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Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing
on Postural Control, Balance Confidence, Falls Efficacy, and
Perceived Balance in Older Adults
Daniel Craig Low

Centre for Physical Activity in Health and Disease, Brunel University of London, London UB8 3PH, UK;
daniel.low@brunel.ac.uk

Abstract: Background/Objectives: Postural control describes our ability to maintain an
upright position. This study explored the impact of prolonged ankle plantar-flexed standing
on postural control variability and strategy in an older adult population. The ability
to perceive balance change was also assessed via subjective balance-related variables.
Methods: Twenty-four community-dwelling older adults were recruited via convenience
sampling. Each participant completed a balance confidence and falls efficacy questionnaire
at baseline. Five barefoot quiet standing trials on a force plate then followed (Timepoint
1). After this, the participants stood with their ankles in a plantar-flexed position for up
to 7.5 min before completing another quiet standing trial on the force plate. Four further
ankle plantar-flexed standing trials of 2 min were then completed, interspersed with quiet
standing trials on a force plate (Timepoint 2). The balance confidence and falls efficacy
questionnaires were then completed again. For measures of postural control variability
(sway path length, root mean square [RMS], sway area) and strategy (fractal dimension),
mean values for the five trials were calculated for Timepoints 1 and 2 separately. Results:
The sway path length and RMS measures were significantly increased (p < 0.05) at Timepoint
2. However, the fractal dimension did not change. There was also no change in balance
confidence or falls efficacy. Conclusions: The findings suggest that prolonged standing
can impact measures of postural variability without a change in postural control strategy.
Postural control change also occurred without a change in subjective balance measures,
suggesting that the altered balance may not be practically significant or perceptible to
the individual.

Keywords: postural variability; postural strategy; fatigue; older people

1. Introduction
Human postural control has been modelled as an inverted pendulum with muscular

forces acting about the ankle joints to control the centre-of-mass movement [1,2]. Older
adults who engage in prolonged activity involving the ankle plantar flexors may experience
muscular fatigue, leading to increased postural sway area and sway path [3]; this is
indicative of an increased fall risk [4,5].

The sway area and path length variables are linear measures of postural control that
offer insight into postural variability [6]. A complimentary non-linear analysis, such as the
calculation of fractal dimension, provides additional insight into postural control strate-
gies [7,8]. However, previous studies of prolonged standing with older adult populations
have not explored changes in control strategy. These studies, therefore, miss important
insight into control mechanisms. Similarly, they tend to study the effect of volitional fatigue,
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which is less likely to be experienced by older adults. Furthermore, postural control data
are inherently instable [9], which can impact the data’s absolute and relative reliability [10].
Studies fail to offer interpretations of their findings in relation to the data’s reliability,
especially the Minimum Detectable Change (MDC), considered the smallest real difference
that reflects true change rather than measurement error [11]. Consequently, these factors
can impact the previous conclusions drawn.

The practical significance of postural control change is also missing in previous re-
search. It is, therefore, unclear whether prolonged plantar-flexed standing leads to a
perceptible change in balance, balance confidence, or falls efficacy. This is important given
that a change in these subjective states relates to fear of falling, physical activity avoid-
ance [12,13], and quality of life [14]. In fact, it is not clear whether there is a relationship
between a change in these measures and a change in postural control variables.

This study sought to understand the effect of prolonged activity on the postural control
variability and strategy of older adults. Furthermore, it aimed to evaluate whether there
was any subjective balance change experienced and whether there were any relationships
between changes in postural control and subjective balance measures. It was hypothesised
that postural control will decrease following prolonged standing. It was also thought that
balance confidence and falls efficacy will decrease following prolonged standing. Finally, it
was hypothesised that a change in postural control measures will be positively associated
with a perceived change in balance and falls efficacy and negatively associated with
balance confidence.

2. Materials and Methods
A convenience sample of 24 healthy, community-living older adults (73.7 ± 6.8 years;

Male/Female = 9/15) meeting the inclusion and exclusion criteria was recruited from
the West London area of the United Kingdom. The inclusion criteria required partici-
pants (1) to be at least 60 years old and (2) to independently stand without an assistance
device (e.g., cane and walkers). Older adult residents with cognitive impairment, dete-
riorated musculoskeletal or neurological function, and any medical disease history that
impaired walking and balance (e.g., arthritis, diabetes, visuospatial deficits) were ex-
cluded. This study was approved by the Brunel University of London ethics committee
(42477-A-Feb/2024-49776-1) in accordance with the Declaration of Helsinki. The number
of participants was calculated based on the need to reach a statistical power of 0.8 with
p = 0.05 and d = 0.75 [15]. A Cohen’s d of 0.75 was chosen since it is considered large in
gerontology [16], and these changes are described as ‘grossly perceptible’ [15] and, thus,
could be considered important from a practical perspective.

At baseline, the participants undertook five barefoot quiet standing trials (20 s each)
upon a force plate (Kistler, Winterthur, Switzerland; 100 Hz), standing with their feet
shoulder width apart and arms by their sides, with visual fixation on a cross marked
approximately 1.8 m in distance and 1.8 m in height on a wall. The participants then stood
with their ankles plantar-flexed so that their heels were off the floor, for up to 7.5 min.
After the completion of this time period or when they could not continue any longer,
the participants stood on the force plate again for another 20 s quiet standing trial in the
same stance. Plantar-flexed standing was then repeated four further times, each lasting
two minutes, with a quiet standing trial collected after each. Each plantar-flexed stand
was conducted next to the force plate to minimise the duration taken between the end of
the task and the collection of postural control data. This, along with the quiet standing
trial duration and conducting the plantar-flexed standing before each quiet standing trial,
followed recommendations made to ensure fatigue remained present [17]. A chair was
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also placed in front of the participant so that the participants could use this to remain
plantar-flexed standing for as long as possible.

Postural control variability was measured using the anterior–posterior (A-P), medio-
lateral (M-L), and total sway path lengths; the A-P and M-L RMS and the RMS radius. and
sway area (95% confidence area) were also calculated. These measures are all associated
with the risk of falls and calculated using the position of the centre of pressure (COP) along
with published formulae [18]. The fractal dimension was also calculated, using the 95%
confidence area and total sway path length (Equation (1)), where N is number of sample
points. A value of 1 indicated a completely stationary postural control signal, and a value of
2 indicated completely random postural control data [19]. The data were not filtered since
this can remove natural variability, resulting in a loss of complexity [19]. The COP data
were calculated within BioWare software (version 5.3, Kistler, Winterthur, Switzerland), and
then all the postural control calculations were performed within Microsoft Excel (Microsoft
Corporation, Redmond, WA, USA).

log N

log N + log
√

4
π × 95% confidence area − log total sway path length

(1)

Before baseline quiet standing trials and following the 5th plantar-flexion quiet stand-
ing trial, the participants completed the English Falls Efficacy Scale (FES-I) [13], which
consists of 16 questions about the participants’ concern of falling. The FES-I has excellent
test–retest reliability and good internal consistency [13]; it also possesses good sensitivity
in community-dwelling older adults [20], including for changes in physical function [21].
The sum of the ordinal data is calculated and interpreted as follows: those with scores of
16–19 have a low concern of falling; 20–27 indicates a moderate concern of falling; and
above 28 indicates a high concern of falling [22]. The participants’ balance confidence was
also assessed using the Activity-Specific Balance Confidence short-version questionnaire
(ABC) [12]. This consists of 6 questions with outcome scores presented as ordinal data.
The scale possesses excellent test–retest reliability [23] and also has high internal consis-
tency [24]. The ABC is related to physical function in community-dwelling older adults.
The average score for the questions was determined and interpreted as follows: a score
lower than 50 was indicative of low functioning, 50–80 was moderate functioning, and
above 80 was high functioning [12].

Along with the FES-I and ABC, the participants also rated their perceived change in
balance on a 15-point Generalised Rating of Change (GRC) question [25]. The self-report
GRC is a single-item, recall-based questionnaire of global well-being and pain, based on
change since an initial treatment encounter. The participants scored their global rating of
change in balance compared with their baseline standing on a 15-point self-report Likert
scale (from −7 to 7). A score of 1 to 7 suggests improvement; 0 suggests no change; and
−1 to −7 indicates deterioration. The larger the value, the greater the degree of change.
The outcome scores are ordinal and considered to have high face reliability [26]; they are
also often used as an external standard of change in functional status [27]. The order for
completing these questionnaires was varied across participants.

The effect of the prolonged standing was explored for each postural control variable
by averaging the five baseline trials and comparing these with the average of the five
trials collected post plantar-flexed standing; the averaging of multiple trials substantially
improves the reliability of the data [28]. These were compared using paired sample t-tests.
Similarly, Wilcoxon-signed rank tests were used to explore the differences in ABC and FES-I.
The association between the change in postural control data and the change in balance
confidence and falls efficacy (gain score) was determined using a Spearman’s Rank Correla-
tion Coefficient; these analyses were performed within SPSS software 29.0 (Version 29, IBM
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Corp., Armonk, NY, USA). The size of the relationships was identified as weak when r = 0
to 0.3 or 0 to −0.3 (positive and negative relationship, respectively), moderate when r = 0.3
to 0.7 and −0.3 to −0.7 (positive and negative relationship, respectively), and strong when
r = 0.7 to 1 and −0.7 to −1 (positive and negative relationship, respectively) [29]. Missing
data were omitted from the calculations and reflected in the overall count of responses.
Statistical significance was accepted at p < 0.05.

The relative reliability of the postural control data was assessed using the 5 baseline
trials by calculating the average measures two-way random absolute agreement Intraclass
Correlation Coefficient (ICC2,5). These ICCs were interpreted using the following criteria:
ICC of 0 to 0.5 indicates poor reliability; 0.5 to 0.75 is considered moderate reliability; 0.75
to 0.9 is considered good reliability; and above 0.9 is considered excellent reliability [30].
The standard error of the measurement (SEM) was determined using Equation (2), where
SD was determined using Equation (3); the sum of squares total (SStotal) was provided
within the ANOVA table provided by SPSS along with the ICC data [31].

SEM = SD
√

1 − ICC2,5 (2)√
SStotal/(n − 1) (3)

To assess whether any individual change in postural control data was real or due to
chance, the MDC95 was determined using Equation (4).

MDC95 = SEM × 1.96
√

2 (4)

3. Results
Based on the ABC, 15 participants were considered high functioning; 2 were low

functioning; and 7 possessed a moderate level of functioning. Furthermore, 14 participants
had a low concern about falling; 9 possessed moderate concern, and 1 participant had high
concern.

All the participants performed five plantar-flexed standing trials, although seven
participants could not sustain standing for the full 7.5 min duration for trial 1. However, all
completed trials two to four, each lasting two minutes.

Prolonged standing resulted in a significantly greater A-P (t(23) = −3.39, p = 0.003,
d = 0.54) and total sway path length (t (23) = −3.35, p = 0.003, d = 0.39); however, the sway
length in the M-L direction did not change (t(23) = −1.53, p = 0.140, d = 0.12) (Figure 1).

The RMS in the A-P direction also significantly increased following plantar-flexed
standing (t(23) = −2.057, p = 0.051), as did the RMS radius (t(23) = 2.034, p = 0.054).
Conversely, the M-L RMS (t(23) = −0.68, p = 0.50) and sway area (t(23) = −1.553, p = 0.134)
did not change, neither did the fractal dimension (t(23) = −3.13, p = 0.757) (Table 1).

Table 1. Mean, standard deviation, and Cohen’s d for postural control measures taken at baseline
(pre) and after plantar-flexed standing (post).

Pre-Mean (SD) Post-Mean (SD) Cohen’s d

RMS A-P (m) * 0.049 (±0.0009) 0.058 (±0.0021) 5.6
RMS M-L (m) 0.059 (±0.0009) 0.035 (±0.0012) 0.9

RMS radius (m) * 0.009 (±0.0124) 0.011 (±0.0141) 0.2
95% ellipse area (m2) 0.0003 (±0.0001) 0.0004 (±0.0002) 0.6

Fractal dimension 1.72 (0.08) 1.73 (0.09) 0.1
* Significance < 0.05; A-P = anterior–posterior; M-L = medio-lateral; RMS = root mean square.
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Figure 1. Comparison of total, medio-lateral (M-L), and anterior–posterior (A-P) sway path at baseline
(pre) and after planar-flexed standing (post).

There was no difference in ABC when comparing baseline (median = 87.92, IQR = 22.92)
with after plantar-flexed standing (median = 88.33, IQR = 26.04), (z = −1.253, p = 0.210);
this was also true for FES-I (baseline median = 19, IQR = 3, after plantar-flexion standing
median = 19, IQR = 4, z = −1.190, p = 0.234).

The GRC was 0 for 12 individuals, suggesting no perceived general change in balance.
Seven individuals experienced a negative change in perceived balance (e.g., poorer balance),
and five rated an improved balance (at least 1-point movement on the scale in either
direction). Table 2 shows that the GRC was moderately and positively correlated with the
change in A-P and total sway path length and RMS A-P. There were no other significant
correlations for GRC nor were there any between sway data and ABC or falls efficacy
gain scores.

Table 2. Correlation between postural control measurements and General Rating of Change in balance
(GRC), Activity-Specific Balance Confidence (ABC), and Falls Efficacy Scale (FES-I).

A-P
Sway

Length

M-L
Sway

Length

Total
Sway

Length

RMS
A-P

RMS
M-L

RMS
Radius

Sway
Area

Fractal
Dimension

GRC R 0.59 0.25 0.61 0.42 0.28 0.35 0.32 −0.13
P <0.01 * 0.25 <0.01 * 0.04 * 0.19 0.10 0.12 0.55

FES-I R 0.02 0.18 0.07 −0.07 −0.08 −0.15 −0.02 0.05
P 0.92 0.41 0.77 0.76 0.73 0.50 0.93 0.82

ABC R −0.31 −0.15 −0.32 0.14 −0.06 0.19 0.002 −0.16
P 0.15 0.48 0.13 0.51 0.79 0.36 0.99 0.47

* Significance < 0.05; A-P = anterior–posterior; M-L = medio-lateral; RMS = root mean square.

The reliability (ICC2,5) of the postural control measurements ranged between moderate
(ICC2,5 = 0.68) to excellent (ICC2,5 = 0.98), except for A-P RMS which was poor and non-
significant (ICC2,5 = 0.27). The MDC95 was represented as a percentage of the baseline
average and ranged from 5.9% to 100% (Table 3).
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Table 3. Relative and absolute reliability for postural control measurements.

ICC2,5 SSTotal SD SEM MDC95 %MDC95

Participants
Exceeding
MDC95 (n)

A-P sway path length 0.92 * 0.516 0.07 0.2 0.05 19.3% 9
M-L sway path length 0.98 * 0.685 0.08 0.1 0.03 10.6% 2
Total sway path length 0.96 * 1.265 0.10 0.2 0.06 14.0% 9

A-P RMS 0.27 0.0004 0.002 0.002 0.004 8.2% 9
M-L RMS 0.68 * 0.0002 0.001 0.0008 0.002 5.9% 10

RMS radius 0.95 * 0.21 0.013 0.003 0.008 88.9% 10
Sway area 0.69 * 0.000005 0.0002 0.0001 0.0003 100% 0

Fractal dimension 0.80 * 1.29 0.10 0.05 0.13 7.6% 0
* Significance < 0.01; ICC = Intraclass Correlation Coefficient; SSTotal = Sum of squaresTotal; SD = standard deviation;
SEM = standard error of measurement; MDC95 = Minimal Detectable Change95; %MDC95 = Minimal Detectable
Change95 as a percentage of baseline mean average; A-P = anterior–posterior; M-L = medio-lateral; RMS = root
mean square.

4. Discussion
This study explored the effect of prolonged activity on postural control. In partial

agreement with the study hypothesis, prolonged activity decreased older adults’ postural
control for some measures, supporting previous observations [3,32]. The greater total sway
path length and RMS radius along with greater movement in the A-P direction suggests
decreased postural steadiness [33] and a greater risk of falling [18].

A decreased function of the plantar flexor muscles due to fatigue may underpin the
observed changes in postural stability. These muscles control movement in the sagittal
plane, across which stability changed. Conversely, in the M-L direction, the sway path
length did not change, which is understandable given that the protocol did not target
muscles that control movement in this direction. During prolonged standing, individuals
can experience reduced blood flow [34], contributing to oxygen and nutrient depletion
and the accumulation of lactic acid in the muscles [35]. Furthermore, during eccentric
contraction, muscle fibres can experience high mechanical stress [36]; all of this can lead
to muscle damage [35] and fatigue [37,38]. As a consequence, the muscles have a reduced
mechanical power and force output [39], leading to a diminished ability to ensure postural
stability. This peripheral fatigue can also impair motor control through weakened sensory
integration and proprioception [40], important for effective postural control [41]. Whilst
fatigue was not directly measured, the postural control changes observed are consistent with
other studies in which individuals were fatigued [3,17,32]. However, it is also important to
acknowledge that the prolonged standing may have also led to increased sway in response
to pain or discomfort. Similarly, the fear of falling may have offered a psychological
explanation for the change in sway [42], yet there were no differences in the subjective
measures collected to suggest this.

The increase in sway paths and RMS was not accompanied by an increased sway area,
an observation that is in contrast to those of Boyas et al. [3]. This may suggest that the
ankle-stabilising muscles were able to retain sufficient joint stiffness to maintain the area in
which the increased sway occurs. The difference in findings is likely due to greater fatigue
induced by Boyas and colleagues, who used isokinetic contractions until failure. Isokinetic
contractions can lead to fatigue more quickly than the isometric contractions used in the
current study [43]. Sustaining activity until complete exhaustion is unlikely to occur in an
older population, and, thus, this study provides evidence of a change in postural control
under fatigue conditions more likely experienced in older adult populations.

Despite changes in postural variability, the signal complexity as indicated via the
fractal dimension, was unchanged, suggesting that there was no reorganisation of afferents
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and no use of a new postural control strategy [19,44]; this is consistent with other studies in
which increased postural variability has been observed [40,45]. Consequently, any change
in proprioception due to the prolonged standing was insufficient for sensory reweighting
to be required. Similarly, there was no need for increased activity from other ankle muscles
or for a switch to a hip or multi-joint postural control strategy [1], which can occur when
perturbations increase [46].

Whilst changes in the postural stability were shown, the prolonged activity also did
not significantly change balance confidence or falls efficacy, measures considered important
since they impact daily physical activity participation, fear of falling [12,13], and quality of
life [14]. Practically, this suggests that postural control change did not impact the overall
perception of balance, which may be because the postural control change was insufficient
in magnitude. Consequently, the practical significance of the change in postural control is
questionable, which is commonly not demonstrated in similar studies.

It is also important to consider the individual response to the task, which may some-
what account for the inconsistency between group postural control and perception changes.
For various measures (sway area, A-P sway length, total sway length, and RMS A-P),
there were significant moderate correlations with the GRC, which suggests that postural
control change is responsive to changes in this subjective measure [47]. Therefore, for some
individuals, the size of change in postural control was notable, whereas, for others, it was
not. However, these postural control changes were not related to a change in confidence
or efficacy, suggesting that other factors may be more important when evaluating the
perception of fall risk or movement confidence.

Group differences may have also been influenced by variability within the data, affect-
ing their reliability. The relative reliability of the sway path data was excellent, whilst that
of sway area was good and larger than that presented previously by some (ICC = 0.22, [10])
but by not others using similar populations (ICC = 0.92, [48]). The RMS radius also had
excellent reliability, which was larger than that previously presented (ICC = 0.82, [48]).
The RMS in the ML direction had moderate reliability; this was higher than the reliability
presented by Lafond et al. [10] and similar to that by Swanenburg et al. [49]. In general, this
suggests that there was confidence in these data measured. Conversely, the RMS-AP data
showed poor reliability, which is in line with other studies [10,49] but which may impact
the ability to draw faithful conclusions from these data.

Despite generally good-to-excellent reliability, fewer than half of the individuals expe-
rienced a change that was beyond the MDC95. Therefore, the group difference may have
resulted from a number of individual changes that were real, combined with others that
were the result of chance. Consequently, this may explain why a corresponding change in
the ABC and FES-I data was not observed. The reasons for inter-individual differences may
include differences in frailty or sensory system functionality that were either insufficient
for clinical diagnosis or were undiagnosed or unreported by the participants. Differences in
body mass index are shown to impact postural control [50], which, along with differences
in muscle fatigue tolerance, may also be influential. Differences in the baseline ABC and
FES-I may also suggest that individual function and confidence may influence the postu-
ral control and perceptions reported. These factors are rarely considered in the study of
postural control; thus, future studies should be more considerate of these factors when
studying change.

Collectively, these results indicate the importance of measuring perceptual data along-
side reliability data when interpreting postural control in older adults. Furthermore, for
measures deemed responsive, future research should determine the Minimal Important
Change (MIC) for each [47], which will allow the assessment of the meaningfulness of
individual changes. It is important to note that this is not the same as the MDC, which
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is the minimum change required to be real; instead, it is the size of change considered
important for the individual.

A study limitation is that the relative fatigue of each participant was not measured.
This can be determined using dynamometry or electrical stimulation, yet this was not
practically possible given the recommendations to ensure fatigue is present [17]. The RPE
could have also been measured although the maximum RPE at fatigue is often not 20
(i.e., maximum score) and can be dependent on the individual and the exercise; recording
the RPE to make comparisons of individuals within and between studies is, therefore,
problematic, and there is also generally no correlation between fatigue-induced RPE and
change in balance [51]. The angle of the plantar-flexion stance was also not monitored,
which may impact the fatigue generated; thus, motion analysis could be used to monitor
this in future research. Electromyography could also be used to explore a change in muscle
activation that may be indicative of peripheral muscle fatigue [52]. A larger sample size
and greater task intensity may have also resulted in differences and correlations being
shown for those variables observed as insignificant.

5. Conclusions
In conclusion, older adults undertaking prolonged activity can experience increased

postural variability without a change in sway area or control strategy. This change in
variability also occurred without a group change in balance confidence or falls efficacy. The
change in postural control variability was related to a perceived change in balance but not in
balance confidence or falls efficacy. This study also shows the importance of understanding
individual change when interpreting postural control data in group comparisons, which is
often missing in similar research.
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