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Abstract—In fire surveillance, Industrial Internet of Things
(IIoT) devices require transmitting large monitoring data fre-
quently, which leads to huge consumption of spectrum resources.
Hence, we propose an Industrial Edge Semantic Network (IESN)
to allow IIoT devices to send warnings through Semantic com-
munication (SC). Thus, we should consider (1) Data privacy
and security. (2) SC model adaptation for heterogeneous devices.
(3) Explainability of semantics. Therefore, first, we present an
eXplainable Semantic Federated Learning (XSFL) to train the SC
model, thus ensuring data privacy and security. Then, we present
an Adaptive Client Training (ACT) strategy to provide a specific
SC model for each device according to its Fisher information
matrix, thus overcoming the heterogeneity. Next, an Explainable
SC (ESC) mechanism is designed, which introduces a leakyReLU-
based activation mapping to explain the relationship between
the extracted semantics and monitoring data. Finally, simulation
results demonstrate the effectiveness of XSFL.

Index Terms—Fire surveillance; federated learning; semantic
communication; explainable AI

I. INTRODUCTION

Every year, industrial fires pose a serious threat to human
lives and property due to human errors or system failures.
The risk of fire is further heightened by high infrastructure
concentration and stored inventory [1]. When a fire occurs, it is
crucial to promptly issue warnings and initiate rescue missions
to minimize property damage and increase the chances of
saving lives. However, traditional manual monitoring methods
are inconvenient, scattered, and come with certain drawbacks
such as high costs and poor network connectivity [2]. There-
fore, effectively and timely sending critical information upon
detecting a fire presents a significant challenge for traditional
manual monitoring methods.
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With the development of Artificial Intelligence (AI) and
the Industrial Internet of Things (IIoT), AI-empowered IIoT
devices play an important role in catering to a multitude of
problems (e.g., transportation, healthcare, and disaster man-
agement, etc.) efficiently and reliably [3]. Simultaneously, it
is also used for fire surveillance. In [4], the authors proposed
an efficient system, which was based on a lightweight Deep
Learning (DL) model, for fire detection in uncertain surveil-
lance scenarios. In [5], the authors introduced a vision-based
fire detection framework that focuses on monitoring private
spaces while prioritizing occupant privacy. An innovative
solution for continuous forest surveillance and fire detection
was developed in [6] using a drone-based system integrated
with AI capabilities, specifically designed for forest fire-
fighting purposes. In [7], a novel approach leveraging IIoT
technology was proposed to detect fires and promptly notify
relevant parties. This method ensured accurate solutions for
fire surveillance systems.

However, IIoT devices require frequent transmissions of
large monitoring data when the conflagration occurs, leading
to a huge consumption of spectrum resources. Semantic Com-
munication (SC) is viewed as one of the intelligent solutions
to physical layer communication. Different from traditional
ways, SC transmits only semantic features required for the
respective task [8]. The semantic feature is generally defined
as the symbols with much fewer dimensions extracted from the
raw data. For example, in fire surveillance, the IIoT devices
only extract the semantic information from the surveillance
image with the deployed SC encoder, then transmit it to
the Edge Server (ES) deployed on the Base Station (BS).
The ES decodes the received semantic information with the
deployed SC decoder and obtains the prediction results. Since
the transferred data is greatly reduced in SC, the consumption
of spectrum resources and communication delay are also
greatly decreased. The high-accuracy SC model based on DL
is critical for the performance of SC, while several challenges
should be considered as follows:

1) Data privacy and security for industrial applications:
Most data in IIoT devices are sensitive for referring
personal information and business secrets [9]. Hence,
privacy security has become a critical issue. However,
all data is required to be stored centrally for fire surveil-
lance, and the detection model is trained and carried out
in the traditional centralization method, which brings
overwhelming communication costs and huge risks of
data leakage for edge users.
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2) High training delay for heterogeneous devices: In the
edge network, the IIoT devices are heterogeneous. For
well-resourced devices, a sophisticated global model
could ensure the model’s accuracy. However, such a
global model may bring a high training delay for the
limited-resourced devices, which is not accepted for
fire surveillance [10]. Although a compact global model
could ensure the training delay for all participating IIoT
devices, the model accuracy is difficult to guarantee,
especially for well-resourced IIoT devices [11].

3) Explainability of extracted fire semantics for succors:
The erroneous predictions by DL models may poten-
tially result in fatal accidents in recent years. Hence,
succors couldn’t trust DL when making life-critical
decisions for it is nontransparent and unexplainable
[12]. Therefore, the DL-based extracted semantics, rep-
resenting the features of fire, must be transparent and
explainable.

To address the above issues, we propose an Industrial
Edge Semantic Network (IESN) that reduces the transmitted
information and thus decreases the communication overheads
of IIoT devices. Our main contributions can be summarized
as follows:

1) We introduce the architecture of IESN, in which the
SC is used as the communication way between IIoT
devices and ES. SC can make devices transmit only
the extracted semantic information rather than the raw
data. Thus, the IESN can reduce the transmitted infor-
mation and improve the communication efficiency in
edge networks. Furthermore, we propose an eXplainable
Semantic Federated Learning (XSFL) for IIoT devices
and ES to co-train the SC model, and this decentralized
learning method at the edge can protect the privacy and
security of industrial data.

2) We present the Adaptive Clients Training (ACT) strat-
egy in the ES. Specifically, we first cluster the IIoT
devices according to their local resources. Then, for
each IIoT device, ES publishes a specific FL model
with a proportion of frozen parameters according to the
Fisher information of its local weights. The fewer local
resources the IIoT device owns, the more the frozen
ratio of the parameters, and thus the FL training delay
is decreased. Therefore, the local FL models can better
adapt to heterogeneous devices with different resources,
and the second challenge is solved.

3) We propose the Explainable SC (ESC) mechanism in
edge monitor devices to provide explainability of the
extracted semantics based on DL. Concretely, the ESC
uses semantic-specific gradient information to local-
ize important semantic features. Then, we introduce a
leakyReLU-based activation mapping to combine the
localized features with the raw monitoring data to de-
velop a high-resolution heatmap visualization. Thus, the
decision-makers can understand the relative between the
monitoring data and extracted semantics. Therefore, we
address the third challenge.

The rest of this paper is organized as follows. The system

model is introduced in Section II. The proposed XSFL is de-
scribed in Section III. The complexity analyses are introduced
in Section IV. Section V presents the numerical results. The
work summary and future works are described in Section VI.

II. SYSTEM MODEL

Fig. 1 (a) shows the architecture of the proposed IESN
in fire surveillance. For a spectrum resource-limited wireless
network, we deploy a distributed SC system which consists
of N IIoT devices, and one ES deployed on the BS. The set
of IIoT devices is denoted as N = {1, 2, ..., N}. The IIoT
devices only need to transmit the semantic information to the
BS, rather than the raw monitoring data, then the semantic
information is decoded in the ES. Once the decoding results of
the received semantics represent the occurrence of a fire, the
decision-makers should take the corresponding actions, e.g.,
dispatching ambulances and fire trucks. To enable IIoT devices
can extract the semantic information, the SC encoder is de-
ployed on each IIoT device, while the SC decoder is deployed
on the ES to decode the received semantic information. The
architecture of the SC model is introduced in Section III-A. In
addition, we should consider the impairments of the physical
channel between IIoT devices and the BS.

(a)

(b)

Fig. 1: The illustration of IESN for fire surveillance. (a)
Distributed SC system over the wireless network. (b) The

architecture of the SC model.

A. Semantic Communication Model in IESN

The encoding and decoding of the semantic information are
critical for the accuracy of SC, hence we must consider the
architecture design of the SC model for IESN. As shown in
Fig. 1 (b), the SC model mainly consists of three parts: SC
encoder, physical channel, and SC decoder. The SC encoder
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includes the semantic and channel encoder, and it is deployed
on each IIoT device. The SC decoder consists of the channel
and semantic decoder, and it is deployed on ES. Note the above
parts of the SC model are built based on deep neural networks,
and different network layers (e.g. convolutional layer, trans-
former layer, etc.) can be used according to different semantic
tasks [13].

The SC encoder encodes the input raw data x and ex-
tracts the semantic information. The encoding result can be
expressed as:

X = C (S (x,ϑ) ,α) , (1)

where X represents the extracted semantic information; S (·)
represents the semantic encoder with model parameters ϑ and
C (·) is the channel encoder with model parameters α.

When transmitted over the physical channel, X suffers
transmission impairments that include distortion and noise.
The transmission process can be given by:

Y = hX+N, (2)
where Y represents the received semantic information; h
represents the channel gain between the transmitter and the
receiver; N is Additive White Gaussian Noise (AWGN). For
end-to-end training of the encoder and decoder, the physical
channel must allow backpropagation. Therefore, the physical
channel can be simulated by neural networks [14], [15].

The SC decoder performs the decoding of the received
semantic information Y and alleviates transmission impair-
ments. The decoding result x̂ can be given by:

x̂ = S−1
(
C−1(Y,β), δ

)
, (3)

where C−1 (·) represents the channel decoder with model
parameters β; S−1 (·) is the semantic decoder with model
parameters δ.

In this paper, we approach the SC task as image classifica-
tion. As such, we utilize the cross-entropy (CE) loss function
in the SC system:

LCE(y, ŷ) = −
M∑
i=1

yi log (ŷi) , (4)

where y = [y1, y2, ..., yM ] represents the array of labels, if the
input data x belongs to the i-th class, then yi = 1 otherwise 0;
ŷ = [ŷ1, ŷ2, ..., ŷM ] represents the array of the probabilities of
all classes, ŷi represents the probability that x is predicted as
the i-th class; M is the total number of categories. Moreover,
classification-related metrics, such as accuracy, precision, etc.,
can be used to evaluate the quality of SC [16].

B. Federated Learning Model in IESN

We denote the local dataset of the IIoT device n (n ∈ N ) as
Dn = {(xn,1, yn,1), (xn,2, yn,2), ..., (xn,Dn , yn,Dn)}, where
Dn is the number of collected samples in Dn, xn,i is the
i-th sample and yn,i is the corresponding label.

In the t-th communication round of FL, the local loss
function of the IIoT device n can be calculated as:

Fn (wn,t) =
1

Dn

Dn∑
i=1

f (wn,t, xn,i, yn,i), (5)

where f(wn,t, xn,i, yn,i) is the loss function for the i-th
sample (xn,i, yn,i) in Dn; wn,t represents the weight assigned
to the local FL model of the IIoT device n in the t-th

communication round. Moreover, wn,t includes all the SC
parameters, namely wn,t = (αn,t,ϑn,t,βn,t, δn,t), where
αn,t,ϑn,t,βn,t, δn,t represent the parameters of the SC model
of the IIoT device n from the channel encoder to the semantic
decoder in the t-th communication round.

To ensure data privacy and security, the global FL model is
updated in the ES by aggregating the weights wn,t of the local
FL models from various IIoT devices. The update of the global
FL model can be calculated by combining and processing these
weights as follows:

wg,t =
1

D

N∑
n=1

Dnwn,t, (6)

where wg,t is the updated weight of the global FL model;

D =
N∑

n=1
Dn represents the sum of local data. Note that wg,t

shares the same architecture as wn,t.
FL aims to minimize the local FL loss of all devices with an

optimal global model wg,t, thus achieving global optimization.
Hence, the global loss function of FL can be given by:

Fg (wg,t) =
1

N

N∑
n=1

Fn (wg,t), (7)

where Fn (wg,t) represents that the local FL loss based on
wg,t. In this paper, the minimization of Fg (wg,t) is the
training goal of the SC model in IESN.

C. Transmission Model in IESN

In IESN, the uplink data rate of the IIoT device n via the
channel j can be calculated as [17]:

RU
n,j(t) = BU log2

{
1 +

PUhn,j(t)

IUn,j(t) + σ

}
, (8)

where PU denotes the transmission power of the IIoT device;
hn,j(t) represents the channel gain when device n communi-
cates with the ES via channel j; IUn,j(t) refers to the co-channel
interference experienced; σ indicates the noise power spectral
density; and BU signifies the bandwidth utilized during the
uploading process.

Similarly, when the global model is transmitted to the device
n by the ES, the data rate of the downlink can be expressed
as:

RD
n,j(t) = BD log2

{
1 +

PDhn,j(t)

IDn,j(t) + σ

}
, (9)

where PD represents the transmission power of the ES; BD

signifies the bandwidth of the downlink channel; and IDn,j(t)
denotes the interference experienced during the downloading
process.

Hence, the uplink and downlink transmission delays can be
respectively derived:

dUn,j(t) =
Z (wn,t)

RU
n,j(t)

, dDn,j(t) =
Z (wn,t)

RD
n,j(t)

, (10)

where Z (wn,t) denotes required bits for transmitting wn,t

over wireless links.

D. Computation Model in IESN

We presume that each IIoT device is furnished with a CPU
to perform local training tasks. The computational capacity
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of each device is assessed by its CPU frequency, denoted as
fn,t. In addition, Φn(wn,t) represents the number of CPU
cycles required to carry out the forward-backward propagation
process utilizing a single data point for the local model
wn,t. Consequently, for the t-th communication round, the
calculation delay of the local FL model can be derived [17]:

dLn(t) =
DnΦn(wn,t)G

fn,t
, (11)

where G is the local training iterations.

E. Delay Analysis and Optimization Objective

Assuming the ES possesses ample computational resources,
the delay caused by global model aggregation is considered
insignificant [17]. Therefore, the FL training delay for the n-th
device during the t-th communication round can be expressed
as follows:

dn,t = dUn,j(t) + dDn,j(t) + dLn(t). (12)
Since the global aggregation step is synchronous in FL [18],

during the t-th communication round, the total delay of the FL
training can be expressed as:

dt = max
n∈N

{min {dn,t, dmax}} , (13)
dmax signifies the maximum permitted delay for each IIoT
device n when executing the FL algorithm. Specifically, if
dn,t > dmax, IIoT device n cannot participate in the t-th
round of FL training. The primary objective of this paper is to
minimize both the global FL loss and the FL training delay.

III. THE XSFL FRAMEWORK FOR IESN
To achieve the IESN for fire surveillance, a high-accuracy

SC model is critical. Hence, the XSFL framework is proposed,
in which we apply the ACT strategy and ESC mechanism in
the ES and IIoT devices, respectively.

A. XSFL Framework

In this subsection, we introduce the details of the XSFL
framework. We assume that XSFL starts from a certain round
t, as shown in Fig. 2, the workflow of the XSFL is as follows:

1) Parameters Publication: To make the local FL models
adaptive to the heterogeneous IIoT devices, we perform the
ACT strategy on the global FL model wg,t in ES and the
global parameters that require training for each IIoT device are
published. Afterward, according to the published parameters,
the global FL models are processed specifically, and they are
broadcasted to the corresponding IIoT devices for updating
and starting the t+ 1-th FL:

wn,t+1 = ŵn
g,t+1, (14)

where wn,t+1 denotes the local FL model during the (t+1)-th
communication round, while ŵn

g,t+1 represents the global FL
model specific to IIoT device n. It is important to note that
both ŵn

g,t+1 and wn,t+1 share the same architectural design.
2) Local Training and Semantic Explanation: Each IIoT

device n performs local training with the local FL model
wn,t+1. After training, each IIoT device applies the ESC
mechanism to explain the fire semantics from the local FL
model in a visual way, which reveals the mapping between
semantic features extracted by the SC encoder and input
monitoring data.

3) Parameters Aggregation: When the trained local FL
models from all IIoT devices are uploaded to the ES, the
ES performs parameters aggregating. Afterward, we obtain
the aggregated global FL model. Assuming the total number
of communication rounds is T , the local training epochs of
each IIoT device is G, and the proposed XSFL framework is
summarized in Algorithm 1.

Algorithm 1 XSFL framework

Input: T , G.
Output: wg,T .

1: for each communication round t ∈ T do
2: Edge server do
3: Aggregate local FL models from IIoT devices according

to Eq. (6).
4: Perform ACT strategy on the global FL model accord-

ing to Algorithm 2.
5: Broadcast the specific global FL models ŵn

g,t+1 corre-
sponding to each IIoT device for updating according to
Eq. (14).

6: Edge device do
7: for each local epoch in G do
8: Update wn,t by minimizing Eq. (5).
9: end for

10: Explain the extracted semantics with the ESC mecha-
nism according to Algorithm 3.

11: end for

B. Adaptive Clients Training Strategy

Practically, IIoT devices are usually heterogeneous, which
makes different IIoT devices with disparate local resources
have different FL training delays. From Eq. (10) and Eq. (11),
it becomes evident that the FL training delay is affected by
the size of the FL model parameters. Moreover, the model
size also plays a significant role in influencing the model’s
accuracy. Hence, there exists a tradeoff between the model
accuracy and FL training delay. Concretely, a sophisticated
model can fully utilize data resources for well-resourced IIoT
devices, and thus the model accuracy is ameliorative. For
limited-resourced IIoT devices, a relatively compact model can
meet the requirement for low model accuracy but reduce the
FL training delay.

Therefore, we present the ACT strategy to achieve the FL
model match to different IIoT devices thus reducing the FL
training delay while ensuring model accuracy. Concretely, the
IIoT devices just train a proportion of the model parameters,
and the proportion is determined by their local data volumes,
and the adjusted parameters are determined by the Fisher
information matrix. The workflow of the ACT strategy is as
follows:

1) Device Classification: We perform clustering of the IIoT
devices according to their local data volumes. Specifically,
we use the following formulation as the distance evaluation
functions [19]:

ψ =

C∑
i=1

∑
n∈Ci

∥Dn,mi∥22, (15)
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Fig. 2: The illustration of the XSFL framework. (a) ACT strategy; (b) ESC mechanism.

where C denotes the total number of clusters; Ci is the i-th
cluster; and mi represents the medoid of the i-th cluster with
mi ∈ Ci. The medoid mi can be computed by [19]:

mi = argmin
n∈Ci

∑
j∈Ci

∥Dn, Dj∥22. (16)

Hence, for each IIoT device n, its belonging cluster can be
represented as a set Cn

i (1 ≤ i ≤ C).
2) Parameters Proportion: The proportion ζn of parameters

that need to be trained for each IIoT device is also divided
into C classes according to their belonging clusters Cn

i . For
the same cluster of IIoT devices, the average of their data
volumes is used to represent the data volume of the whole
class, hence ζn can be calculated by:

ζn =
Mean(Cn

i )

Dmax
, (17)

where Mean(Cn
i ) represents the average value of all elements

in Cn
i ; Dmax is the max data volumes. Well-resourced IIoT

devices are required to train more FL model parameters
to maintain model accuracy, while limited-resourced devices
focus on training fewer parameters of the FL model to reduce
the FL training delay.

3) Weights Freezing: By employing the Fisher information
matrix of the local FL model wn,t, we can estimate the
importance of each parameter in the global FL model wg,t

relative to the local FL model wn,t. This can be expressed as:
Ing,t = (wg,t −wn,t)

⊤ diag(In(wn,t))(wg,t −wn,t) (18)
where diag(·) is the operation of obtaining diagonal elements;
In(wn,t) represents the Fisher information matrix of the local
FL model wn,t. Then, a part of parameters of Ing,t with the
smallest absolute value and their indexes are selected, and
each IIoT device n gets the corresponding global FL model
ŵn

g,t according to the indexes Ing,t,sel. This can be expressed
as follows:

Ing,t,sel = Select(wg,t, 1− ζn), (19)

ŵn
g,t = Freeze(wg,t, I

n
g,t,sel), (20)

where function Select(wg,t, 1 − ζn) represents the operation
that select 1− ζn proportion weights of the global FL model
wg,t with the smallest absolute values of Ing,t and output their
indexes Ing,t,sel; The function Freeze(wg,t, I

n
g,t,sel) represents

that in the global FL model wg,t, the weights of the selected
parameters according to Ing,t,sel are frozen. The description of
the ACT strategy is summarized in Algorithm 2.

4) Hessian Interpretation: Since the Fisher information
matrix approximates the Hessian Hn,t of the local loss
Fn(wn,t) at wn,t = wg,t under some regularity conditions
[20]:

Ing,t ≈
1

2
(wg,t −wn,t)

⊤Hn,t(wg,t −wn,t), (21)
where Hn,t represents the Hessian matrix of wn,t, and Eq.
(21) is equal to the loss function. Therefore, the weights with
small values in Ing,t can be frozen, and the weights with large
values in Ing,t are exactly the goals we want to adjust to
minimize the loss function.

Algorithm 2 ACT strategy

Input: wg,t.
Output: ŵn

g,t.
1: Cluster the IIoT devices according to Eqs. (15) and (16),

then each IIoT device i obtains the belonging cluster Cn
i .

2: for each IIoT device n ∈ N do
3: Calculate the trained parameters proportion ζn accord-

ing to Eq. (17).
4: Obtain the specific global FL model ŵn

g,t for the IIoT
device n according to Eqs. (18) - (20).

5: end for

In the ACT strategy, the partial weights of the global FL
model are frozen to accommodate the local data volumes of
the heterogeneous IIoT devices. This approach enables the
local FL model to adapt better to the local data, thereby im-
proving its accuracy. Simultaneously, the number of trainable
local parameters in the IIoT devices is reduced, leading to a
corresponding decrease in the FL training delay [21], [22].

C. Explainable SC Mechanism

The inaccurate fire semantics may lead to incorrect de-
cisions in fire relief. Hence, the explainability of extracted
fire semantics is critical for being trustworthy [23]. As a
solution, the ESC mechanism is applied in IIoT devices to
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explain the extracted fire semantics from local FL models
(namely the SC models). Specifically, we introduce a novel
leakyReLU-based activation mapping to explain the relative
between the semantic features extracted by the SC encoder and
input monitoring data. The ESC mechanism employs semantic
feature-specific gradient information to identify significant
regions within input images. By visualizing this information,
practitioners can gain insights into the underlying rationale for
a particular prediction made by the SC model. As shown in
Fig. 2(b), the steps of the ESC in a visual way are illustrated
as follows:

1) Semantic Gradient Computation: We assume the seman-
tic features Q = [Q1, Q2, ..., QL] is a one-dimensional vector,
where Ql represents weight value of the l-th feature. Then, we
compute the gradient of the semantic feature Ql to the feature
map activation Ak for the kernel k of the last convolution
layer, the calculated formulation is as follows:

Gl =
∂Ql

∂Ak
, (22)

where Gl represents the gradients for the l-th semantic feature.
In this step, note that all values calculated depend on the input
monitoring data and the weights of the SC model are fixed.

2) Feature Significance Calculation: We compute the neu-
ron importance weights, ωl

k, by taking a weighted average of
the pixel-wise gradients along both height h and width w. The
calculation of ωl

k can be expressed as:

ωl
k =

h∑
i=1

w∑
j=1

ϱk,li,jGl, (23)

where ϱk,li,j is the weighting coefficients for the pixel-wise
gradients for semantic feature Ql and feature map Ak, which
can be calculated by:

ϱk,li,j =

∂2Ql

(∂Ak
i,j)

2

2 ∂2Ql

(∂Ak
i,j)

2 +
h∑

a=1

w∑
b=1

Ak
a,b

{
∂3Ql

(∂Ak
i,j)

3

} (24)

where Ak
i,j and Ak

a,b both represent someone pixel in Ak.
Eq. (24) shows that the weight of Ak

i,j is affected by itself
and the other pixels Ak

a,b. Consequently, ωl
k signifies a partial

linearization of the deep network downstream from Ak, and
encapsulates the importance of feature map k concerning the
l-th semantic feature [24].

3) Visual Heatmap Generation: The visual heatmap that
ESC generated is a weighted combination of feature maps. We
introduce Leaky ReLU to retain the information of the nega-
tive values in the semantic features, thus solving the “Dead
Neuron” problem [25] and ensuring the ESC mechanism
generates remarkable heatmaps for the semantic explanation.
The localization map Pl with Leaky ReLU for semantic feature
Ql can be given by:

Pl = leakyReLU

(
k∑

e=1

ωl
kA

k

)
=

max(0,

k∑
e=1

ωl
kA

k) + α ∗min(0,

k∑
e=1

ωl
kA

k),

(25)

where α ∈ (0, 1) is the slope for negative input. Finally, we
obtain the complete localization map P for all semantics S,
where P = {P1, P2, ..., PL}. Then, P is normalized and thus

results in a heatmap for visualization. Algorithm 3 shows the
description of the ESC mechanism.

Algorithm 3 ESC mechanism

Input: S.
Output: P.

1: for each semantic feature Ql ∈ S do
2: Compute the gradient Gl of the semantic feature Ql

according to Eq. (22).
3: Obtain the neuron importance weights ωl

k of the gradi-
ent Gl according to Eqs. (23) and (24).

4: Calculate Pl according to Eq. (25).
5: end for

With the ESC mechanism, we achieve the explainability
of the fire semantics from the SC model. The generated
heatmap by ESC captures the relationship between the se-
mantic features and input monitoring data, which helps the
succors interpret the prediction results and thus improves the
trustworthiness of SC. In addition, the ESC mechanism can be
used with the SC model locally on IIoT devices and without
any pre-training, hence there is no extra computation cost for
using ESC.

IV. COMPLEXITY ANALYSIS

Suppose the average data size of each IIoT device is denoted
as Davg = 1

N

∑
n∈N Dn. We assume the time complexity

of communication and computation is linearly proportional
to model sizes [26]. Then, the complexity analysis of the
proposed XSFL in terms of communication and computation
is performed.

In traditional FL, the communication cost primarily orig-
inates from uploading the local FL models during global
aggregation. As a result, the communication time complexity is
O(T |wg,t|), where | · | denotes the operator for calculating the
size of parameters. In the proposed XSFL, the communication
time complexity is O(T |ŵn

g,t|). During the communication
phase, since |ŵn

g,t| is equal to |wn,t|, our methods do not
directly affect the communication complexity.

The time complexity of computation which depends on
the local training in the traditional FL is O(TGDavg|wg,t|),
where T is the communication rounds, G is the local training
iterations of each IIoT device. In XSFL, partial parameters
are frozen, namely, these parameters are not trained, hence
the time complexity of computation is O(TGDavg|ŵn,tr

g,t |),
where ŵn,tr

g,t means the trained weights of ŵn
g,t. Due to

|ŵn,tr
g,t | < |ŵn

g,t| and the weights freezing is carried on the
ES, hence O(TGDavg|ŵn,tr

g,t |) < O(TGDavg|wg,t|).

V. SIMULATION AND DISCUSSION

A. Simulation Settings

First, we use the Comprehensive Disaster Dataset (CDD)
[27], which includes fire images, to evaluate the performance
of XSFL and its competitors. The dataset is split into 80% for
training and 20% for testing purposes.

Second, we consider the following contenders:
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• FedAvg [11]: A benchmark FL algorithm.
• STC [28]: A compression-based FL framework tailored

to FL environment requirements.
• FTTQ [29]: A ternary compression-based

communication-efficient FL method.
• FedPAQ [30]: A communication-efficient FL strategy

incorporating periodic averaging and quantization.
• XSFL: Our proposed FL approach for IESN, as presented

in this paper.
Third, for the system model, we assume 10 IIoT devices

are participating in FL training. The CPU frequency for each
IIoT device is set to fn,t = 2 GHz. Channel power gain is
set at hn,j(t) = −50 dB, and noise power is set to σ =
−174 dBm/Hz. Data transmission power and bandwidth are
configured as PU = 0.01 W, PD = 1 W, BU = 1 MHz, and
BD = 20 MHz [31].

B. Evaluation of FL Model Performance
In this subsection, we evaluate the proposed XSFL in terms

of the model performance compared with other contenders.
The evaluation indicators include Accuracy (ACC), Precision
(PRE), Specificity (SPE), F1-score (F1), and Recall (REC)
[32].

Fig. 3: Model performance comparison among several FL
schemes.

Based on the above settings, the final evaluation results of
different FL schemes are shown in the radar plots of Fig.
3. We can observe that the proposed XSFL achieves the
best performance in all indicators. We speculate the excellent
performance of XSFL is attributed to the ACT strategy. ACT
can freeze partial weights of the global FL model for adapting
to the local data volumes of the IIoT devices, which assists
the local FL model in making full use of the local data and
thus improves the generalization of the global FL model.

C. Evaluation of FL Training Delay
This simulation aims to demonstrate the proposed XSFL

can effectively reduce the FL training delay.

Fig. 4: The average training delay of each IIoT device using
several FL schemes.

Fig. 5: The values of the optimization objective for different
FL schemes.

Fig. 4 shows the average FL training delay of each IIoT
device in each communication round by several FL schemes.
We can see that the boxplot of the presented XSFL scheme
is at the bottom, which means the average training time of
each IIoT device in XSFL is the shortest. Fig. 5 describes the
global loss, weighted delay, and optimization objective under
different FL schemes, where the weighted delay means the
total training delay multiplied by a coefficient. The coefficient
is set to 1e-3 to balance the delay and global loss; The
optimization objective is the sum of the global loss and
weighted delay. The results indicate that XSFL can effectively
strike a balance between model performance and training delay
in comparison to the other contenders.

D. Evaluation of Semantic Explainability

To evaluate the explainability of the XSFL, we display some
ESC heatmaps corresponding to fire images from CDD.
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Fig. 6: The explainable results of XSFL.

Fig. 6 displays the heatmaps corresponding to the fire
images, where the key features are accurately marked, such
as the fire and smoke in the fire images. Through this visual
explanation, the relationship between the semantic features and
input monitoring images can be captured, which helps humans
interpret the prediction results and improve the trustworthiness
of SC.

VI. CONCLUSIONS

In this paper, IESN is presented to reduce the communica-
tion overheads of IIoT devices for fire surveillance. Further-
more, we propose the XSFL that enables IIoT devices and ES
to collaboratively train the SC model while ensuring data pri-
vacy and security. In XSFL, we first present the ACT strategy
in ES, in which IIoT devices are clustered according to their
local resources. Then, for each cluster, ES publishes a specific
FL model that can better adapt to the device. Second, the
ESC mechanism is designed to provide explainability of the
fire semantics, which helps humans understand the semantic
results and improve the trustworthiness of SC. Finally, the
simulation results demonstrate the superiority of the proposed
XSFL method.
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