
1

Training Latency Minimization for Model-Splitting
Allowed Federated Edge Learning

Yao Wen, Guopeng Zhang, Kezhi Wang, and Kun Yang

Abstract—To alleviate the shortage of computing power faced by clients in training deep neural networks (DNNs) using federated
learning (FL), we leverage the edge computing and split learning to propose a model-splitting allowed FL (SFL) framework, with the
aim to minimize the training latency without loss of test accuracy. Under the synchronized global update setting, the latency to
complete a round of global training is determined by the maximum latency for the clients to complete a local training session.
Therefore, the training latency minimization problem (TLMP) is modelled as a minimizing-maximum problem. To solve this mixed
integer nonlinear programming problem, we first propose a regression method to fit the quantitative-relationship between the cut-layer
and other parameters of an AI-model, and thus, transform the TLMP into a continuous problem. Considering that the two subproblems
involved in the TLMP, namely, the cut-layer selection problem for the clients and the computing resource allocation problem for the
parameter-server are relative independence, an alternate-optimization-based algorithm with polynomial time complexity is developed to
obtain a high-quality solution to the TLMP. Extensive experiments are performed on a popular DNN-model EfficientNetV2 using dataset
MNIST, and the results verify the validity and improved performance of the proposed SFL framework.

Index Terms—Federated learning, split learning, edge computing, computing task offloading, resource allocation.

✦

1 INTRODUCTION

THE latest Artificial Intelligence (AI) products leverage
advanced machine learning (ML) techniques, ranging

from face detection [1] and speech recognition [2] on mobile
devices to virtual assistants in autonomous systems [3].
Large-scale data is critical for training high-performance
AI models, such as decision trees, support vector machines
(SVMs), and deep neural networks (DNNs). However, cen-
tralized training approaches require clients to transfer pri-
vate data to servers, risking user privacy and security [4].
Federated learning (FL) [5], proposed by Google, enables
multiple clients to train a shared AI model while keeping
their data local. The vanilla FL algorithm, FedAvg, shown
in Fig. 1, first distributes an AI model to clients. Each
client trains the model locally, uploads it to the server for
aggregation, and this process iterates until a certain test
accuracy is achieved.

However, FedAvg is better suited for training
lightweight models where communication costs exceed
computational costs [5]. With the rise of 5G and the increas-
ing scale of deep AI models (e.g., DNNs), FL’s application
landscape has shifted. Firstly, 5G’s ultra-reliable and low-
latency communication technologies have reduced commu-
nication costs in FL [6]. Secondly, despite the rapid growth

This paper was partly funded by Natural Science Foundation of China
(No. 62132004), Jiangsu Major Project on Basic Researches (Grant
No.: BK20243059) and Gusu Innovation Project for People (Grant No.:
ZXL2024360).

• Yao Wen and Guopeng Zhang are with the School of Computer Science
and Technology, China University of Mining and Technology, Xuzhou
221116, China. E-mail: ywen@cumt.edu.cn; gpzhang@cumt.edu.cn.

• Kezhi Wang is with the Department of Computer Science,
Brunel University London, Middlesex UB8 3PH, U.K. E-mail:
kezhi.wang@brunel.ac.uk.

• Kun Yang is with the State Key Laboratory of Novel Software Technology,
Nanjing University, Nanjing, 210008, China, and School of Intelli-
gent Software and Engineering, Nanjing University (Suzhou Campus),
Suzhou, 215163, China. E-mail: kyang@ieee.org.

FedAvg SFL

Parameter Server

Client k Client 1 Client K

Smashed-data Gradients

Client-side

Model

Server-side

Model

Local Model

Global Model

Parameter

Server

Global Model

Cut LayerCut Layer

Model Download Model Upload

Fig. 1. The frameworks of FedAvg and SFL.

in AI model complexity, the computing power of mobile
devices has not kept pace [7]. These trends highlight the
need for new techniques to address the challenges posed by
large-scale models.

Split learning (SL) [8] supported by edge computing
offers a solution. As shown in Fig. 1, split federated learning
(SFL) divides the model into two parts: the client-side model
and the server-side model. The client initiates forward prop-
agation (FP) on the client-side model, generating ”smashed-
data,” which it sends to the server. The server uses this data
to continue FP on the server-side model and then performs
backward propagation (BP), sending gradients back to the
client to complete BP on the client-side model.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

2

By deploying high-performance computing servers, the
PS can process multiple server-side models in parallel,
reducing client computational burdens. However, unlike
FedAvg, clients in SFL cannot independently perform FP
and BP, resulting in multiple rounds of data transmission
during model training. Although this suits the increased
network bandwidth and model size, it introduces new chal-
lenges that must be addressed to optimize SFL.

Challenge 1: Cut-layer selection for clients. In SL, the ”cut-
layer” is the last layer of the client-side model [9], which im-
pacts both communication and computational load. How-
ever, the relationship between the cut-layer and model pa-
rameters is not well-defined, creating a large solution space
and high computational complexity for selecting the optimal
cut-layer.

Challenge 2: Computing resource allocation for the PS. In
SFL, the PS trains multiple server-side models from differ-
ent clients. Due to client heterogeneity in computing power
and datasets, the PS must efficiently a llocate i ts limited
resources to enhance training efficiency.

This paper uses edge computing and split learning to im-
prove SFL training efficiency, a iming t o m inimize training
latency using synchronized global model updates (SGMU)
[10] while maintaining test accuracy. The training latency
minimization problem (TLMP) is modeled as one that re-
duces the maximum latency among clients’ local training
sessions. To address Challenge 1, we use EfficientNetV2 [11] as
an example to propose a regression method that quantifies
the relationship between the cut-layer and the resulting
communication and computational loads. This transforms
the original mixed-integer nonlinear programming (MINLP)
problem into a continuous one. We then decouple the prob-
lem into two subproblems: cut-layer selection (to address
Challenge 1) and computing resource allocation (to address
Challenge 2). An alternate-optimization-based algorithm is
proposed to find a high-quality solution to the TLMP. Exper-
iments on the MNIST and CIFAR-10 datasets [12] validate
the proposed method. In summary, the main contributions
of this paper are as follows:

1) Edge computing and split learning techniques are
integrated to improve SFL training efficiency, for-
mulating the TLMP and minimizing training la-
tency.

2) A regression method is introduced to relate the cut-
layer selection to the communication and compu-
tational loads on clients, transforming the MINLP
problem into a continuous one.

3) The TLMP is decoupled into two subproblems,
and an alternate-optimization-based algorithm with
polynomial time complexity is proposed to solve it.
Extensive experiments validate the method.

The paper is organized as follows: Sec. 2 reviews related
works, Sec. 3 details the SFL training procedure, Sec. 4
formulates the TLMP as a min-max problem, and Sec. 5
presents the algorithm to solve it. Experiment results are
provided in Sec. 6, and conclusions are drawn in Sec. 7.

2 RELATED WORKS

Federated Learning: Federated Learning (FL) has been widely
applied as a distributed machine learning method to pro-

tect privacy. The Parameter Server architecture [13] enables
large-scale model training by aggregating updates from
numerous computation nodes. Federated optimization [14]
enhances communication efficiency by minimizing rounds
while keeping data local. Client selection algorithms [15]
address the straggler issue, and fairness between clients
is discussed in [16]. Non-IID data biases are countered in
[17], and training under resource constraints is accelerated
via task offloading [18]. In [19], the authors studied the
non-convex resource allocation problem of FL over wireless
networks. The Federated Dropout (FedDrop) technique [20]
reduces resource load, overfitting, and communication over-
head by pruning models using heterogeneous dropout rates.
Unlike FedDrop, the proposed SFL framework separates the
model into client-side front-end layers and server-side back-
end layers, reducing the computational burden on resource-
limited devices.

Split Learning: To address the bottleneck caused by lim-
ited client resources, Split Learning (SL) [21] splits large AI
models into parts, enabling separate training. A parallel SL
method [22] prevents overfitting by managing the order
and size of segmented models. SL has been applied in
collaborative DNN computation between mobile devices
and cloud servers [23], where optimal resource scheduling
is formulated as a shortest path problem. The multi-split
algorithm in [24] optimizes DNN submodel assignment
across computational nodes. SL has also been used to reduce
energy costs for edge devices under varying wireless chan-
nels [25]. In [26], SL tackles challenges in training GANs in
non-IID scenarios. Hybrid Split Federated Learning (HSFL)
combines FL and SL for wireless networks, analyzing con-
vergence with non-IID data [27].

Collaborative Training of AI Models: In collaborative train-
ing frameworks like FL, differences in computing power
and workload between clients and edge servers create bot-
tlenecks. To mitigate the straggler issue, [28] sets a timeout
threshold to discard delayed models, reducing overall la-
tency. Dynamic allocation of computing and communication
resources to clients [29] enables task offloading, but estimat-
ing client training time remains a challenge. The optimal
regression model [9] predicts client training time, while [16]
uses Lyapunov optimization to address online scheduling.
A DRL-based offloading strategy [10] minimizes training
latency for heterogeneous clients. DNN partitioning tech-
niques [30] reduce FL latency by optimizing participation
rates, energy consumption, and memory usage.

TABLE 1
Comparison of Related Works and this Paper

Literature [5] [20]

[21],
[23],
[24],
[26]

[22],
[25],
[27]

This
work

Model splitting ✓ ✓ ✓
Independent splitting ✓
Parallel training ✓ ✓ ✓ ✓
Client workload High Middle Low Low Low
Dynamic allocation ✓ ✓ ✓

Summary: This paper builds on existing works by com-
bining edge computing and SL to enhance FL training
efficiency. We jointly address the challenges of cut-layer

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

3

selection and resource allocation, which have not been ex-
plored together in prior studies. Table 1 compares this work
with previous research.

3 SYSTEM MODEL

We consider a FL system comprising a PS and K clients.
The PS aims to train an AI model using client data without
direct data sharing. We first review the basic FedAvg algo-
rithm, followed by the SFL method, which integrates edge
computing and split learning into FL.

3.1 Basics of FedAvg
In FedAvg [5], the PS broadcasts an initial model w to the K
clients. Each client k trains a local model wk independently
using its dataset Dk = {(xk,n, yk,n) | n = 1, . . . , nk}, where
nk is the dataset size, and xk,n and yk,n are the input and
label, respectively.

Local Training at Client k: The client performs Stochastic
Gradient Descent (SGD) over a mini-batch Bk ⊆ Dk in each
training epoch. For each sample (xk,n, yk,n) ∈ Bk, client
k computes the forward pass (FP) to get the prediction
ŷk,n = fp(xk,n; wk), followed by the backward pass (BP)
to compute the gradient ▽L(ŷk,n, yk,n; wk), where L is the
loss function. The local model is updated as

wk = wk − η▽L(ŷk,n, yk,n;wk), (1)

where η is the learning rate. This process is repeated Ik
times. After training, client k uploads wk to the PS for
aggregation.

Global Model Update at the PS: After collecting all local
models, the PS aggregates them using the weighted average

w =
∑
k∈K

nk∑
k∈K nk

wk, (2)

where nk is the size of client k’s dataset. The global model
is updated iteratively until the learning goal is met.

3.2 Framework of SFL

Following [9], an AI model is divided into L layers

w = w(1) ⊎ · · · ⊎ w(l) ⊎ · · · ⊎ w(L), (3)

where w(l) denotes the lth layer. The model wk for client k
is split into two parts

wk = wC
k ⊎ wS

k, (4)

where wC
k = w(1) ⊎ · · · ⊎ w(lk) is the client-side model, and

wS
k = w(lk+1) ⊎ · · · ⊎ w(L) is the server-side model. The

cut-layer w(lk) marks the split point for client k [31].
In Fig. 2, we outline the SFL workflow, which involves

five phases: 1) Model splitting; 2) Model distribution; 3) Lo-
cal training; 4) Model collection; and 5) Model aggregation.
The key difference from FedAvg occurs in phases 3 and 5,
as detailed below.

Phase 3 (Training Local Models): The training in SFL
involves collaboration between the client and the PS, as the
model is split. This process includes:

• Forward Propagation (FP):

Client

Parameter

Server

Uploading Smashed-dataUploading Smashed-data

Client-side FPClient-side FP

Server-side FPServer-side FP Server-side BPServer-side BP

Downloading GradientsDownloading Gradients

Client-side BPClient-side BP

Cut LayerCut Layer

Fig. 2. The workflow of the SFL.

(1) Client-side FP: Client k performs the forward
pass on wC

k using mini-batch Bk, yielding the
output at the cut-layer

Sk,n = fp(xk,n;wC
k). (5)

(2) Uploading Smashed Data: Client k uploads the
smashed data Sk,n and label yk,n to the PS
for further processing. Uploading labels to PS
undermines the data-privacy of clients. To ad-
dress this issue, the authors in [32] proposed a
three-stage SL method to avoid the leakage.
For reconstruction attacks on training data
[33], the leakage risk can also be reduced by
using the differential privacy [34] [35].

(3) Server-side FP: The PS continues the FP on wS
k

to compute the prediction ŷk,n as

ŷk,n = fp(Sk,n;wS
k). (6)

• Backward Propagation (BP):

(4) Server-side BP: The PS calculates the gradient
and updates wS

k as

wS
k = wS

k − η▽L(ŷk,n, yk,n;wS
k). (7)

(5) Downloading Gradients: The PS transfers the
gradient Gk,n to client k for further BP.

(6) Client-side BP: Client k completes the BP and
updates wC

k as

wC
k = wC

k − η▽L(Gk,n;wC
k). (8)

Phase 5 (Aggregating Local Models): After local training,
client k uploads the updated wC

k to the PS. The PS combines
it with the server-side model wS

k to form the full local model
wk = wC

k ⊎wS
k. The global model is updated by aggregating

all local models as in eq. (2).

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

4

4 PROBLEM FORMULATION

Although SFL reduces the computational burden on clients
by training local models, it inevitably increases communi-
cation overhead. This is because intermediate results, Sk,n
and Gk,n, are exchanged multiple times between the PS and
each client during the collaborative training process.

In this section, we first q uantify t he l atency o f each
phase in SFL, followed by the proposal of a training latency
minimization problem.

4.1 Latency of Each Phase

Referring to Sec. 3.2, we analyze the latency of each phase
of SFL as follows.

Phase 1 (Splitting Local Models): The latency in this
phase arises from executing Algorithm 1, the joint cut-
layer selection and computing resource allocation algorithm
from Sec. 5.5. Since this algorithm has polynomial time
complexity and runs on the PS with sufficient computing
power, its latency is negligible.

Phase 2 (Distributing Local Models): Let rk denote the
data rate between the PS and client k in the current round
of global training. The latency for client k to download the
client-side model wk

C from the PS is given by

DMk =
|wC

k |
rk

, ∀k ∈ K, (9)

where |wC
k | is the size (in bits) of wC

k .
Phase 3 (Training Local Models): As discussed in Sec.

3.2, client k trains its local model wk = wC
k ⊎ wS

k over six
stages. The latency for each stage is as follows:

(1) Client-side FP: Let FC
k be the number of floating-point

operations (Flops) required for client k to perform
sample-wise FP on wC

k , and fC
k (Flops/s) the client’s

computing power. The latency to process |Bk| sam-
ples is

FPC
k =

FC
k |Bk|
fC
k

, ∀k ∈ K. (10)

(2) Uploading Smashed Data: Let |Sk,n| denote the size (in
bits) of Sk,n. The latency to transmit |Bk| pieces of
smashed data is

TSk =
|Sk,n||Bk|

rk
, ∀k ∈ K. (11)

(3) Server-side FP: Let F S
k represent the number of Flops

required for the PS to perform sample-wise FP on
wS

k, and f S
k (Flops/s) the computing power allocated

by the PS to client k. The latency for processing |Bk|
samples is

FPS
k =

F S
k |Bk|
f S
k

, ∀k ∈ K. (12)

(4) Server-side BP: Let BS
k denote the Flops required for

the PS to perform sample-wise BP on wS
k. The latency

to process |Bk| samples is

BPS
k =

BS
k|Bk|
f S
k

, ∀k ∈ K. (13)

(5) Downloading Gradient: Let |Gk,n| (in bits) denote the
size of Gk,n. The latency to download |Bk| gradients
is

TGk =
|Gk,n||Bk|

rk
, ∀k ∈ K. (14)

(6) Client-side BP: Let BC
k be the Flops required for client

k to perform sample-wise BP on wC
k . The time re-

quired to process |Bk| samples is

BPC
k =

BC
k |Bk|
fC
k

, ∀k ∈ K. (15)

Phase 4 (Collecting Client Models): After Ik local train-
ing epochs, client k uploads the updated client-side model
wC

k to the PS for aggregation. The latency is

UMk =
|wC

k |
rk

, ∀k ∈ K. (16)

Phase 5 (Aggregating Local Models): Aggregating client
models requires minimal computation. Since the PS has
sufficient computing power, the latency is negligible.

4.2 Overall Time Consumption of SFL

In general, the smashed-data and gradients generated for one
data sample have the same size: |Sk,n| = |Gk,n| = Λk. The
latency for client k to complete a local training session (i.e.,
Ik epochs) is

Tk = DMk + UMk+

Ik|Bk|(FPC
k + TSk + FPS

k + BPS
k + TGk + BPC

k)

= 2
|wC

k |
rk

+ Ik|Bk|
(
FC
k +BC

k

fC
k

+
F S
k +BS

k

f S
k

+ 2
Λk

rk

)
,

∀k ∈ K. (17)

When the cut-layer is selected as lk = L, we have wC
k = w

and wS
k = ∅, meaning client k trains the entire model wk

locally, similar to FedAvg. In this case, the following holds

F S
k = 0, BS

k = 0, Λk = 0, if lk = L, ∀k ∈ K. (18)

By substituting eq. (18) into eq. (17) , the latency for client
k to complete a local training session in this case is given by

Tk = 2
|w|
rk

+ Ik|Bk|
Γ

fC
k

, if lk = L, ∀k ∈ K, (19)

where |w| and Γ are the size of model w (in bits) and total
amount of computing load for one data-sample of model w,
respectively.

Combining eqs. (17) and (19), we can represent the
training latency Tk of client k in the following form.

Tk =



2|wC
k |

rk
+ Ik|Bk|

(
FC
k +BC

k

fC
k

+
F S
k +BS

k

f S
k

+ 2
Λk

rk

)
,

∀lk ∈ {1, · · · , L− 1}, ∀k ∈ K,
2|w|
rk

+ Ik|Bk|
Γ

fC
k

, if lk = L, ∀k ∈ K.

(20)

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

5

4.3 Training Latency Minimization Problem
The latency for client k to train the model and communicate
intermediate results depends on the selected cut-layer lk,
as shown in eq. (17). The choice of the split layer affects
both computational and communication loads. Computa-
tional Load: A higher split layer increases local computation
on the client, resulting in higher latency. Conversely, a
lower split layer shifts the computation to the PS, reducing
local processing time but increasing remote training time
at the PS. Communication Load: The communication load is
determined by the volume of data exchanged between the
client and the PS. Different split layers affect the amount
of intermediate data transmitted, influencing both time and
bandwidth usage. While the PS is more powerful than
individual clients, it serves multiple clients simultaneously,
which limits its resources. Therefore, the communication
and computation resources of both the clients and the PS
must be jointly scheduled to optimize the training process.
The method aims to select the optimal split layer for each
client, balancing computational and communication delays
to minimize the overall training latency of SFL. The optimal
split layer is the result of a tradeoff between local com-
putation and communication time, tailored to each client’s
hardware and network conditions.

As we can only predict the available computing re-
sources and data rate for the clients and PS for a short time
into the future [10], our objective is to minimize T , the la-
tency to complete one round of global training. With SGMU
adopted, the total latency T depends on T = maxk∈K Tk,
which is the maximum latency for all K clients to com-
plete a local training session. Let L = (l1, . . . , lK) and
F = (f1S, . . . , f S

K) denote the cut-layer and computing re-
sources for each client. The training latency minimization
problem for SFL is formulated as

min
L,F

T , T = max
k∈K

Tk, (21)

s.t. lk ∈ {1, · · · , L}, ∀k ∈ K, (21.1)
K∑

k=1

f S
k ⩽ Fmax, (21.2)

|wC
k |+ |wS

k| = |w|, ∀k ∈ K, (21.3)

FC
k + F S

k +BS
k +BC

k = Γ, ∀k ∈ K, (21.4)

where constraint (21.1) limits the cut-layer for client k, con-
straint (21.2) ensures the maximum computing resources for
the PS are Fmax, constraint (21.3) guarantees model integrity
after being split, as in eq. (4), and constraint (21.4) enforces
the balance of computing resources across client-side and
server-side operations.

Given the AI model, the total computational resources
required for training with one data sample is Γ, which is the
sum of resources required for FP and BP. The resources for
FP and BP at client k are F tot = FC

k +F S
k and Btot = BC

k+BS
k,

respectively, leading to the equation

Γ = F tot +Btot = FC
k + F S

k +BS
k +BC

k , ∀k ∈ K. (22)

Since both continuous variables F and discrete variables
L are involved, this problem is a mixed integer nonlinear
programming (MINLP) problem, which cannot be solved
directly by conventional methods. In the next section, we
propose effective methods to address this challenge.

5 SOLVING THE PROBLEM

In problem (21), the model size |wC
k |, the resources needed

for client-side computation F tot
k = FC

k +BC
k , and the amount

of generated intermediate results Λk all depend on the
selected cut-layer lk for client k. However, as shown in
Figs. 3, 5, and 6, there is no explicit relationship between
the cut-layer and these parameters. Since DNNs often have
hundreds of layers, searching for the optimal cut-layers
could lead to high time and space complexity. Currently,
there is no direct solution to this issue. In this paper, we
propose a regression method to quantify the relationship
between the cut-layer and the model parameters. Based on
this, we develop a fast and effective approach to find the
optimal solution to problem (21).

Logistic regression and curve fitting methods have been
widely used to model such relationships. For instance, in
[36] and [37], these methods were employed to build non-
linear energy harvesting models for wireless information
and power transfer (SWIPT) systems.

5.1 Fit The Relationship

Different AI models have distinct neural network architec-
tures. To the best of our knowledge, no existing method
provides an explicit relationship expression for these mod-
els. In this paper, we use the widely adopted AI model Effi-
cientNetV2 [11] as a case study and introduce the regression
method to fit the relationship between the cut-layer and other
model parameters.

EfficientNetV2 offers high configurability in terms of
depth, width, and resolution, making it suitable for various
tasks and hardware setups. However, it also introduces
complex dependencies between the cut-layer and the asso-
ciated computational and communication overheads. The
proposed regression-based approach for selecting the op-
timal split layer can be extended to other neural network
architectures. By applying this method, we can determine
the optimal cut layers for different models, ensuring a bal-
anced distribution of local and remote computations across
diverse AI architectures.

5.1.1 Client-side model size against different cut-layers

As shown in Fig. 3, with increasing lk, the increase of |wC
k | is

not obvious at the beginning, but the growth rate increases
sharply when lk > 36. Therefore, we set the relationship
between lk and |wC

k | as

|wC
k | =α(lk)

2, ∀k ∈ K, (23)

where α ≥ 0 is the parameter to be fitted.

5.1.2 Training load of client against different cut-layers

The training of the client-side model includes the FP and
BP. The computational load of performing the FP can be
obtained by using the python package torchinfo [38], how-
ever, there is no direct way to know the computational
load of performing the BP. To address this issue, we trained
EfficientNetV2 1500 times using a dataset of size 32. The time
consumed by FP and BP in each training session is shown
in Fig. 4.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

6

10 20 30 40 50 60
The indexes of cut-layers

0

25

50

75

100

125

150

175

200

Th
e

siz
e

of
 cl

ie
nt

-si
de

 m
od

el
 (M

B)

The Fitted Size of Client-side Model
The Actual Size of Client-side Model

Fig. 3. The quantitative-relationship between lk and |wC
k|.

Forward Propagation Backward Propagation0.0

0.1

0.2

0.3

0.4

0.5

Co
ns

um
e

tim
e

(S
ec

on
d)

Fig. 4. The time consumption of FP and BP

From Fig. 4, we see that with the same computing power
the time consumed by BP is roughly several times the time
consumed by FP. So we have

Btot
k ≈ κF tot

k , ∀k ∈ K, (24)

where κ ⩾ 1. Fig. 5 shows the computational load of client
k for training the client-side model (that is, F tot

k = FC
k +

BC
k) with different cut-layers. There is an approximate linear

relationship between them, which is given by

F tot
k = FC

k +BC
k = βlk(1 + κ), ∀k ∈ K, (25)

where β > 0 is the parameter to be fitted.

10 20 30 40 50 60
The indexes of cut-layers

0

1

2

3

4

5

6

7

Co
m
pu

tin
g
loa

d
fo
r t

ra
in
in
g
cli

en
t-s

id
e
m
od

el
 (G

Flo
ps

)

The Fitted Load of Computing
The Actual Load of Computing

Fig. 5. The quantitative-relationship between lk and F tot
k .

5.1.3 Size of intermediate results against different cut-
layers

The head of a DNN is always a convolutional neural net-
work (CNN) to extract features, thus reducing the com-

putational burden of the subsequent feedforward neural
network (FNN). Hence, the size of the intermediate results
decreases rapidly in the CNN layers but changes slowly in
the FNN layers, as shown in Fig. 6. Accordingly, we set the
relationship between lk and Λk as

Λk = |Sk,n| = |Gk,n| =
γ1

lk + γ2
, ∀k ∈ K, (26)

where γ1 > 0 and γ2 ⩾ 0 are the parameters to be fitted.

10 20 30 40 50 60
The indexes of cut-layers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
e
siz

e
of
 sm

as
he

d
da

ta
 (M

B)

The Fitted Size of Smashed Data
The Actual Size of Smashed Data

Fig. 6. The quantitative-relationship between lk and Λk.

5.2 Problem Reformulation

By substituting eqs. (23), (25), and (26) into eq. (20), the
expression for Tk can be written as

Tk =


2
αl2k
rk

+ Ik |Bk|
(
β(1 + κ)

(
lk
F C

k

+ L−lk
F S

k

)
+ 2

γ1
lk+γ2

rk

)
,

if 1 ⩽ lk < L, ∀k ∈ K,
2|w|
rk

+ Ik|Bk|
Γ

fC
k

, if lk = L, ∀k ∈ K.

(27)
Then, the MINLP problem (21) is transformed into the
following continuous problem.

min
L,F

T , T = max
k∈K

Tk, (28)

s.t. 1 ⩽ lk ⩽ L, ∀k ∈ K, (28.1)
K∑

k=1

f S
k ⩽ Fmax. (28.2)

One can first find the solution of problem (28), and
then, rounds it to an integer. We note that if the computing
resource allocation F for the K clients were known, problem
(28) can be decomposed into K independent subproblems,
and the goal of the kth subproblem is to minimize the
latency for client k to complete a local training session.
These subproblems can be solved in parallel without loss
of optimality.

Based on the above findings, we can solve the cut-layer
selection problem (to find the optimal L) and the computing
resource allocation problem (to find the optimal F) alternately
and iteratively. Finally, the solution to problem (28) can be
obtained.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

7

 5.3 Solving The Cut-Layer Selection Problem

For any given F, problem (28) can be decomped into K
independent subproblems as given below.

min
lk

Tk, ∀k ∈ K, (29)

s.t. 1 ⩽ lk ⩽ L, ∀k ∈ K. (29.1)

The solution of problem (29), i.e., the optimal cut-layer of
any client k is given in the following lemma.

Lemma 1. With α > 0, β > 0, κ > 0, γ1 > 0, and γ2 ⩾ 0,
the optimal l∗k for any client k is given by the following rules.

l∗k =


1, ∂Tk

∂lk

∣∣
lk=1

> 0,

L, ∂Tk

∂lk

∣∣
lk=L

< 0,⌊
arg
lk

(
∂Tk

∂lk
= 0

)⌋
, ∂Tk

∂lk

∣∣
lk=1

⩽ 0 and ∂Tk

∂lk

∣∣
lk=L

⩾ 0.

(30)

Proof. Please refer to Appendix A.

In the 3rd case of eq. (30), ∂Tk

∂lk
= 0 contains a cubic terms

of lk and can be solved by using the Cardano’s formula [39].
Since the obtained lk is a continuous value, it must be

rounded to obtain the specific cut-layer. Here, we did not
use more complex rounding algorithms, such as progressive
rounding [40] and pair-wise rounding [41] to obtain the
optimal solution for lk. We use a simpler rounding method,
namely the threshold method, which rounds the value of
lk in continuous space to the nearest lower integer ⌊lk⌋.
Our focus is to minimize the completion time of SFL. In
addition, it is worth noting that the complexity of finding
the suboptimal cut-layers for the K clients is only O(K),
thus avoiding an exhaustive search on the actual complex
relationships between the parameters of an AI-model with
extremely high time and space complexity.

5.4 Computing Resource Allocation of the PS

Substituting the obtained cut-layers of the K clients, namely,
L∗ = (l∗1, · · · , l∗K), into eq. (27), one can get

Tk =


2
α(l∗k)

2

rk
+ Ik |Bk|

(
β(1 + κ)

(
l∗k
F C

k

+
L−l∗k
F S

k

)
+ 2

γ1
l∗
k
+γ2

rk

)
,

if 1 ⩽ l∗k < L, ∀k ∈ K,
2|w|
rk

+ Ik|Bk|
Γ

fC
k

, if l∗k = L, ∀k ∈ K.

(31)
Problem (28) can be simplified to

min
F

T = max
k∈K

Tk, (32)

s.t.
K∑

k=1

f S
k ⩽ Fmax. (32.1)

The difficulty in solving problem (32) is that the ob-
jective, T = maxk∈K Tk, to be optimized is a nonlinear
function w.r.t Tk, and Tk is a piecewise function w.r.t l∗k.
To solve this difficulty, we define T̃k as the latency for client
k to complete a local training session using only the local
computing power fC

k . We can sort the K clients in ascending

order according to {T̃k|∀k ∈ K} as shown in eq. (33), where
the reordered index of client k is represented as k̃, ∀k̃ ∈ K.

FedAvg︷ ︸︸ ︷
T1̃ ⩽ · · · ⩽ Tk̃−1=θ−1 ⩽

SFL︷ ︸︸ ︷
Tk̃=θ ⩽ · · · ⩽ TK (33)

Next, we derive the following two lemmas.

Lemma 2. The K clients participating in an FL task can
be divided into two groups: the clients in group KFedAvg =
{1̃, · · · , θ−1} adopt FedAvg and train wk̃ independently, while
the clients in group KSFL = {θ, · · · , K̃} adopt SFL and train wk̃
in collaboration with the PS, where θ is the index of the first client
in KSFL.

Proof. Please refer to Appendix B.

Lemma 3. The optimum of the objective of problem (32) is T =
Tθ, θ ∈ K̃.

Proof. Please refer to Appendix C.

By using Lemmas 2 and 3, problem (32) can be converted
into the following form.

min
θ, F

Tθ, (34)

s.t. KFedAvg ∪ KSFL = K, (34.1)
KFedAvg ∩ KSFL = ∅, (34.2)

Tk̃ ⩽ Tθ, ∀k̃ ∈ KFedAvg, (34.3)

Tk̃ = Tθ, ∀k̃ ∈ KSFL. (34.4)

By solving problem (34), the optimal amount of comput-
ing resources that the PS allocates to any client k is obtained
in closed-form, as shown in the following lemma.

Lemma 4. The amount of computing resources allocated by the
PS to each client k̃ ∈ K is given by the following formula.

fS
k̃
=


0, ∀k̃ ∈ KFedAvg,

Ik̃|Bk̃|(F S
k̃
+BS

k̃
)

Tθ−
I
k̃|Bk̃|(FC

k̃
+BC

k̃
)

fC
k̃

−2
I
k̃|Bk̃|Λk̃

+|wC
k̃
|

r
k̃

, ∀k̃ ∈ KSFL.

(35)

Proof. Please refer to Appendix D.

According to Lemma 4, once T = Tθ is known, the
optimal resource allocation of the PS, F, can be obtained. In
order to solve Tθ, we substitute formula (35) into constraint
(32.1) and convert this inequality constraint into an equality
constraint as∑

k̃∈KSFL

Ik̃
∣∣Bk̃

∣∣ (F S
k̃
+BS

k̃
)

Tθ −
Ik̃|Bk̃|(F C

k̃
+BC

k̃
)

fC
k̃

− 2
Ik̃|Bk̃|Λk̃+|wC

k̃
|

rk̃

= Fmax (36)

Lemma 5. Tθ is strictly convex w.r.t Fmax.

Proof. Please refer to appendix E.

Lemma 5 ensures that for a given Fmax an unique
solution Tθ exists for eq. (36), which can be solved by using
the CVX tool [42].

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

 8

Algorithm 1 The overall algorithm to solve problem (21).

1: Use eq. (19) to obtain T̃k, ∀k ∈ K;
2: Sort the K clients in ascending order according to {T̃k|k ∈

K}, and update the index of client k to its serial number k̃;
3: Set the iteration number i = 0, Fi = {Fmax

K
, · · · , Fmax

K
}, θi =

1, and T = Tθi ;
4: repeat
5: With the given Fi, select cut-layers Li for the clients using

eq. (30);
6: Substitute Li and θi into eq. (34) and obtain Tθi+1 using

the CVX tool [42];
7: With the obtained Tθi+1 , update Fi+1 using eq. (35);
8: θi+1 = Φ

(
fS
1̃
, · · · , fS

K̃

)
;

9: i = i+ 1;
10: until T = Tθi converges, or the iteration number reaches

the maximum i = imax;
11: return The computing allocation strategy F of the PS and

the cut-layers selected for the K clients L.

5.5 Analysis of Algorithm Complexity

The overall algorithm for solving problem (21) is sum-
marized in Algorithm 1. In line 1, each client k uploads its
computing power fC

k to the PS, which then calculates the
initial time consumption T̃k for each client using eq. (19),
providing an estimate of the local computation time. In line
2, the PS sorts the clients in ascending order based on T̃k,
updating their indices to reflect the varying computational
demands. In lines 3-10, the PS iteratively selects the cut-
layers Li for each client using eq. (30) and solves the op-
timization problem (42) by substituting the selected layers
and parameter θi into eq. (34). This step calculates the new
total time Tθi+1 . Specifically, in line 7, the PS updates the
computation allocation strategy Fi+1 based on the newly
calculated Tθi+1 . In line 8, the function Φ(·) counts the num-
ber of non-zero elements in a vector. The process continues
in line 10, iterating until the total training time Tθi converges
or the maximum number of iterations imax is reached, indi-
cating the optimal split layer and a balanced distribution
between local computations and offloaded tasks. Finally, in
line 11, once convergence is achieved, the PS returns the
final computation allocation strategy F and the optimal cut-
layers L to each client. Since the algorithm is iterative, the
convergence is proven below.

Lemma 6. Algorithm 1 converges to a stable point.

Proof. Please refer to appendix F.

Finally, the computational complexity of Algorithm 1 is
analyzed as follows. The complexity of ranking K clients
in Step 2 is O(K2). The complexity of selecting the cut-layer
for the K clients in Step 5 is O(K). In Step 6, the optimal
Tθ can be obtained via linear search, which requires O(K3)
to converge [43]. The resource allocation at the PS in Step 7
requires O(K). Thus, the overall computational complexity
of Algorithm 1 is O

(
K2 + imax(K3 + 2K)

)
.

We now discuss two main challenges in implementing
this algorithm: 1) Synchronization Overhead: Synchronizing
model updates between clients and the PS can cause de-
lays, especially when client capabilities vary or network
conditions are unstable. Our approach mitigates this by
optimizing the split layer, balancing the computational load,

and reducing synchronization time. 2) Data Privacy Concerns:
While federated learning keeps raw data on client devices,
exchanging intermediate model data may still pose privacy
risks. Techniques such as secure aggregation and differential
privacy can help protect sensitive information, though their
implementation is beyond the scope of this paper and
remains a subject for future work.

6 EXPERIMENT RESULTS

To evaluate the performance of the proposed SFL method,
the EfficientNetV2 model is trained for image classification
tasks on the MNIST [12] and CIFAR-10 [44] datasets. MNIST
consists of grayscale images with dimensions 28×28 pixels,
while CIFAR-10 includes colored images of 32 × 32 × 3
pixels, resulting in a higher-dimensional input space and
more complex feature representations. In the independent
and identically distributed (IID) setting, the samples of each
class are evenly distributed across the clients involved in
the federated learning (FL) task. In the non-IID setting, the
dataset is partitioned among 30 clients following the Dirich-
let distribution [45]. Using the data generation method in
[19], the number of samples per client ranges from 361 to
3,578. The local dataset is split randomly, with 75% allocated
for training and 25% for testing. The SGD algorithm, with a
fixed batch size of |Bk| = 32, is used to train the local model
wk for each client k. The available computing resources
of the PS are set to Fmax = 3, 000 GFlops, and a total of
30 clients are available as candidates for the PS-initiated
FL tasks. The clients are heterogeneous, with varying lo-
cal computing power fC

k and transmission rates rk. The
PS randomly selects a fraction of the candidate clients to
participate in each round of global training.

6.1 Effectiveness of The Regression Method in Finding
The Optimal Cut-Layer

The regression method, proposed in Sec. 5.1, is used to quickly
find the approximately optimal cut-layer. To verify its valid-
ity, we set the local computing power of client k to fC

k = 100
GFlops, the edge computing power of the PS allocated to
client k to f S

k = 1, 484 GFlops, the transmission rate to rk = 4
Mb/s, and the local dataset size of client k to |Dk| = 3, 396.
The latency for client k to complete a local training session
with different cut-layers is shown in Fig. 7. For each cut-
layer, the latency of training the client-side model wC

k and the
server-side model wS

k and transmitting the intermediate results
(Sk,n and Gk,n) are separately annotated in Fig. 7.

As shown in Fig. 7, the SFL can considerably reduce
the training latency of client k, compared to the FedAvg.
Specially, when the optimal cut-layer lk = 11 is selected, up
to 300 seconds can be saved. When lk < 11, the training
latency mainly results from transferring the intermediate
results between the client and PS. When lk > 11, the training
latency mainly comes from the training of the client-side
model wC

k . In all cases, the latency for the PS to train
the server-side model wS

k and the latency for the client to
download/upload the client-side model wC

k are negligible
for the overall training latency.

From Fig. 7, we also note that the optimal cut-layer for the
client found by using the regression method is consistent with

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

 9

0 10 20 30 40 50 60
The indexes of cut-layers

0

200

400

600

800

1000
Tr

ai
ni

ng
 la

te
nc

y
of

 S
FL

 (S
ec

on
d)

Uploading/Downloading Client-side Model
Transmitting Intermediate Results
Training Server-side Model
Training Client-side Model

FedAvg
Fitted Value
Optimal Cut-layer

Fig. 7. Training latency of SFL with different cut-layers.

that obtained by an exhaustive search on the space created
by the actual quantitative relationship between the param-
eters of EfficientNetV2. In this way, the high computational
complexity caused by searching for the optimal cut-layer of
an AI-model is avoided, and the bias between the regression
curve and the real-world relationship is also minimized.

To quantify the prediction accuracy of the proposed
regression method, we adopt the determination coefficient R
[9] as the evaluation metric. R ≜ 1−

∑L
l=1(x−x̂l)

2∑L
l=1(xl−x̃l)2

, where xl,
x̂l, and x̃l represent the true value, the predicted value, and
the historical mean value, respectively. The closer the value
of R is to 1, the better the regression performance is. In the
following Tab. 2, we show the determination coefficient R
of the fitted values of |wC

k | (see eq. (23)), F tot
k (see eq. (25))

and Λk (see eq. (26)).
As shown in Tab. 2, 0.9 < R < 1 for all the predicted

items. This indicates that the proposed regression method can
accurately predict the relationship between the selected cut-
layer and other parameters of an AI-model, which ensures
that the proposed alternate-optimization-based Algorithm
1 can obtain high-quality solutions as analyzed in Sec. 5.5.

TABLE 2
The Determination Coefficient of The Proposed Regression Method

Fitted Item R

|wC
k| 0.9482

F tot
k 0.9659
Λk 0.9065

6.2 Results for joint cut-layer selection and computing
resource allocation.

To validate the performance of the proposed joint cut-
layer selection and computing resource allocation algorithm,
namely Algorithm 1, we select 10 clients from the 30 candi-
dates, each with the same number of local training epochs
Ik = 20. Fig. 8 compares the training latency for each client
using the proposed SFL to the vanilla FedAvg. For the SFL,
the latency for each client to train the client-side and server-
side models and communicate the intermediate results are also
separately annotated in Fig. 8.

1 2 3 4 5 6 7 8 9 10
The indexes of clients

0

200

400

600

800

1000

La
te

nc
y

of
 lo

ca
l t

ra
in

in
g

se
ss

io
n

(S
ec

on
d) Uploading/Downloading Client-side Model

Transmitting Intermediate Results
Training Server-side Model
Training Client-side Model
FedAvg

Fig. 8. Training latency of different clients in the SFL.

As shown in Fig. 8, the PS does not allocate any re-
sources to clients 1 to 6 in SFL, so these clients use FedAvg
for local model training. In contrast, clients 7 to 10 share
the PS’s computing resources to reduce training latency.
Consequently, clients 7 to 10 have nearly identical training
latencies (410 s), while the training latencies of clients 1
to 6 vary, each being lower than those of clients 7 to 10.
This demonstrates that SFL behaves similarly to the water
pouring algorithm [46], adaptively allocating PS resources to
resource-constrained clients, thus reducing latency differ-
ences. In comparison, when all clients use FedAvg, each
trains its local model wk independently. Since the overall
training latency is determined by the client with the longest
training time, FedAvg results in a significantly higher la-
tency (980 s) than SFL (410 s).

Next, we present the convergence of Algorithm 1. As
shown in Fig. 9a and Fig. 9b, the convergence of cut-layer
selection and resource allocation occurs after approximately
5 iterations, with the resulting training latency shown in Fig.
10. This confirms the low computational complexity of the
proposed algorithm.

Finally, we examine how the amount of computing re-
sources available to the PS affects the overall training latency
of SFL. By increasing the PS’s computing resources from
Fmax = 100 GFlops to Fmax = 9, 000 GFlops, we observe the
variation in training latency for one local training session,
as shown in Fig. 11.

0 5 10 15 20
The number of iterations

0

10

20

30

40

50

60

Cu
t l

ay
er

 se
le

ct
io

n

Client 1
Client 2

Client 3
Client 4

(a) Convergence of cut-layer
selection.

0 5 10 15 20
The number of iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Re
so

ur
ce

 a
llo

ca
tio

n
(G

FL
OP

S)

1e3

Client 1
Client 2

Client 3
Client 4

(b) Convergence of resource
allocation.

Fig. 9. Convergence of Algorithm 1 for the two subproblems.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

 10

0 5 10 15 20
The number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 la
te

nc
y

(S
ec

on
d)

1e3

Fig. 10. Convergence of the training latency of SFL.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Computing resources available for the PS (GFLOPS)

400

500

600

700

800

900

1000

1100

1200

Tra
ini
ng

 la
te
nc
y (

Se
co
nd

)

1000 1500 2000650

700

750

800

Fig. 11. Training latency of SFL with different Fmax.

As shown in Fig. 11, increasing the computing resources
available to the PS reduces the training latency of SFL. This
is because more resource-constrained clients can leverage
the PS’s resources, alleviating the system bottleneck (i.e.,
the longest training latency for clients to complete local
training) and thereby reducing overall training latency. It
can also be observed from Fig. 11 that the training latency
of SFL decreases rapidly as server resources increase from
Fmax = 100 GFlops to Fmax = 2, 000 GFlops, but the rate
of decrease slows as resources continue to increase. This
suggests that the PS can optimize resource allocation to im-
prove efficiency. Maximizing the marginal benefits of server
resources is particularly crucial when the PS simultaneously
trains multiple AI models or performs multi-task learning.
This topic is outside the scope of this paper and will be
explored in future work.

6.3 Test Accuracy of the Trained Model
This section presents the test accuracy of the proposed SFL
method. We incorporate the FedDrop technique, introduced
in [20], into the fully connected layers of EfficientNetV2 on
the PS. Specifically, a 20% dropout rate is applied to the
parameters to mitigate overfitting and enhance model per-
formance. Experiments were conducted on the MNIST and
CIFAR-10 datasets under both IID and Non-IID scenarios.
In each round of training, 10 clients were randomly selected
from a pool of 30, with each client performing 20 local
epochs (Ik = 20). The test accuracies of the models trained
with different methods are shown in Fig. 12 (MNIST) and
Fig. 13 (CIFAR-10).

From Figs. 12 and 13, we observe that as the number
of global training rounds increases, the test accuracy of

0 20 40 60 80 100
The number of global training rounds

0

20

40

60

80

100

Te
st
 a
cc
ur
ac
y
(%

)

FedAvg, IID
SFL (dropout rate = 0.2), IID
FedAvg, Non-IID
SFL (dropout rate = 0.2), Non-IID

Fig. 12. Test accuracy on MNIST.

0 20 40 60 80 100
The number of global training rounds

0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)
FedAvg, IID
SFL (dropout rate = 0.2), IID
FedAvg, Non-IID
SFL (dropout rate = 0.2), Non-IID
SFL (dropout rate = 0), Non-IID
SFL (dropout rate = 0.5), Non-IID

Fig. 13. Test accuracy on CIFAR-10.

models trained with SFL (20% dropout) and FedAvg im-
proves. From Fig. 13, it is noted that the convergence rate
of SFL with 20% dropout is similar to those of FedAvg and
FedDrop, while using an inappropriate dropout rate (e.g.
0% or 50%) results in failure to converge, highlighting the
importance of FedDrop.

For the CIFAR-10 experiment, time consumption for
each method is illustrated in Fig. 14. It shows that SFL with
20% dropout consumes significantly less time to achieve
similar test accuracy compared to FedAvg and FedDrop.

7 CONCLUSIONS

This paper leverages edge computing and split learning tech-
niques to enhance the training efficiency of SFL, minimizing
latency without sacrificing accuracy. We formulate the prob-
lem as an MINLP and propose a regression method to con-
vert it into a continuous problem, followed by an alternate-
optimization algorithm with polynomial time complexity.
The convergence and solution quality are proven and ex-
perimentally validated. Results show that SFL matches
FedAvg’s accuracy with significantly reduced training time.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

11

0 20 40 60 80 100
The number of global training rounds

0

1

2

3

4

5
Tr
ai
ni
ng
 la
te
nc
y
(S
ec
on
d)

1e4
Latency of FedAvg
Latency of FedDrop
Latency of SFL (dropout rate = 0.2)

Fig. 14. Training latency of different methods.

Future work will focus on: 1) Enhancing PS efficiency for
parallel training and multi-task learning; 2) Investigating
the impact of communication challenges, such as Doppler
shifts and spectrum scarcity, in large-scale FL; and 3) Inte-
grating differential privacy (DP) mechanisms into SFL to
mitigate server-side reconstruction attacks and guide cut-
layer selection based on privacy budgets.

REFERENCES

[1] C. Yan, Y. Zhang, Q. Zhang, Y. Yang, X. Jiang, Y. Yang, and
B. Wang, “Privacy-preserving online automl for domain-specific
face detection,” 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4124–4134, 2022.

[2] M. Soleymanpour, M. T. Johnson, R. Soleymanpour, and J. Berry,
“Synthesizing dysarthric speech using multi-speaker tts for
dysarthric speech recognition,” in ICASSP 2022 - 2022 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 7382–7386.

[3] B. Sriman, S. A. Silviya, S. K. Shriram, S. R. Kumar, R. Shriya, and
A. Sujitha, “Virtual assistant for automatic emotion monitoring us-
ing perceived stress scale (pss),” in 2022 4th International Conference
on Inventive Research in Computing Applications (ICIRCA), 2022, pp.
1529–1534.

[4] N. Yan, K. Wang, C. Pan, and K. K. Chai, “Private federated
learning with misaligned power allocation via over-the-air com-
putation,” IEEE Communications Letters, vol. 26, no. 9, pp. 1994–
1998, 2022.

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in AISTATS, 2017.

[6] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim,
“Internet of things (iot) for next-generation smart systems: A
review of current challenges, future trends and prospects for
emerging 5g-iot scenarios,” IEEE Access, vol. 8, pp. 23 022–23 040,
2020.

[7] B.-S. Liang, “Ai computing in large-scale era: Pre-trillion-scale
neural network models and exa-scale supercomputing,” in 2023
International VLSI Symposium on Technology, Systems and Applica-
tions (VLSI-TSA/VLSI-DAT), 2023, pp. 1–3.

[8] O. Gupta and R. Raskar, “Distributed learning of deep neural
network over multiple agents,” Journal of Network and Computer
Applications, vol. 116, pp. 1–8, 2018.

[9] H. Jiang, M. Liu, S. Sun, Y. Wang, and X. Guo, “Fedsyl:
Computation-efficient federated synergy learning on heteroge-
neous iot devices,” in 2022 IEEE/ACM 30th International Symposium
on Quality of Service (IWQoS), 2022, pp. 1–10.

[10] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence, and B. Vargh-
ese, “Fedadapt: Adaptive offloading for iot devices in federated
learning,” IEEE Internet of Things Journal, vol. 9, no. 21, pp. 20 889–
20 901, 2022.

[11] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster
training,” in International conference on machine learning. PMLR,
2021, pp. 10 096–10 106.

[12] L. Deng, “The mnist database of handwritten digit images for ma-
chine learning research,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 141–142, 2012.

[13] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le,
M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates
Inc., 2012, p. 1223–1231.

[14] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” CoRR, vol. abs/1610.02527, 2016. [Online].
Available: http://arxiv.org/abs/1610.02527

[15] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019 - 2019
IEEE International Conference on Communications (ICC), 2019, pp.
1–7.

[16] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Y. Zomaya, “An
efficiency-boosting client selection scheme for federated learning
with fairness guarantee,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 32, no. 7, pp. 1552–1564, 2021.

[17] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated
learning on non-iid data with reinforcement learning,” in IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications,
2020, pp. 1698–1707.

[18] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence, and B. Vargh-
ese, “Fedadapt: Adaptive offloading for iot devices in federated
learning,” IEEE INTERNET OF THINGS JOURNAL, vol. 9, no. 21,
pp. 20 889–20 901, NOV 1 2022.

[19] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.
Zomaya, and V. Gramoli, “Federated learning over wireless net-
works: Convergence analysis and resource allocation,” IEEE/ACM
Transactions on Networking, vol. 29, no. 1, pp. 398–409, 2021.

[20] D. Wen, K.-J. Jeon, and K. Huang, “Federated Dropout—A Simple
Approach for Enabling Federated Learning on Resource Con-
strained Devices,” IEEE Wireless Communications Letters, vol. 11,
no. 5, pp. 923–927, May 2022.

[21] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split
learning for health: Distributed deep learning without sharing
raw patient data,” CoRR, vol. abs/1812.00564, 2018. [Online].
Available: http://arxiv.org/abs/1812.00564

[22] J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in
2020 International Conference on Information Networking (ICOIN),
2020, pp. 7–9.

[23] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn:
An efficient training and inference engine for intelligent mobile
cloud computing services,” IEEE Transactions on Mobile Computing,
vol. 20, no. 2, pp. 565–576, 2021.

[24] Y. Tian, Z. Zhang, Z. Yang, and Q. Yang, “Jmsnas: Joint model
split and neural architecture search for learning over mobile edge
networks,” in 2022 IEEE International Conference on Communications
Workshops (ICC Workshops), 2022, pp. 103–108.

[25] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Energy-
efficient model compression and splitting for collaborative in-
ference over time-varying channels,” in 2021 IEEE 32nd Annual
International Symposium on Personal, Indoor and Mobile Radio Com-
munications (PIMRC), 2021, pp. 1173–1178.

[26] J. Zhang, L. Zhao, K. Yu, G. Min, A. Y. Al-Dubai, and A. Y. Zomaya,
“A Novel Federated Learning Scheme for Generative Adversarial
Networks,” IEEE Transactions on Mobile Computing, vol. 23, no. 5,
pp. 3633–3649, 2024.

[27] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning:
A new hybrid split and federated learning approach,” IEEE Trans-
actions on Wireless Communications, vol. 22, no. 4, pp. 2650–2665,
2023.

[28] T. Nishio and R. Yonetani, “Client selection for federated
learning with heterogeneous resources in mobile edge,”
CoRR, vol. abs/1804.08333, 2018. [Online]. Available: http:
//arxiv.org/abs/1804.08333

[29] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud–edge–end in iot: A blockchain-assisted collective
q-learning approach,” IEEE Internet of Things Journal, vol. 8, no. 16,
pp. 12 694–12 704, 2021.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

12

[30] X. Deng, J. Li, C. Ma, K. Wei, L. Shi, M. Ding, and W. Chen,
“Low-latency federated learning with dnn partition in distributed
industrial iot networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 41, no. 3, pp. 755–775, 2023.

[31] W. Wu, M. Li, K. Qu, C. Zhou, X. S. Shen, W. Zhuang, X. Li, and
W. Shi, “Split learning over wireless networks: Parallel design
and resource management,” IEEE Journal on Selected Areas in
Communications, vol. 41, pp. 1051–1066, 2022.

[32] E. Erdoğan, A. Küpçü, and A. E. Çiçek, “Unsplit: Data-oblivious
model inversion, model stealing, and label inference attacks
against split learning,” in Proceedings of the 21st Workshop on
Privacy in the Electronic Society, ser. WPES’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 115–124.
[Online]. Available: https://doi.org/10.1145/3559613.3563201

[33] H. Oh and Y. Lee, “Exploring Image Reconstruction Attack in
Deep Learning Computation Offloading,” in The 3rd International
Workshop on Deep Learning for Mobile Systems and Applications, ser.
EMDL ’19. New York, NY, USA: Association for Computing
Machinery, Jun. 2019, pp. 19–24.

[34] J. Neera, X. Chen, N. Aslam, K. Wang, and Z. Shu, “Private and
utility enhanced recommendations with local differential privacy
and gaussian mixture model,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 4, pp. 4151–4163, 2023.

[35] M. Wu, G. Cheng, P. Li, R. Yu, Y. Wu, M. Pan, and R. Lu, “Split
learning with differential privacy for integrated terrestrial and
non-terrestrial networks,” IEEE Wireless Communications, pp. 1–8,
2023.

[36] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Prac-
tical non-linear energy harvesting model and resource allocation
for swipt systems,” IEEE Communications Letters, vol. 19, pp. 2082–
2085, 2015.

[37] D. Alqahtani, Y. Chen, W. Feng, and M.-S. Alouini, “A new non-
linear joint model for rf energy harvesters in wireless networks,”
IEEE Transactions on Green Communications and Networking, vol. 5,
no. 2, pp. 895–907, 2021.

[38] K. Shibasaki, S. Fukuzaki, and M. Ikehara, “4k real time image
to image translation network with transformers,” IEEE Access,
vol. 10, pp. 73 057–73 067, 2022.

[39] B. n. al-din abed, B. Z. Kamil, M. A. Hameed, and J. N. Abdullah,
“Using cardano’s method for solving cubic equation in the cryp-
tosystem to protect data security against cyber attack,” in 2020 2nd
Annual International Conference on Information and Sciences (AiCIS),
2020, pp. 127–131.

[40] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offload-
ing Dependent Tasks in Mobile Edge Computing with Service
Caching,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, Jul. 2020, pp. 1997–2006.

[41] Z. Zhou, Q. Wu, and X. Chen, “Online Orchestration of Cross-Edge
Service Function Chaining for Cost-Efficient Edge Computing,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 8, pp.
1866–1880, Aug. 2019.

[42] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined
convex programming, version 2.0 beta,” 2013.

[43] S. P. Boyd and L. Vandenberghe, “Convex optimization,” IEEE
Transactions on Automatic Control, vol. 51, pp. 1859–1859, 2004.

[44] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[45] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of
non-identical data distribution for federated visual classification,”
arXiv preprint arXiv:1909.06335, 2019.

[46] Q. Qi, A. Minturn, and Y. Yang, “An efficient water-filling algo-
rithm for power allocation in ofdm-based cognitive radio sys-
tems,” in 2012 International Conference on Systems and Informatics
(ICSAI2012), 2012, pp. 2069–2073.

Yao Wen obtained a bachelor’s degree from the
College of Information Science and Technology,
Nanjing Forestry University, Nanjing, China, in
2021, and a master degree from the School
of Computer Science and Technology, China
University of Mining and Technology, Xuzhou,
China, in 2024. He is pursuing the Ph.D. degree
at the School of Intelligent Software and Engi-
neering, Nanjing University (Suzhou Campus).
His research interests include edge computing
and wireless communications.

Guopeng Zhang received the Ph.D. degree
from the School of Communication Engineering,
Xidian University, Xi’an, China, in 2009. In 2009,
he joined the China University of Minin and Tech-
nology, Xuzhou, China, where he is currently a
Professor with the School of Computer Science
and Technology. He has authored or coauthored
more than 60 journal and conference papers. His
main research include wireless sensor networks
and machine learning.

Kezhi Wang received the Ph.D. degree in engi-
neering from the University of Warwick, U.K. He
was with the University of Essex and Northum-
bria University, U.K. Currently, he is a Senior
Lecturer with the Department of Computer Sci-
ence, Brunel University London, U.K. His re-
search interests include wireless communica-
tions, mobile edge computing, and machine
learning.

Kun Yang received his PhD from the Depart-
ment of Electronic & Electrical Engineering of
University College London (UCL), UK. He is cur-
rently a Chair Professor of University of Essex,
UK and Nanjing University. His main research
interests include wireless networks and com-
munications, communication-computing cooper-
ation, and new AI (artificial intelligence) for wire-
less. He has published 500+ papers and filed 50
patents. He serves on the editorial boards of a
number of IEEE journals (e.g., IEEE WCM, TVT,

TNB). He is a Deputy Editor-in-Chief of IET Smart Cities Journal. He
has been a Judge of GSMA GLOMO Award at World Mobile Congress
– Barcelona since 2019. He was a Distinguished Lecturer of IEEE
ComSoc (2020-2021), a Recipient of the 2024 IET Achievement Medals
and the Recipient of 2024 IEEE CommSoft TC’s Technical Achievement
Award. He is a Member of Academia Europaea (MAE), a Fellow of IEEE,
a Fellow of IET and a Distinguished Member of ACM.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI: 10.1109/TNSE.2025.3544313, IEEE Transactions on Network Science and Engineering

Copyright © 2025 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. See: https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/guidelines-and-policies/post-publication-policies/.

