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Abstract—Task offloading is crucial in supporting resource-
intensive applications in mobile edge computing. This paper
explores multiobjective task offloading, aiming to minimize en-
ergy consumption and latency simultaneously. Although learning-
based algorithms have been used to address this problem, they
train a model based on one a priori preference to make the
offloading decision. When the preference changes, the trained
model may not perform well and needs to be retrained. To
address this issue, we propose a neural combinatorial opti-
mization method that combines an encoder-decoder model with
reinforcement learning. The encoder captures task relationships,
while the decoder, equipped with a preference-based attention
mechanism, determines offloading decisions for various prefer-
ences. Additionally, reinforcement learning is employed to train
the encoder-decoder model. Since the proposed method can infer
the offloading decision for each preference, it eliminates the need
to retrain the model when the preference changes, thus improving
real-time performance. Experimental studies demonstrate the
effectiveness of the proposed method by comparison with three
algorithms on instances of different scales.

Index Terms—Mobile edge computing, task offloading, mul-
tiobjective, neural combinatorial optimization, encoder-decoder
model

I. INTRODUCTION

The growing popularity of new applications, such as online
gaming [1], health monitoring [2], and online video streaming
[3], has resulted in a substantial increase in the demand for
computing and storage resources. Although the computing
power and storage capacity of mobile devices have improved
recently, the portability requirements of mobile devices still
necessitate designers to balance factors including computing
power, battery life, and device size, making it challenging
to meet the execution demands of such applications in the
foreseeable future [4]. Mobile edge computing (MEC) has
emerged as a critical technology to address these demands by
deploying edge nodes equipped with storage and computing
resources close to the edge of the network [5]–[7]. By offload-
ing tasks to edge nodes, energy consumption and latency on
user equipment (UE) may be reduced.
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Within the task offloading process, the offloading decision
primarily determines which tasks to be offloaded, significantly
influencing Quality of Service (QoS). Traditional methods,
including mathematical programming (e.g., dynamic program-
ming) and heuristic techniques (e.g., evolutionary algorithms)
[8]–[10], face significant challenges in making real-time of-
floading decisions due to their significant computational bur-
dens or the need for multiple iterations [11]. As a result,
many learning-based algorithms have received considerable
attention. For example, Huang et al. [12] developed a rein-
forcement learning technique using deep neural networks for
task offloading in wireless-powered MEC systems. Gao et al.
[13] proposed a multi-agent deep deterministic policy gradi-
ent algorithm to obtain the offloading decision for multiple
wireless devices. Dai et al. [14] introduced an asynchronous
deep Q-learning method for making the offloading decision in
MEC-enhanced vehicular networks. Tan et al. [15] devised a
decentralized offloading decision-making approach based on
multi-agent reinforcement learning. Chai et al. [16] combined
attention mechanisms with reinforcement learning for task
offloading in unmanned aerial vehicle (UAV)-assisted MEC
systems. Zhao et al. [17] investigated a cooperative multi-
agent deep reinforcement learning approach to optimize the
offloading decision in multi-UAV systems.

However, the aforementioned studies primarily focus on
single-objective task offloading. In real-world scenarios, mul-
tiple objectives need to be considered [18]. Consequently, sev-
eral studies have proposed various learning-based algorithms
for multiobjective task offloading [19]–[21]. These studies
generally account for multiple objectives, such as energy
consumption, latency, and resource utilization, to balance mul-
tiple objectives to enhance overall system performance. While
significant progress has been made, these studies typically
train a model based on one a priori preference among these
objectives (usually in the form of weights) [20]. However,
when the preference changes, the performance of the trained
model may significantly degrade, and it may be necessary to
retrain the model. To address this issue, this paper proposes
a neural combinatorial optimization method that utilizes an
encoder-decoder model and reinforcement learning to learn an
offloading decision policy. This policy can adapt to all poten-
tial preferences. As a result, the proposed method can directly
make an offloading decision without requiring retraining the
model in the case of preference changes. Hence, the proposed
method exhibits high flexibility and real-time performance.
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The main contributions of this paper are summarized as
follows.

• This paper studies multiobjective task offloading with the
aim of minimizing both energy consumption and latency
without the a priori preference.

• A neural combinatorial optimization method is developed,
which combines the encoder-decoder model with rein-
forcement learning. The encoder captures the relevant in-
formation among tasks, while the preference-conditioned
decoder makes the offloading decision for any given pref-
erence. Furthermore, reinforcement learning is employed
to train the encoder-decoder model, making it applicable
to all potential preferences.

• The proposed method is compared with three other ex-
isting methods on instances of various scales. The results
show the superior performance of the proposed method.

The reminder of this paper is organized as follows. Section
II introduces the related work. The system model and problem
formulation are presented in Section III. Section IV describes
the details of the proposed algorithm. The experimental studies
are given in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORK

Several studies have attempted to investigate multiobjective
task offloading in MEC systems to optimize multiple objec-
tives simultaneously. These studies mainly focus on evolution-
ary algorithms and learning-based algorithms [22]–[25].

Due to the population-based nature, evolutionary algorithms
can provide a set of offloading decisions after a single run.
For example, Bozorgchenani et al. [26] developed a mul-
tiobjective genetic algorithm for task offloading in a two-
tier MEC system to minimize energy consumption and pro-
cessing delay. Li et al. [27] jointly optimized the offloading
decision and the cache placement via a multiobjective arti-
ficial bee colony algorithm to maximize the hit ratio and
minimize the service latency. Xiao et al. [28] proposed a
binary particle swarm optimization algorithm to determine the
optimal content caching and parallel offloading decision for
minimizing delay and energy consumption. Ma et al. [29]
utilized a particle swarm optimization method to determine
the optimal offloading decisions for dependent tasks, aiming
to minimize both the completion time and the execution cost.
The aforementioned methods can obtain a set of offloading
decisions accommodated to multiple preferences. However,
they encounter two challenges in making real-time offloading
decisions. First, multiple iterations are required to obtain the
offloading decisions. Second, practitioners must further choose
a suitable offloading decision from the available alternatives
based on their preference.

To achieve better real-time performance, learning-based
algorithms are utilized for multiobjective task offloading in
MEC systems since they can directly infer the offloading
decision. For instance, Yan et al. [19] developed a deep
reinforcement learning approach for joint task offloading and
resource allocation in MEC systems to minimize the weighted
sum of total energy consumption and execution time. Wang

et al. [20] proposed a novel neural combinatorial optimization
method to optimize the offloading decision with the aim of
minimizing the weighted sum of delay and energy consump-
tion. Zhang et al. [21] utilized a double deep Q-network to
optimize multiple objectives related to computational load,
delay, and energy consumption. Subsequently, they performed
the Chebyshev scalarization for multiple Q values. Such algo-
rithms transform multiple objectives into a scalar objective via
one a priori preference. Their effectiveness may be limited to
the a priori preference and their performance may degenerate
when the preference changes. Considering that the preference
is challenging to preset and may vary dynamically, this paper
proposes a multiobjective task offloading method that can
accommodate all potential preferences. A comparison between
our work and the current work is summarized in Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

NOMENCLATURE

λ The preference between energy consumption and la-
tency

aaa = [a1, · · · , an] Offloading decisions of n tasks
AT d

i The time at which the downlink channel becomes idle
in preparation to receive the results of task i

AT e
i The time at which the MEC server becomes idle in

preparation to execute task i
AT l

i The time at which the local processor becomes idle
in preparation to execute task i

ATu
i The time at which the uplink channel becomes idle in

preparation to transmit task i to the MEC server
Ci The total number of CPU cycles required by task i
Dd

i The size of the results of task i
Du

i The size of task i sent to the MEC server for process-
ing

E The total energy consumed by the UE for executing
all tasks

El
i The energy consumption of the local execution for

executing task i locally
Er

i The energy consumption of the remote execution for
task i

fe The allocated computation capability by the MEC
server

f l The computation capability of the local processor
FT The total latency for executing all tasks
FT d

i The finishing time of receiving the results of task i
FT e

i The finishing time of executing task i at the MEC
server

FT l
i The finishing time of task i on the local processor

FTu
i The finishing time of transmitting task i to the MEC

server
n Number of Tasks
P d The power of the UE for receiving the results of tasks
Pu The power of the UE for sending the tasks to the MEC

server
Rd The downlink transmission rate
Ru The uplink transmission rate
T d
i The transmission time of task i on the downlink

channel
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TABLE I
A COMPARISON BETWEEN OUR WORK AND THE CURRENT WORK.

Method Reference Objective functions Real-time
performance

Number of
accommodated preferences

Evolutionary
algorithm

[26] Energy consumption, processing delay Low Multiple preferences
[27] Hit ratio, service latency Low Multiple preferences
[28] Delay, energy consumption Low Multiple preferences
[29] Completion time, execution cost Low Multiple preferences

Learning-based
algorithm

[19] Energy consumption, execution time High One a priori preference
[20] Latency, energy consumption High One a priori preference
[21] Computational load, delay, energy consumption High One a priori preference

Our work Latency, energy consumption High All potential preferences
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Fig. 1. An MEC system consisting of a UE and an access point with an MEC
server.
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Fig. 2. An example of DAG for facial recognition application [30].

T e
i The execution time of task i on the MEC server

Tu
i The transmission time of task i on the uplink channel

T l
i The execution time of task i on the local processor

A. System Model

As depicted in Fig. 1, this paper investigates an MEC
system consisting of a UE and an access point with an
MEC server. The UE hosts an application that consists of
multiple dependent tasks. Such applications are widespread,
as illustrated in Fig. 2, one notable example being the facial
recognition application [30]. These tasks in the applications
can be modeled as a Directed Acyclic Graph (DAG). We use
G = (T , E) to represent the DAG, where T is the set of
vertices representing tasks and E is the set of directed edges
representing task dependencies. Vertex i ∈ T represents task

1 2

3

4

5

6

Fig. 3. A DAG consisting of tasks 1 to 6.

i and directed edge e(i, j) ∈ E represents the dependency
between tasks i and j. A task can only be executed once
its predecessors have been completed, and a terminal task
has no successors. For example, there are six tasks in Fig.
3, i.e., tasks 1 to 6, that need to be executed. After task 2 is
completed, tasks 3 and 5 can be executed. Task 4 is dependent
on the completion of tasks 2 and 5. Similarly, task 6 cannot
be executed until tasks 3 to 5 have all been completed.

Task i ∈ T is represented by a three-tuple (Ci, D
u
i , D

d
i ),

where Ci represents the required number of CPU cycles, Du
i

represents the amount of data offloaded to the MEC server
for processing, and Dd

i represents the size of the received
result. We assume that each task i can be executed either on
the local processor of the UE (i.e., local execution) or on the
MEC server (i.e., remote execution). The offloading decision
is denoted by aaa = [a1, . . . , an], where n denotes the task
number, and ai = 0 and ai = 1 indicate the local and remote
execution of task i, respectively. For local execution, task i
is executed directly on the local processor. In contrast, in the
case where task i is offloaded to the MEC server for remote
execution, the process involves three stages: 1) the UE sends
task i to the MEC server via the uplink transmission; 2) the
MEC server executes task i; and 3) the UE receives the results
of task i from the MEC server via the downlink transmission.

Moreover, we define the finishing time of executing task
i on the local processor, sending task i to the MEC server,
executing task i on the MEC server, and transmitting the
results of task i back to the UE as FT l

i , FTu
i , FT e

i , and
FT d

i , respectively.
1) Local Execution: The execution time of task i on the

local processor is given by

T l
i =

Ci

f l
(1)

where f l denotes the computation capability (i.e., CPU cycles
per second) of the local processor.
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To execute task i locally, two conditions must be fulfilled:
1) the local processor must be idle, as it cannot process
multiple tasks concurrently; 2) task dependencies require that
all predecessor tasks (denoted as P(i)) of task i are completed
either locally or remotely [20]. Considering condition 1), the
available time at which the local processor becomes idle in
preparation to execute task i is given by

AT l
i = max{AT l

j , FT l
j} (2)

where task j is executed prior to task i. Note that, if task j
is not executed locally, FT l

j = 0. Then, further considering
condition 2), the finishing time of executing task i on the local
processor is given by

FT l
i = max

k∈P(i)
{AT l

i , FT l
k, FT d

k }+ T l
i . (3)

For task i in the local execution, we only need to consider
the energy consumption of the local processor as follows

El
i = c(f l)βT l

i (4)

where c > 0 is a constant that depends on the average
switched capacitance and average activity factor, and β ≥ 2
is a constant.

2) Remote Execution: The time spent on uplink and down-
link transmissions of task i is calculated as

Tu
i =

Du
i

Ru
(5)

and

T d
i =

Dd
i

Rd
(6)

where Ru and Rd represent the transmission rate for uplink
and downlink transmissions, respectively. The execution time
of task i on the MEC server is expressed as

T e
i =

Ci

fe
(7)

where fe represents the computation capability of the MEC
server allocated to task i.

It is noteworthy that both the uplink and downlink channels,
as well as the MEC server, have the capacity to handle only
a single task at any given time. Therefore, the available time
at which the uplink channel becomes idle in preparation to
transmit task i to the MEC server can be calculated as

ATu
i = max{ATu

j , FTu
j } (8)

and the available time at which the MEC server becomes idle
in preparation to execute task i is expressed as

AT e
i = max{AT e

j , FT e
j }. (9)

Similarly, the available time at which the downlink channel
becomes idle in preparation to receive the results of task i is
given by

AT d
i = max{AT d

j , FT d
j } (10)

where task j is executed prior to task i. Note that, FTu
j = 0,

FT e
j = 0, and FT d

j = 0 if task j is executed locally.

TABLE II
AVAILABLE AND FINISHING TIME FOR TASKS 1 TO 6.

Task T l
i Tu

i T e
i T d

i AT l
i ATu

i AT e
i AT d

i FT l
i FTu

i FT e
i FT d

i
1 2 2 1 1 0 0 0 0 2 0 0 0
2 4 1 1 1 2 0 0 0 0 3 4 5
3 3 1 1 1 2 3 4 5 8 0 0 0
4 5 3 2 1 8 3 4 5 0 8 10 11
5 2 1 1 1 8 8 10 11 0 9 11 12
6 4 2 3 2 8 9 11 12 16 0 0 0

4 8 12 160
FT

Task 2

Task 5

Task 1

Task 4

Task 3

Task 6

Uplink transmission

Local execution

Downlink transmission

MEC server execution

Fig. 4. A Gantt chart corresponding to Table II.

Since the task dependencies require that all predecessor
tasks in P(i) are completed either locally or remotely, the
finishing time of sending task i to the MEC server is given by

FTu
i = max

k∈P(i)
{ATu

i , FT l
k, FT d

k }+ Tu
i . (11)

Similarly, the finishing time of executing task i on the MEC
server is

FT e
i = max{AT e

i , FTu
i }+ T e

i . (12)

Finally, we calculate the finishing time of receiving the results
of task i as

FT d
i = max{AT d

i , FT e
i }+ T d

i . (13)

For task i in the remote execution, we only need to consider
the energy consumption of the UE, including the energy
consumption for sending task i and receiving the results:

Er
i = PuTu

i + P dT d
i (14)

where Pu and P d represent the power of sending task i and
receiving the results, respectively.

Table II presents an example of calculating the available and
finishing time for tasks 1 to 6 in Fig. 3. Herein, we assume that
the values of T l

i , Tu
i , T e

i , and T d
i of tasks 1 to 6 are known

(i.e., columns 2 to 5 in Table II). In addition, we also assume
that tasks 1 to 6 make the offloading decision sequentially and
their offloading decision is aaa = [0, 1, 0, 1, 1, 0]. Based on (2),
(3), and (8)-(13), we can calculate the available and finishing
time of tasks 1 to 6 (i.e., columns 6 to 13 in Table II). The
Gantt chart in Fig. 4 intuitively demonstrates the execution
process of the tasks.

B. Problem Formulation
In this paper, we aim to optimize the offloading decision

(i.e., aaa) to reduce the energy consumption and the latency of
executing all tasks. The energy consumption of the UE for
executing all tasks is expressed as:

E(aaa) =
n∑

i=1

((1− ai)E
l
i + aiE

r
i ). (15)
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Moreover, the latency of executing all tasks is given by

FT (aaa) = max
i=1,...,n

{(1− ai)FT l
i + aiFT d

i }. (16)

Therefore, the multiobjective task offloading problem can be
expressed as follows

min
aaa

{
E(aaa) =

∑n
i=1((1− ai)E

l
i + aiE

r
i )

FT (aaa) = maxi=1,...,n{(1− ai)FT l
i + aiFT d

i }
s.t. ai ∈ {0, 1}, i = 1, · · · , n.

(17)
In practice, the weighted sum method is widely used to

combine all the multiple objectives into a scalar objective
[31]. Therefore, we can obtain the following QoS metric
by calculating the weighted sum of the differences between
the offloading decision and the local execution in terms of
normalized energy consumption and latency of executing all
tasks [20], [32]:

max
aaa

J(aaa|λ) = λ
El − E(aaa)

El
+ (1− λ)

FT l − FT (aaa)

FT l
(18)

where El represents the energy consumption of executing all
tasks locally, and FT l represents the latency of executing all
tasks locally. The weight λ represents the preference between
energy consumption and latency.

Note that, λ may vary in different situations. For mobile
devices such as smartphones and laptops, user preferences for
performance metrics, including latency and energy consump-
tion, can vary significantly based on the battery status. When
the battery is fully charged or near full capacity, users prefer
low latency because applications such as online gaming, video
streaming, or real-time communication require low latency to
ensure seamless interaction. Conversely, as the battery level
drops, users may prefer to reduce energy consumption, even
if it results in slightly higher latency, to ensure the mobile
devices remain operational for as long as possible. Because
λ varies dynamically, there is no unique optimal offloading
decision in (18), and the optimal offloading decision may vary
depending on λ.

Remark 1: For ease of reference, the key notations used in
this section are summarized at the beginning of this section.

IV. PROPOSED ALGORITHM

A. General Framework

The optimization problem in (18) is a typical combinatorial
optimization problem. Neural combinatorial optimization, as a
learning-based method, can leverage deep learning to automat-
ically learn effective methods for combinatorial optimization
problems [33], [34], and has consequently been applied to
tackle (18) in [20]. It is worth noting that [20] only trains a
model based on one a priori preference, and if the preference
changes, the model may not perform well. Under this condi-
tion, the model may need to be retrained, potentially resulting
in inefficiency. Inspired by the recently proposed Pareto set
learning [35], [36], we design a novel neural combinatorial
optimization method, called DepTaskNet, to solve (18). The
method does not rely on the a priori preference and can adapt
to accommodate any potential preference.

The primary process of DepTaskNet is outlined as follows.
DepTaskNet first sorts the tasks in the DAG and generates
the input features for each task. The encoder then extracts
the relevant information among the sorted tasks based on
their input features. Finally, the decoder makes the offloading
decision for each sorted task sequentially based on the output
of the encoder and the preference. In addition, the encoder-
decoder model is trained via reinforcement learning, with the
aim of maximizing J(aaa|λ) in (18) for each randomly sampled
λ. In this way, DepTaskNet is able to accommodate all
potential preferences and directly infer the offloading decision
when the preference changes, alleviating the need for model
retraining. Fig. 5 presents an example of DepTaskNet to make
the offloading decision for a DAG consisting of tasks 1 to 6.
The following describes the proposed DepTaskNet in detail.

B. Task Sorting

Due to the task dependencies, we must make the offloading
decision for each task sequentially. As a result, before making
the offloading decision, it is critical to organize the tasks in
the DAG in a specific order. DepTaskNet adopts the method
in [20] to sort the tasks in descending order according to the
following rank value:

r(i) =

{
T o
i , if task i is the terminal task

maxj∈S(i) r(j) + T o
i , otherwise (19)

where T o
i = min{T l

i , T
u
i +T e

i +T d
i } (i ∈ T ) and S(i) denotes

the set of immediate successors for task i in the DAG. Then, a
task sequence p1, . . . , pn can be obtained based on r(i), where
pj (j ∈ 1, . . . , n) represents the task index of the jth task after
sorting. Next, we sequentially make the offloading decision
for each task pj . This ensures that the offloading decision for
the current task in the DAG is always determined before its
subsequent tasks, thus satisfying task dependencies.

After that, it is imperative to develop more effective strate-
gies to enhance the capture of task-related information and
dependencies among tasks. We generate an input feature xxxi

for each task i ∈ T , which includes: 1) the task index of
task i, 2) the values of T l

i , Tu
i , T e

i , and T d
i for task i, and

3) the task indexes of µ tasks in S(i) and µ tasks in P(i). If
the number of tasks in S(i) or P(i) is no more than µ, we
supplement the task indexes with -1.

C. Encoder

Capturing the underlying information among the sorted
tasks is beneficial to making the offloading decision. To
achieve this, the encoder is employed to generate embeddings
of all tasks. These embeddings can be regarded as crucial
features extracted from the context information of tasks. The
encoder in DepTaskNet consists of two layers: a node wise
fully connected feed-forward (FF) layer and a bi-directional
long short-term memory (BiLSTM) layer that executes bi-
directional message passing among the tasks.

First, the FF layer projects each xxxpj into a 128-dimension
vector. Then, the outputs of the FF layer (i.e., hhhef

p1
, . . . ,hhhef

pn
)

are fed into the BiLSTM layer. Unlike the commonly used
long short-term memory (LSTM) network that solely relies
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Fig. 5. An example of DepTaskNet to make the offloading decision for a DAG consisting of tasks 1 to 6.

on backward information, the BiLSTM leverages forward
and backward information simultaneously; thus, the context
information of tasks can be comprehensively captured [37]. In
the BiLSTM layer, the output of the forward and backward
processes for task pj are denoted as hhhf

pj
and hhhb

pj
, respectively

[38]. Finally, the embedding of task pj which is the output of
the BiLSTM layer can be calculated as

hhhpj
= σ(Whh[hhhf

pj
;hhhb

pj
] + bbbhh) (20)

where Whh represents a trainable matrix, bbbhh represents a
trainable bias vector, and [hhhf

pj
;hhhb

pj
] represents a concatenate

operation that connects hhhf
pj

and hhhb
pj

as one vector.

D. Decoder

DepTaskNet then uses the decoder to make, in sequence, the
offloading decision (i.e., apj

) for each sorted task pj based
on the embeddings (i.e., hhhp1

, . . . ,hhhpn
) of all tasks and the

preference (i.e., λ). Since taking λ into account, the decoder
can generate the corresponding offloading decision after λ
changes. In addition, to enable the decoder to more effectively
utilize hhhp1 , . . . ,hhhpn , an attention mechanism is introduced to
assign different weights to them. As shown in Fig. 5, the
decoder includes four layers: the FF layer, the double LSTM
layer, the preference-condition attention layer, and the FF layer
with the softmax activation function. The detailed process of
the decoder to obtain apj for task pj is as follows.

We first use the FF layer to project the offloading decision
(i.e., apj−1 ) of task pj−1 into a 128-dimensional vector hhhdf

pj
=

Weapj−1
, where We is a trainable matrix. Subsequently,
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Fig. 6. Preference-condition attention layer.

hhhdf
pj

is fed into the double LSTM layer to obtain the hidden
state hhhd

pj
for task pj . The double LSTM layer includes two

LSTM networks, both of which perform the forward process
to capture the backward information, and the output of the first
LSTM network is the input of the second LSTM network.

Subsequently, as illustrated in Fig. 6, the preference-
condition attention layer initially uses a multilayer perceptron
model to generate three 2-dimensional vectors conditioned on
λ and employs three FF layers to project these three vectors
into three high-dimensional vectors as in [35], which are
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subsequently reshaped into a 128 ∗ 128 matrix, a 128 ∗ 256
matrix, and a 256 ∗ 256 matrix (denoted as Wq(λ),Wk(λ),
and Wv(λ)), respectively.

After that, we calculate the weight of each hhhpi
(i = 1, . . . , n)

for hhhd
pj

:

αpj ,pi
(λ) =

exp(score(hhhd
pj
,hhhpi

|λ))∑n
i=1 exp(score(hhh

d
pj
,hhhpi |λ)

, i = 1, . . . , n

(21)
where score(hhhd

pj
,hhhpi

|λ) measures the alignment between hhhd
pj

and each hhhpi
:

score(hhhd
pj
,hhhpi |λ) = (Wq(λ)hhhd

pj
)TWk(λ)hhhpi , i = 1, . . . , n.

(22)
Next, based on αpj ,p1

(λ), . . . , αpj ,pn
(λ), the context vector

(denoted as cpj
(λ)) for task pj is obtained via the weight sum

of hhhp1
, . . . ,hhhpn

:

cccpj
(λ) =

n∑
i=1

αpj ,pi
(λ)Wv(λ)hhhpi

. (23)

It can be observed from (21) that as the alignment between hhhd
pj

and hhhpi increases, the value of αpj ,pi also increases, resulting
in a higher utilization of hhhpi . After that, we concatenate cpj (λ)
and hhhd

pj
, which are then projected to a 128-dimensional vector:

hhhp
pj

= tanh(Wc[cccpj
(λ);hhhd

pj
]) (24)

where Wc is a trainable matrix.
Finally, hhhp

pj
is transformed into a 2-dimensional vector

via a FF layer. This vector is then used to determine the
probability of executing task pj locally or remotely (denoted
as pθθθ(λ)(apj

|G, ap1
, . . . , apj−1

)) via a softmax activation func-
tion, where θθθ(λ) represents the overall trainable parameters
of the encoder-decoder model conditioned on λ. Based on
pθθθ(λ)(apj

|G, ap1
, . . . , apj−1

), apj
is obtained for task pj .

Remark 1: As shown in Fig. 5, we first sort tasks 1 to 6
based on Section IV-B. Suppose that the indexes of the sorted
tasks are p1, . . . , p6. The input features of tasks p1, . . . , p6 are
then generated as xxxp1 , . . . ,xxxp6 . Subsequently, as introduced in
Section IV-C, the relevant information among tasks p1, . . . , p6
(i.e., hhhp1

, . . . ,hhhp6
) is extracted via the encoder based on

xxx1, . . . ,xxx6. After that, we employ the decoder introduced in
Section IV-D to sequentially make the offloading decision apj

for each task pj (j = 1, . . . , 6) based on hhhp1 , . . . ,hhhp6 and the
preference λ.

E. Training Procedure

The encoder-decoder model defines an offloading decision
policy pθθθ(λ)(aaa|G) parameterized by θθθ(λ) to make the offload-
ing decision in sequence as follows

pθθθ(λ)(aaa|G) =
n∏

j=1

pθθθ(λ)(apj
|G, ap1

, . . . , apj−1
). (25)

Our training procedure aims to find the optimal offloading
decision policy pθθθ∗(λ)(aaa|G) that maximizes J(aaa|λ) for each
randomly sampled λ. pθθθ(λ)(aaa|G) can be trained using both
supervised and unsupervised learning. However, due to the
NP-hard nature of the studied problem, acquiring high-quality

Algorithm 1 Training Procedure of DepTaskNet
1: Initialize the policy parameters θθθ1;
2: for k = 1 : K do
3: // Policy evaluation
4: for w = 1 : W do
5: λw ← Randomly sample a preference;
6: Gwb ← Randomly sample a batch of instances with a batch size

of B, where b = 1, . . . , B;
7: awb

pj
← Generate the offloading decision for each task pj in Gwb

based on pθθθk(λw)(·|Gwb), where b = 1, . . . , B, j = 1, . . . , n;
8: Âwb

pj
← Calculate the advantage estimate for each awb

pj
, where

b = 1, . . . , B, j = 1, . . . , n;
9: v̂wb

pj
← Obtain the target state value, where b = 1, . . . , B, j =

1, . . . , n;
10: end for
11: // Policy improvement
12: θθθk+1 ← Maximize LPPO with H epochs;
13: end for
14: Output the optimal policy parameters θθθ∗ = θθθk+1

labels required in supervised learning may be computationally
infeasible. Consequently, as in [20], a reinforcement learning
method called proximal policy optimization (PPO) [39] is
adopted in DepTaskNet. Note that some existing methods di-
rectly use reinforcement learning to make offloading decisions.
In contrast, the proposed method uses reinforcement learning
to train the encoder-decoder network and then make offloading
decisions using the encoder-decoder network.

When determining the decision offloading for task tpj in G,
the state, action, and reward are defined as follows

• The state is defined as spj = {G, ap1 , . . . , apj−1}.
• The action is defined as apj

∈ {0, 1}.
• The reward is defined as [20]

rpj = λe
Ēl −∆E

El
+ λt

F̄ T
l −∆FT

FT l
(26)

where Ēl = El

n , F̄ T
l
= FT l

n , ∆E = (1 − apj
)El

pj
+

apj
Ee

pj
, and ∆FT = maxi=1,...,j{(1 − api

)FT l
pi

+

api
FT d

pi
} − maxi=1,...,j−1{(1 − api

)FT l
pi

+ api
FT d

pi
}.

Note that
∑n

j=1 rpj = J(aaa|λ).
The training procedure of DepTaskNet is given in Algorithm

1. First, the policy parameters (i.e., the encoder-decoder model
parameters) are randomly initialized as θθθ1. Subsequently, each
iteration consists of two main stages: policy evaluation and
policy improvement. For policy evaluation, at each iteration
k, we randomly sample W preferences (denoted as λw, w =
1, . . . ,W ) and B instances (denoted as Gwb, b = 1, . . . , B)
for each preference λw. Then, for each Gwb, we use the ran-
dom sampling method to obtain the corresponding offloading
decision (awb

pj
, j = 1, . . . , n) based on pθθθk(λw)(·|Gwb), and

calculate the advantage estimate for each awb
pj

:

Âwb
pj

=

n−j+1∑
k=0

(γφ)kδpj+k
, j = 1, . . . , n. (27)

Here, δpj
represents the temporal-difference error, which is

calculated as

δpj
= rpj

+ γvθθθk(λw)(spj+1
)− vθθθk(λw)(spj

). (28)
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TABLE III
PARAMETER SETTINGS OF THE STUDIED MEC SYSTEM.

Variable Value Variable Value
Ci [107, 108] cycles Du

i , D
d
i [5, 50] KB

f l 1 GHz fe 10 GHz
c 1.25 ∗ 10−26 Pu 1.258 W
β 3 P d 1.181 W
c1 0.5 c2 0.01
γ 0.99 φ 0.95
K 500 ϵ 0.2
H 4 B 256
µ 6

vθθθk(λw)(spj ) is the predicted state value using a value function
that shares parameters (i.e., θθθk(λw)) with the policy. Addition-
ally, the target state value is obtained as

v̂wb
pj

=

n−j+1∑
k=0

γkrpj+k
. (29)

After that, for policy improvement, we maximize the fol-
lowing objective LPPO to obtain θθθk+1 with H epochs via
stochastic gradient ascent with Adam [40]. LPPO is defined
as

LPPO(θθθ) = Ej

{
LCLIP (θθθ)− c1L

V F (θθθ) + c2L
S [pθθθ(λw)](spj

)
}

(30)
where LCLIP is a clipped target function, LV F is a squared-
error loss, LS [pθθθ(λw)](spj

) is an entropy bonus, and c1 and c2
are two constants. Specifically, LCLIP (θθθ) is defined as

LCLIP (θθθ)

=min

(
pθθθ(λw)

pθθθk(λw)
Âwb

pj
, clip

(
pθθθ(λw)

pθθθk(λw)
, 1− ϵ, 1 + ϵ

)
Âwb

pj

)
.

(31)

where clip
(

pθθθ(λw)

pθθθk(λw)
, 1− ϵ, 1 + ϵ

)
restricts that the value of

pθθθ(λw)

pθθθk(λw)
does not exceed the interval [1 − ϵ, 1 + ϵ] and ϵ is a

control parameter. In addition, LV F (θθθ) is defined as

LV F (θθθ) =
(
vθθθ(λw)(spj

)− v̂wb
pj

)2

. (32)

The above process is repeated until the maximum number
of iterations K is reached, and then the optimal policy pa-
rameters θθθ∗ are output. Hereafter, for the given G and λ, the
corresponding offloading decision aaa can be obtained based on
pθθθ∗(λ)(aaa|G) by using a greedy strategy.

V. EXPERIMENTAL STUDIES

In this section, we first introduce the parameter settings.
Then, the compared methods are briefly presented. Finally,
the effectiveness of DepTaskNet is studied and analyzed.

A. Parameter Settings

Similar to [20], this paper used a synthetic DAG generator to
generate heterogeneous DAGs. The properties of these DAGs
were controlled by the following parameters

• A parameter was used to control the width and height of
a DAG;

• A parameter was used to control the number of edges
between two levels of a DAG;

• A parameter was used to control the communication-
to-computation ratio, which is the ratio between the
communication cost and the computation cost.

The above three parameters were randomly selected from
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, and
{0.3, 0.4, 0.5}, respectively.

For each task in the applications, Ci (i ∈ T ) was randomly
distributed within [107, 108] cycles, and both Du

i and Dd
i

were randomly distributed within [5, 50] KB. In the training
process of DepTaskNet, we set the number of iterations
(denoted as K) to 500. For the reinforcement learning part, the
optimized hyperparameters obtained from [41] was applied to
our method, and further refined these hyperparameters through
random search. Moreover, we set a discount factor γ to 0.99,
a GAE parameter φ to 0.95, a value coefficient c1 to 0.5, an
entropy coefficient c2 to 0.01, and a clip parameter ϵ to 0.2.

The detailed parameter settings of the studied MEC sys-
tem and DepTaskNet are summarized in Table III [20]. All
experiments were carried out with a single RTX 3080 GPU.

B. Compared Algorithms

The following three algorithms were adopted as baselines.
• MOEA/D [42] is a decomposition-based multiobjective

evolutionary algorithm. In MOEA/D, a set of uniformly
distributed preferences is generated, and a population is
utilized to search for a set of optimal offloading decisions,
where each offloading decision corresponds to a specific
preference.

• DDQNTO [43] is a deep reinforcement learning method,
which uses LSTM network, dueling deep Q-network, and
double deep Q-network techniques for task offloading.

• Like DepTaskNet, DRLTO [20] employs an encoder-
decoder model to approximate the offloading decision
policy and applies a policy gradient method to train the
encoder-decoder model.

In MOEA/D, 101 preferences were generated, where each
preference is represented as λi = i

100 , i = 0, . . . , 100.
This approach allows for the simultaneous generation of 101
offloading decisions. Both DDQNTO and DRLTO require one
a priori preference to transform multiple objectives into a
scalar objective. This paper assumed that the models used
in DDQNTO and DRLTO were trained with λ = 0.5. The
parameter settings of the three baselines are consistent with
the original papers [20], [42], [43].1

C. Results and Discussions

1) Comparison on Different Task Numbers: In this section,
we first considered nine different task number settings (i.e.,
n = 10, 15, 20, 25, 30, 35, 40, 45, and 50) and set both
Ru and Rd as 6 Mbps. For each task number setting, our

1The source code for MOEA/D can be accessed at
https://github.com/anyoptimization/pymoo, while the source
code for DDQNTO and DRLTO can be found at
https://github.com/linkpark/RLTaskOffloading.
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Fig. 7. QoS versus the number of tasks under Ru, Rd = 6 Mbps.
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Fig. 8. Running time versus the number of tasks under Ru, Rd = 6 Mbps.

study involves 5,000 randomly generated training instances for
training the models in DDQNTO, DRLTO, and DepTaskNet.
Additionally, we generated 100 test instances and 101 uni-
formly distributed preferences (i.e., λi =

i
100 , i = 0, . . . , 100)

to test the performance of the trained models. Due to the
fact that the trained model in DepTaskNet is able to ac-
commodate all potential preferences, the offloading decision
can be obtained for each preference on each test instance.
However, the models in DDQNTO and DRLTO are trained
for a specific preference, leading to poor performance and
QoS when the preference changes because the offloading
decision is the same for different preferences on each in-
stance. MOEA/D directly optimizes the offloading decisions
for all 101 preferences on each test instance without the
training process. Subsequently, we computed the average QoS
of the offloading decisions for different preferences on 100
test instances: 1

101∗100
∑100

i=0

∑100
k=1 J(aaak|λi), where aaak is the

offloading decision obtained on the kth test instance.
As presented Fig. 7, it is evident that DepTaskNet and

MOEA/D outperform DDQNTO and DRLTO across different
task number settings since DDQNTO and DRLTO can only
provide one offloading decision for different preferences. In
most instances, DepTaskNet exhibits slightly better perfor-
mance than MOEA/D. Additionally, we present the running
time of DepTaskNet and three baselines. It is worth noting that
DDQNTO, DRLTO, and DepTaskNet only need to perform
inference on the trained model to obtain the optimal offloading
decisions directly. Therefore, the running time of these three
algorithms only includes the inference time. In addition, these
models can also continuously train offline to achieve better
performance. The running time of MOEA/D represents the
duration required by MOEA/D to perform a single run. As
depicted in Fig. 8, the running time of DepTaskNet, DDQNTO,
and DRLTO is less than 1% compared to MOEA/D. This
can be attributed to the fact that these three learning-based
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Fig. 9. Convergence of DepTaskNet with a 95% confidence interval under
n = 50 and Ru, Rd = 6 Mbps.
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Fig. 10. QoS versus the transmission rate under n = 20.

algorithms, i.e., DepTaskNet, DDQNTO, and DRLTO, do not
require multiple iterations like MOEA/D and can directly
perform inference to make the offloading decision.

Fig. 9 provides the training process of DepTaskNet from
different perspectives. The sample reward illustrates the policy
evaluation stage during each iteration, in which the policy
network samples diverse offloading decisions for different
preferences and randomly sampled instances. The policy loss,
the value loss, and the entropy loss are used to update
the policy network, update the value function network, and
balance the exploration and exploitation of the policy, respec-
tively. Considering the case of n = 50 and Ru, Rd = 6
Mbps, Fig. 9 reveals that the reward experiences rapid growth
and stabilizes after approximately 100 iterations, ultimately
converging around 400 epochs.

The results mentioned above are summarized as follows.
The inability of DDQNTO and DRLTO to accommodate
various preferences leads to poor QoS. Therefore, their models
usually need to be retrained after the preference changes. On
the other hand, MOEA/D directly optimizes the offloading
decisions for each test instance under each preference, re-
sulting in decent QoS. However, MOEA/D requires multiple
iterations, leading to poor real-time performance. In contrast,
DepTaskNet can provide different offloading decisions for
various preferences and achieve satisfactory real-time perfor-
mance.

2) Comparison on Different Transmission Rates: Further-
more, DepTaskNet is compared with the three baselines on
different transmission rates: Ru, Rd = 4, 5, 6, 7, and 8 Mbps.
Herein, we set the number of tasks as n = 20. As shown in Fig.
10, at different transmission rates, DDQNTO still performs the
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worst, followed by DRLTO. However, the performances of
MOEA/D and DepTaskNet are significantly better than that of
DDQNTO and DRLTO. This further demonstrates the neces-
sity of adjusting offloading decisions based on preferences.
In addition, we can observe that DepTaskNet outperforms
MOEA/D at different transmission rates, and its advantage
increases as the transmission rate increases. These results
demonstrate the effectiveness of DepTaskNet on different
transmission rates.

3) Energy Consumption and Latency Under Different Pref-
erences: This section examines the energy consumption and
latency resulting from offloading decisions under various pref-
erences. As both MOEA/D and DepTaskNet can accommodate
different preferences, we compared their performances under
101 uniformly distributed preferences (i.e., λi = i

100 , i =
0, . . . , 100). Moreover, to evaluate the performance of Dep-
TaskNet on each individual objective, we compared Dep-
TaskNet with DDQNTO and DRLTO under two extreme
preferences: λ1 = 0 and λ2 = 1.

From Fig. 11, two significant insights can be drawn.
• A majority of the offloading decisions obtained from

MOEA/D and DepTaskNet exhibit similar performance.
A small number of offloading decisions obtained from
MOEA/D demonstrate lower energy consumption and
latency than those obtained from DepTaskNet. However,
DepTaskNet offers a wider variety of offloading decisions
than MOEA/D. It is worth noting that when the pref-
erence is high, the energy consumption of DepTaskNet
increases significantly. This is because, as shown in Fig.
11, the offloading decisions perform similarly when the
preference is high. This poses a challenge for DepTaskNet
in distinguishing these similar offloading decisions with

only a single model. In contrast, since MOEA/D makes
the offloading decision for each preference separately, it
can easily distinguish these offloading decisions. How-
ever, in scenarios where the offloading decisions are not
similar, the performance of DepTaskNet can surpass that
of MOEA/D. Moreover, DepTaskNet does not require
many iterations and thus has good real-time performance.

• Compared with DRLTO, DepTaskNet performs slightly
worse under λ1 = 0 but similarly under λ2 = 1. In addi-
tion, DepTaskNet performs better than DDQNTO under
the two extreme preferences. Since both DDQNTO and
DRLTO can only accommodate a preference, they need to
be trained on the two preferences separately. In contrast,
DepTaskNet does not need to retrain the model after
the preference changes. In conclusion, DepTaskNet can
efficiently obtain promising results for each individual
objective.

4) Comparison on an MEC System with Two Servers: This
section extends the studied system to an MEC system with
two servers. In this system, each task can be executed not
only locally but also remotely on either of the two servers.
We assume that the computation capacity of each server is the
same. To adapt to this system, we modified the decoder in
DepTaskNet, enabling it to make offloading decisions of 0, 1,
and 2, corresponding to local execution, remote execution on
the first server, and remote execution on the second server,
respectively. Subsequently, we compared DepTaskNet with
DRLTO and DDQNTO on different task number settings (i.e.,
n = 10, 15, 20, 25, 30, 35, 40, 45, and 50). As shown in Fig.
12, in the MEC system with two servers, the performance
of DepTaskNet is still better than that of the two compared
algorithms.

5) A Unified Model to Handle Different Task Number
Settings: In Section V-C1, we trained a model for each
task number setting, ensuring that the task number remained
consistent in both the training and testing instances. Since our
model adopts an autoregressive method [44], the model can
handle instances of various scales. To this end, we attempted
to train a unified model to handle different task number
settings simultaneously instead of training different models for
different task number settings. As a result, we tried to train
a unified model by changing the training procedure without
changing the system model and network structure. Specifically,
we combined all 45,000 training instances from Section V-C1
to train the unified model. After obtaining the trained unified
model (called DepTaskNet-Mix), we employed 100 testing
instances to evaluate its performance in each task number
setting. As shown in Fig. 13, compared to DepTaskNet,
DepTaskNet-Mix yields comparable performance in all task
number settings with respect to QoS performance. The results
indicate that DepTaskNet-Mix can provide a promising unified
model, thereby avoiding the model retraining for different task
number settings.

6) Impact of Different Aggregation Functions: This paper
employs the weighted sum method to integrate multiple ob-
jectives into a scalar objective in (18). Besides the weighted
sum method, the Chebyshev method is another scalarization
method in multiobjective optimization. To investigate the im-
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pact of scalarization methods on DepTaskNet, we compared
the performance of the weighted sum method and the Cheby-
shev method. As shown in Fig. 14, there is only a slight
difference in the performance of the two methods, indicating
that the performance of DepTaskNet is not sensitive to the
choice of the scalarization method.

VI. CONCLUSION

This paper investigated multiobjective task offloading that
considers task dependencies in MEC systems. The main goal
was to simultaneously minimize energy consumption and
latency by optimizing the offloading decision without relying
on the a priori preference. To achieve it, we proposed a
neural combinatorial optimization method, which incorporates
an encoder to capture relevant information among tasks and
a preference-conditioned decoder to determine the offloading
decision for each potential preference. Moreover, a reinforce-
ment learning method was employed to optimize the encoder-
decoder model. Since the method can directly infer the offload-
ing decision for each preference without the need for model
retraining after the preference changes, it offers high flexibility
and real-time performance. The effectiveness of the proposed
method was validated by comparing it with an evolutionary
algorithm and two learning-based algorithms on instances of
different scales. In the future, we will try to take multiple UEs
into account. Specifically, we can merge multiple DAGs from
the UEs into a large DAG by adding a virtual entry point and
a virtual exit point and then use the proposed method to make
offloading decisions for all tasks.
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