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Abstract
The random rock failure process analysis (RRFPA) method was developed in this research to characterize the material spa-
tial variability and uncertainty in rock failure modelling. The random field theory (RFT) was integrated with the traditional 
rock failure process analysis (RFPA) to model rock heterogeneity. In this approach, the variation of rock properties is repre-
sented as a function of relative distance, such that the influence of material intrinsic correlation on its fracturing behaviour 
can be appropriately captured. To validate the theory, 300 RRFPA simulations were conducted to investigate the failure 
characteristics of rock samples under compressive loading. The results showed that by incorporating a spectrum of material 
properties, the numerical outcomes exhibited distinct upper and lower bounds of stress across all testing scenarios, closely 
aligning with the experimental relationships. The histograms for uniaxial compressive strength and elastic modulus showed 
that both properties followed normal distributions, with the average values of 10.099 MPa and 1.818 GPa, respectively. The 
corresponding coefficients of variation were 0.450 and 0.038. The localized failure tended to result in a more rapid release 
of acoustic emission energy, but generated smaller cumulative energy compared to the overall failure pattern. In general, 
the maximum relative error of the RRFPA model was only 0.66% for uniaxial compressive strength, elastic modulus, and 
critical axial strain.

Highlights

• The random rock failure process analysis method was developed by coupling the rock failure process analysis method 
and random field theory.

• The RRFPA method can characterize the spatial material variability and uncertainties in rock failure modelling.
• The influence of material intrinsic correlation on the fracturing behaviour and failure modes can be appropriately captured.
• In the RRFPA analyses, the results exhibited distinct upper and lower bounds of stress distribution across all testing 

scenarios.

Keywords Rock failure · Material heterogeneity · Random field theory · Crack propagation · Acoustic emission

1 Introduction

Rock failure poses significant risks to both infrastructure 
and human life through various mechanisms, often leading 
to catastrophic damages (Bai et al. 2024; Ma et al. 2024; 
Zhao et al. 2024). Early detection and prevention of poten-
tial rock failures are crucial in reducing the maintenance or 
reconstruction costs for infrastructures such as buildings, 
bridges, tunnels, dams, and highways. Relevant studies are 
required to assess the causes of rock failure, and to predict 
and mitigate natural disasters such as landslides, rockfalls, 
and debris flows (Tanyaş & Lombardo 2019; Zhao and 
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Feng 2023). Additionally, human activities such as mining, 
blasting, and tunnelling can cause hazardous rock failures 
(Chen et al. 2023a; Liu et al. 2024; Wang et al. 2024; Yao 
et al. 2022). These activities can alter the natural geometry 
of rock formations and weaken the stability of surround-
ing rocks, resulting in rock fractures and collapses. The 
reduced rock strength, altered rock geometry, degraded rock 
quality and loading rate are key factors contributing to the 
instability of rock structures (Fakhimi et al. 2018; Zhang 
et al. 2021). However, comprehensively investigating the 
cross-scale mechanisms behind rock failure and understand-
ing its impact on rock instability, as well as the associated 
energy losses of rock fragments, still remains a significant 
challenge.

From the perspective of rock mechanics, the physical and 
mechanical characteristics of rock exhibit substantial varia-
tions across the whole rock mass, owing to the diverse mate-
rial properties of constituents and the complex formation 
history (Blair and Cook 1998; Ebner et al. 2009; Pinheiro 
et al. 2016). The intricate spatial microstructure of rock 
plays a pivotal role in determining its geotechnical proper-
ties, introducing factors such as discontinuity, inhomogene-
ity, anisotropy, and nonlinear elasticity. For instance, under 
external loading, rock damage often initiates at relatively 
weak locations due to the localized stress concentrations 
surpassing material strength (Karatela and Taheri 2018; 
Sun et al. 2024). Despite the widespread prevalence of spa-
tial heterogeneity in rock properties, only a limited number 
of studies have addressed this phenomenon. In numerical 
analyses, rock properties can be effectively represented 
as multidimensional and multivariate random fields. The 
utilization of random field concept facilitates a consistent 
characterization of non-uniform material property. In this 
regard, the random field theory (RFT) has been widely used 
to characterize the spatial variability material properties in 
geosciences and geotechnical engineering (Casagrande et al. 
2018; Fenton and Griffiths 2008; Liu et al. 2014, 2019). RFT 
is particularly valuable for modelling the variability in rock 
properties such as strength, permeability, and density, which 
are crucial for understanding and predicting the behaviour 
of geomaterials (Feng et al. 2023; Hu and Wang 2020). The 
theory employs statistical methods to generate random fields 
that reproduce the observed variability and spatial correla-
tion structures. In the literature, various techniques such as 
Gaussian random fields, Gamma random fields and Markov 
random fields have been successfully applied to capture 
this variability (Fang & Liu 2022; Yang et al. 2023). By 
accounting for the spatial variability, random field models 
provide more realistic predictions of rock behaviour and geo-
technical response compared to deterministic approaches. 
Furthermore, random field models allow the assessment 
of uncertainties associated with geological variability, 

providing engineers with the ability to quantify risks and 
make informed decisions in design and planning processes.

During the last few decades, the numerical analyses have 
significantly advanced the understanding of rock failure in 
various engineering and geological applications (Chen et al. 
2022; Li et al. 2021; Ning et al. 2023; Qin et al. 2024). These 
analyses provide access to detailed insights into the inter-
nal response of rocks, including stress distributions, crack 
propagation paths, and fracture parameters, which are often 
difficult or impossible to be measured experimentally. Mean-
while, numerical models also facilitate sensitivity analysis 
by allowing researchers to systematically vary input param-
eters and observe their effects on fracture behaviour. This 
process helps identify critical parameters and uncertainties 
in the modelling process. Particularly, the rock failure pro-
cess analysis (RFPA) method can account for rock hetero-
geneity in modelling the initiation, propagation, and coa-
lescence of cracks (Feng et al. 2022; Gao et al. 2023; Wang 
et al. 2023a). The RFPA code has been applied to simulate 
the progressive failure of rock masses by many researchers 
(Chen et al. 2023b; Gong et al. 2022; Wang et al. 2023b; 
Yu et al. 2022). In this approach, the rock heterogeneity is 
considered by assuming that certain mechanical proper-
ties, such as Young’s modulus and strength of the elements 
within a model, conform to a Weibull distribution (Weibull 
1951). However, while the statistical Weibull distribution 
can describe the non-uniform distribution of material prop-
erties to some extent (Gong et al. 2024), it could not fully 
capture the intrinsic correlating between these properties.

In this study, the random RFPA method (RRFPA) was 
developed by combining RFPA and RFT to provide an 
integrated approach for characterizing and quantifying the 
spatial material variability and uncertainties in rock fail-
ure analysis. Furthermore, it was utilized to analyse the 
mechanical responses of rock during the fundamental uni-
axial compression tests, including the stress–strain relation-
ships, fracture characteristics, acoustic emissions, and failure 
patterns. By adopting a repetitive simulation scheme in the 
random RFPA, 300 simulations were conducted with ran-
domly distributed but spatially correlated material proper-
ties. This approach facilitated a statistical examination of the 
mechanical behaviour of rock, enhancing our understanding 
of the probability of rock failures.

2  Methodology

2.1  Random Fields of Material Properties

In this study, material properties were evaluated as spatial 
variables using the discrete random field approach. Within 
this framework, all material points were assumed to exhibit 
mutual correlations over a predefined length, which defined 
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the scale of fluctuation. Both the elastic modulus and uni-
axial compressive strength (UCS) were modelled as spa-
tially non-uniform distributions in the analysis. To generate 
a standard random field realization, the covariance matrix 
was first constructed according to the autocorrelation func-
tion. Then, the Cholesky decomposition of the covariance 
matrix was performed, and the standard normal random 
matrix was multiplied by the Cholesky lower triangular 
matrix to form the standard Gaussian random field. After 
that, it was transformed into the non-Gaussian random field 
through the equal probability approach, i.e., the desired ran-
dom field realization was obtained (Haldar and Babu 2008; 
Srivastava et al. 2010; Suchomel and Mašín, 2010). In this 
study, the exponential cosine autocorrelation function has 
been employed, as follows:

where �
(
�x, �y

)
 represents the autocorrelation coefficient of 

the random field eigenvalues at two points Pi and Pj in the 
two-dimensional (2D) space; �x and �y represent the rela-
tive distances along the horizontal (x) and vertical (y) direc-
tions between Pi and Pj, respectively; �x and �y represent 
the horizontal and vertical correlation lengths, respectively, 
characterizing the spatial autocorrelation degree of material 
properties. Clearly, the larger fluctuation range corresponds 
to the stronger spatial autocorrelation of material properties.

Furthermore, the statistical mean value and coefficient of 
variation (COV) are two key parameters controlling the gen-
eration of random fields. COV, defined as the ratio of stand-
ard deviation to mean, stands as a pivotal metric for assess-
ing variability. Then, according to the correlation between 
the coordinates of discretized elements and the generated 
random field realizations, the centre of each element was 
assigned a material coefficient (α). Consequently, precise 
material properties were deduced by multiplying this coef-
ficient with the mean material properties, which underwent 
fine-tuning via iterative adjustments. These adjustments 
were conducted by aligning the outcomes from the numeri-
cal RRFPA simulations with the experimental data. During 
this iterative process, the specific parameters, such as the 
elastic modulus and UCS of the rock in all mesh elements, 
were adjusted to match the predetermined mean values. At 
the same time, consistency was maintained across multiple 
tests for other statistical parameters, including the COV and 
correlation length. Figure 1 shows a typical realization of 
random field with clear fluctuation of elastic modulus across 
the whole 2D section of the rock sample.

To evaluate the performance of the proposed RRFPA 
method, the uniaxial compression tests conducted by Liu 
et al. (2015) were simulated. The 2D numerical model with 
the size of 50 mm × 100 mm was generated as illustrated in 
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Fig. 2a, and the vertical load was applied at the top of the 
rock sample by controlling its axial downward displacement 
at a constant rate of 0.0001 m per iteration step. Simultane-
ously, the bottom was fixed along both horizontal and verti-
cal directions. The prescribed statistical parameters of input 
parameters were selected based on Zhao and Liu (2020), as 
listed in Table 1. The probabilistic distribution of material 
UCSs of the rock sample is displayed in Fig. 2b. In this 
study, uniaxial compression tests were conducted under a 
repetitive simulation scheme, using the same model configu-
ration but varying the random field distributions of material 
properties in each run. A total of 300 simulations were per-
formed, enabling a comprehensive statistical analysis of rock 
behaviour. This approach effectively captures the inherent 
variability in the random fields across different simulations.

The proposed RRFPA method presents a significant 
improvement over the traditional RFPA approach, which 
typically relies on a single set of constant mesoscopic mate-
rial properties. By incorporating the spatial variability of 
material properties across a range of random fields, the 
RRFPA method ensures that the mean material properties 
remain consistent throughout the simulations. This approach 
enables more accurate modelling of rock failure behaviour, 
accounting for the inherent variability in material proper-
ties within rock samples. Through the extensive statistical 
analysis, these simulations could possibly replicate the fun-
damental mechanical response of rock masses with compa-
rable internal weak zones. Consequently, this research offers 
a more robust and reliable framework for characterizing the 

Fig. 1  A typical realization of random field for elastic modulus fluc-
tuation
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uncertainties and complex interactions inherent in specific 
rock materials.

2.2  Failure Criteria

In the RRFPA method, each element is initially loaded 
in the elastic state, defined by its mechanical properties, 

Fig. 2  a Model configuration 
for 2D uniaxial compression test 
(note: the colour of mesh ele-
ment represents the magnitude 
of material UCS); b probability 
distribution of material UCSs

Table 1  The statistical parameters for input variables

Variable Mean Coefficient of 
variation

Cor-
relation 
length

Elastic modulus 1.89 GPa 0.3 5 mm
Uniaxial compressive 

strength
27.76 MPa 0.3 5 mm
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including elastic modulus and Poisson’s ratio. Throughout 
the simulation, each element follows a linear elastic consti-
tutive relation until it reaches a predefined damage thresh-
old, at which point the onset of the softening phase begins. 
Extensive research has revealed the inadequacy of solely 
considering tensile crack opening or crack sliding to fully 
capture the intricate fracturing process (Hoxha and Homand 
2000). Among the different crack evolution mechanisms, 
tensile opening and shearing stand out as predominant fac-
tors (Meglis et al. 1995). Therefore, the Mohr–Coulomb 
criterion with a tensile cut-off is chosen to analyse the pri-
mary modes of rock damage and fracture. The stress states 
of model elements should not exceed the spatial failure enve-
lope described by the strength criterion. Within the damage 
zone forming at the current time step, the mesh element 
stress states should be on the failure envelope in the stress 
space. However, the yield strength of an element can be 
exceeded during the numerical modelling. Although such 
specific stress state cannot occur in practical scenarios, it 
emerges during the numerical calculations because of the 
constraints imposed by time step.

When subjected to uniaxial tension, the elastic-brittle 
damage constitutive relation at the mesh element level is 
employed, and the tensile damage function is defined as 
follows:

where σ3 represents the minimum principal stress, and ft 
denotes the uniaxial tensile strength. It is important to note 
that negative values are assigned to both tensile stress and 
strain.

Simultaneously, the Mohr–Coulomb criterion is uti-
lized to determine if some elements are damaged under 
the applied shear loading stress, and the corresponding 
judgement can be carried out according to the following 
relationship:

where σ1 represents the maximum principal stress; fc and φ 
represent the UCS and internal friction angle, respectively.

2.3  Damage Behaviour of Elements

According to the elastic damage mechanics, the elastic mod-
ulus gradually degrades as rock damage progresses, once the 
specific strength criterion is satisfied. The modified elastic 
modulus after damage is determined as:

where w denotes the damage variable; Ew represents the 
modified elastic modulus after element damage occurs; E0 

(2)�3 ≤ ft

(3)�1 −
1 + sin�

1 − sin�
�3 − fc ≥ 0

(4)Ew = (1 − w)E0

signifies the initial elastic modulus before element damage 
occurs.

At the initial loading stage, the constitutive relationship 
is linear-elastic with no damage under the uniaxial tension 
or compression stress. However, at a later stage, the consti-
tutive equation is attributed to a specific residual strength 
after the failure criterion is satisfied. Furthermore, tensile 
damage will arise when the maximum tensile strain criterion 
is reached, and the damage variable w could be calculated 
using the following equation:

where λt = ftr/ft signifies the residual tensile strength coeffi-
cient, where ft and ftr denote the uniaxial tensile and residual 
tensile strengths, respectively. Additionally, εt0 = ft/E0 is the 
elastic tensile strain threshold. Furthermore, εtu = ηεt0 rep-
resents the ultimate tensile strain characterizing the critical 
state when the complete damage happens. η is termed the 
ultimate strain coefficient.

In addition, when one mesh element fails under com-
pressive loading, w can be computed using the following 
equation:

where λc = fcr/fc represents the residual compressive strength 
coefficient, where fc and fcr denote the UCS and residual 
compressive strength, respectively. εc0 = fc/E0 is the thresh-
old compressive strain.

3  Results

To examine the reliability of the repetitive simulation 
scheme, the statistical convergence of the 300 equivalent 
random filed simulations is examined, as shown in Fig. 3. It 
can be seen that intense fluctuation of the mean UCS value 
exists during the first 50 random field simulations. How-
ever, it becomes gradually stable and reaches the final stable 
value of 10.099 MPa after 300 simulations. Figure 3 also 
illustrates that the standard deviation of UCS drops dramati-
cally during the first 50 simulations. However, it is gradually 
stabilized at 0.065 MPa after 280 or more simulations. These 
results demonstrate that the computation process could suc-
cessfully converge after 300 equivalent simulations, and the 
numerical results can be considered statistically reliable.

Figure 4 depicts the dispersion of stress–strain curves 
from uniaxial compression tests using the RRFPA method 

(5)w =

⎧
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0 𝜀 > 𝜀t0

1 −
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𝜀
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across 300 simulations on rock samples with distinct ran-
dom fields. For comparison, the experimental data obtained 
from coal rock samples by Liu et al. (2015) are also included 
in this figure. To ensure adherence to the quasi-static load-
ing conditions, a small loading rate of 0.1 mm/step was 
employed in the simulations, as reported by Zhang and Zhao 
(2014). In Fig. 4, varying colours are utilized to highlight the 
key percentiles—specifically, the minimum  (0th percentile), 
 5th percentile, median  (50th percentile), and maximum  (100th 
percentile) of the UCS across these numerical simulations. 
The numerical results of stress–strain relationship display a 
broad distribution that closely aligns with the primary trend 
observed in the experimental data. Consequently, the over-
arching mechanical response of the typical coal rock samples 
used by Liu et al. (2015) can be effectively captured by the 
series of random RFPA analyses. In fact, the experimen-
tal results (Liu et al. 2015) exhibit apparent variability of 

Fig. 3  The statistical conver-
gence of UCS during random 
filed (RF) simulation: a mean 
and b standard deviation

Fig. 4  The stress–strain relationships of rock samples under uniaxial 
compression
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standard rock testing data on the same type of samples, but 
varied internal mineral structures. After reaching the peak 
stresses, the numerical samples demonstrate evident brittle 
behaviour characterized by rapid stress declines, following 
the same trend as the experimental data. The random RFPA 
simulations, incorporating a spectrum of material properties, 
effectively delineate the upper and lower bounds of stress 
across all conceivable testing outcomes.

Figure 4 further highlights that, despite variations, the 
axial strain corresponding to the peak stress point gener-
ally increases with the growth of the UCS value. This rela-
tionship between the UCS and critical axial strain ( �UCS ) is 
depicted in Fig. 5. The overall pattern indicates a positive 
correlation between UCS and critical axial strain, with the 
predominant occurrence of �UCS falling within the range of 
0.55%–0.65%. Notably, the rock sample with UCS value as 
low as 8.423 MPa can undergo failure at a small critical axial 
strain �UCS = 0.53%, while that with UCS value as high as 
11.742 MPa exhibits resistance against considerably larger 
deformation for �UCS = 0.66%.

The elastic modulus of rock is determined as the gradi-
ent of the initial linear segment of the stress–strain curve 
corresponding to a strain equals to 0.3%. As depicted in the 
histograms of UCS and elastic modulus in Fig. 6a, b, across 
all 300 independent numerical tests, both the UCS and elas-
tic modulus of rock samples follow the normal distributions. 
The UCS exhibits an average value of 10.099 MPa with a 
COV of 0.450, while the elastic modulus has an average 
value of 1.818 GPa with a COV of 0.038. Notably, the aver-
age UCS and elastic modulus of the rock samples are smaller 
than the prescribed statistical mean parameters, indicating 
that the assumption of uniform material properties used in 

the traditional finite element methods, can substantially 
overestimate rock strength and elastic deformation. The dif-
ferences in COVs between UCS/elastic modulus and their 
respective random fields (0.3) are attributed to the averaging 
effect on the variability of material properties.

To illustrate the progressive failure process, the test of 
 5th percentile of UCS has been selected for detailed analysis 
as this value normally represents the characteristic material 
property in real designs. As shown in Fig. 7, the representa-
tive V-shaped failure surface can be clearly observed in this 
model. At a low axial strain of 0.46% (Fig. 7a), a micro-
crack formed at the weak zones of the right middle part of 
the sample. As the axial strain increased to 0.57% (Fig. 7b), 
more weak elements failed and gradually nucleated to form 
a localized damage zone at the lower-right-middle part 
of the sample. Then, in Fig. 7c, the initiated cracks in the 
damage zone propagated towards the upper and lower left 
corners at larger axial deformations when the rock sample 
was close to fail. When the final macro failure occurred, 
a V-shaped failure surface consisting of micro-cracks was 
clearly observed within the sample, and the lower block of 
the sample was fractured into several small rock fragments, 
as shown in Fig. 7. Besides, Fig. 7 shows that the significant 
stress concentrations occurred at the cracking tips, leading to 
the progressive development of cracks. Actually, it was the 
high concentrated stress that caused the initiation of micro-
cracks at the microdefects inside the rock sample. With the 
formation of initial micro-cracks, the previous concentrated 
stress was released and transferred to the cracking tips or 
other microdefects, resulting in further propagation or initia-
tion of more cracks. Namely, it was a continuous process of 
stress build-up, stress release and stress transfer that caused 

Fig. 5  The UCSs and critical 
axial strains ( �

UCS
 ) of the 300 

simulations
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Fig. 6  The histograms of a UCS 
and b elastic modulus (E)

Fig. 7  Failure process of the rock sample with the  5th percentile of UCS represented by minimum principal stress contours at different axial 
strains of a ɛa = 0.46%, b ɛa = 0.57%, c ɛa = 0.74% and d ɛa = 0.90%
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the creation and development of cracks and the progressive 
failure of rock sample.

Figure 8 illustrates the spatial distribution of acoustic 
emissions (AEs) generated during the rock failure pro-
cess, from which the positional relationship between two 
individual AE events can be identified, and their relative 
energy magnitudes can be compared visually. In the RRFPA 
method, the released energy and position of AEs can be 
recorded at the moment when the stress/strain state of the 
elements satisfies the Mohr–Coulomb criterion with a ten-
sile cut-off. In Fig. 8, the centre of a circle indicates the 
location of an AE, and its radius reflects the relative energy 
magnitude. The larger radius represents the greater released 
energy. Meanwhile, the red and blue colours represent the 
tensile and compressive failures, respectively. Namely, AE 
events can reflect element damage to a certain level. Fig-
ure 8a shows that when the axial strain was 0.46%, many 
AE events were caused by the formation of the micro-cracks 
at the right middle part of the sample. Figure 8b further 
explains the failure modes influenced by the scattered ele-
ment damages and reveals that high energy was released at 
the upper left part of the sample due to the occurrence of 
localized damage. Simultaneously, several shearing failures 
with small amount of energy occurred at the lower left part 
of the sample. Figure 8c illustrates that a series of AE events 
were caused by gradual crack propagations. Especially, the 
low energy induced by tensile failure at crack tips can be 
observed. Figure 8d demonstrates that there were three main 
regions containing dense AEs near the rock bottom, connect-
ing the pre-developed cracks and leading to the final macro 
failure of the sample.

Figure 9 illustrate the initial random fields of the rock 
samples with different percentiles of UCS and the corre-
sponding final failure patterns. As the UCS increased, the 
internal damage zone became gradually flat and distributed 
closer to the middle region of the sample. For the rock sam-
ple shown in Fig. 9a1, b1, although some small and discon-
nected weak zones existed and resulted in the generation of 
micro-cracks, it was the two large weak regions located near 
the bottom that controlled the final failure mode and led to 
the local instability of the rock sample. Figure 9b2 indicates 
that with the increase of UCS to the  5th percentile value, 
more cracks initiated and resulted in the macroscopic rock 
failure. However, the well-developed cracks at the lower part 
caused the enlargement of localized damage zone, governing 
the rock strength. Figure 9a3 illustrates that the scattered 
weak areas concentrated at the middle part of the sample as 
the UCS rose. Therefore, many large cracks formed at the 
middle and propagated gradually to connect with each other, 
leading to the overall instability of the sample as shown in 
Fig. 9b3. Figure 9a4 demonstrates that for the highest UCS, 
only several narrow weak areas existed at the middle region 
of the sample. Note that the strong area surrounded by weak 
elements prevented the local failure and improved the rock 
strength because the generated cracks needed to propagate 
longer paths to create the final failure surfaces, which con-
sumed more energy. Meanwhile, Fig. 9b4 shows that the 
high stresses concentrated at the tips of cracks leading to the 
progressive development of cracks. From Fig. 9b1–b4, it can 
be seen when the local failure mode of rock sample changed 
to the overall failure mode, the corresponding macroscopic 
sample UCS increased gradually.

Fig. 8  AE release process of the rock sample with the  5th percentile 
of UCS when the axial strain: a ɛa = 0.46%, b ɛa = 0.57%, c ɛa = 0.74% 
and d ɛa = 0.90% (note: the centre of a circle indicates the location 

of an AE; the radius of a circle reflects relative energy magnitude; 
the red and blue colours represent tensile and compressive failures, 
respectively)
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Figure 10 shows the energy evolution characteristics 
caused by the AE activity of the rock samples with different 
percentiles of UCS during the compression test. The energy 
evolution data demonstrates that the concentrated rock dam-
age started to occur when the axial strain exceeded 0.3%. 
Figure 10a displays a rapid AE release, which was caused 
by the damaged elements at the bottom of the rock sample 
with low UCS. The AE energy released by one damaged ele-
ment can be calculated according to its stress states before 
and after the occurrence of damage. Then, the cumulative 
AE energy can be calculated by summing up the AE energy 
released by all damaged elements. The total cumulative AE 
energy was only 2.6 ×  103 J for the rock sample with the 
 0th percentile of UCS because of the local instability mode. 
Figure 10b illustrates that the quick release of AE energy 
occurred when the axial strain increased from 0.50% to 
0.65%. This phenomenon was caused by the formation of 
the two main cracks inside the rock sample with higher UCS. 
Simultaneously, it was the serious damage near the bottom 
of the rock sample that resulted in the gradual AE energy 
release and final localized instability. Figure 10c indicates 
that for the rock sample with the  50th percentile of UCS, 

the maximum AE energy release of 8.5 ×  102 J happened 
when the axial strain was 0.74%. Then, as the axial strain 
increased, more and more damages appeared at the middle 
part of the sample and connected to form a large damaged 
zone, leading to the final rock failure. Figure 10d demon-
strates that the damages at the middle part of the rock sample 
with the  100th percentile of UCS produced relatively uniform 
and large AE events, and the cumulative AE energy reached 
a higher value of 5.05 ×  103 J. From Fig. 10, it can be sum-
marized that the localized failure pattern would produce 
faster AE energy release and smaller cumulative AE energy 
than the overall failure pattern.

Figure 11 shows the spatial AE distributions of the rock 
samples with different percentiles of UCS. Figure 11a dis-
plays that for the rock sample with the  0th percentile of UCS, 
both tensile and shearing damages occurred near the bot-
tom, and several significant tensile damages released the 
major AE energy. Figure 11b illustrates that there were sev-
eral prominent zones characterized by a high concentration 
of AEs caused by tensile fractures at the lower part of the 
sample because of its specific random filed realization. This 
intricately linked to the formation of cracks and ultimately 

Fig. 9  Series a the random fields of the initial rock samples and 
series b the final damage zones within the rock samples with differ-
ent percentiles of UCS including (1) the  0th percentile, (2) the  5th per-

centile, (3) the  50th percentile and (4) the  100th percentile (note: the 
dashed red circles in (a1)–(a4) indicate the main damage zones con-
tributing to final failure)
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culminated in macroscopic failure. From Fig. 11c, it can be 
seen that although some serious shearing damages appeared, 
a series of high-energy AE events were induced by the ten-
sile damages which happened along the middle line of the 
rock sample with the  50th percentile of UCS. Figure 11d 

shows that a series of relatively uniform AE events corre-
sponded to an obvious shearing surface at the lower left part 
of the sample with the highest UCS. In this testing scenario, 
several large tensile damages produced high AE energy, pro-
moting the final macro failure.

Fig. 10  AE energy evolution characteristics of the rock samples with different percentiles of UCS during the compression test: a the  0th percen-
tile, b the  5th percentile, c the  50th percentile, and d the  100th percentile

Fig. 11  Spatial AE distributions of the rock samples with different percentiles of UCS at the final failure state for rock samples of : a the  0th per-
centile, b the  5th percentile, c the  50th percentile, and d the  100th percentile
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To validate the effectiveness of the proposed RRFPA 
method, the experimental and numerical data are compared 
as shown in Table 2. In the table, the absolute and relative 
errors were calculated by treating the experimental data as 
the accurate values. Table 2 indicates that the calculated 
UCS of 10.099 MPa by RRFPA was only 0.061 MPa higher 
than the experimental value of 10.038 MPa by Liu et al. 
(2015), and the numerical value by the random discrete ele-
ment analysis (RDEA) method (Zhao and Liu 2020) was 
0.142 MPa higher than the test data. Simultaneously, the 
elastic modulus of 1.818 GPa and critical axial strain of 
0.5556% computed by the RRFPA method were closer to 
the experimental data (1.806 GPa and 0.5558%) than the 
simulated values by RDFA (Zhao and Liu 2020). Further-
more, in terms of UCS, elastic modulus and critical axial 
strain, the maximum relative error of the RRFPA method 
was only 0.66% which was much less than the maximum 
relative error of 5.87% by the RDEA method (Zhao and Liu 
2020), as shown in Table 2.

4  Conclusions

The traditional RFPA method has been proven effective in 
modelling the initiation, propagation, and coalescence of 
rock cracks. However, it does not adequately capture the 
critical feature that the material properties of rock masses 
exhibit intrinsic variation and correlation. In this study, the 
traditional RFPA was enhanced by integrating the random 
field theory, and the improved method was applied to ana-
lyse the mechanical response of rocks during a fundamental 
uniaxial compression test. The main conclusions are sum-
marized as follows:

(1) The RRFPA method was introduced by coupling RFPA 
and RFT to provide an effective approach to charac-
terize spatial material variability, quantify uncertain-
ties, and enhance the reliability of predictions in rock 
mechanics. In this method, RFT was utilized to cap-
ture the variation of rock parameters as a function of 
relative distance, enabling the RRFPA to fully account 
for the influence of intrinsic correlations on fracturing 
behaviours and failure modes.

(2) The RRFPA modelling results exhibited distinct upper 
and lower bounds of stress across all testing scenarios 
under uniaxial compressions, which aligned well with 
the experimental stress–strain relationship. Addition-
ally, after reaching peak stress, the rock samples exhib-
ited pronounced brittle behaviour, characterized by a 
rapid reduction in stress. A positive correlation between 
uniaxial compressive strength (UCS) and critical axial 
strain was observed, with the axial strain predominantly 
falling within the range of 0.55% to 0.65%.

(3) The histograms of UCS and elastic modulus illustrated 
their adherence to normal distributions. Specifically, 
UCS had a mean of 10.099 MPa with a COV of 0.450, 
while elastic modulus had an average of 1.818 GPa 
with a COV of 0.038. Notably, the average UCS and 
elastic modulus of the rock samples were consider-
ably lower than the prescribed statistical mean values, 
suggesting that the uniform material properties tended 
to overestimate both rock strength and elastic defor-
mation. The localized failure pattern resulted in more 
rapid AE energy release and a smaller cumulative AE 
energy than the overall failure pattern.
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Table 2  Comparison of the numerical and experimental results

Parameters UCS (σc)/MPa Elastic modu-
lus (E)/GPa

Critical axial 
strain ( �

UCS
)/%

Absolute error Relative error/%

σc/MPa E/GPa �
UCS

/% σc E �
UCS

Experiment (Liu et al. 2015) 10.038 1.806 0.5558
RDEA (Zhao and Liu 2020) 10.18 1.73 0.5884 0.142 −0.076 0.0326 1.41 4.21 5.87
RRFPA 10.099 1.818 0.5556 0.061 0.012 -0.0002 0.61 0.66 0.04
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included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
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