. 3. Structure of the CSS-CA module.

3.1.2. CSS-CA module
In this paper, a CSS-CA module is deployed to replace the residual 

module in the original YOLOv3. Owing to its lightweight characteristic 
in ShuffleNetV2, the CSS module is employed for feature extraction [29,
30]. To further capture the spatial and channel feature, the CA module 
is embedded into the CSS module [26]. In fact, several attention 
modules have been successfully exploited in extracting spatial feature 
and channel feature. We choose the CA module due to its requirement 
of fewer parameters and less computational cost comparing with others. 
In this case, the introduced CSS-CA module could maintain the detec-
tion efficiency and requires less computational cost than the original 
ResNet block.

The structure of the CSS-CA module is shown in Fig.  5. To be spe-
cific, there are two different settings of the CSS-CA module depending 
on the stride size. When the stride is equal to 1, the CSS-CA module 
is split into two branches via channel split. As shown in Fig.  3, the 
input is fed into the convolution layer with 1 × 1 kernel, the depthwise 
convolution (DWC) with 3 × 3 kernel, the CA module, and the standard 
convolution layer with 1 × 1 kernel, which is then concatenated with 
the direct input of itself for channel shuffle. When the stride size is 2, 
the input is fed into two sets of convolution layers. The first set includes 
the DWC with 3 × 3 kernel and the standard convolution layer with 
1 × 1 kernel. The second set consists of the convolution layer with 1 × 1 
kernel, the DWC with 3 × 3 kernel, and the standard convolution layer 
with 1 × 1 kernel. Then, the outputs of the two sets are concatenated 
for channel shuffle. Note that the channel shuffle is employed in the 
CSS-CA module to ensure information transmission.

3.2. Improved neck

As displayed in Fig.  1, the FPN is used for the neck of YOLOv3. 
Unfortunately, the basic FPN suffers from weak feature extraction 
capabilities and high computational costs due to the simple stacking 
of CBL modules. To deal with the aforementioned problems, a CSP 
with efficient bottleneck (CSP-EB) module, inspired by CSPNet [31] 
and ConvNeXt [32], is proposed to replace five repeated CBL modules 
in FPN. The structure of the CSP-EB module is depicted in Fig.  4. 
After replacing the CBL modules in FPN with CSP-EB, a highly efficient 
feature fusion network called FPN-CSP is designed for the neck of 
YOLO-ELWNet.
4 
Fig. 4. Structure of the CSP-EB module.

As shown in Fig.  2, except for using the CSP-EB module to replace 
five CBL modules and change other CBLs to CBHs, FPN-CSP retains the 
same structure as the FPN in YOLOv3. The input is fed into two sets 
of convolution layers in the CSP-EB module depicted in Fig.  4. The 
first set includes the standard convolution layer with 3 × 3 kernel. The 
second set consists of a standard convolution layer with 3 × 3 kernel, 
a residual structure containing the DWC with 7 × 7 kernel, and two 
standard convolution layers with 1 × 1 kernel. Then, the outputs of 
the two sets are concatenated for channel adjustment using a standard 
convolution layer with 3 × 3 kernel. The CSP-EB structure effectively 
eliminates computational bottlenecks, allowing the network model to 
achieve higher performance with fewer computational resources. The 
concatenation technique deepens the connections between different 
layers and enhances the feature extraction capability of the CNN.

3.3. Modified head

The head of the proposed YOLO-ELWNet includes the CBH module 
followed by the convolution operator. Comparing with the baseline 
YOLOv3, the CBL modules are replaced by the CBH modules. The 
structure of the head is depicted in Fig.  2.

The SIoU loss function introduced in [33] is employed in the head 
of the YOLO-ELWNet. Different from the standard IoU loss function 
utilized in the YOLOv3, the SIoU loss function could alleviate the slow 
convergence and the wandering problem. The SIoU loss function is 
defined by 

SIoU = 1 − IoU + 𝛥 +𝛺
2

, (2)

where 𝛥 is the distance loss between the ground truth and predicted 
box; and 𝛺 is the shape loss. The IoU loss is defined by 

IoU =
Bgt⋂B
Bgt⋃B

, (3)

where 𝐵𝑔𝑡 and 𝐵 indicate the areas of the ground truth and predicted 
boxes shown in Fig.  5. The distance loss 𝛥 is given by 
𝛥 =

∑

𝑘=𝑥,𝑦
(1 − 𝑒−𝛾𝜌𝑘 ), (4)

where 𝜌𝑥 = (𝐵
𝑔𝑡
𝑐𝑥−𝐵𝑐𝑥
𝐶𝑤

), 𝜌𝑦 = (
𝐵𝑔𝑡
𝑐𝑦−𝐵𝑐𝑦
𝐶ℎ

); (𝐵𝑔𝑡
𝑐𝑥, 𝐵

𝑔𝑡
𝑐𝑦) and (𝐵𝑐𝑥, 𝐵𝑐𝑦) are the 

center coordinates of the ground truth and predicted boxes, respec-
tively; 𝐶  and 𝐶  (which are shown in Fig.  5) are width and height of 
𝑤 ℎ
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Fig. 5. Illustration of distance loss.

the minimum bounding rectangle for the ground truth and predicted 
boxes, respectively; 𝛾 is an intensity factor.

The shape loss 𝛺 is presented by 

𝛺 =
∑

𝑘=𝑤,ℎ
(1 − 𝑒−𝜔𝑘 )𝜃 , (5)

where 𝜔𝑤 = |𝑤𝑔𝑡−𝑤|

max(𝑤𝑔𝑡 ,𝑤) , 𝜔ℎ = |ℎ𝑔𝑡−ℎ|
max(ℎ𝑔𝑡 ,ℎ) ; 𝑤𝑔𝑡 and ℎ𝑔𝑡 are width and height 

of the ground truth box, respectively; 𝑤 and ℎ are width and height of 
the predicted box, respectively; 𝜃 is a hyperparameter representing the 
intensity of the shape loss.

4. Experiments

4.1. Dataset and experiment configuration

4.1.1. Dataset
In this paper, the KITTI dataset is employed to evaluate the perfor-

mance of the developed YOLO-ELWNet [34]. KITTI is a public dataset 
consisting of real-world image data captured in various scenarios such 
as urban areas, rural areas, and highways. The KITTI dataset comprises 
a total of 7481 images with the size of 1242 × 375. The object types 
in the KITTI dataset include car, van, tram, truck, pedestrian, person-
sitting, and cyclist. In this paper, we only focus on the pedestrians and 
vehicles categories. In this case, the objects of car, van, tram, and truck 
are merged into the car category, and the pedestrian, person-sitting, 
and cyclist images are merged into the pedestrian category. In the 
experiments, the images for training, validation, and testing are 6060, 
673, and 748, respectively.

4.1.2. Experiment configuration
The configuration of the experimental environment of this paper is 

presented in Table  1. The CPU and GPU of the computer are configured 
as AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz and NVIDIA 
GeForce RTX 3060 12G, respectively. The operating system is Windows 
10 Professional Edition, and the integrated development environment is 
created by using Anaconda with Python 3.7.13 and PyTorch 1.7.1 deep 
learning framework. Additionally, the CUDA 11.0 computing platform 
and cuDNN 8.0.5 neural network library are used for acceleration in 
the experiments.

The Adam optimizer with a decay coefficient of 0.0005 is exploited 
for the model optimization. The input image is reshaped to 416 × 416, 
and the batch size is set as 32. The initial learning rate is set as 0.001. 
After each epoch, the learning rate decreases by a factor of 0.94 in a 
total of 100 epochs.
5 
Table 1
Experimental environment.
 Name Configuration  
 CPU AMD Ryzen 9 5900X 12-Core  
 GPU NVIDIA GeForce RTX 3060 12G  
 Operating System Windows 10 Professional Edition 
 Deep Learning Frame Pytorch 1.7.1  
 Development Environment Python 3.7.13, CUDA 11.0  
 GPU-accelerated Library cuDNN 8.0.5  

4.2. Evaluation metrics

In this paper, mean average precision (mAP), number of floating-
point operations (FLOPs), number of parameters (Params), and frames 
per second (FPS) are used to evaluate the object detection meth-
ods [35]. mAP is calculated from the precision–recall curve based 
on precision and recall, representing the average precision across all 
classes. Due to limited computational resources of onboard devices, 
model complexity is another important metric that cannot be ignored 
except for detection accuracy. We use two commonly used metrics 
(e.g., FLOPs and Params) to measure the model complexity. Note that 
the FLOPs represent the theoretical computational load required by 
convolutions for training and running a model, which does not take 
the computational load required by other operations into account. De-
tection speed is an important metric which directly reflects whether the 
model meets the requirements for real-time detection or not. The FPS 
is employed as a direct metric to represent the detection speed of the 
model, while FLOPs serve as an indirect metric for the computational 
load. The positive and negative samples are determined using the IoU 
score. In detail, a sample is considered positive if the IoU score is larger 
than 0.5, and the sample is considered negative if the IoU score is below 
than 0.5. For fair comparisons, the performance of different models 
is tested on the same GPU (NVIDIA GeForce RTX 3060 12G) in the 
experiment.

4.3. Experimental results

4.3.1. Comparison of lightweight backbones
In this section, the backbone of YOLO-ELWNet (denoted by ELWNet-

B) is compared with some other backbones, since the backbone plays 
a critical role in lightweight networks. In order to evaluate the per-
formance of ELWNet-B, we replace DarkNet53 (which is the backbone 
of YOLOv3) by a few popular networks including MobileNetV3 [25], 
MobileNeXt [36], GhostNet [37], and EfficientNetV2 [38], and test 
all the detectors on the KITTI dataset. The network parameters for 
ELWNet-B are illustrated in Table  2.

The aforementioned four lightweight networks are used with their 
original structures, i.e., MobileNetV3-large for MobileNetV3,
MobileNeXt-1.0 for MobileNeXt, GhostNet-1.0 for GhostNet, and the 
baseline for EfficientNetV2. Similar to DarkNet53, the obtained feature 
maps F3, F4, and F5 are fed into the neck as the input by using the 
four lightweight networks. For the backbone of YOLO-ELWNet, F3 
corresponds to the 4th CSS-CA module, F4 corresponds to the 14th 
CSS-CA module, and F5 corresponds to the SPPF module.

The evaluation results of the utilized lightweight networks on the 
KITTI dataset are given in Table  3. It can be observed that ELWNet-B 
outperforms other lightweight networks in terms of the overall perfor-
mance. Compared to the MobileNet series network, ELWNet-B demon-
strates better detection accuracy with the sacrifice of a bit of detection 
speed. The mAP of ELWNet-B is 2.88% and 3.68% higher than that 
of the MobileNeXt and the MobileNetV3, respectively. Compared to 
GhostNet, ELWNet-B exhibits a 2.28% increase in mAP while a 7.22 de-
crease in FPS. Besides, EfficientNetV2 (which is the largest lightweight 
network) shows an 8.72 increase in FPS but a 2.54% lower mAP than 
ELWNet-B.
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Table 2
Network parameters for ELWNet-B.
 Input Operator Output channels CA Stride 
 416 × 416 × 3 Conv2d 6 × 6 64 – 2  
 208 × 208 × 64 Maxpool 3 × 3 64 – 2  
 104 × 104 × 64 CSS-CA 256 – 2  
 52 × 52 × 256 CSS-CA 256 ✓ 1  
 52 × 52 × 256 CSS-CA 256 ✓ 1  
 52 × 52 × 256 CSS-CA 256 ✓ 1  
 52 × 52 × 256 CSS-CA 512 – 2  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 512 ✓ 1  
 26 × 26 × 512 CSS-CA 1024 – 2  
 13 × 13 × 1024 CSS-CA 1024 ✓ 1  
 13 × 13 × 1024 CSS-CA 1024 ✓ 1  
 13 × 13 × 1024 CSS-CA 1024 ✓ 1  
 13 × 13 × 1024 SPPF 1024 – –  

Table 3
Comparison of lightweight backbones.
 Backbone mAP (%) FPS Params (M) FLOPs (G) 
 ELWNet-B 81.12 49.00 27.67 22.05  
 MobileNetV3 77.44 72.98 23.18 17.42  
 MobileNeXt 78.24 62.09 22.73 18.28  
 GhostNet 78.84 56.22 22.25 16.80  
 EfficientNetV2 78.58 57.72 31.85 21.24  

Fig. 6. Comparison of lightweight backbones.

For CNN-based object detectors, achieving a slight improvement in 
detection accuracy often comes at the cost of much slower detection 
speed and larger model size. The experimental results demonstrate 
that our ELWNet-B shows notable improvement in detection accuracy 
with slightly decreased detection speed and increased model size. To 
summarize, the proposed ELWNet-B exhibits the best overall perfor-
mance among the five selected lightweight networks. For visualization, 
the bar chart is employed to compare the lightweight networks. The 
performance evaluation is displayed in Fig.  6, which offers an intuitive 
understanding of the performance comparison.

4.3.2. Ablation experiment
To evaluate the influence of the introduced modules, ablation exper-

iments are conducted on the KITTI dataset for measuring the network 
performance. For fair comparison, all networks are trained and tested 
under the same hardware environment. The ablation experimental 
6 
Table 4
Results of ablation experiments.
 Backbone mAP (%) FPS Params (M) FLOPs (G) 
 Baseline 79.17 45.00 61.53 65.60  
 Baseline+CSS 81.12 49.00 27.67 22.05  
 Baseline+CSS+SIoU 82.25 48.27 27.67 22.05  
 Baseline+CSS+SIoU+CSP 83.91 48.45 23.87 20.01  
 Baseline+CSS+SIoU+CSP+Aug 85.08 48.45 23.87 20.01  

Fig. 7. Results of ablation experiments.

Fig. 8. Comparison of different object detectors.

results are illustrated in Table  4, where the standard YOLOv3 is adopted 
as the baseline. Here, CSS indicates the backbone using the CSS-CA 
module. SIoU represents the loss function used in the head. CSP denotes 
the utilization of the FPN-CSP network as the neck, and Aug represents 
the data augmentation with adjusted scaling ratios.

It can be seen in Table  4 that the CSS-CA-based backbone exhibits 
a higher mAP and FPS than the baseline. Nevertheless, the numbers 
of Params and FLOPs of the CSS-CA-based backbone are significantly 
smaller comparing with the baseline, leading to notable improvement 
on the object detector performance.

As shown in Table  4, by incorporating the SIoU loss function, the 
mAP of the Baseline+CSS+SIoU model is 82.25%, which demonstrates 
an additional 1.13% increase than the Baseline+CSS model. The net-
work convergence speed is accelerated, thereby enhancing training 
efficiency and allowing the network to achieve optimal performance 
with fewer epochs.

Replacing the FPN (which is used in the neck) by the designed 
FPN-CSP results in 1.66% higher mAP than the Baseline+CSS+SIoU 
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Fig. 9. Comparison of car detection.
Fig. 10. Comparison of pedestrian detection.
model. In addition, the numbers of Params and FLOPs of the Base-
line+CSS+SIoU+CSP model are slightly smaller than those of the Base-
line+CSS+SIoU model, which shows that the computational burden is 
reduced.

Considering the limited feature extraction capability of the network, 
adjusting the scaling ratios (during the data augmentation phase) in 
the training stage yields an mAP of 85.08%, which demonstrates 5.91% 
higher mAP comparing with the YOLOv3 baseline. The bar chart results 
of the ablation study are depicted in Fig.  7.

The ablation study results indicate that each improvement can 
promote the network model to varying degrees, resulting in higher 
detection accuracy, faster detection speed, and smaller model size. 
The proposed method with introduced modules and modifications can 
effectively tackle the pedestrian and car detection problem in onboard 
devices.
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4.3.3. Comparison of different object detectors
The YOLO-ELWNet method is compared with some existing popular 

object detection methods, including YOLOv4 [16], YOLOv5-M [39], 
YOLOX-M [40], and CenterNet [41]. The experimental results of the 
chosen object detectors are presented in Table  5.

As shown in Table  5, the YOLO-ELWNet method obtains the largest 
mAP comparing with the selected algorithms. Specifically, the mAP of 
the YOLO-ELWNet is 5.91%, 2.58%, 4.22%, 8.8%, and 11.16% higher 
than that of the baseline and other algorithms, respectively.

YOLOv4 achieves the second best mAP among the selected ob-
ject detection methods, which seems to be another powerful detector. 
Nevertheless, the detection speed of YOLOv4 is inevitably affected by 
the additional strategies, and the relatively large model size makes it 
unsuitable for onboard devices. Although YOLOv5-M requires fewer 
model parameters than the YOLO-ELWNet, the number of FLOPs of 
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Fig. 11. Comparison of close-up detection.
Fig. 12. Comparison of remote scenery detection.
Table 5
Comparison of some currently popular object detectors.
 Algorithm Resolution mAP (%) FPS Params (M) FLOPs (G) 
 Baseline 416 79.17 45.00 61.53 65.60  
 YOLOv4 416 82.50 37.94 63.94 59.96  
 YOLOv5-M 640 80.86 44.40 21.06 50.61  
 YOLOX-M 640 76.28 37.43 25.33 73.98  
 CenterNet 512 73.92 61.79 32.67 70.22  
 YOLO-ELWNet 416 85.08 48.45 23.87 20.01  

YOLOv5-M is much larger than that of the YOLO-ELWNet, which is 
not a suitable candidate for onboard object detection. Benefiting from 
the anchor-free detectors, the computational time of the CenterNet 
is reduced when calculating bounding boxes, demonstrating relatively 
faster FPS. However, the anchor-free detectors in CenterNet would lead 
8 
to slower model convergence speed and lower mAP compared to other 
methods, which is unsuitable for onboard object detection. Abandoning 
the anchor-based detectors, YOLOX utilizes label assignment strategies 
and decoupled heads to compensate for the metric loss in mAP. Never-
theless, the performance of the YOLOX on the KITTI vision benchmark 
is unsatisfactory.

The selected model performance on the mAP, FPS, Params, and 
FLOPs are depicted in Fig.  8. Moreover, four images depicting complex 
scenarios are used to demonstrate the performance of the algorithms in 
vehicle, pedestrian, close-range, and long-range detections. Each image 
represents a complex scene with significant shadowing and occlusion 
from trees. The detection results of all selected methods are displayed 
in Figs.  9–12. It can be observed that CenterNet exhibits severe missed 
detections. YOLOv5-M has a few missed detections, and YOLOX-M 
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shows poor performance in capturing small objects. Notably, the pro-
posed YOLO-ELWNet outperforms YOLOv3 and YOLOv4 in complex 
scenarios.

In conclusion, the proposed YOLO-ELWNet outperforms the selected 
popular object detectors in terms of detection accuracy, computational 
cost and model parameters, which demonstrates its applicability on 
onboard devices for real-time detection.

5. Conclusion

In this paper, an efficient lightweight neural network model, YOLO-
ELWNet, has been proposed for object detection on onboard devices. 
The backbone block of the YOLO-ELWNet has been developed by 
introducing the CSS-CA module for feature extraction and the SPPF 
module for expanding the receptive field. The designed CSP-EB module 
has been embedded in the feature fusion network FPN-CSP, which 
effectively extracts semantic information and enhances the connectivity 
between feature maps. The SIoU loss function has been deployed in 
the head block to speed up the model convergence and improve the 
training efficiency. Experimental results have demonstrated that the 
introduced YOLO-ELWNet achieves significant improvements on the 
detection accuracy, detection speed, model parameters, and computa-
tional cost in comparison with some selected popular object detectors. 
Results have shown the effectiveness and applicability of the proposed 
YOLO-ELWNet for resource-constrained onboard devices.

In our future research, we will focus on exploring the model’s 
generalization capabilities across various scenarios while optimizing it 
to adapt to more diverse data. Additionally, we will concentrate on 
decreasing the model’s computational complexity to make it acceptable 
for devices with limited resources. Concurrently, we will pay attention 
to the model’s real-time performance and robustness, ensuring its effi-
ciency and stability in dynamic and uncertain environments. Through 
these improvements, we expect the YOLO-ELWNet model to better 
serve complex systems such as the automatic drive, autonomous robot, 
and motor fault diagnosis [42–55].
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